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EFFICIENT MOTION PLANNING FOR AN L-SHAPED OBJECT*

DAN HALPERINt, MARK H. OVERMARS$, AND MICHA SHARIR’

Abstract. An algorithm that solves the following motion-planning problem is presented. Given an

L-shaped body L and a two-dimensional region with n point obstacles, decide whether there is a continuous
motion connecting two given positions and orientations of L during which L avoids collision with the
obstacles. The algorithm requires O(n log n) time and O(n2) storage. The algorithm is a variant of the
cell-decomposition technique of the configuration space [D. Leven and M. Sharir, J. Algorithms, 8 (1987),
pp. 192-215], [J. T. Schwartz and M. Sharir, Comm. Pure Appl. Math., 36 (1983), pp. 345-398], but it employs
a new and effEcient technique for obtaining a compact representation of the free space, which results in a

saving of nearly an order of magnitude. The approach used in our algorithm is also applicable to motion
planning of certain robotic arms whose spaces of free placements have a structure similar to that of the
L-shaped body.

Key words, computational geometry, robotics, motion planning, data structures, arrangements, configur-
ation space, dynamic segment trees

AMS(MOS) subject classifichtions. 68U05, 68Q25

1. Introduction. Let B be a robot system having k degrees of freedom that is free
to move within a two- or three-dimensional domain V which is bounded by various
obstacles whose geometry is known to the system. The motion-planning problem for
B is, given the initial and desired final position of the system B, to determine whether
there exists a continuous motion from the initial position to the final one, during which
B avoids collision with the known obstacles, and if so, to plan such a motion.

Since the general motion-planning problem is very hard, a significant effort was
devoted to develop efficient algorithms for some special cases, particularly that of
motion planning for rigid objects in a two-dimensional polygonal space. To get some
feeling of what "efficient" means in this context, we note that such moving systems B
have three degrees of freedom, so their configuration space, i.e., the space of parametric
representations of placements of B, is three-dimensional. Let n denote the number of
obstacle corners, and suppose that the complexity of B is constant. Then the "flee"
portion FP of the configuration space, consisting of placements of B in which it does
not meet any obstacle, is bounded by O(n) (algebraic) collision-constraint surfaces,
each being the locus of placements where some specific feature of B makes contact
with some specific obstacle feature. By standard arguments from algebraic geometry,
the complexity of FP is O(n3). Moreover, the recent general technique of Canny [Ca]
yields a (fairly complicated) algorithm that computes a discrete representation of FP
in time O(n log n). A more specialized algorithm has recently been obtained by
Avnaim, Boissonnat, and Faverjon [ABF], whose complexity is also O(n log n).

Thus the general goal of studying motion-planning problems for rigid objects in
the plane is to obtain subcubic, and ideally near-quadratic, algorithms. Ke and
O’Rourke [KeO] give a quadratic lower bound for the actual combinatorial complexity
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of a collision-free motion for a line segment (see [KeO] for a definition of motion
complexity). The lower bound for the decision problem, that is, to decide whether a
motion exists, is not known to be quadratic. However, the only cases where near-
quadratic algorithms have been obtained involve convex objects (see [LS], [SIS] for
the case of a line segment and [CK], [KS2] for the case of an arbitrary convex polygon).
Efficient motion-planning algorithms for nonconvex polygons in two-dimensional
polygonal space have scarcely been dealt with. An early consideration of the problem
appears in Schwartz and Sharir SS], where they extend their O( n 5) projection algorithm
for moving a line segment to a nonconvex polygon B with similar running time,
assuming that B has a fixed number of vertices. As just noted, the algorithms of [Ca]
and [ABF] already improve the complexity to O(n log n), but no better solutions
were known in the nonconvex case.

In this paper we present a new approach to motion planning of nonconvex objects
in the plane. We obtain a near-quadratic algorithm for solving this problem in the
special case of an L-shaped object moving amidst a collection of point obstacles in
the plane.

We distinguish between the reachability problem, which is to check whether a
continuous collision-free path from the initial to the final placement exists, and the
find-path problem, which is to actually compute such a path if it exists. The former is
the concern of this paper, and the latter is discussed in an accompanying paper [HS].

Our algorithm uses the decomposition approach to motion planning [SS], [LS],
[KS2], which partitions the space FP of free placements of the robot system into a
finite number of simple, connected cells. These cells define vertices in a so-called
connectivity graph CG. Two cells are adjacent in CG if they have a common boundary
enabling a direct crossing of the moving object between them. It can be shown that
in the worst case, the space FP for our L-robot has l’(n 3) connected components,
thus, in particular, its total combinatorial complexity can be 1(n3).

To see this, consider Fig. 1, where there are three sets of n/3 points each. Choose
an interval between two successive points in the upper horizontal set; choose an interval
between two successive points in the lower horizontal set. Now locate the "vertical"
bar of L so that it will intersect the two chosen intervals. Finally, choose a pair of
consecutive points in the vertical set and locate the "horizontal" bar - of L such that
it will also intersect the interval between this pair. It is easily verified that there are
12(n3) such choices and that L cannot continuously move between any pair of such
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q

F(3. 1. A configuration of obstacles wich an ll(n)-size FP.
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placements, if the size of L and the location of the points are chosen in an appropriate
manner.

However, using some interesting data structure techniques, we construct an implicit
representation of FP using a compact connectivity graph that requires subcubic space
and can be constructed in subcubic time. To be precise, our reachability algorithm
requires O(n2 log2 n) time and O(n2) space.

The paper is organized as follows. In 2 we introduce the terminology, explore
the basic ideas, derive some initial observations about the problem structure, and give
an overview of our efficient solution. In 3 we describe the data structures that support
our algorithm. More details concerning the algorithm are described in 4, where we
also prove its correctness and analyze its complexity. We conclude in 5 by discussing
the novel ideas used in this paper and their potential applicability to other instances
of the motion-planning problem, and by proposing some directions for further research.

2. Terminology and initial analysis. We denote the moving object L by pqr where
qp is the vertical bar and -T is the horizontal bar of L (in some standard axis-parallel
position). Thus p and r are the external vertices and q is the internal vertex of L. Each
position of L can be specified as Z (X, 0) where X is the position of q and 0 is the
orientation of --fi. For the purpose of our algorithm, we will always present X in a
rotated coordinate frame in which 0 becomes a downward vertical direction. We denote
by AP the resulting three-dimensional space of all positions of L, which can be
identified with R S 1. The set of point-obstacles is denoted by O (o, li 1, 2, , n}.
For the sake of representation only, we will delimit the planar workspace V in which
L is free to move by a sufficiently large rectangle, and assume that this rectangle rotates
with the coordinate system, so that it always remains axis-parallel.

We shall call a position of L at which it does not touch any point a free position.
The set FP of all free positions of L is an open three-dimensional submanifold of AP.

Similar to [LS] (see also [SS], [KS2]), our method decomposes FP into connected
subcells of a simple form, using the following two-step approach. First we consider
the case in which L is allowed to translate arbitrarily, but not to rotate. Then we
consider the case in which L is allowed both to translate and to rotate in V.

To build a discrete representation of FP for a fixed orientation, we follow a
common practice in motion planning [LW], [KS1], [KLPS], and compute the
Minkowski (i.e., vector) difference of each obstacle and the robot. Let Lo denote a
position of L in a Cartesian coordinate system in which q coincides with the origin
of the system, p lies on the negative y-axis, and r lies on the negative x-axis. For any
fixed 0, and for i= 1, 2,..., n, let Li Li(0)= o(0)- Lo be the Minkowski difference
of the obstacle o and Lo, in the rotated coordinate frame where 0 points downwards;
here o(0) denotes the rotated position of the point obstacle o in this coordinate frame.
The horizontal bar of Li extends from oi(0) to the right, and the vertical bar extends
from oi(0) upwards (see Fig. 2 for an illustration). Let So {L(0)li 1, 2,. , n} for
some fixed orientation 0. So defines a planar arrangement consisting of horizontal and
vertical line segments. The cross-section of FP at a given 0, which we denote by FPo,
is simply the complement of the union of the L(0)’s. In addition, to simplify the
structure of So, we add to it certain horizontal segments emanating from the vertices
of the Lj’s. We will refer to these extensions as imaginary walls; see Fig. 6(a) for an
illustration (a formal definition is given below). So, together with these extensions (and
the big rectangle enclosing the workspace), divide FPo into orthogonal (axis-parallel)
simply-connected polygons. We call each such polygon a face of FPo. Some of these
faces are simply rectangles, in which case we call the four edges of the face the northern,
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FIG. 2. The expanded obstacles: (a) Lo, Ol-O4; (b) L

southern, western, and eastern walls corresponding to the upper, lower, left, and right
edges of that face. In other cases we call the rightmost edge of the face the eastern

wall. The imaginary walls will be defined in such a way as to ensure that each face
has a unique eastern wall.

If we let 0 vary through the range [0,2r], the object Li(O) will trace a two-
dimensional surface o-i within AP; that is, o- {(X, 0)10 e [0, 2r], X e Li(0)}. The
collection of these surfaces forms an arrangement of surfaces in AP, which decom-
poses the three-dimensional space AP into pairwise disjoint connected cells, each of
zero, one, two, or three dimensions. We shall use the unquantified term cell for a
three-dimensional cell of . A cell c of s is interesting if at least one cross-section
of its closure contains a vertex of some Li(O). All other cells of the arrangement are
called dull (this terminology is borrowed from [AS]).

Remark 2.1. Formally speaking, the surfaces o- are not algebraic, because they
depend trigonometrically on 0. However, they can be easily made algebraic if one
replaces 0 by, say, =tan (0/2). For simplicity of exposition, we will continue to use
0 as one of our coordinates, but consider this transformation as available whenever
needed.

In our analysis, we will sometimes allow the motion of L to become semifree,
namely, allow L to touch an obstacle. In the configuration space, the corresponding
path is allowed to touch the union BFP of the surfaces r. However, the path is not
allowed to cross BFP transversally (which amounts in the physical space to L sweeping
through an obstacle). We will therefore consider each o- to be "two-sided," where
each side bounds, and can be reached from, a different portion of FP, and where no
direct crossing from one side to the other is allowed.
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How does the two-dimensional arrangement (of So) change as the orientation 0
of the original L varies? As the coordinate system rotates, FPo changes continuously,
but its combinatorial structure remains unchanged, unless one of the following two
types of critical events occurs at 0 (see Fig. 3):

I. A vertex of one Li meets an edge of another L.
II. Two parallel edges of two Li’s overlap.
These two types of events are substantially different in their effect on FPo. An

event of type I has only a local effect on FPo--either a face is split into two, or two
faces are merged into one. When an event of type II occurs, its effect is more global
and causes four contiguous sets of faces, each set containing O(n) (and, in the worst
case, f(n)) faces, to change some of their edges, to disappear, or to newly appear.

FIG. 3. Events of type (left) and type II (right).

An orientation 0 at which one of these events happens, will be called a critical
orientation.

Remark 2.2. When two parallel edges overlap it is also the case that a vertex of
one expanded obstacle meets an edge of another. We will treat this part of the type
II event in a way similar to a type I event. Indeed, it will be more suitable to regard
each overlap of two parallel edges as a combination of events of type I and of type
II. From this point on, type II will refer only to the effect of the overlap on the
"internal" faces involved, taking care of the "external" faces (i.e., the faces adjacent
to the vertices of the overlapping edges) as effected by a type I event.

How many criticalities are there of each type?
LEMMA 2.1. The number of critical orientations induced by a fixed pair of obstacles

is bounded by a constant.

Proof The proof is trivial, by elementary geometric considerations. [3

Since there are () pairs of expanded obstacles, Corollary 2.2 follows.
COROLLARY 2.2. There are O(n2) critical orientations of type I and O(n2) critical

orientations of type II; they can all be easily calculated in O( n) time.

An overview of the teachability algorithm. We now give a first rough description
of our algorithm for testing whether two given placements of L can be reached from
one another by a continuous collision-free motion.

The proposed algorithm consists of two parts:
1. Building the connectivity graph (preprocessing), and
2. Searching for a path from the initial placement of L to its destination placement.

Our goal in the preprocessing part is to build a compact and space-efficient version
of the connectivity graph, in the sense that (i) it (almost) does not contain nodes
representing dull cells, and (ii) it contains only partial information about interesting
cells.

Since our goal is to obtain an algorithm with a close-to-quadratic performance,
the main difficulty we face is the handling of type II events. The problem is that in
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the worst case there are 12(n 2) criticalities of type II where each such criticality may
involve up to (n) faces. If we were to handle each face separately, we would end up
with an algorithm having a worst-case 12(n 3) performance. Instead, we wish to handle
these O(n) (and in the worst case l(n)) faces in an implicit manner, so that each type
II event can be "encoded" into our data structures in only polylogarithmic time, in a
manner that still allows us to trace these changes efficiently when needed. (Note, in
contrast, that type I events are "harmless"wthere are O(n2) such events and each
induces only O(1) changes in the combinatorial structure of FP.)

To achieve this, we make use of the following observations, which are essential
to the subsequent analysis.

Observation 1. If we ignore the labeling of the segments in So, then a type II
criticality does not change the combinatorial structure of the planar arrangement of
So (again we remind the reader that in this statement we ignore the effects of this
criticality on the endpoints of the corresponding Li’s, which are treated separately as

type I events).
Observation 2. Taking the labeling of the segments in So into account, each of

the O(n) adjacent faces f participating in a type II critical event goes only through
one of the four following combinatorial changes (where we assume that the vertical
bars of two expanded obstacles Li, Lj overlap and that Lj moves westwards relative
to Li),

(i) f changes its eastern wall from Lj to Li (see, e.g., fl in Fig. 4);
(ii) f changes its western wall from Li to Lj (f3 in Fig. 4);
(iii) f is "squashed" between L and Lj, i.e., shrinks to a segment and then

disappears (f2 in Fig. 4); or

Li

(a)
(b)

Li

Li

(c)

FIG. 4. The four kinds offaces affected by a type II event.

(iv) f newly appears, initially as a segment, and then expanding into a rectangle
bounded between L and Lj (and two other horizontal bars) (f in Fig. 4).

Similar changes occur when two. horizontal bars of some L, Lj overlap.
Our idea is to take advantage ofthese facts for obtaining an economical representa-

tion of FP. Informally, we decompose FP into connected subcells. Each subcell cf
corresponds to a face f in the unlabeled arrangement So, and consists of the union of
all the slices of FP that correspond to f, obtained as we vary 0 in a maximal interval
r in which no type I criticality affects the structure off and no type II criticality causes
f to be squashed or disappear (as in (iii) above, or its 0-symmetric counterpart (iv)).
That is, cf {(X, 0): 0 -, X fo} where r is as above and fo denotes the portion of
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FPo that corresponds to f (Note that in this context f is represented in a purely
combinatorial manner, by its "location" in the unlabeled arrangement So.)

Some of the subcells of FP are stored as the nodes of a connectivity graph CG,
with edges connecting pairs of adjacent subcells, in the sense that they admit direct
crossing between them either at a fixed 0 through some imaginary wall, or by crossing
a critical orientation (of type I) delimiting both subcells.

The main ideas of our algorithm are (i) to avoid representing dull cells as much
as possible, and (ii) to store each subcell of an interesting cell as a single entity as
long as it is not affected by any type I change. Thus, even though the walls of the
cross-section of this subcell may change repeatedly due to type II events, we do not
record these changes in the subcell. Instead, these changes are stored in a more global
manner in certain auxiliary data structures and their "overall effect" is retrieved upon
demand in an efficient manner.

Our algorithm proceeds roughly as follows. It starts with computing and sorting
all the critical orientations. Then the FP cross-section FPoo, for some initial noncritical
orientation 0o, is built. All the faces of FPoo are marked active and the "initial layer"
of the connectivity graph CG is laid, with a node corresponding to each face of FPoo
(more precisely, to each subcell of FP whose cross-section at 0o is that face) and edges
connecting pairs of faces (subcells) adjacent along some imaginary wall. As 0 increases
from 0o and criticalities occur, we do the following"
mWhen a type I criticality occurs, we update the topological structure of the current
FP cross-section around the critical contact, add new nodes and edges to the con-
nectivity graph to reflect this local change, and make all the faces that are involved in
the change active.
--At a type II critical orientation, we mark all the faces that get squashed in this event
as being inactive. More precisely, each such facef is replaced in the current arrangement
So by a similar looking face f’, in which a pair of opposite walls have been swapped.
Even though f and f’ occupy the same place in the (unlabeled) arrangement So, there
is clearly no direct passage between them. It is therefore important to record the fact
that the corresponding face in So is no longer active, meaning that it is as yet not
connected to any active subcell (where a type I event occurs).

When a type I event occurs, it generates potentially new nodes (subcells) in the
connectivity graph (corresponding to the faces that participate in this change). However,
such a node could designate a subcell already represented by another node of CG
(which has been created by a former type I event or at the initial 0o, and which may
have undergone a sequence of type II changes to reach the current face). Since these
changes are not stored directly in the subcells, a major novel component of our
algorithm is to determine, for a given type I contact, which faces of the unlabeled
arrangement So participate in it, and whether any of these faces is a portion of an
already defined node of the connectivity graph. How this is achieved is described below.

More formally, we have the following definition.
DEFINITION. A face of the current cross-section FPo of FP is called active if the

subcell containing it already has a representing node in CG; otherwise, the face is
called inactive.

All the faces of FPoo are active as the first step of the algorithm assigns a node in
CG for every cell which has a cross-section in 00. A face remains active as long as it
is not squashed by a type II event. When a face is squashed by a type II event it
becomes inactive. An inactive face becomes active if it participates in a type I event.
Consequently, all faces which are slices of interesting cells will be active and all faces
belonging to dull cells will be inactive unless they have a cross-section in 0o.
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In addition, we also update, at each type II event, auxiliary global information,
such as the horizontal ordering of the vertical bars of the Li’s, the vertical ordering of
the horizontal bars, etc.

Reaching 0 0o + 2 zr we perform some additional work to "wrap" the connectivity
graph around.

There are two additional events during the 0-sweep. These occur at the orientations
0s and Od of the initial and final placements of L, respectively. The discussion of what
happens at these events is postponed to the full description of the algorithm in 4.
We merely note that the introduction of these 0’s enables us to locate the two nodes
vs and Vd of CG corresponding to the subcells containing the initial and final placements
of L.

Since we create new nodes and edges in CG only at type I events, and each such
event involves only O(1) faces of FPo, the size of CG will be at most O(n2).

The reachability query is then treated by searching the connectivity graph for a
path between v and Yd. If a patti is found, then the answer to the query is YES,
otherwise the answer is NO. As already noted, this still falls short of producing the
path when one exists. See below for a discussion of this issue.

For the convenience of the analysis we assume that no two critical orientations
coincide. In particular, this requires that no three obstacle points be collinear and no
two pairs of obstacle points lie on parallel lines. However, such degenerate cases can
be handled by an appropriate and slight modification of the algorithm.

3. Data structures. Throughout the algorithm we use the following data structures:
CG--the connectivity graph;
The horizontal packagemretaining all the necessary information about the

current cross-section of FP from a "horizontal" point of view. The package consists of:
QH--a balanced binary tree storing the n vertical bars of the Li’s in a left-to-right

order;
RHma left-to-right ordered list of n + segment trees, where each tree describes

(certain horizontal bars intersecting) a vertical slab of FPo between two lines containing
adjacent vertical bars of the L’s;

UHa data structure for answering queries of the form: "how many horizontal
segments of So are stabbed by a query vertical segment?";

The vertical packagemstoring all the necessary information about the current
cross-section of FP from a "vertical" point of view; it consists of three substructures
Qv, Rv, and Uv, defined in an analogous manner.

Let us now describe the structures in detail.

3.1. The connectivity graph. To better describe the structure of the connectivity
graph, let us first be more precise about the imaginary walls. Four segments extend
from each Lj (Fig. 5). Each segment extends until it hits some orthogonal segment:

aj--a westwards extension of the horizontal bar of L;
/3jma westward-directed segment emanating from the upper external vertex pj

of Ls;
ya southwards extension of the vertical bar of Lj; and
8j--a southward-directed segment emanating from the right external vertex ) of L.
However, to simplify our structures we will use only the walls a,/3 to decompose

FPo into faces; y and ./will be used only in some auxiliary data structures. With this
convention, each face f of FPo has a unique eastern wall ey, which is a connected
interval of the vertical bar of some L, and f consists of all points z for which there
exists a horizontal segment connecting z to a point on ey whose relative interior does
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FIG. 5. The imaginary walls.

real

imaginary

(a)

(b)

FIG. 6. The "horizontal" and "vertical" planar arrangements.
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not meet any Lk (i.e., z can "see" ef when looking directly eastwards). See Fig. 6(a)
for an illustration of FPo.

The connectivity graph CG-(V, E) has a set of nodes V and a set of edges E.
Each node v V corresponds to a subcell c of FP. New nodes are created and added
to CG only when the corresponding subcells participate in a type I change. A subcell
can be characterized at each orientation 0 by its eastern wall (in a manner to be made
more precise below). However, this information is stored in the instantaneous data
structures describing FPo and is not encoded into the nodes of the connectivity graph.
CG describes, at a certain orientation, some portion of the planar arrangement induced
by Lj, aj, flj IJ- 1,. ., n; we denote this extended collection of segments by So*.

The edges of CG connect adjacent subcells in FP according to the following two
rules, which also give details about the changes in the corresponding faces of FPo and
the generation of corresponding nodes in CG:

Neighboring 0 intervals: When a type I critical event occurs, the topological
structure of FPo changes. For example, as a horizontal bar of some Lk hits a vertical
bar li of another Lj while moving eastwards (Fig. 7), some face f is split into two
adjacent faces fl and f2. Iff is active at the time of the split (in the particular situation
depicted in Fig. 7 this will be the case, as our construction will imply), then its containing
subcell c already has a representing node v in the connectivity graph. Iff is not active
(as might happen in other cases, e.g., when a vertex of an Li first penetrates f), we
add a new node to CG to represent f. Since the two subcells of FP containing fl and
f2 are adjacent to c and admit direct crossing between them and c, each of the two
respective newly-generated nodes of CG will be connected by an edge to v (by
definition, both fl and f become active).

li

Li Li

li

8i 8i

before after
FIG. 7. A type event.

Similarly, when the motion of Lk with respect to Lj is reversed, two faces of FPo
are merged into a new face f (which by definition becomes active). Again, if any of
these two faces is active, its representing node in CG is connected to the new node
representing f in CG. (If any of the merged faces were inactive we do not allocate a
node in CG for that inactive face. The connectivity of our graph is not hindered by
this overpass since the subcell of FP corresponding to this inactive face would have
been a "dead-end." If, on the other hand, either the initial placement or the final
placement of L is in that subcell, its face would be activated, as we will later describe.)

Similar generation of new faces of FPo, corresponding nodes of CG, and connect-
ing edges occurs when the end of the vertical bar of Lj hits the horizontal bar of
another Lk, or when an endpoint of the horizontal bar of some Lj comes to lie on the
horizontal bar of another Lk, or on one of the horizontal extensions Ok, [3k of another
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Lk, or, similarly, for an overlapping of vertical bars. We leave the routine details of
this generation to the reader.

Overlapping 0 intervals: The extensions aj,/3juthe imaginary wallsmdo not
portray real obstacles. Therefore, the two nodes of CG representing subcells that
contain two faces that border on such a wall are connected in the connectivity graph
by an edge. Such connections are made either in the initial layer of CG at 0o, or at
the appropriate type I event.

CG is the only structure pertaining to the three-dimensional space FP. The rest
ofthe structures aim to represent the dynamically varying two-dimensional cross-section
FPo of FP.

3.2. The horizontal package. The main structure in the horizontal package is RH
and it is supported by the auxiliary structures QH and UH.

As mentioned before, FPo refers to the planar arrangement So* of the Lj’s and
their horizontal extensions. The horizontal package deals with this arrangement,
whereas the vertical package deals with the arrangement induced by {L, y, 8lJ
1, , n}. (Figure 6 illustrates the two arrangements for the same collection of expan-
ded obstacles. Figure 6(a) illustrates the "horizontal" arrangement and Fig. 6(b)
illustrates the "vertical" arrangement.) Thus there is a slight asymmetry between these
packages: while the horizontal package faithfully represents FPo, the vertical package
assumes a more auxiliary role and represents faces of a different (though related)
arrangement. The packages are designed to store the active/inactive status of faces.
The vertical package serves a single purposemrecording "horizontal squashes." In a
horizontal (or vertical) squash, a set of faces is deleted by two segments that partially
overlap (and similar faces newly emerge). Since the extremal faces in the squash are
treated separately, it follows that all the faces that are involved in the squash are
rectangular with all walls real. Such faces have the same representation in both packages.
This property will be important in the analysis to follow, as it will allow us to retrieve
the active status of such a face by querying both packages without any
ambiguity concerning the identity of the face.

There is an additional technical issue that, needs to be discussed. To exploit
Observations 1 and 2, made in 2, the horizontal package represents the unlabeled
arrangement So* of the L’s, a’s, and fl’s. Thus faces in this arrangement are represented
only by their location in this unlabeled arrangement, with no immediate relationship
to their actual location in FPo. The role of the auxiliary structures QH and UH is to
provide a mechanism for locating actual portions of FPo in the unlabeled arrangement
So* or for identifying features of So* in the actual cross-section FPo. See below for more
details.

3.2.1. The structure QH. QH is a balanced binary search tree which stores the
left-to-right ordering of the labeled vertical bars of the L’s. We update Q, at every
type II event that overlaps two vertical bars, by interchanging (in O(log n) time) the
corresponding two adjacent labels.

In the following sections we describe the more elaborate structures R/_/ and UH.
Throughout the next section, where RH and its usage are explained, we often refer to
the structure UH. UH is a dynamic data structure used to report the number of segments,
out of a collection of n horizontal segments, stabbed by a query vertical segment. All
specific details concerning the structure UH are postponed to 3.2.3.

3.2.2. The structure RH. We divide FPo into n + vertical slabs. The right side of
a slab si is partially covered by the vertical bar of some L (or, for the rightmost slab,
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by the right side of the surrounding rectangle), which we denote by li (the identity of

L is not stored directly at li). li is divided into several segments, each of which is an
eastern wall of some face. Recall that, by our preceding definition, a face of FPo is a
maximal connected two-dimensional component of FPo whose eastern wall is a con-
nected portion e of the eastern wall li of some slab si and contains all the points that
are horizontally visible to the west from e. This connected portion e of the eastern
wall of si is delimited on both ends either by an endpoint of the vertical bar of the
corresponding L or by the intersection of the vertical bar of L with a horizontal bar
of another Lk. See Fig. 8 for an illustration.

Y2

Yl

Si

li li
Y4

Z2

Y_

new li new li+1

Si+ qi 8i+1

FIG. 8. A type II event.

For each slab si we keep in RH information about the faces whose eastern wall
is a portion of li. (Note that the Lj. containing l may change during type II events,
but that these changes are not stored directly in these faces.) For each such face f, we
store (in part, implicitly) the following information:

(i) Is f active or inactive?
(ii) Iff is active, then we also keep a pointer to the node in CG representing the

subcell that contains f
What happens to RH when a type II critical event occurs? When two vertical

parallel edges overlap, a set of adjacent faces belonging to some slab si is squashed
(Fig. 8) and a new set of corresponding faces newly emerge. Suppose si and si+l are
two adjacent slabs (we number the slabs from west to east), and let li and 1+1 denote
their right delimiting vertical bars. Suppose a type II criticality (partially) overlaps l
and 1+1. At the instant of the overlap, let

and

11 li\lg+l, 11+1--- li+l\li,

i li [") li+ l.

Then si and si+l should be updated by"
(i) moving the l’i part from s to
(ii) moving the l’i/ part from si/ to s, and
(iii) marking the /i-faces of si/l as inactive.
Recall that the marginal effects of the overlap, that is, the changes in the faces

neighboring the ends of l, are treated separately as type I events. We also allow li to
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be empty, which is the case when two vertical bars become collinear without actually
overlapping. The foregoing discussion applies to this case as well.

In R/, for each slab si we keep a segment tree T. Segment trees are a useful tool
for storing and updating sets of intervals when the endpoints of the intervals are known
in advance. Usually, some additional information is stored with the intervals (see
[Me]). The leaves of the tree T correspond to atomic segments which are in our case
the eastern walls of the faces of si, ordered from south to north. We use a segment
tree, since it enables us to mark a contiguous set of elements (in our case, a contiguous
set of faces) efficiently.

Now we are ready to describe how each step in handling a type II event as above
is executed. We assume that each critical orientation was precomputed with some
additional information about the exact location of the corresponding event. So we
know the location of li and li+l in our (rotated) coordinate system. With this information
we first search the tree Q, to find the rank of the relevant slabs in RH. This is easily
done in time O(log n).

To compute the portions of the trees of RH corresponding to II, 1/1, and l, we
consult Un (as explained in 3.2.3).

To update T at a type II event at which the eastern sides of s and si+l overlap,
we proceed as follows. Consider first the faces that have just become inactive, and let
F {f,f+l, ",f+,,} be the contiguous sequence ofthese faces. We record this change
in T so that a node w of T is marked as becoming inactive at 0 if all the faces
corresponding to the leaves of the subtree of w are in F and the faces corresponding
to the leaves of the subtree of the father of w are not all contained in F (this corresponds
to the usual way of storing a segment in a segment tree). The orientation 0 at which
this change occurs is also stored at w, serving as a time stamp. If for some 01 > 0 we
want to mark w as again becoming inactive, we just update the "time" of the event,
increasing it to 01. So each node of Ti stores only O(1) information. (Note that this
is a bit different from the standard usage of segment trees in which each node can
store a list of segments that "cover" it. Thus our segment trees require only linear
storage, in contrast to standard segment trees, which may require O(n log n) storage.)
To record the inactivity of the set F in T/, we begin by finding the ranks off and
in T,., using UH. Then we search for the corresponding leaves of Ti. During the search
we update the relevant nodes of T with the "inactivity at 0" stamp, according to the
above rule. Only O(log n) nodes are updated, and the entire operation takes O(log n)
time.

A complementary change occurs when some faces of So* become active. This
happens only at events of type I (including those accompanying a type II change),
and involves only a constant number of faces, which are simply marked as active (with
the corresponding 0 time stamp) in the corresponding leaves of the appropriate trees
T/. However, in this step we need to know whether any of the relevant faces is already
active, so that we can use the same node of CG already representing that face.

To query the active/inactive status of a face f, we first find to what slab sgf belongs.
Since we know a point on the eastern wall off (by the geometry of the type I event)
we can obtain si by consulting Q/. Next, we look for the rank of f using UH. Then
we search T (the tree that describes si) for the leaf with this rank. During the search
we compute the maximum 0 inactivity stamp along nodes in the search path; call this
maximum Oinactive. When we get to the desired leaf, if it is marked inactive, then we
conclude that the face is currently inactive; if the leaf is active, we compare the 0 at
which it has become active with Oinae,e. The larger of these two 0 values determines
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whether f is active or inactive. The time needed to perform this query is O(log n). If

f is active, we also obtain the corresponding node v of CG to which it points; we can
now use v to link it to the new (active) subcells that appear at the current type I event.
(However, some additional steps are needed in determining the active/inactive status
of f--see the discussion below concerning the handling of type I changes.)

In addition to marking the active/inactive status of nodes of the trees T/, we also
have to transfer portions of one tree to an adjacent one (those corresponding to l’i, l’i+l
as defined above). For this purpose, instead of using balanced binary segment trees,
we use 2-3 segment trees, which allow for an efficient splitting and concatenation of
such trees in time O(log n) per operation. (See [KrO]; note that our case is analogous
to that of "stabbing counting queries" of [KrO], since in each node we keep only O(1)
information, i.e., the 0-inactivity stamp.)

So far we have described the effect on the horizontal package of type II events
at which two vertical bars overlap. Consider next a type II event where two horizontal
bars of two expanded obstacles Lj, Lk overlap, or simply become collinear. The
(unlabeled) arrangement So* undergoes several combinatorial changes, all accountable
by the type I events accompanying the overlap at its endpoints, plus a "horizontal
squash" of some contiguous sequence of faces (see Fig. 9). The horizontal squash is
not recorded at all in RH (but is recorded in the vertical structure Rv) and, in itself,
does not effect the combinatorial structure of the unlabeled So*. However, some of the
type I changes do need to be recorded in RH. For example, in the situation depicted
in Fig. 9, we need to insert a new leaf into the segment tree T of the slab corresponding
to Lk. This leaf stands for the new face f, whose eastern wall is the lowest segment of
Lk. f is marked active. In the symmetric situation, an extreme leaf of some T may
have to be deleted. The effects of these type I changes on CG are described below.

How is RH affected by a type I event? Consider, for example, a horizontal bar
of some Lj hitting the vertical bar li of the slab s while moving eastwards (Fig. 7). As
in type II events, using the actual geometric data accompanying this critical event, we

fl

Lj

Lk

before

f,

the new face

after
FIG. 9. A horizontal "squash."

Lk
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can identify the corresponding slab si of RH and in this slab we can find (the rank
of) f--the face that is going to split. We then split f into two new subfaces, update
si and T/accordingly, add two new nodes to the connectivity graph to represent these
two new (and active) faces, and point to the new nodes from the two corresponding
newly-generated leaves of T. Since f was not rectangular prior to the change, it was
necessarily active, so we connect the two new nodes of CG to the node representing

f. By the same token, we make the new face into which the tip of Lj penetrates active.
Note that to determine the active status of the face f, it is not enough

to consult RH only, because f could have already become inactive in a horizontal
squash, and such an event is marked only in Rv. A face is really active if and only if
it is determined to be active in both Rs and Rv. A technical difficulty arises here,
because Rv does not represent exactly the same faces as does Rs, since it stores the
partition created by the Lj’s and their vertical extensions. However, as already noted,
a face that had been involved in a horizontal squash and was not reactivated later
must be rectangular, with its four sides real, and, as such, is stored identically in both
packages. We thus proceed as follows. Assume that f has been determined to be active
in Rs. Find the horizontal bar passing through the top endpoint of the eastern wall
of f (using Us, as described in the next section). Regard that portion of that bar
immediately to the left of this endpoint as the northern wall of some face f’ in Rv,
and query Rv to determine the active/inactive status of f’. If f’ is inactive, then so is

f (in which case f’ and f represent the same region of the 0 cross-section). Otherwise,
f is active.

When a horizontal bar leaves a vertical bar while moving westwards (e.g., exchange
before and after in Fig. 7), the steps are quite similar to those described above, and
consist of checking the active status of the relevant faces in Ru and in Rv,
adding nodes to the connectivity graph, adding the relevant edges to CG, etc.

Concerning the additional type I-like updating that should be done at the extreme
faces of a type II overlap, consider, for example, the situation shown in Fig. 8. The
face in si whose eastern wall contains z is split into two active faces, with appropriate
connections made in CG; similar changes apply to the face in si/ whose eastern wall
contains z..

Finally, consider the effects of the type I changes accompanying a type II event
in which the horizontal bars of Lj and Lk overlap for some j and k. We have noted
above how these changes effect Rs. Their influence on CG has to reflect the possible
changes in the combinatorial structure of the faces bordering the imaginary horizontal
extensions a, ak,/3,/3k. For example, in the situation shown in Fig. 9, before the
overlap we have a face f2 bounded by /3j from below and by /3k from above and
connected, via these extensions, to the face fl above it and to the face f3 below. After
the overlap, f3 becomes directly connected to f. To keep track of these changes, we
create new nodes in CG to represent fl, f2, and f3 after the change, connect each node
to the corresponding old node, and add edges connecting the newf to the new f2 and
to the new f3. Similar action is taken to handle the possible overlap between the
extensions aj, ak. (Note, however, that these changes take place only if the extensions
j, k (or a, ak) actually overlap. If k ends on a vertical bar of another L, that lies
to the right of the vertical bar of Lj, no changes are required.)

3.2.3. The structure Un. Un is a structure for solving the following problem: Let
H be a set of n horizontal bars (of the Lj’s), and let s be a query vertical line segment;
report the number of segments in H that are intersected by s. The structure Un that we
use is a dynamic version of a well-known two-level combination of a primary segment
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tree and auxiliary range trees (as in [Ov], for example). More specifically, we project
all the segments in H on the x-axis. We construct a segment tree P for the intervals
obtained. At each internal node , of P we store in a binary tree My the segments that
are assigned to ,, ordered by y-coordinate. M is a one-dimensional range tree. The
structure uses O(n log n) storage. Let s (x, y)(x, Y2) be a query vertical segment. We
search in P for x. For each node , on the search path we count how many segments
in My lie between (x, y) and (x, Y2); summing up all the counts, we get the number
of line segments stabbed by s. The query time is O(log2 n), because we perform O(log n)
searches in the auxiliary trees. The structure is dynamic and can be updated in O(log2 n)
time [Ov].

To compute the portions II, ll+, and mentioned earlier, we consult U,. For
example, let us see how the portion l of Fig. 8 is computed. It is delimited by the
lower endpoints of the vertical bars of the two participating L’s. Using U, we can
easily determine the number of horizontal segments stabbed by the segment II. This
number, increased by 1, is also th6 rank of the face of s at which we should split the
segment tree Ti into portions corresponding to II and li. In a similar way, we compute
the portion l’+, and as a result of these computations we also have available the
/-].-parts of s and s+. This takes O(log n) time.

The structure should be updated at each type II event that overlaps two vertical
bars and at each type I event in which an endpoint of one horizontal bar meets another
vertical bar, because then the horizontal order of the endpoints of the horizontal bars
in H changes. Each such update costs O(log n); for details, see [Ov]. A type II event
that overlaps two horizontal bars changes the vertical ordering of the horizontal bars;
this does not effect the counting, but since we want to take some additional advantage
of U, (to be described below), we update U, upon such events as well.

Most of the time we employ the unlabeled arrangement. There are, however,
occasions when we have to resolve the geometric anonymity of the segments in that
arrangement. In some of these cases it is sufficient to consult the binary search trees
Q,, Qv; in other cases (see the previous subsection) we have to allow for queries of
the following kind: "Given a point z in the current cross-section of FP, which is the
nearest segment (corresponding to some horizontal bar) above z that is vertically visible
from z?" Such queries can be answered using U,. Let z (x, y). We search in P for
x. In each node v along the search path, we search in the range tree M for the lowest
segment that is higher than y, and the lowest of these O(log n) candidates is the
desired segment. This procedure takes O(log2 n) time. The orthogonal type of such a
"ray shooting" query, i.e., finding the nearest eastern bar horizontally visible from a
point, can be answered in a completely symmetric manner by consulting Uv.

3.3. The vertical package. We mentioned before that the horizontal package and
the vertical package each describes a different planar arrangement. They coincide,
though, in the description of (the rectangular) faces which become inactive, are inactive,
or turn from inactive to active, as follows from the discussion in the previous subsection.
The vertical package is handled in a manner completely symmetric to that of the
horizontal package with regard to the respective unlabeled planar arrangement (namely,
the Li’s and their vertical extensions); we thus omit the details of the manipulation of
this package.

3.4. Summary of operations at events of each type. We conclude this section with
a summary of operations on the data structures taken at each type of events. For events
of type I we describe the operations as they are performed at the event depicted in
Fig. 7 (other kinds of type I events are handled symmetrically):
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When the right endpoint of Lk penetrates f, we identify f in the corresponding
tree Ti of RH by first querying QH with the information accompanying the event.

We then find f in T using UH.
To decide whether f is active or inactive, we query both RH and Rv, finding f

in Rv requires "ray shooting" using U,.
Iff is inactive, we make it active and add a new node to the connectivity graph

pointed to from the leaf corresponding to f in T.
When the right endpoint of Lg reaches the western wall off we replace f in T

by two faces fl and f2 (inserting a new active "key" to T).
Finally, we update CG by adding two new nodes corresponding to the subcells

containing fl and f2 and connecting them with edges to the node representing f
The operations at a type II event are described for the event depicted in Fig. 8"
We find the rank of the slabs si and si+ and the corresponding trees T/ and

T/+I in RH using QH.
Using U/_/ we compute the portions of T and T+ corresponding to l’, l’+l,

and l.
We transfer the II portion from T to T+ and the l’+l portion from T+I to T.
Finally, we mark the portion of T+I as inactive.

4. Algorithmic details and complexity analysis. In this section we complete the
details of the algorithm, prove its correctness, and analyze its time and space require-
ments.

4.1. The algorithm.
Construction ofFPoo. First, the critical orientations are computed and sorted. Then

a noncritical 0o is chosen and the Minkowski differences Li for 0o are computed. We
sort the vertical bars of the Li’s according to their x-coordinate and store this ordering
in Q,. Now we start sweeping a vertical line across the plane from left to right while
maintaining a sorted list F of all the horizontal line segments intersecting the line
being swept. Each time we sweep across an internal vertex qj of some Lj, we construct
a new segment tree T that describes the slab si. To build T we first locate the position
of p (the upper external vertex of L) and of q in F and then allocate a segment tree
for the intervals in F from p to q. We mark all the faces active. Each time we sweep
across a right external vertex r of some L., we remove the segment from F. The
last stop of the sweep is the eastern wall of the surrounding rectangle, where we have
exactly one face which we will keep in Tn/. The set of all the segment trees { T, li-
1, 2, , n + 1} constitutes RH. Similarly, we construct Qv and Rv.

During the line sweep we also lay an initial layer of CG. Every time we create a
segment tree T, we add a node to CG for every leaf of T. These nodes represent all
the faces whose eastern wall is in li (li, the vertical bar on the right side of si). Each
pair of nodes whose corresponding faces share an imaginary horizontal wall is con-
nected by an edge. Note that at least one node of such a pair is an extreme face of
some T. To obtain the desired connections, we maintain a list W of all corners of

L’s that have already been swept through and that are still "visible" from the sweep
line. Whenever we sweep through a new vertical bar li, we remove from W all endpoints
horizontally visible from lg, and connect the extreme nodes of the corresponding
segment trees to the appropriate new faces of s. The endpoints of li are then added
to W.

Overall, this initial phase of the algorithm requires O(n2) time, since the sweep
itself is easily seen to require O(n log n) time, and for each slab we build a segment
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tree when the endpoints of the segments are already sorted by the sweep structure.
The second phase of the algorithm, updating the structures as the orientation

changes, is discussed in detail in 3. A missing link there, though, is the wrap-around
of CG. Reaching 0-- 0o + 2r, our task is to identify the nodes of the active faces with
their matching peers in the first layer of CG. But at 0o4-2 there is no longer a way
to know to which face in FPoo/2 a node of the first layer of CG belongs. A simple
solution to the problem is to keep a duplicate copy of the horizontal package at 0o.
Getting to 0o /2 we scan the current updated RH and for every active face of FPoo/2,
we search for its matching (identical) face in the original version of RH and identify
the two corresponding nodes in CG.

Some final details of the processing involve the reachability query itself. Let
Zs- (Xs, 0) be the initial placement of L, and Zd- (Xd, Od) be the final placement.
Let c and Cd be the subcells of FP containing Z and Zd, respectively. To ensure that
these subcells will be represented in CG, we add two artificial critical events, 0 and
Od, during the 0-sweep. The purpose of these events is to identify or otherwise introduce
the nodes vs, Vd of CG corresponding to c, Cd, respectively. When we reach 0 we
look for the face f containing X, using first Uv to identify the nearest vertical bar to
the east of Xs that is horizontally visible from X, and then UH to find (the rank of)
f in the corresponding slab. Iff is active we obtain from it a pointer to v otherwise,
we make it active, update RH, Rv accordingly, create a new node v in CG to represent
f, and keep a pointer to this newly-generated node. Similar steps are taken when we
reach Od. After the completion of the 0-sweep, we search for a path in CG between
vs and Yd. If a path is found, the algorithm outputs YES; otherwise it outputs NO.

The following proposition justifies the reduction of our motion-planning problem
to the purely combinatorial path searching through CG.

PROPOSITION 4.1. If both Z and Zd are free positions of L, then there is an
obstacle-avoiding motion between Z and Zd if and only if v. and Vd belong to the same
connected component of CG.

Proof. For the "if" part, let be a path between v. and Vd in CG. First, it is
easily verified that any single node v of CG represents a connected portion c of FP,
that is, any two placements of L within c can be reached from one another along a
collision-free path that remains in c (see, also, Remark 4.1 below). Next, each edge e
along b represents one of the following "crossings":

(i) e connects two nodes representing subcells whose cross-sections at some 0
are adjacent along some imaginary wall; in this case there is a direct translational
crossing of L at this 0 between the subcells (although this is not required in this part
of the proof, we note that our construction ensures that if this crossing is possible at
one 0, it is possible at all O’s at which both subcells exist); or

(ii) e connects nodes representing subcells that were both influenced by the same
type I event; in this case it is easily verified that there is some rotational crossing
between the two relevant subcells. (There is one exception: If these subcells represent
two faces that were split from one inactive subcell, our procedure has created a shortcut
connection between them, which does not correspond to direct crossing between the
subcells. Nevertheless, it is still possible to cross from one of them to the other by
passing through the inactive subcell adjacent to both.)

These observations clearly imply that the given path in CG can be transformed
into a collision-free path within FP.

As for the "only if" part, define a retraction-like mapping H:FP- BFP as
follows. For each Z (X, O) FP move the object L by translating it in the direction
of its "horizontal" bar - (so that r moves "towards" q) until the vertical bar hits an
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obstacle (or L reaches the enclosing rectangle). The resulting position is "21"H(Z). (Even
if the horizontal bar touches an obstacle at Z, we still allow this sliding motion to be
performed.) It is easily checked that H is continuous in the interior of FP except at
points that lie on the imaginary extensions aj,/3, for some L.

Now suppose there is a collision-free path F:[0, 1 ]- FP connecting Zs F(0) to
Zd F(1). The composition G H F is a piecewise-continuous path which, using
standard topological arguments akin to those used in [SS], we can assume to consist
of only a finite number of connected pieces. Note that the endpoints of each piece of
G lie in active faces of the corresponding cross-sections of FP, because each endpoint
is either Zs or Zd, or lies on an imaginary horizontal extension, which, by construction,
always bounds two active faces. Moreover, by construction of CG, for any two
consecutive portions of G, the nodes of CG in which the first subpath ends and in
which the second subpath begins are connected by an edge. It therefore suffices to
prove that each subpath G’ of G induces a path in CG connecting the two nodes that
contain the endpoints of G’.

Note that, in the cross-sectional representation of FP that we use, each path G’
is represented by a point w varying continuously along an eastern wall of some face(s)
of the arrangement So* (that also varies with 0). Since w begins its motion in an active
face, it suffices to verify that it always remains in an active face, and that whenever
this face changes, a corresponding type I event which involves this change occurs (and
induces a connecting edge between the corresponding nodes of CG). To show this,
we first break G’ into a number of pieces, such that on each of them 0 varies
monotonically and does not cross 0o; without loss of generality we can assume that
there are only a finite number of such pieces. If such a piece starts at an active face
and proceeds in the direction of increasing 0 (including the case of crossing 0o+27r
back to 0o), then our construction is easily seen to imply the property asserted above.
(A point to note here is that if w crosses between faces through an imaginary extension,
then this crossing must have been possible at a type I event that involved both faces,
and therefore created the corresponding edge in CG.) If 0 decreases along such a
subpath, we have to be more careful, as our construction does not guarantee that the
active status is propagated backwards in 0. However, a close inspection of our construc-
tion shows that if we move backwards in 0 from an active face f to an inactive face
f’, then f’ must be a "dead-end" face that will eventually (i.e., if we continue to
decrease 0) be squashed at some type II event. Since G’ ends in an active face, it
cannot stay in f’ and must exit by reversing its 0 direction and cross back from f’ to
f, or perhaps from f’ to another face f" separated from f by an imaginary horizontal
extension. In the first case, we simply ignore the excursion of G’ into f’; in the second
case, our construction induces a shortcut connection between the nodes of CG contain-
ing f and f", respectively. Finally, if a subpath of G’ starts at 0o (it does so in an active
face by construction), and moves backwards from 0o (0 decreasing), then it might
enter an inactive face in FPoo+2=, because at this cross-section not all the faces are
necessarily active. But the above arguments that the path will then have to move back
into 0o apply to this case as well. This completes the proof of the "only if" part of
the proposition. [3

Remark 4.1. It is instructive to describe a canonical path in FP that corresponds
to a given path b in CG. The desired path 17 is a concatenation of subpaths, each
describing a simple motion of L, as follows. Suppose b has reached a node v of CG
and let v’ be the next node along b. Let c, c’ be the corresponding subcells of FP.
Inductively, suppose II has already reached some placement Z c. To continue 1I to
reach a placement Z’ c’, we proceed as follows. By construction, c is a subcell in
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which 0 varies between two type I critical orientations 01 < 02 and for each 01 < 0 < 02,
c 71FPo corresponds to the same face f in the unlabeled arrangement So*. Iff contains
(on its boundary) a corner w of some L, we move (translationally) to w, and stay at
w as 0 varies. Otherwise, f must be rectangular, with all four walls real. In this case
we move to, say, the northeast corner off and stay there as 0 varies. Note that in the
latter case the combinatorial complexity of the motion within c can be )(n), because
the northeast corner off can change whenever its eastern wall or northern wall changes
due to a type II event.

In the physical space, the first type of motion becomes a rotation of L, while one
of its three corners touches an obstacle. The second type of motion is a "gliding"
motion of L, in which it rotates while each of its bars touches an obstacle, such that
whenever any of the bars encounters a new obstacle oi, the gliding continues with that
bar touching oi. Note that the middle corner q of L traverses a circular arc during
each portion of the gliding.

Finally, the crossing from c to c’ is easy to accomplish. If this crossing is through
an imaginary wall at some 0, we move within c, as specified above, to 0 (as noted
above, any 0 at which both c and c’ exist will do) and then translate to c’ through the
wall. If the crossing is through a type I change, we reach the corresponding extreme
critical orientation 0 as above, then cross locally according to the nature of the type
I change (rotating further into the new cell, translating across an imaginary wall,
rotating and translating back and forth to realize an indirect connection, etc.).

4.2. Complexity analysis.
4.2.1. Analysis of the two-dimensional data structures. In this section we summarize

the computational cost of maintaining and manipulating the two-dimensional data
structures. We analyze below the cost of the horizontal package but the analysis of
the vertical package is essentially identical.

QH, the structure retaining the horizontal ordering of the vertical bars of the Li’s,
is a balanced binary tree with n elements. Its initial construction takes O(n log n)
time. Upon each type II criticality that overlaps vertical bars, we interchange these
two adjacent elements in O(log n) time. Upon each type I criticality bringing an
endpoint of a horizontal bar to cross a vertical bar, we query QH in O(log n) time.
Therefore the usage of QH costs O(n2 log n) time. Being a balanced binary tree with
n elements, it demands O(n) space. To summarize, we have the following lemma.

LEMMA 4.1. Qt4 requires O(rt 2 log n) time and O(n) space, and so does Qv.
As to RH, initially we build n 2-3 segment trees, as part of the initial sweep; this

construction requires O(n2) time (as noted before). Afterwards, each operation on any
of these treesmdelete, insert, concatenate, split, or query--requires O(log n) time. The
number of operations on Rn that are required at each criticality is bounded by a
constant. Thus, the usage of RH costs O(n2 log n) time. See [KrO] for more details.
Each tree requires O(n) storage, summing up to O(n) storage for Rn. Thus, we have
Lemma 4.2.

LEMMA 4.2. RH and Rv each requires O(n log n) time and O(n) space.
Un is a two-level combination of a primary segment tree and auxiliary range

trees. It is built in O(n log n) time. Each update requires O(log2 n) time and a query
takes O(log2 n) time. There is a constant number of updates and queries per criticality,
so the operations on Un take O(n log2 n) time in total. It uses O(n log n) space.
Lemma 4.3 follows.

LEMMA 4.3. UH requires O(n log2 n) time and O(n log n) space, as does Uv.
For details on the dynamic segment-tree-range-trees combination, see [Ov].
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4.2.2. Analysis of the overall complexity. The initial phase of the algorithm (at 0o)
includes a vertical sweep and a horizontal sweep, both fairly standard and taking only
O(n log n) time, as is easily seen.

How complex is CG?
LEMMA 4.4. CG has O(n2) nodes and edges.
Proof At the initial phase, FPoo has at most O(n2) active faces. So the first layer

of CG has O(n2) nodes. During the 0-sweep we have O(n) stops. At each stop we
add a constant number of nodes to CG and with each new node we add at most a
constant number of edges to connect it to some previously existing, or newly-generated,
nodes.

After the completion of the 0-sweep, we identify the nodes of CG corresponding
to the active faces of FPoo+_ with the matching nodes of faces of FPoo.

LEMMA 4.5. The wrap-around of CG requires O(n) time.

Proof. To identify nodes of the two layers, we follow the RH structure at 0o + 27r
and the reserved duplicate of the RH structure at 00. For each active face of the newer
RH, we identify its node in CG with that of the first layer. Since we pass sequentially
(e.g., in inorder on every tree) through the O(n2) faces, the traversal requires O(n)
time.

Finally, to find a path from Vs to va (if one exists), we search through CG.
LEMMA 4.6. The search through CG for a path from vs to va takes O(n) time.
_Proof. The search can be carried out using breadth-first-search, which is linear in

the number of edges in the graph. Since CG has O(n) edges, the bound follows.
We are now ready for the main theorem.
THEOREM 4.1. The algorithm answers the reachability query correctly, using

O(n log n) time and O(n 2) space.
Proof The correctness of the algorithm follows from the analysis in the proof of

Proposition 4.1.
As for the time required by the algorithm, we start by computing and sorting the

critical orientations. This can easily be done in O(n2 log n) time. The vertical and
horizontal sweeps take O(n log n) time. The building and usage of the two-dimensional
data structures take O(n logz n) time (this follows from Lemmas 4.1, 4.2, and 4.3).
The wrap-around of CG requires O(n 2) time (Lemma 4.5) and the search through CG
requires O(n2) time (Lemma 4.6). We see, then, that the usage of the two-dimensional
data structures (specifically, the usage of UH and Uv) dominates the time complexity
of the algorithm, which is O(n log2 n).

As for the storage requirements, CG consists of O(n2) elements (Lemma 4.4),
and no other structure or procedure requires more space.

5. Conclusion. We have presented here an O(n log n)-time algorithm for the
solution of the reachability problem for an L-shaped object moving amidst n point
obstacles in the plane. In this section we summarize the new ideas of our approach,
assess the algorithm efficiency, and point out possible extensions of this work.

The main innovation of our approach is the condensation of a potentially 12(n3)
size configuration space FP into quadratic-storage structures using near-quadratic time.
This is achieved by building a skeletal connectivity graph which, in contrast with
previously suggested connectivity graphs, (almost) does not contain dull cells and
suppresses the explicit representation of most of the changes that occur in interesting
cells. The compaction of the connectivity graph is enabled by some auxiliary evanescent
data structures which, at every instant of the 0-sweep, store necessary information
about the momentary F_P cross-section in an implicit compact manner.
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As already mentioned, the complexity of the entire FP in our case can be ((n3)
in the worst case. However, in most cases one does not need to calculate the entire
FP, but only its connected component C containing the initial given placement Zs of
L. Indeed, as long as L moves in a collision-free manner from Zs, it will have to remain
in C. We would like to precalculate only the component ,C rather than the entire FP,
and to show that this will always achieve better performance than the naive cubic
worst-case bound for the entire FP. This goal was achieved, to a satisfactory extent,
for the general motion-planning problem with two degrees of freedom [GSS]. Unfortu-
nately, in problems with three degrees of freedom (such as ours) this goal appears to
be much harder. In the special case in which the surface patches bounding FP are n
triangles in three-space, it was shown in [AS] (see also [AA]) that the complexity of
a single cell in the complement of their union is at most roughly O(n7/3). However,
in the case of the L-shaped body, the surface patches bounding FP are more compli-
cated. Nevertheless, the three-dimensional arrangement induced by these patches are
analyzable with tools similar to those used in [AS], and in a companion paper [HS]
we obtain a bound O(n5/2) on the complexity of all the three-dimensional cells that
contain a portion of the one-dimensional boundary of any surface in their closure,
which is also an upper bound on the complexity of any single cell in these arrangements.

The reachability problem only decides whether there exists a continuous motion
between source and destination. Naturally, we would like to produce such a motion
if it exists, and do so in subcubic time. In [HS] we also elaborate the reachability
algorithm devised in this paper into a find-path algorithm using the combinatorial
result mentioned above. The find-path algorithm is based on extending the connectivity
graph by recording wall changes in interesting cells while continuing to ignore most
of the dull cells.

Remark 4.1 shows that the portions of the required path that lie in faces that
contain corners of some Lj’s are easy to produce--we simply "take a ride" on the
corresponding corner. The difficulty lies in producing those portions of the path that
traverse "tube-like" subcells having a real rectangular cross-section (which, however,
can undergo f(n) changes due to type II criticalities). It is interesting to note that
from a pragmatic point of view this issue may not be problematic. Assuming our object
L to be equipped with tactile sensors all around it, traversing a tube-like subcell is
easy to accomplish by executing the corresponding gliding motion (as in Remark 4.1)
and using tactile feedback to tell when one of the two obstacles touched by L during
the gliding has to be replaced by another. Thus, in this pragmatic setting, our reachability
algorithm can easily be adapted to produce the desired path, at no additional overhead.

There is a close connection between the problem of the nonconvex body moving
among polygonal obstacles and the problem of moving certain kinds of planar robot
arms with three degrees of freedom (such as a standard three-link anchored planar
arm or the "telescopic" arm studied in [AO]) in the same setting. A first step in
exploiting this observation is taken in [HS].

A possible direction for further research is to check whether our algorithm is
extensible to polygonal obstacles (not only point obstacles) and to an arbitrary rec-
tilinear nonconvex moving object, without severely increasing the time and space
complexity. We are presently investigating these extensions.

Finally, there is the issue of improving the performance of our reachability
algorithm. Two problems suggest themselves. First, can we improve the time required
by the algorithm to O(n2 log n)? As noted, the only step which requires O(n2 log2 n)
time is the handling of the structures UH, Uv. Second, can one show a lower bound
f(n2) on the number of nodes of CG that a path must traverse between some pair of
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placements ? For our reachability problem such a bound would not necessarily preclude
the possibility of a faster decision procedure, but it would be a strong indication that
quadratic complexity is probably a correct worst-case bound.
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ON THE AVERAGE SIZE OF THE INTERSECTION OF BINARY TREES*

R. BAEZA-YATES?, R. CASAS:, J. D[AZ:, AND C. MARTNEZ$

Abstract. The average-case analysis of algorithms for binary search trees yields very different results
from those obtained under the uniform distribution. The analysis itself is more complex and replaces
algebraic equations by integral equations. In this work this analysis is carried out for the computation of
the average size of the intersection of two binary trees. The development of this analysis involves Bessel
functions that appear in the solutions of partial differential equations, and the result has an average size of
O(n"/-5-2/v/-g n), contrasting with the size O(1) obtained when considering a uniform distribution.

Key words, average complexity, binary search trees, generating functions

AMS(MOS) subject classification. 68Q25

1. Introduction. This work constitutes a contribution to the study of the formal
properties of the probability model associated to binary search trees, from now on
denoted bst-model. Our first motivation has been to investigate the kind of analysis
underlying the obtention of statistics under the bst-model. This is the reason why we
selected a problem that yields a very elementary development and solution, when
considering the uniform probability model. In contrast, the use of the bst-model
introduces a partial differential equation which, using Riemann’s method, has a solution
in terms of Bessel functions. These results reflect the structure of the model dealing
with pairs of trees, and can thus be generalized to similar problems.

A great amount of work has been done on statistics for binary search trees. Most
of this work relates to the average-case analysis of algorithms associated with the
manipulation of this particular data structure [Knu73]. Some other works use the
bst-model for computing characteristics ofbinary trees. Devroye proved that the average
height of binary trees under the bst-model is asymptotically O(log n) [Dev86]. This
result differs from the average height of binary trees under the uniform model, which
is O(v/-d) [FO82]. This difference lies on the fact that the bst-model tends to assign
higher probability to the more balanced binary trees, and relatively lower probability
to the narrower trees of the same size.

We have chosen to study the average size of the intersection of two binary trees
because of its simplicity. Nevertheless, this computation appears in a natural way in
the analysis of a number of algorithms, for example, in processes involving tree matching
[SF83] or unification [CDS89]. For instance, the intersection of binary trees is exactly
the kernel of the Tree Shuffle algorithm described in [CKS89]. The time complexity
of Shuffle for any pair of binary trees is twice the size of the intersection of the two
trees plus one. Under the uniform model, the average size of the intersection of two
trees tends to the constant 1.5, when the total size of the two trees tends to infinity.
Under the bst-model this average size turns out to be O(n2-2/x/log n).

The rest of this paper is structured as follows. In 2 we introduce the basic
definitions and notation. In particular we give a recursive formulation of probabilities
in the bst-model, which makes the computation easier. In 3 we obtain and solve a
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partial differential equation which defines the probabilistic generating function associ-
ated with the size of the intersection of binary trees. In 4 we derive exact expressions
for the nth coefficient of the function obtained in the previous section, while in 5
we deduce the main result of the paper, which is the asymptotic behaviour of this
coefficient.

2. A recursive definition of the bst-model. Recall that a binary search tree is a data
structure which consists in a binary tree whose nodes are labeled in increasing order
from left to right. Binary search trees have the following recursive definition [VF90]:
Given a sequence on n keys S (kl, k2,’’ ", kn), where the keys belong to a totally
ordered set, we define recursively the binary search tree of S:

kl, BST(S)) if [S[=> 1,
BST(S)

([2) otherwise,

where ]SI denotes the number of keys in S; Si and Ss denote the subsequences of S
formed, respectively, by the elements of S which are less than kl and greater than kl;
and [2 denotes the empty binary tree.

In the model of probability associated with binary search trees, each sequence S
is obtained by consecutively sampling at random n elements from a real interval, or
equivalently, as far as relative ordering is concerned, the elements form a random
permutation of size n. In any case, all the sequences with the same size n have the
same probability 1/n!

Let N(T) denote the number of sequences S of size n that generate the same
binary search tree T= BST(S). Given a binary tree T, we shall denote by ]T[ the
number of internal nodes of T, and if IT[ > 0, let T and T be, respectively, the right
and left subtrees of the root of T. It is shown in [Knu73, 6.2.2, exercise 5] that we
can compute N(T) from the following recursive equation:

(1 1- 1)!N(T) N(TI) N(T") iF--i iTrl
otherwise.

If we denote by p(T) the probability of tree T, we have that

therefore,

p(T)_
N(T)

p(T)= (Tl) .p(Tr)
if T V-I,

otherwise.

The recursive manner in which we express this probability distribution is very
handy to simplify some proofs about average behaviour of binary search. It allows us
to split the generating functions defined from this probability.

The problem we are going to present involves pairs of binary search trees, so we
must extend the probability model to pairs of trees. We are confronted with two
situations:

If each of the trees is drawn independently of the other, the probability of the pair
is just

p,.( T, T) p( L) P( T).
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This situation will apply in Theorem 1. Note that in this case, for all n and m,

E P,,a(T1, T2) 1.
IT, l=n,lT21=m

On the other hand, if we consider pairs of binary trees (T, T2) with the restriction
that ]TI + T=I- n, where n is the size of the input, the probability of the pair is

p( T, T2) =P( T1) p( T2)
I/ITII/IT=I’

which corresponds to the model in which all the n + possible partitions of n into
n i+j (being IT, I--i and IT=l-j) are equally likely. This situation will apply in
Theorems 2 and 3.

Note that this probability coincides with the probability of a tree formed by a
root and the subtrees T and T2.

In this case we have that for all n >= 0,

Z p(T, T2) 1.
ITI/IT21--

3. Average size of the intersection of two trees. Let be the set of all binary trees,
and let (3 denote any internal node. Given trees T, T we wish to compute the
average size of the intersection of the two trees, where the intersection of T and T,
denoted (T fq Te), is given by:

if T or T2 is [],
T (q T2)

(( T (q T), O, T T_)) otherwise.

We shall define the size of the intersection of trees T1 and T2 by

[0 if T or T2 is [],
S( T1 T2)=

1 + s(Tl, Tl2) + s(T, T) otherwise.

We wish to compute the average value of s(T, T2) over all the pairs (T1, T2) with
T I/ T=I- n. Let g(n) denote this average value; then we get

(n) E s( T1, T2). p( T1, T2).
ITI+IT21--n

Following the standard techniques [VFg0], [GJ83], let us define the following
generating function"

S(z) , s(T, T2)" p( T1, T2)" zIT’I+IT21.
(T ,T2)

We have to evaluate

g(n)=[z]S(z),

where [zn]S(z) denotes the nth coefficient in the expansion of S(z). For this, let us
define the generating function associated to random independence of trees T and T2"
1 S(x, y) , s( T1, T2)p( T)p( T2)xlTIyIT2I.

(T ,T2)

It follows that

(2) S(z)=-1 S(t, t) dt.
Z
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(3)

We use the following decomposition of the cartesian product of binary trees

=(,)+x(-)+(-)x+(-)=.
From (1) and using (3), we get the following partial differential equation

(4)
02S(x,y) 2S(x,y)

__
oxo (1-x)(-y) (-x)(1-)’

subject to the boundary conditions: for all x and y, S(x, 0)= 0 and S(0, y)= 0. These
boundary conditions are given by the intersection of a tree and a leaf and the intersection
of a leaf and a tree, respectively. An equation of this type is called a hyperbolic partial
differential equation (see, for example, [Cop75]).

The solution to (4) is

(5) S(x, )=,Ve(x, )-(-x)(-)’
where xp(x, y) satisfies the homogeneous equation

02 2

oxo (-x)(-)’
with boundary conditions (x, 0)= and (0, y)- ll-y.

Making the change of variables

and setting

(6)

X -x/ln (1 -x),
Y=-v In (l-y),

G(X, Y) xIr(1 e-x/, 1 e-
we finally obtain the hyperbolic differential equation

02G
(7)

OXO Y
G,

subject to boundary conditions G(X, O) e
This system can be solved by the method of Riemann (see Appendix B) to yield

l foXG(X, Y)=- et/Jo(2ix/(X- t) r) dt

+ e’/Jo(2i( Y- t)X) dt + Jo(2iXY),

where Jo denotes the Bessel function of the first kind of order 0.

4. Exact eelems. First, we are going to get exact solutions to the size of the
intersection of two trees.

From (5) and using (6) and (8), we can state the following result.
THEOREM 1. Under the bst-model, the expected size of the intersection of two

independently chosen random binary trees of sizes n and m is given by the formula

[x,y]S(x, y)_
1 min(n,m)

E 2 + -1,
nmI =o j = j = j j

where, as usual, the notation [] denotes the Stifling numbers offirst kind [Knu68].
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On the other hand, we know by (2) that

1
(9) [z"]S(z) [z"]S(z, z),

n+l

and using the previous theorem, we also get Theorem 2.
THEOREM 2. Under the bst-model, the average size of the intersection of two trees

T1 and T2 such that lTl /IT=I is given by the formula
1 n ku 2 2 1g(n)

(n + ) 2
=o k =o j =o 2j j

5. Asymptotic results. We are interested in obtaining asymptotics to the [z"]S(z).
But (9), together with (5), gives

1
(0) (n)= [z"](z,z)-

To obtain an asymptotic value for [zn]q(z, z) we need the following result.
LEMMA 1.

[z"](z, z)--- c" [z"]Jo(-2, i" In (1- z)),

where stands for asymptotical equivalence and c 3 + 2/.
The technical proof of this lemma is given in Appendix A.
The nth coefficient of Jo(-2&/ In (1-z)) can be evaluated applying singularity

analysis. We staa from [AS64, eq. 9.2.1], which states, when Iffl and arg ff < , that

cos C- +el’mclo(IcI-)

where Im denotes the imaginary pa of the complex .
Plugging =-2i In (l-z) into the above equation, we obtain the following

asymptotic expression when z 1" ,., r
And now, by standard application of transfer lemmas (see Theorem 3A in [FOg0]),

we have

(11) [z]Jo(-2iln(1-z))=c. 1+O

where the value of the constant c is given by

1
=0.1381288C2 25/4 F(2)

Lemma 1, together with (10) and (11), gives the following result.
THEOREM 3. Under the bst-model, the average size of the intersection of two trees

behaves asymptotically as

(n=c.. +o

with c c c2 0.8050738 .
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Again, it should be emphasized that under the uniform model, the average size
of the intersection of two trees is 1.5 (1 + O(-)), which is quite a different result from
the one we just obtained.

As said in the introduction, it also follows from Theorem 3 that under the
bst-distribution, the average complexity of the Tree Shuffle algorithm is also

2c. l/]_n__ft. 1+o

while under the uniform distribution the average complexity of the Tree Shufflle
algorithm is 4(1 + O()) [CKS89].

6. Conclusions. It appears that the appearance of a hyperbolic partial differential
equation such as the one in 3 depends directly on the definition of probability
distribution given in 2, and it is rather independent of the nature of the problem
under consideration. Current work by the authors seems to confirm this hypothesis.
For instance, when considering other simple algorithms, like the equality of trees, the
same methodology works and it also yields a hyperbolic differential equation. The
present paper could be considered as a first treatment of the kind of framework inherent
to the statistics on trees under the bst-distribution.

Appendix A: Proof of Lemma 1. Let G(Z, Z) A(Z) + Jo(2iZ) with

IoA(Z) e’/’/TJo(2i/(Z- t)Z) dr.

Let us recall the series expansion

kO (k!)2

then

where

(--1)k )k>--O (k!53. (-(Z- t)Z) dt

Zk

"" E )2" (’)k(Z)
=o (k!

(I)k(Z)= e’/(Z-t)kdt=()t’+’, k!.j>k --so we get

A(Z) 2 2
(Zv/) ->=o k! j!

Let us consider the coefficient a, [Z"]A(Z). In order to evaluate the asymptotic
behaviour of a,, we shall distinguish three different cases:

ifn=0, then ao=0;
ifn=2p+l, then

a2p+l (x/)2p+l(2p+ 1)!" =o
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if n 2p, then

a.p
2P(2p)

It is easy to see that the value of each one of the summations involved in these
expressions tends to concentrate in its last term. Therefore we can write it in the
following form:

a2p+l Cp (p !)2 p + 1’

2
a2,, Cp (p t),

and tend to 1 asp tends to m. So weand it is straightforward to prove that Cp Cp
conclude that G(Z, Z) is asymptotically equivalent to

d
3Jo(2iZ) + Jo(2iZ)

and we get the statement of the lemma, by making the change of variable Z=-In (1 z).

Appendix B: Riemann’s method. Riemann’s method was devised to obtain sol-
utions of linear paial differential equations of the second order (see, for instance,
[Cop75, Chap. 5]). It can be applied to equations of the form

au + 2huy + buyy + 2gu + 2fUy + cu F(x, y ),

where u u(x, y), subscripts denote paial differentiation with respect to the indicated
variable(s) as usual, and a, b, h, g, f and c are functions of x and y alone. Let the
linear operator L be

L[u au + 2hyy + buyy + 2gu + 2fUy + cu.

Then, there exists a unique linear operator L*, called the adjoint of L, such that
vL[u]-uL*[v] is a divergence, i.e.,

OH OK
vL[u]- uL*[v]=+.

Ox Oy

It can be shown, by means of Green’s theorem, that

(12) L*[ v] (av) + 2(hv)y +(bv)yy- 2(gv) -2(fV)y + cv,

(13) H=avu-u(av)+hvuy-u(hv)y+2guv,

(14) K hvu- u(hv) + bvuy- u( bv)y + 2fuv.
In the paicular case of hyperbolic equations, such as the one we are interested

in, there is a canonical form into which any hyperbolic PDE can be transformed, using
characteristic variables

L[ u] 2Uxy + 2gu + 2fUy + cu F(x, y),

so L*[v]= 2Vy -2(gv)-2(fv)y + cv, H VUy- UV + 2gv, and K vu- uv + 2fuv.
Let C be some regular duly inclined arc for which Cauchy data is given, that is,

u, u and u are known. Let the characteristics x Xo and y Yo through P (Xo, Yo)
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CUt C at Q (Xl, yo) and R (Xo, Yl), and let D be the domain bounded by PQ, PR,
and C. Using Green’s theorem and (12)-(14) it can be shown that

(15)

1
U(Xo, yo)=- u(x,, yo)v(xl, yo; Xo, yo) +- U(Xo, yl)v(xo, yl Xo, yo)

+21 R
(K dx H dy) +- o

v(x, y; Xo, yo)F(x, y) dx ely,

where v(x, y; Xo, Yo) is the so-called Riemann-Green function and must verify

L*[v] =0,

(16)
Vx=fV on y =yo,

Vy gv on x Xo, and

V(Xo, Yo; Xo, Yo)= 1.

We are seeking a general solution for L[G]=2Gxy-2G=O, so we have
F f g 0 and c 2, yielding L* L. On the other hand, the Cauchy data is known
along the x-axis and y-axis"

G(x, O)= ex/’/7,
G(O, y)= ey/,

OG

y=O

x=O

Therefore, we take C as the arc constituted by the segments (0, Xo) and (0, Yo); then
Q (0, yo) and R (Xo, 0).

In order to obtain the Riemann-Green function, we try a series formula

where v are functions to be determined and F (x-Xo)(y-Yo). Imposing conditions
(16) we obtain

v(x, y; Xo, Yo)= Jo(2ix/(X-Xo)(y- yo)).

Then, applying (13) and (14) we obtain

g---ex/,/7 [ Jo(2ix/( Yo
Xo- X)yo) +

Xo- x

H= eY "/ [-2 Jo 2 v/ yo
/

y)xo) +
Yo-Y

J(2iv/(Xo- X)yo) ]
Jl(2iv/(yo- y)Xo) ]

Multiplying the original PDE by 2, we get it in canonical form.
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for y 0 and x 0, respectively. Changing dummy variables under integration signs
by t, and Xo, Yo by x, y (since the characteristics are chosen arbitrarily), (15) becomes

1 1 1
Kdx+- HdyG(x, y)=- G(x, 0) +- G(O, y) +- o 2 oo

-/ e’/Jo(2i/(x t)y) dt

+ e’/Jo(2i(y- t)x) dt + Jo(2iy).

In the above equality, all steps are performed without any diculty, recalling that the
two appearing integrals of the type

can be integrated by pas, yielding

1 ’/Joe’/-Jo(2i)- e (2i( t)) dr.

eleget. We thank Josep Gran for pointing us to the solution of (4);
Carles Sim6 for his advice in obtaining Lemma 1, and Philippe Flajolet for many
interesting suggestions.
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POLYNOMIAL THRESHOLD FUNCTIONS, AC FUNCTIONS, AND
SPECTRAL NORMS*

JEHOSHUA BRUCK* AND ROMAN SMOLENSKY*

Abstract. This paper examines the class of polynomial threshold functions using harmonic analysis
and applies the results to derive lower bounds related to AC functions. A Boolean function is polynomial
threshold if it can be represented as the sign of a sparse polynomial (one that consists of a polynomial
number of terms). The main result of this paper is that the class of polynomial threshold functions can be
characterized using their spectral representation. In particular, it is proved that an n-variable Boolean
function whose L spectral norm is bounded by a polynomial in n is a polynomial threshold function, while
a Boolean function whose Lo spectral norm is not bounded by a polynomial in n is not a polynomial
threshold function [J. Bruck, SIAM J. Discrete Math., 3 (1990), pp. 168-177]. The motivation is that the
characterization of polynomial threshold functions can be applied to obtain upper and lower bounds on
the complexity of computing with networks of linear threshold elements. In this paper results related to the
complexity of computing AC functions are presented. More applications of the characterization theorem
are presented in [J. Bruck, SIAM J. Discrete Math., 3 (1990), pp. 168-177] and [K. Y. Siu and J. Bruck,
SIAM J. Discrete Math., 4 (1991), pp. 423-435].

Key words. Boolean functions, threshold functions, AC functions, harmonic analysis, complexity
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1. Introduction.
1.1. Polynomial threshold functions. A Boolean function f(X) is a threshold

function if

if F(X)>0,
f(X)=sgn(F(X))=

-1 ifF(X)<0,

where

F(X) E w,X,
{0, 1}"

defX II Xi’
i=1

and n is the number of variables. Throughout this paper a Boolean function will be
defined as f: { 1, 1}" { 1, 1}; namely, 0 and 1 are represented by 1 and 1, respec-
tively. It is also assumed, without loss of generality, that F(X)# 0 or all X.

A threshold gate is a gate that computes a threshold function. It can be shown
that any Boolean function can be computed by a single threshold gate if we allow the
number of monomials in F(X) to be as large as 2n. This stimulates the following
natural question: What happens when the number of monomials (terms) in F(X) is
bounded by a polynomial in n ?

The question can be formulated by defining a new complexity class of Boolean
functions.

DEFINITION. Let PT1, for polynomial threshold functions, be the set of all Boolean
functions that can be computed by a single threshold gate where the number of
monomials is bounded by a polynomial in n.
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IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099.
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The main goal of this paper is to characterize PT1 using the spectral representation
of Boolean functions and to understand its relationship with the AC class of Boolean
functions.

1.2. Spectral representation of Boolean functions. The idea of representing Boolean
functions as polynomials over the field of rational numbers was first used in the context
of counting the number of equivalent Boolean functions 10]. Every Boolean function
can be computed as a polynomial over the reals as follows:

f(x)= y aX.
a{O, }

This representation will be called the polynomial representation off This representation
is unique and the coefficients of the polynomial {as a {0, 1}"} are called the spectral
coefficients or the spectrum off The spectrum off has many nice properties (for more
details, see [10], [12]); one of them follows from the Parseval identity:

Lz(f) 2 a2 1
aG{O, 1}

We are interested in the L and L norms associated with the spectrum off Namely,

El(f) 2 lal
a{0, 1}"

and

L(f)= max ]as[.
a{O,1}

Note that for any Boolean function f, L(f) >= 1, L2(f) 1, and Loo(f) <= 1.
Example. Consider the function f(x, x_) x ^ x2. Then

f(Xl, X2) 1/2(1 + X "- X2 XlX2).

Note that Ll(f) 2, L2(f) 1, and Loo(f) -1/2. Recently the spectral approach proved
itself to be a useful tool in the study of Boolean functions [4], [9]. Here we extend
the results in [4] and establish a connection between the complexity of computing a
Boolean function with threshold circuits and its spectral norms.

1.3. Some motivation. Recently, there has been considerable interest in study of
the computational model of bounded depth unbounded fan-in polynomial size circuits
that consist of linear threshold gates [6], [13], [15], [18]. This interest follows from
recent results in complexity of circuits [8], [14], [17], which indicate that MAJORITY
(hence, linear threshold functions) cannot be computed by a bounded depth unbounded
fan-in polynomial size circuit that consists of v, ^, NOT, and PARITY gates. Thus,
the next natural step in the analysis is adding MAJORITY as a possible gate in the
computational model. Another motivation for this work comes from the area of neural
networks [3], [7], where a linear threshold element is the basic processing element.

Why are we interested in polynomial threshold functions ? It turns out that lower
and upper bounds for polynomial threshold functions can be used to obtain lower
and upper bounds for circuits of linear threshold functions. In particular, it was proved
in [4] that the class of polynomial threshold functions is strictly contained in the class
of functions that can be computed by a depth-2 circuit of linear threshold elements.
For example, the upper bound obtained in this paper gives us a technique to prove
upper bounds on the size of threshold circuits of depth 2.

The main tool in obtaining the results in [4] is a necessary condition for a function
to be polynomial threshold: let f be a polynomial threshold function; then LLl(f) is
bounded by a polynomial in n (number of variables).
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The main result in this paper is a characterization of the functions in PT1 using
spectral norms. It can be perceived as an extension of the result in [4]. In particular,
we obtain a dual result: given a Boolean function f, if L1 (f) is bounded by a polynomial
in n (number of variables), then it is a polynomial threshold function. Namely, we
have a characterization of polynomial threshold functions using their spectral norms.
We also prove that those conditions are strict, i.e., they are only necessary/sufficient
conditions. Formally, let PL1 be the class of Boolean functions for which the spectral
norm L1 is bounded by a polynomial in n and PLoo the class of Boolean functions for
which LL is bounded by a polynomial in n. Then our main result is the following
theorem.

CHARACTERIZATION THEOREM.

PL c PT PLy.

1.4. Applications. There are two possible applications to characterization results.
Sufficient conditions can be used to obtain upper bounds on the depth of a circuit that
computes a certain function. For example, our characterization theorem is applied in
[16] to prove the existence of depth-2, polynomial size MAJORITY circuits for
comparison and for addition of two n-bit integers (recently, constructions for both
functions were obtained [2]). These results also led to a construction of a depth-4,
polynomial size MAJORITY circuit that computes the product of two n-bit integers.

Necessary conditions can be used to obtain lower bounds. For example, in [4] it
was proved that there are functions that can be computed by a depth-2, polynomial
size MAJORITY circuit but are not polynomial threshold functions.

In this paper we are mainly interested in using this approach for understanding
the relation between threshold functions and AC functions. In particular, it is interest-
ing to find out whether AC PL1. A result like this would imply that any AC function
can be computed with two layers of MAJORITY. We prove that this is not true, namely,
that there exists an AC function that has an exponential L norm. Actually, we are
able to prove a much stronger result. We exhibit a Boolean function such that
L= .(npoly log(n)). Namely, there are AC functions that cannot be computed as a
sign of a sparse polynomial. This result complements that of[ 11] (about approximation
of AC functions).

From [4] we know that the class of polynomial threshold functions is strictly
contained in the class of Boolean functions that can be computed by a depth-2,
polynomial size circuit of MAJORITY gates. Hence, in view of this, it is natural to
ask whether there are ACO functions that cannot be computed by a depth-2, polynomial
size circuit of MAJORITY gates. We find a (nply log(n)) lower bound on the size of
a depth-2 circuit of MAJORITY gates that computes a certain AC function. This
provides a lower bound to the fact that three layers are sufficient to compute functions
in AC with MAJORITY gates [1].

The paper is organized as follows: in the next section we prove the characterization
theorem, in 3 we describe the application to AC functions, and finally, we address
some open problems. In the Appendix we sketch some of the related results from [4].

2. Characterizing polynomial threshold functions. In this section we characterize
polynomial threshold functions using spectral norms. We will use the L1 and L norms.
Let PL1 be the class of Boolean functions for which the spectral norm L is bounded
from above by a polynomial in n. And let PL be the class of Boolean functions for
which L is bounded from above by a polynomial in n.

THEOREM 1.

PL PT1 c PLy.
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Proof In [4] it was proved that PT1
_

PLoo (a sketch of the proof is included in
the appendix). Hence, to prove the theorem we need to prove the following three
lemmas.

1. PL1 c__ PT1. We do that in Lemma 1 below by using probabilistic arguments.
2. The inclusion is proper, i.e., PL1 c PT1, by exhibiting a function f such that

f PT1 but f PL1. We prove that the EXACTk,2k function (outputs-1 if and only if
exactly half of its inputs are -1) is in PTI (Lemma 2) but not in PL1 (Lemma 3).

3. The inclusion PT c_ PLo is proper by exhibiting a function f, such that f PLo
butf PT1 (Lemma 4).

To prove that PL1 c__ PT, we actually prove a stronger result.
LEMMA 1. For any Boolean function f(X), there is a polynomial F(X), with at

most 2nL1 (f) terms, such that f(X) sgn (F(X)).
Proof The proof is obtained by using the probabilistic method [5].
Let {asia {0, 1}"} be the spectral coefficients off(X). That is,

f(X) ., asX ’.
s{0, 1}"

We will prove that a polynomial F(X), such that f(X)=sgn (F(X)), exists by con-
structing it from the polynomial representation off(X).

Define a probability distribution over the c’s, a {0, 1}", as follows:

El(f)"
We choose the terms to be included in F(X) according to the foregoing probability
distribution. A term sgn (as)X is included in F(X) with probability Ps. Formally,
define m independently and identically distributed (i.i.d.) random variables Z, where
1 =< _-< m. For all a, Z sgn (as)XS with probability Ps. These are the m monomials
of F(X). The value m will be determined later. Namely,

F(X)= E Zi.
i=1

Hence, F(X) is a polynomial constructed by selecting the monomials at random. Note
that F may contain duplications of any term. For any given X, F(X) is a random real
variable. The first two moments of this random variable are given by:

E(Zi(X))=Yps sgn (as)X

[as]
sgn (as)X

LI(S)

El(f asXS

/(x)
,(f)

So

E(F(X))=
mf(X)
Ll(f)

and

Var(F(X))=m( ,)1
Ll(f
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Hence, choosing m >- 2nL(f) and applying the Central Limit Theorem, for n sufficiently
large,

( m ) -<_ exp (-n) < 2-".Prb[f(X)sgn(F(X))]<=exp 2(LZ(f) 1)

And by the union bound we get that

Prob [f(X) sgn (F(X)), for some X] < 1.

Hence,

Prob [f(X)= sgn (F(X)), for all X]>0.

Thus, for any Boolean function f with a "small" Ll(f) norm there exists a polynomial
(X) with at most 2nLZ(f) monomials such that f(X)=sgn((X)) for all X
{1, -1}".

Remarks. 1. It follows from Lemma that if Ll(f) is polynomially "small", then
there exist a sparse polynomial F(X) such thatf(X) -sgn (F(X)). Namely, PLI

_
PT.

2. Using the same argument as in Lemma 1 we can also prove the existence of
approximations. Formally, given a function f, there exists a polynomial F(X) with
O(L2(f)n2k+) monomials such that

IF(X)-f(X)l<-_n -.
For more details and applications, see [16].

3. Lemma applies also to depth-2 threshold circuits. From [4] we know that a
threshold function with m terms can be computed by a depth-2 threshold circuit of
size mn. Hence, given a function f, there exists a depth-2 circuit of linear threshold
elements of size O(L(f)n2) that computes f

Before we prove the next two lemmas we define the following function.
DEFINITION 1. EXACTk,, is a Boolean function of n variables that is defined as

follows:

LEMMA 2.

-1
EXACTk,, (X)

1

if there are exactly k -l’s in X,
otherwise.

and the rest of the terms are 1. Hence, for X having m -l’s,

F(X) (k- 1)+ (22k)-2(k2- m2)
=2m2- 1.

Clearly, EXACTk,2k (X)= sgn (F(X)). [3

EXACTk,2k PT.
Proof We prove this by constructing a polynomial F(X) such that

EXACTk,2k(X) sgn (F(X)). Let

F(X) (k 1) +xx+xx +. + x_x2.
Namely, F(X) consists of a constant term (k-l) and all the (22k) products of two
variables. Suppose X consists of (k + m) -l’s and (k- m) l’s. Note that we want
F(X) < 0 if and only if m 0. Since F(X) is symmetric, we may calculate the value
of F(X) as a function of m. The number of nonconstant terms in F(X) that are -1
is exactly

k2-m2=(k+m)(k-m)
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LEMMA 3.

2k

LI(EXACTk 2k) >--

Proof The idea is to compute the spectral coefficients that correspond to
monomials with exactly k variables. Since EXACTk,zk is a symmetric function, the
spectral coefficients that correspond to monomials with k variables are identical. Let
us compute the coefficient corresponding to the term xlx2x3""xk, to be denoted by
d. We claim that

d--22k_l (--1)
i=0

The proof is as follows (note that -,x X1X2"’" Xk --0):

1
(1) -22k Y’.

Xe{-1, 1}

(2) Y
22k }2kXe{-1,

XlX2"’’Xk EXACTk,2k (X)

x,x2" Xk(EXACTk,2k (X)-1).

The term (EXACTk,2k(X)-1) in (2) is -2 if and only if the number of -l’s in X is
exactly k and zero otherwise. The sign of XlX2’’" Xk is the parity of the number of
ones in the first k variables and the result follows. Hence, for even k we have

And,

a 22k_1 (--1)
i=0 22k_ (--1)

k/2

(3) LI(EXACTk,2k) >-
22k-’ k/2

2k

(4) _-->
k

Before proving the next lemma we define the following.function.
DEFINITION 2. The complete quadratic (CQ.) function is a Boolean function of

n variables such that

CQ.(X) (x, ^ x2)@ (x, ^ X3)( ((Xn-1 ^ In).

That is, CQ. consists of the parity of all the () AND’s between pairs of variables.
LF.MMA 4.

PT c PLy.

Proof We prove that the inclusion is proper by constructing a function which is
not in PT butis in PLoo. Consider the complete quadratic function (CQ.(X)) which
is defined in Definition 2 above. From [4] we know that CQ.(X) is not in PT1 (and
also not in PLoo). Consider the function f.+l(X) of n + variables, which is constructed
from CQ.(X) as follows:

fn+l(X)--CQn(X)AXn+l.

The function f.+l(X) is not in PT because CQ.(X) can be obtained from f.+l by
projection (setting x.+l to logical 1). Next we show thatf.+(X) is in PL by exhibiting
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a spectral coefficient that is "large"; that is, not exponentially small. We compute the
spectral coefficient that corresponds to the constant term infn+l. Writing the polynomial
representation of f,+l(X) we have,

f,+l(X) 1/2(1 + CQ,(xlx2, x,) + x,+l- Xn+l CQ,,(xlx2, x,)).

From [4], if CQ,(X)=Z aX, then for all a, Jail=2 -"/2. Hence, the spectral
coefficient corresponding to the constant term is at least 0.25 and (1/L(f,+l))<-4.
That is, f,+l PLy. U

Remark. Using the same argument as in Lemma 4 one can prove a more general
result" Let f_ PLy, then (f^ x,+l) PLy. Hence, the class PL seems very unnatural
in some sense. However, note that the motivation for this class is for proving lower
bounds. Namely, iff PLy, then it means that f cannot be computed as the sign of
a sparse polynomial. In this sense, it is a desirable property that we can construct
functions that are not in PL and also not in PTI.

3. AC functions and spectral’ norms. One of the possible applications of our
results is to obtain bounds on the complexity of Boolean functions. In particular, the
complexity of computing Boolean functions with circuits of MAJORITY gates. In this
section we address a few questions related to computing AC functions using MAJOR-
ITY gates. See [16] for results related to the complexity of computing arithmetic
functions using MAJORITY gates.

DEFINITION 3. Let MAJk be the class of functions that can be computed by a
depth-k, polynomial size circuit of MAJORITY gates assuming that at every gate it is
possible to negate any of the inputs. This model of computation is equivalent to a
polynomial size circuit of linear threshold elements of depth k, such that the weights
at every gate are bounded by a polynomial (in the number of variables). This follows
from the fact that we can replace an input with weight w by w copies with weight 1.

The following theorem is a summary of our results related to AC functions.
THEOREM 2. 1. AC PL1.

2. AC PLo.
3. AC MAJ2.

In what follows we describe the proofs for the three parts of the theorem. Clearly,
the above claims are related. We give the details of the proofs for all the three claims
since we use a different technique for every one of them.

Note the following facts:
1.

PL1 c MAJ..
This follows from Theorem 1, PL1 PT1, and the fact that PTI c MAJ:z (see [4]).

2. By the same arguments as in Lemma 1, if the L1 spectral norm is O(nply log(n))
then the function can be computed by a depth-2, O(nply log(n)) size circuit of MAJOR-
ITY gates.

Hence, it is natural to ask whether there are AC functions that have an exponential
L norm. A negative answer to this question will result in an upper bound on the
complexity of computing AC functions with MAJORITY gates. Unfortunately, we
prove that indeed there is a function in AC that has an exponential L spectral norm.
This result is further evidence that three layers of MAJORITY might be needed to
compute a function in AC [1].

LEMMA 5.

ACO PLy.
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Proof We exhibit a functionf AC such that L(f) is exponential in the number
of variables. We note here that this function is a linear size CNF. First, consider the
following Boolean function;

L(X) (x A x2) v (x A x4).

It can be checked that Ll(fl)= 3.5. Now consider the function f, which is the AND
of n copies of fl where each copy consists of four different variables. Namely, let

f/ (X4i_ A X4i_2) V (X4i_ A X4i ),

Then

The polynomial representation’ of f can be reduced to the following form (note
that a logical 1 is represented by -1)"

f= 1 --2=i i=,

Hence,

Ll(f) -1 +2=-i (L,(fl)- 1.25".

The result follows since L(f) is exponential and f AC. [3

The next natural question is whether ACc PLo. Namely, is there an f AC
such that LLl(f) is not bounded by a polynomial in n ? This will also show that there
is an AC function that is not in PTI, and it will complement the result in [11] that
AC functions can be approximated by a sign of a polynomial with O(nptylg(n))
terms. To prove the next two lemmas we need a definition and a couple of facts.

DEFINITION 4. The inner product mod-2 function of n variables is defined as
follows:

IP2.(X) (x1A x2)( (x A x4)" @(Xn_1A Xn),

Note that IP2n is defined for even n and consists of the parity of the AND’s between
the n/2 pairs.

FACTS. 1. It is well known that the parity of loga(n) variables can be computed
in depth 2d with AND, OR, and NOT gates, by using a tree of XOR’s of log n variables.
Hence, for fixed d, IP21og(n is in AC.

2. It is also known that L(IP2k)=2-(k/2 (see [12, Chap. 14]).
LEMMA 6. There exists a Boolean function f6AC, such that LL(f)

a(n’* ,o

Proof The function IP2po og(,) AC (fact 1) and LL(IP2poy og(,) 2py

(fact 2). Now from [4] (see the Appendix) we have that the number of terms in the
representation as a sign of a polynomial is I)(LL) and the result follows.

Now, recall that in [6] it was proved that the IP2 function is not in MAJ2. Using
the same technique as in [6] yields the following lemma.

LEMMA 7. A depth-2 circuit of MAJORITY gates that computes IP2poly og is of
size O( nply log(n)).
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Since IP2poly log E AC, this result constitutes the first known lower bound to the
result of Allender [1]. Namely, there are AC functions that cannot be computed by
a depth-2 circuit of MAJORITY gates.

4. Open problems. There are a few open problems related to the results in the
paper:

1. Note that the function IP2poly log can actually be computed with O(nply log n))
terms/gates. It is possible to compute exactly any AC function by a sign of a polynomial
with O(npIy log )) terms? A result like this implies that any AC function is computable
by a depth-2, O(nplyg(n)) size circuit of MAJORITY gates. We note here that in
order to prove an exponential lower bound on the number of terms we will need a
different technique than the one used here. The reason is that it is possible to prove
(based on 11]) that for AC functions L O(nply log ).

2. A more interesting question will be to find an AC function which cannot be
computed by a depth-3, polynomial size circuit of MAJORITY gates. This will give a
better lower bound for the result in [1].

3. Is there some fixed d, such that any AC function can be computed by a
depth-d, polynomial size circuit of MAJORITY gates?

Appendix: A spectral lower bound. In [4], we made the first connection between
the complexity of computing with threshold functions and harmonic analysis tech-
niques. The result in [4] that is relevant to this paper is a lower bound on the number
of terms which is expressed using the spectral coefficients. This result completes the
characterization theorem. For the sake of the completeness of the presentation we
sketch the proof here.

DEFINITION. Let S
_

{0, 1}"; a Boolean function f is an S-threshold function if
there exist integers that we call weights (the ws’s) such thatf(X)= sgn (Yss wsXS).

THEOREM 3. Let f(X)=sgn (ss wsXs) be an S-threshold function and let
{as Ice E {0, 1}"} be its spectral representation; then

Loo(f)"

Proof The proof is based on the following two key lemmas that are proved in [4].
LEMMA 8. Fix S {0, 1}". Let F(X) ss wsXs. Let f(X), X {-1, 1} n, be a

Boolean function with spectral representation {as Ice {0, 1}"}. Then

f(X) sgn (F(X)) VX {1, -1}"

if and only if
Y IF(X)I 2"

X{1, -1}"

LEMMA 9. Let F(X)=ss wsXs. Then for all ce S:

2lw l --< IF(X)I.
X{I, -1}

The proof of the theorem is as follows: By Lemmas 8 and 9 for all ce E S:

sS

We multiply the above inequality by lasl and sum over all ce S:

la llw l--< Y la l Iw llaol.
sS sS sS
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Hence,

Note that this is a stronger statement than

ISI >= L(f"---" 1

Note that PT1
_
PL follows directly from the foregoing theorem.
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THE AVERAGE COMPLEXITY OF PARALLEL COMPARISON MERGING*

MIHALY GERIB-GRAUSt AND DANNY KRIZANC

Abstract. An optimal lower bound on the average time required by any algorithm that merges two
sorted lists on Valiant’s parallel computation tree model is proven.

Key words, merging, parallel comparison tree, average case complexity

AMS(MOS) subject classifications. 68P10, 68Q10

1. Introduction. Valiant IV] introduced the parallel computation tree (PCT) model
for studying parallelism in the classical comparison problems of maximum, median,
merging, and sorting. The input for each problem is a set of n elements on which a
linear ordering is defined. The basic operation available to processors is the comparison
of two elements. With p processors, p comparisons may be performed simultaneously
in one step. Depending on which of the 2p possible results is attained, the next set of
p comparisons is chosen. The computation ends when sufficient information is dis-
covered about the relationships of the elements to specify the solution to the given
problem.

The deterministic time complexity of a problem in this model is the number of
steps required for the worst case input or the minimum depth of a tree solving the
problem, as a function of the size of the input set and the number of processors used.

The model is easily extended to allow random computations. In the randomized
PCT model, at each step we introduce a probability distribution over the choice of
which p comparisons are to be performed. In this case, the randomized time complexity
of a randomized PCT is the expected number of steps required on the worst case input.
The average time complexity is the expected number of steps required by a PCT on
the uniform distribution of the inputs. It is easy to see that the deterministic complexity
is greater than or equal to the randomized complexity, which in turn is greater than
or equal to the randomized average complexity. Since any randomized PCT can be
thought of as a probability distribution over deterministic PCTs, the randomized
average complexity is equal to the deterministic average complexity. Therefore, it is
sufficient to consider deterministic PCTs below.

The deterministic and average (and therefore randomized) complexities of the
above problems are now fairly well understood. Valiant IV] gives matching deterministic
upper and lower bounds for finding the maximum. The lower bound presented there
also holds for the median. Deterministic upper bounds for the median are presented
in [AKSS], [P], and [AP]. The average complexity of maximum and median finding
is determined in [R] and [M]. A complete characterization of sorting is given in the
papers [AKS], [AAV] (deterministic), and [AA] (average).

Valiant IV] gave a deterministic O(+ log (log n/log (1 +))) algorithm for merg-
ing two sorted lists of length n using p processors. The matching worst case deterministic
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" Department of Computer Science, Tufts University, Medford, Massachusetts 02155. This author’s
research was supported in part by National Science Foundation grant NSF-CCR87-04513.

$ Department of Computer Science, University of Rochester, Rochester, New York 14627. This author’s
research was supported in part by National Science Foundation grant NSF-DCR86-00379 and by a National
Science and Engineering Research Council of Canada postgraduate scholarship.

43



44 MIH/LY GERIB-GRAUS AND DANNY KRIZANC

lower bound was given by Borodin and Hopcroft [BH]. In this paper we show that
the same bound holds for the average case.

A parallel algorithm is said to achieve optimal speedup if its running time using
p processors is proportional to the sequential running time divided by p. We found
that for merging two sorted lists of length n, average optimal speedup is achievable
up to the point where the number of processors is n/log log n. Adding more processors
does not result in more than constant reduction in the average time until the number
of processors is greater than n.

In 3 we prove a lower bound for average time complexity of merging two sorted
lists, both of length n using n processors in the PCT model. In 4, we generalize the
above result by giving lower bounds for the case where we are merging sorted lists of
length n and m using p processors.

2. Preliminaries. Let A (a, , as-r) and B (b, , bs+r) be two sorted lists
to be merged and let C =(A, B)=(c,..., c2,) be the resulting merged list. Partition
C into s7/8 blocks, each containing 2s 1/8 elements. (Note" Throughout the paper
logarithms are to the base 2 and expressions take nonnegative integral values whenever
this is convenient and otherwise insubstantial.) Denote the /th block by Ct

(C1---((1_1)2s/8+1, !2s1/8)) for l= 1,... ,S7/8.

Let A and Bt be the elements of Ct in A and in B, respectively, for 1,..., s7/. A
block is said to be balanced if ]]a, s /1 < s/.

By recursively applying the partitioning described above, starting with s n, we
define a levelled block partitioning of the input where each level of the partitioning
is a refinement of the previous level. The kth level consists of n 1-/8) blocks, each
containing 2n/8 elements for k=0,..., e log log n, where c< is an arbitrarily
chosen constant.

Each step of a PCT algorithm consists of making p comparisons, where p is the
number of processors available. We index the comparison of a, and b by (u, v). We
say the lth block C (A, Bt) is touched by the comparison (u, v) if and only if a, A
and b Bt. A comparison can touch at most one block. If it does not fall within a
block, and the boundaries of the blocks are revealed, it provides no information about
the merging of any block. If a block is touched by one or more comparisons we will
consider it as entirely merged and additional comparisons are not required for it.
However, if a block is left untouched by all p comparisons, no information was gainecl
about it during that step, and it remains a subproblem containing 2s /8 elements to be
merged independently.

3. Average case lower bound. In this section we prove the following theorem.
THEOREM 1. The average time complexity of any PCT that merges two sorted lists

of length n using n processors is f(log log n).
Proof To prove the theorem we show that the majority of kth level blocks will

be left untouched by comparisons made during the kth step of a merging algorithm
for k 1, , c log log n. Therefore, after O(log log n) steps the majority of the blocks,
and thus elements, will be left unmerged. We first bound the expected number of
blocks merged during the kth step ofthe algorithm. Prior to the kth step of the algorithm
we reveal the block partitioning of the input up to the (k- 1)th level. Note that if we
now consider any block from the kth level of the partitioning, the uniform distribution
over the inputs conditioned by the first k 1 levels of the partitioning yields the uniform
distribution over this block.
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Let 2s=2n/8)k-’, the size of the (k-1)th level blocks. We will consider a kth
level block merged during the kth step if the (k-1)th level block of which it is a
subblock was unmerged prior to the kth step and one of the following is true:

1. It is one of the first or last S
3/4 subblocks of a (k-1)th level block.

2. It is unbalanced.
3. It is below the first and above the last S

3/4 subblocks and a comparison touches
it.

The above accounting gives an upper bound on the number of kth level blocks
(and therefore the number of elements) that are merged during the kth step. We give
upper bounds on the expected number of elements merged in each case.

Case 1. At most 2S3/4" n 1-(1/8)k
S
1/8-- n 1-(1/8)k+l elements are merged in this case.

Case 2. Since the (k 1)th level block was unmerged it must be balanced. Deciding
the boundaries of a subblock of such a balanced block is equivalent to sampling
elements from a space with N 2s elements, at most M =-s + s2/3 elements of which
are from list A (or B). Using bounds on the hypergeometric distribution given in [C],
the probability that we selectj s /8 + S

1/12 or more elements from A (or B) in h 2s 1/8

trials is at most

H(M, N, h,j)_-<exp -2 --< exp (-s 1/24) < 0(S-1/8).
Thus the expected number of elements merged in this case is at most
n 1-/8)+ O(s-/8) s/8= O(n-/+’) elements.

Case 3. Consider an arbitrary comparison (u, v). If it is to touch the /th block,
we must have (l- 1) 2s /8 < u + v <- I. 2s /8, which implies [(u + v)/2s/8]. Suppose
the last element of At is aa,. Since [A[ < 2sl/8, there are at most 2s /8 possible values
for d. These possible boundary values are u <= d < u + 2s /8. Thus the probability that
(u, v) touches any block is equal to the probability that it touches the/th block, which
is less than or equal to the probability that u <-dt < u + 2s /8.

For a particular r, the probability that dt-- I. s/8- r is

l" s 1/8
rl/ S S

/8 r rl)

2Sr)S--

For a given r the above takes its maximum when sign (rl)= sign (r) and Irll<lr[.
Then it is equal to

s)

r, (1" S 1/8) r-r’ (S- 1" S 1/8),,
(l ;i/8-+i ,= (s-l

s--i

i=l snui

For S
3/4 <= s7/8 $3/4 by Stirling approximation the first expression is O(s-3/8)

In the second expression, if we order the-factors at the top and the bottom, then each
factor at the bottom will be bigger than the corresponding factor at the top, and as a
consequence the second expression is bounded by 1.

Therefore the probability that a comparison touches any block in the given range
is 0(s-3/8) 2s/8= O(s-/4). Since there are n comparisons the expected number of
elements merged in this case is at most n. 0(s-1/4) s 1/8-" O( g/1-(1/8)k+l) elements.



46 MIHLY GERIB-GRAUS AND DANNY KRIZANC

Combining the three cases we have during the kth step, the expected number of
elements merged is at most O(n-l/8)k+’). Summing over the first c log log n steps we
get that the total expected number of elements merged is o(n). From this the theorem
follows.

4. Further results. To complete our investigation we look at the general case where
the number of processors is p, and we are merging sorted lists of length n and m. We
prove the following theorem.

THEOREM 2. The average time complexity ofany PCT that merges two sorted lists,
one of length n, the other of length m >= n, using p processors is

2. O log log n-log log +log(p/n) if2n<pN;

3.
log (m/n)+l ifp
log(p/n)

Proo Case 1. p N n. Valiant [V] showed how to merge two soed lists of length
n with pN2n processors in time O(+loglog n). To merge lists of length n and m,
first merge, using p processors, the list of length n with a list of length n consisting
of every th element of the second list. Now inse each of the n elements from the
first list into the list of length in which it belongs. With p processors using binary
search this takes at most O( log ()) time.

The average case lower bound follows from the information-theoretic lower bound
of (log (2)) for the average number of comparisons required for merging in the
sequential setting and from the claim below.

Case 2. n N p N n/2. Valiant [V] showed how to merge two soed lists of length
n with p 2n processors in time O(log log n log log ()). As above, to merge lists of
length n and m, first merge the list of length n with a list of length n composed of
every th element of the second list. Then inse each of the n elements of the first
list into the list of length in which it belongs. With p processors available we can

p passign to each element and therefore use -way search. This requires
O(log (rain)/log (p/n)) time.

There are two pas to the lower bound. The first potion is immediate from the
following claim.

CLAIM. Let us express p in form: p n l+2-q. If m < H l+q2-q, then the average time

complexity of any PCT that merges two sorted lists, one of length n, the other of length
m, using p processors is

Proof of Claim. As in the proof of Theorem 1, we recursively paition the input
into blocks. In this case the blocks at the kth level are of size n(1/al+n(/a". Using
the same proof we can show that at most O((p/n)(m/n)n-(/*) elements are
expected to be merged on the kth step. From this we conclude that, for any c <
after c log (log n/log (p/n)) steps the expected number of elements merged is o(m).
This implies the average time for merging with p processors is (q)=
(log log n-log log (p/n)).
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Further, we show that the merging is just as hard (for the average case) as
performing O(n) insertions of elements into lists of length -. Divide the list of length
rn into segments of length -. If we reveal to the algorithm which of the segments each
of the n elements of the first list fall in, we are left with the problem of inserting these
elements into their corresponding segments. With constant probability there are at
least segments with at least one element to be inserted. To perform one such insertion

2pwith -h- processors requires f(log (rain)/log (2p/n)) time on average. (This follows
from the optimality of p-way search with p processors. See [K].) Therefore, to perform
independent insertions (note that information gathered in one insertion is of no use

in another) with p processors requires lq(log (m/n)/log (2p/n)) time on average. This
implies the average time for merging with p processors is f(log (m/n)/log (p/n)).

Case 3. p>-(n2/2). The upper bound is the same as Case 2. With p>=(n/2)
processors, merging two sorted lists of length n requires constant time. The lower
bound is the second part of the lower bound of Case 2. Note that merging always
requires at least one step.

As a corollary, we have the case of merging two sorted lists of length n using p
processors.

COROLLARY 1. The average time complexity of any PCT that merges two sorted
lists of length n using p processors is

p log(l+p/n)
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A NOTE ON THE HEIGHT OF SUFFIX TREES*

LUC DEVROYEt, WOJCIECH SZPANKOWSKI, AND BONITA RAIS

Abstract. Consider a random word in which the individual symbols are drawn from a finite or infinite
alphabet with symbol probabilities Pi, and let Hn be the height of the suffix tree constructed from the first
n suffixes of this word. It is shown that Hn is asymptotically close to 2 log n/log (1/i p2) in many respects:
the difference is O(log log n) in probability, and the ratio tends to one almost surely and in the mean.

Key words, suffix tree, height, trie hashing, analysis of algorithms, strong convergence algorithms on

words

AMS(MOS) subject classifications. 68Q25, 68P05

C.R. classifications. 3.74, 5.25, 5.5

1. Introduction. Tries are efficient data structures that were developed and
modified by Fredkin [14]; Knuth [19]; Larson [21]; Fagin, Nievergelt, Pippenger, and
Strong [10]; Litwin [23], [24]; Aho, Hopcroft, and Ullman [2]; and others. Multi-
dimensional generalizations were given in Nievergelt, Hinterberger, and Sevcik [26]
and R6gnier [30]. One kind of trie, the suffix tree, is of particular utility in a variety
of algorithms on strings (Aho, Hopcroft, and Ullman 1]; McCreight [25]; Apostolico
[3]). However, except for the results in Apostolico and Szpankowski [5], who give an

upper bound on the expected height (see also Szpankowski [32]), very little is known
about the expected behavior of suffix trees. Also noteworthy is a result by Blumer,
Ehrenfeucht, and Haussler [6] who obtained asymptotics for the expected size of the
suffix tree under an equal probability model. The difficulty arises from the interdepen-
dence between the keys, which are suffixes of one string. In this note, we study the
height of the suffix tree. The results of our analysis find applications in many areas
(Aho, Hopcroft, and Ullman [1]; Apostolico [3]). For example, suffix trees are used
to find the longest repeated substring (Weiner [33]), to find all squares or repetitions
in strings (Apostolico and Preparata [4]), to compute string statistics (Apostolico and
Preparata [4]), to perform approximate string matching (Landau and Vishkin [20];
Galil and Park [15]), to compress text (Lempel and Ziv [22]; Rodeh, Pratt, and Even
[29]), to analyze genetic sequences, to identify biologically significant motif patterns
in DNA (Chung and Lawler [8]), to perform sequence assembly (Chung and Lawler
8]), and to detect approximate overlaps in strings (Chung and Lawler 8]). Consequen-
ces of our findings for an efficient design of algorithms are extensively discussed in
Apostolico and Szpankowski [5].
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We consider an independently and identically distributed (i.i.d.) sequence
X1, X2," of integer-valued nonnegative random variables with P(X1 i)=Pi for

0, 1, 2, and -i Pi 1. The Xi’s should be considered as symbols in some alphabet.
Together, they form a word X XX2X3"". We do not assume that the alphabet is
finite, but we will assume that no pi is one, for otherwise all the symbols are identical
with probability one. The suffixes Y of X are obtained by forming the sequences
Y (XiXi+ "’’). The suffix tree based upon Y, , Y,, is the trie obtained when the
Y/’s are used as words (for a definition of tries, see Knuth [19]; for a survey ofi’ecent
results, see Szpankowski [31], [32]). Note, however, that we do not compress the trie
as in a PATRICIA trie, i.e., no substrings are collapsed into one node.

In this note we study the height Hn of the suffix tree, which is given by

H,= max
ij,li,j<n

where Co is the length of the longest common prefix of Y and Yj, i.e., C0 -k if

(Xi,...,Xi+_)-(Xj,...,Xj+_) and Xi+X+.
In the discussions to follow, we will use the standard notations for the L-metric:
[[p[[-(Ygp)/, where 0<r<o, and ]lp][=maxipi. We write f(n).--g(n) if
limn_of(n)/g(n)-1, and we will reserve the symbol Q to stand for I/lip[J2.

THeOReM. For a random suffix tree, H/logo n- 1 in probability. Also, for all
m -> 1, EH (logo n)m.

We will prove this result using only elementary probability theoretical tools, such
as the second moment method. Nevertheless, we will in fact be able to show that for
any e > 0 and any sequence

1 lim P(H, > logo n + to, 0

and

(2) lim P(H, < logo n (1 + e) logo log n) 0.

Thus, the variations of H, are at most of the order of log log n. In 4, we will show
that the convergence in the theorem is in the almost sure sense as well.

It is interesting to note that the first asymptotic term (logo n) is of the same order
of magnitude as for the asymmetric trie when the words Y,. ., Yn are i.i.d. (Pittel
[27], [28]; Szpankowski [32]). In [27], Pittel showed that H,/logo n - almost surely,
and in [28], he showed that H,-logon O(1) in probability. Other properties of the
height of a trie under the independent model can be found in Yao [34]; R6gnier [30];
Flajolet 11 ]; Devroye [9]; Pittel [27], [28]; Jacquet and R6gnier 16]; and Szpankowski
[32], who presents a survey of recent results. The reader is also referred to some other
related papers, such as Kirschenhofer and Prodinger [18], Flajolet and Puech [12],
Flajolet and Sedgewick [13], and Szpankowski [31].

2. Preliminary results. We present four simple lemmas. The first two are trivial.
The third one is due to Apostolico and Szpankowski [5].

LEMMA 1.

LEMMA 2. For every r >- 2, IIp IIr IIP
Proof Let f(x) {Yi pT}/ for x > 0. It is easy to show that the first derivative of

f(x) is negative for all x > 0, and hence f is a decreasing function. For details, see
Szpankowski [32] and Karlin and Ost [17].
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LEMMA 3. For 0 < [i-j[ d, we have

P(C; > k) P
+ pls+l

where [k/d and r k dl k mod d. In particular, for [i -Jl >- k, we have P(Cij -->
k)-[lpllgk.

k+dLEMMA 4. For O<li-jl=d <k, we have P(Co>-k)<-lipl[
Proof. From Lemmas 2 and 3 we immediately obtain

p(c__> k) pls+2 pl+l k+d[]P[](2l+2)r+(l+l)(d-r)- []PII2

3. Proof of the theorem. We prove our theorem by showing two tight bounds for
the height H,. Roughly speaking, we shall show that for every e > 0 and large n the
following holds: P(H, > (1 + e) logo n)- 0 as n - (upper bound), and P(H, <
(1 e) logo n) 1 as n (lower bound).

We start with an easier part of our proof, namely, the upper bound. Assume that
2_-< k-< n- 1. We have, from Lemmas 2 and 4 and Bonferroni’s inclusion-exclusion
inequality for the probability of the union of events,

P(max Co >- k) <= 2n P(CI,+d >= k) + P( CI,I+d k)
ij d=l d=k

k--1
k+d(3) =<2n y [Ipll / Y Ilpll

d=l d=k

_-<2n
1-II-i / nllpll"

This tends to zero provided that IIPlI2 <1 (this is always true) and that nllpllg-0 (for
this, it sumces that k=(logn+w,)/(-log Ilpl12), with w,oo). This establishes (1).
Let u/ be defined as max (u, 0). Clearly, EH, <=logon+E(H,,-logon)+. We will show
that the second term in this upper bound is O(1). Indeed, by (3),

E(H,, log (1/ p lle) -log n)’ P(H. log (1/ p ll2) log n > II 1/m) du

t
A matching lower bound is obtained by the second moment method. We will use

a form due to Chung and Erd6s [7], which states that for events Ai, we have

(Ei P(A,))2

P( I"J Ai , P(Ai -I- ,i #j P(Ai ("1A;)"

Let S be the collection Of pairs of indices (i,j) with 1-< i,j <- n, and li-jl>-_k. Let Ao
be the event that Co _>- k. Then

2
e(max CO _-> k) _>- P( U (i,j)sAij) >
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where

and

d__f E P(Ao)
(i,j)ES

de___f P(Aij f"l Al,,, ).
i,j),( l,m )ES;( i,j)#( I,m

To prove our lower bound it is enough to show that the probability on the right-hand
side (RHS) of the above tends to 1 for k slightly smaller than logo n (k logo n-ton).
First we note that when k o(n), then by Lemma 3,

P(Aij)= IsIIIpll [(n=-(2k/ 1)n)llPll, n-IlPll"].
(i,j)S

We decompose the collection of pairs of pairs of indices

{((i,j), (l, m))’(i,j) S, (l, m) S, (i,j) # (l, m)}

as follows into 11 LI I2LJ I3" I1 captures all members with min (It-il, I-jl)--> k and
min (Im-i], Im-Jl) ->- k. I2 holds all members with either min (11-i[, II-jl)>-_ k and
min (Im -il, Im -Jl)< k, or min (ll- il, II-jl)< k and min (Im -il, m -Jl) => k. Finally,
I3 collects all members with min (ll-i[, II-jl) < k and min (Ira -i[, Im -Jl) < k. By
Lemmas 1 and 2,

Thus,

((i,j),(l, m))

((i,j),(l, m))e I

((i,j),(l, m))e I3

P(A0 VI Aim) --< n411Pll4,

P(Ao f) Atm <= 8 kn311p 2" p 8 kn311P l13 ’

P(Ai (-] Aim) <- (4k)2n2l[pll2.

2 <_ 8kn3/Q3k + 16k2n2/Q2k + 2(2k + 1)n3/Q4k

and _<- n2/Q2k, we have

+_2
P(max Ci < k) _-<

...n2/ Q2k + 8kn3/ Q3k + 16k2n2/ Q2k + 2(2k + 1)n3/Q4k
(4) 1,12/Q2k + (1 + o(1 ))/’14/Q4k

8kQk

Collecting all these terms shows that P(Hn _-> k)- 1 when n-. The lower bound in
(2) follows by setting k= [(log n-(1 +e)log log n)/(-log Ilpll-)J for 0. Also,

EH>__k"P(Hn>=k)-..k

Because

n4/Q4k + 8kn3/Q3k + 16kn2/Q2k.

If we choose k such that n llpll!k o, then,. a(Aij I") Aim)"" n4llpllk
(i,j),(l, m)ES; (i,j)#(l, m)
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if k is chosen as indicated. This concludes the proof of the lower bound and of the
theorem.

4. Strong convergence.
PROPOSITION. For the suffix tree, Hn/logo n- almost surely.
Proof We observe that Hn is monotone ’. Thus, if an is a monotone ’ sequence,

we have Hn > an finitely often if H2, > a2 finitely often in i. Similarly, Hn < an finitely
often if H2 < a2 finitely often in i. By the Borel-Cantelli lemma, the proposition is
proved if we can show that for all e > 0,

(5) P{H2, > (1 + e)i logo 2} <
i=1

and

(6) P{Hz, < (1- e)i logo 2} < oe.
i=1

To show (5), we can use the inequality (3) with n 2 and k= [(1 + e)i logo 2].
Note that Qk>= 2(1+)i. The ith term in (5) is not larger than

2n [n\ 2 2

(Q_I)Qk+2 =(Q_l)2i 22i

which is summable in i. Similarly, to verify (6), we use (4) with n =2 and k=
[(l-e)/logo 2J. The ith term in (6) does not exceed

8kQk

(1+o(1)) <-_(8+o(1))i(1-e)(logo2)2 -’,

which is summable in i, as required.
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COMPUTING ALGEBRAIC FORMULAS USING A CONSTANT
NUMBER OF REGISTERS*

MICHAEL BEN-ORt AND RICHARD CLEVE

Abstract. It is shown that, over an arbitrary ring, the functions computed by polynomial-size algebraic
formulas are also computed by polynomial-length algebraic straight-line programs that use only three
registers. This was previously known for Boolean formulas [D. A. Barrington, J. Comput. System Sci., 38
(1989), pp. 150-164], which are equivalent to algebraic formulas over the ring GF(2). For formulas over
arbitrary rings, the result is an improvement over previous methods that require the number of registers to
be logarithmic in the size of the formulas in order to obtain polynomial-length straight-line programs.
Moreover, the straight-line programs that arise in these constructions have the property that they consist of
statements whose actions on the registers are linear and bijective. A consequence of this is that the problem
of determining the iterated product of n 3 x 3 matrices is complete (under P-projections) for algebraic NC
Also, when the ring is GF(2), the programs that arise in the constructions are equivalent to bounded-width
permutation branching programs.

Key words, algebraic computing, straight-line programs, complexity classes

AMS(MOS) subject classifications. 68Q15, 68Q40

1. Introduction. The first investigation of the computational power of programs
whose on-line storage capacity is limited to a constant number of data items was made
by Borodin, Dolev, Fich, and Paul [5] and Chandra, Furst, and Lipton [8]. These
authors considered bounded-width branching programs computing functions from
{0, 1} to {0, 1}. Such programs are equivalent to straight-line programs that employ
a constant number of {0, 1}-valued read/write registers and have read-only access to
their inputs (disregarding linear differences in the lengths of programs). An advantage
of working with straight-line programs is that, by allowing the inputs and registers to
take values from general algebraic structures, they extend naturally to a model of
computation on more general types of data.

One way of assessing the computational power of these programs is to relate it
to other models of computation, such as circuits or formulas. Circuits and formulas,
like straight-line programs, extend naturally from settings where the data is {0, }-valued
to settings where the data takes values from general algebraic structures. Brent [7]
proved that, if the algebraic structure is a ring, any formula of size s can be "restruc-
tured" to have depth O(logs). (Actually, Brent’s result, as it is stated, applies to
commutative rings, but it is easily modified to apply to general rings.)

Barrington [2] showed how to compute Boolean formulas of size s (or,
equivalently, depth O(log s)) by bounded-width branching programs of length poly-
nomial in s. One interesting consequence of this result is that the MAJORITY function
from {0, 1} to {0, 1} is computed by a bounded-width branching program of length
polynomial in n. It was previously thought (and conjectured in [5]) that the MAJORITY
function is not computable by a polynomial-length bounded-width branching program.
(The conjecture was supported by some results obtained under restricted conditions.)

Received by the editors May 22, 1990; accepted for publication (in revised form) March 21, 1991. A
preliminary version of this paper was presented at the 20th Annual ACM Symposium on Theory of
Computing, Chicago, Illinois, 1988 [4].

t Institute of Mathematics and Computer Science, Hebrew University, Jerusalem, Israel.
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4. This

research was conducted while this author was at the University of Toronto and partially supported by a
Natural Sciences and Engineering Research Council of Canada postgraduate scholarship.

54



COMPUTING WITH A CONSTANT NUMBER OF REGISTERS 55

Our result is the following. Let f(xl,’’’, x,) be an algebraic formula of size s
over an arbitrary ring (, +,., 0, 1). We show how to construct a straight-line program
of length polynomial in s that computes f(xl,..., xn) and uses only three registers.
(Our result directly bounds the length of the straight-line program by 4d, where d is
the depth of the formula. Brent’s result [7] allows us to assume that d O(log s).)

In the special case where the ring is GF(2), our result is equivalent to Barrington’s
[2]. Over general rings, we obtain an improvement over the previously known (straight-
forward) method that involves an evaluation of each node in the formula in a "depth-
first traversal" order. This latter method requires a number of registers that is equal
to the depth of the formula, which, in general, is at least logarithmic in the size of the
formula.

Also, the straight-line programs that arise in our constructions have a special form:
they consist of statements that apply special invertible linear operations to the registers.
More precisely, if one regards each possible configuration ofvalues ofthe three registers
as a vector in 3, then the effect of executing a statement of these programs is equivalent
to multiplying this vector by a 3 x 3 matrix with determinant 1 (and one entry of this
matrix is an input or its negation, and the other entries are constants). Thus, the
statements that constitute these programs can be viewed as elements of SL3(), the
special linear group, consisting of 3 x 3 matrices with determinant 1. In Barrington’s
constructions [2], the statements of the programs can be viewed as elements of the
group $5, of permutations on a five-element set. To further compare our results, we
note that, when the ring is GF(2), our programs are (in the language of Barrington)
"width-7 permutation branching programs" and, when is finite, our programs are
"SL3()-permutation branching programs."

The main motivation for this research is to investigate alternate characterizations
of the complexity class "algebraic NC 1’’ (functions computed by logarithmic-depth
algebraic circuits). In addition, Kilian [10] has shown that the fact that the programs
that arise in Barrington’s constructions [2] are permutation programs has applications
in the design of cryptographic protocols. By expressing Boolean formulas as bounded-
width permutation branching programs, Kilian shows how to construct cryptographic
protocols that perform "oblivious function evaluations" of Boolean formulas with a
constant number of rounds of interaction (whereas previously proposed constructions
require f(log s) rounds, for general formulas of size s). Using our results, this can be
extended to formulas over other rings, such as the integers (see Bar-Ilan and Beaver
[1] for a particular construction).

The proof of our main result is partly motivated by the constructions used by
Coppersmith and Grossman [9] and Barrington [2].

2. Models of computation. Let (, +,., 0, 1) be an arbitrary ring. In this section,
we define formulas and straight-line programs over Yr. Our definition of formulas is
very standard (as circuits that are trees). Our straight-line program model is similar
to conventional models (in which there is a set of registers that contain single ring
elements and statements perform single ring operations) except that our statements
each perform two ring operations. Due to the particular form of the operations in
these straight-line programs, we call them "linear bijection straight-line programs."
Any statement in such a program can be easily simulated by two statements in a more
conventional straight-line program if one additional register is available.

DEFINITION 1. A formula over (Yt, +,., 0, 1) of depth d is defined as follows. A
depth 0 formula is either c, for some c Yt (a constant), or xu, for some u {1, 2, .}
(an input). For d > 0, a depth d formula is either (f+ g) or (f. g), where f and g are
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formulas of depth dy and dg (respectively) and d =max (dy, dg)+ 1. The size of a
formula is defined as follows. A depth 0 formula has size 1, and if f and g have sizes
sy and Sg (respectively), then the sizes of (f+g) and (f. g) are both sy+Sg+ 1. A
formula computes a function from yn to in a natural way (where n is the number
of distinct inputs occurring in the formula).

DEFINITION 2. A linear bijection straight-line program (LBS program) over
(, +,., 0, 1) is a sequence of assignment statements of the form

R<-R+(Ri" c); or

Rj - Rj-(R C); or

Rj<-Rj+(Ri" Xu); or

Rj Rj-(Ri x,),

where i,j{1,...,m}, ij, c,and u{1,...,n}. R,...,R are registers and
x,..., x are inputs (m is the number of registers and n is the number of inputs).
The length of an LBS program is the number of statements it contains. LBS programs
compute functions from to in a natural way, provided that we have some fixed
convention about the initial values of registers, and about which register’s final value
is taken to be the output of the computation (we will specify these later).

For each specific value of the inputs x, , x, each statement in an LBS program
induces a transformation on the row vector consisting of the values of the registers
(R,. ., Rm). This transformation can be represented by the matrix whose diagonal
entries are 1, whose ijth entry is +c or +x, (depending on which of the four basic
forms the statement takes), and whose other entries are 0. Executing a statement is
equivalent to multiplying (R,. ., R) on the right by the corresponding matrix. For
example, the statement R R +(R. x).corresponds to the matrix (when m- 3)

x 1

0 0

In this manner, the statements in an LBS program correspond to elements of SL,,(Yt),
the special linear group consisting of rn x rn matrices with determinant 1. In particular,
in the language of Valiant [11], an LBS program of length that uses rn registers can
be viewed as a "P-projection" of an iterated product of m m matrices.

Also, in the language of Barrington [2], when the underlying ring is GF(2), each
LBS program that uses rn registers is equivalent to a "permutation branching program"
of width 2m- 1 (where the "states" are the nonzero elements of {0, 1}’). Barrington
also defines "G-permutation branching programs" for any finite group G. When t is
finite, our LBS programs correspond to SL,,(Yt)-permutation branching programs.

3. Main result.
DEFINITION 3. Let f(x,..., xn) be an arbitrary formula over . For distinct

i,j{1,...,m}, we say that an LBS program offsets Rj by +Ri’f(x,’’ ",xn) if it
transforms the values of the registers as follows. Rj is incremented by the value of Ri
times f(xl," ", xn) and (importantly) all other registers incur no net change (i.e., for
all k #j, Rk has the same final value as its initial value). For example, the single
statement R R +(R2" x) offsets R by +R2"x. Similarly, we say that an LBS
program offsets R by -Ri" f(Xl,’’’, xn) if it decrements R by the value of Ri times
f(x, , x) and causes no net change in the values of all other registers. For example,
the single statement R1 -R-(R2. x) offsets R1 by -R2.x.
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Note that to compute f(xl,’’’, xn) it is sufficient to construct an LBS program
that offsets R by +Ri" f(xl,..., x,,) if one adopts an initialization convention where

Ri is initially 1 and R is initially 0, and one adopts the convention that the value of

R is the output of the computation.
For convenience, we say that we have LBS programs that offset R by

+Ri.f(x,...,x,) whenever we have an LBS program that offsets R by
+R.f(x,..., x,) as well as an LBS program that offsets R by -Ri’f(x,’’’, x,).

THEOREM 1. Over an arbitrary ring (, +,., O, 1), any formula f(x1, Xn) of
depth d is computed by an LBS program that uses three registers and has length at

most (2d )2.
Proof Recursively on d, the depth off(x,..., x,), we construct LBS programs

that use the three registers and offset R by +/-Ri.f(x,...,x) (for distinct
i, j {1, 2, 3}).

The construction is trivial when d 0: the appropriate single statement offsets R
by +/-R.c, or by +/-Ri’xk.

Suppose that we have LBS programs that offset R by +/-R’f(xl,’’’ ,x), and
that offset R by +/-R. g(x,. , xn). Then we can offset R by +R. (f+ g)(x, , x,)
by the LBS program

offset R by +R.f(x,..., x)
offset R by +Ri" g(x,. ., x),

and we can construct a similar program that offsets Rj by -R. (f+ g)(xl,’’", x,).
The interesting part of our construction is that we can offset Rk by

+R" (f" g)(x1,’’’ Xn)

by the LBS program

offset Rk by -Rj. g(xl, , xn)
offset R by +R. f(x,. ., x,)
offset Rk by +R. g(x," ., x,)
offset R by -Ri" f(x ,. ., x,).

To verify that this program has the required properties, let ri, r), rk be the values of
R, R, Rk (respectively) before executing the above program. Note that register R is
not modified by any of the four stages in the program. Register R is incremented by
r. f(x,..., x,) (in the second stage) and then decremented by ri" f(xl,’", xn) (in
the fourth stage), and thus register Rj incurs no net change from the execution of the
program. Finally, register Rk is decremented by rj. g(x,..., x,) (in the first stage)
and then incremented by

(r + ri" f(xl," ", x,)). g(x1," ", Xn)

(in the third stage). Thus, the net effect of the above program is to increment the
contents of register Rk by ri" (f" g)(x,..’, x,), as claimed.

Also, there is a similar construction that offsets Rk by -Ri" (f" g)(x,.. ",

(simply switch the "+" and "-" in the second and fourth stages).
Since the maximum recursive factor per level of depth in this construction is four,

if the depth of f(x,... ,x,) is d, the resulting LBS program has length at most
4d (2d)2.

Combining Theorem 1 with Brent’s restructuring result [7], we obtain the following
corollary.
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COROLLARY 2. Over an arbitrary ring (, +,., O, 1), anyformula f(x, xn) of
size s is computed by an LBS program that uses three registers and has length polynomial
in s.

By recalling (from 2) the close relationship between LBS programs and iterated
products of matrices, and noting that iterated products of 3 x 3 matrices are easily
expressed as polynomial-size formulas, we obtain the following from Corollary 2.

COROLLARY 3. Over an arbitrary ring , +,., O, 1), the problem of computing the
product of n 3 x 3 matrices is complete under P-projections (as defined by Valiant 11])
for algebraic NC (the class of functions computed by polynomial-size formulas).
Moreover, the problem remains complete if the matrices are restricted to those that have
determinant 1.

Finally, we mention that the uniform versions of Barrington’s result [2], [3] also
carry over to our results in a straightforward manner. For example, Corollary 3 also
holds for log-time uniform NC and with respect to log-time uniform P-projections.
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block ciphers that helped inspire this work.
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ASYMPTOTIC ANALYSIS OF AN ALGORITHM FOR BALANCED
PARALLEL PROCESSOR SCHEDULING*

LI-HUI TSAI*

Abstract. This paper considers the problem of assigning n tasks, under the constraint of balancing the
number of tasks processed, to two identical processors to minimize the makespan. The authors develop an
algorithm assigning In/2] tasks to one processor and In/2] to another. The absolute difference between
the optimal makespan and the heuristic makespan is proved to be bounded by O(log n/n2), almost surely,
when task durations are independently and uniformly distributed on [0, 1]. In addition, total flow time is
minimized if the tasks on each processor are sequenced in nondecreasing order of their processing times.

Key words, makespan scheduling, probabilistic algorithm analysis
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1. Introduction. The parallel processor scheduling problem requires the assign-
ment of n tasks to k identical processors so as to minimize the largest task finishing
time (makespan). Many studies have evaluated the worst-case performance and
asymptotic probabilistic performance of several heuristic methods. (See [3 for a survey
of much of the research on this problem.) The recent widespread interest in very-large-
scale integrated (VLSI) chips and flexible manufacturing systems (FMS) has focused
attention on incorporating additional constraints into the scheduling problem.
Specifically, it is important to balance the number of tasks assigned to the various
production modules. For example, in the allocation of component types to machines
that manufacture VLSI chips, it is important to keep the same number of component
types on each machine because of the limited number of feeder locations (Ball and
Magazine [1]). Another example is the assignment of tools to machines in flexible
manufacturing systems (Tsai [10]), where, because of the capacity constraints of tool
magazines, the objective is to minimize the largest sum oftool processing times assigned
to any given machine while keeping the numbers of tools assigned among machines
balanced.

Let the work difference of a schedule be the difference in the total processing times
and the cardinality difference be the difference in the number of tasks assigned to
processors. A schedule’s work difference is an upper bound of its difference from the
optimal makespan. In a cardinality-balanced schedule, the number of tasks assigned
to each processor is either [n/kJ or [n/k]. Several probabilistic analyses of heuristic
algorithms have been conducted for the makespan problem without cardinality balance.
Frenk and Rinnooy Kan [5] prove that the work difference achieved with the well-
known LPT (largest processing time first) is at most O(log n/n), almost surely, for
uniformly and exponentially distributed processing times. Karmarkar and Karp (K&K)
[6] developed the Differencing Method (DM) and proved that its work difference is
at most O(r/-clgn), almost surely, when the density function is reasonably smooth. For
cardinality-balanced scheduling on two processors and uniformly distributed process-
ing times, Lueker [7] proves that the pairing differencing method (PDM), a simpler
and more natural version of DM, results in an expected work difference of (R)(n-l).

* Received by the editors November 20, 1989; accepted for publication (in revised form) April 9, 1991.
Department of Decision and Information Sciences, University of Florida, Gainesville, Florida 32611-

2017 (TSAI@NERVM. BITNET).
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Coffman, Frederickson, and Lueker [2] developed a restricted largest first (RLF)
algorithm that assigns pairs of tasks in nondecreasing order of the larger processing
time of a pair. The expected work difference of RLF is equal to O(1/n). This paper
presents an algorithm, called restricted largest difference (RLD), for two-processor
scheduling with cardinality balance. The work difference of RLD is equal to
O(log n/n2), almost surely, which is an improvement over LPT, PDM, and RLF in
the asymptotic regime. Like RLF, RLD also minimizes total flow time when tasks
assigned to each processor are sequenced in nondecreasing order of their processing
times--called SPT (shortest processing time) order in the remainder of this paper.

The RLD algorithm is described in 2. In 3 we prove that the work difference
achieved by RLD is bounded by O (log n/n2), almost surely, and that by reordering
tasks on each processor in SPT order the minimal flow time is achieved.

2. An algorithm for systems with two processors. In the RLD algorithm, tasks are
sorted in nonincreasing order of their processing times and then consecutive tasks are
paired up. A dummy task with zero processing time is added if the number of tasks
is odd. The pairs of tasks are sorted in nonincreasing order of their differences in
processing times and are then assigned, one pair at a time, in that order. The larger
task of a pair is assigned to the processor with less cumulative processing time and
the smaller task is assigned to the other.

Let 2W_ and Wi_ denote the cumulative processing times on two processors
x2} is assigned. Without lossbefore the ith pair of tasks, with processing times {x,

1< 2 2of generality, we may assume W_ _-< W2_ and x x; then x is assigned to the first
processor and x to the second.

2 2Let d_ Wg_ W_, do Wo W-- 0, and 6 x -xi. The following equation
verifies that the difference between cumulative processing times after the assignment
of a pair of tasks is equal to the difference between d_ and

2

(1)
[( W/2-1 -3t- X) --( W_ -{- x/2)[ "--[( W/2_l- W_I) -(x x))[

When n is an even number the algorithm will assign n/2 tasks to each processor. When
n is an odd number there will be In/2] and n/2 tasks assigned to the two processors.
The algorithm is as follows.

ALGORITHM RLD

Step 1. Sort the tasks’ processing times such that X {x), x(2), , x(,)}, where
X(1 - X(2 X(n).

Step 2. If n is an odd number, add a dummy task x(,+l) with processing time equal
to zero.

Step 3. Form pairs of tasks from the largest to the smallest. Each pair of tasks consists
of a couplet {x2_), x2)}, i= 1,2,. ., In/2].

Step 4. Assign pairs of tasks in nonincreasing order of their differences.
Let 6 Xz_)-x2), i= 1,2,. ., In/2].
(1) Sort 8 in nonincreasing order. Let cr be the index of the jth largest 8’s;

that is,

(2) For i= 1,2,..., In/Z l,
assign {x2,,-1), x2,,)} to different processors. Assign x2,,_) to the pro-
cessor with the smaller cumulative processing time and x(2,) to the other.
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The following example illustrates the algorithm for the case of n 7 tasks with
processing times 20, 16, 14, 7, 6, 4, and 3.

Since n is an odd number, a dummy task x8) with processing time equal to zero
is added. The pairs formed in Step 3 are:

{20, 16}, {14, 7}, {6, 4}, {3, 0}.

Hence, 61 4, 62 7, 6 2, 64 3, and O" 2, 0-2 1, 0" 4, 0"4 3. Since 0"2 < 0"1 < 0"4 <
0"3, pairs of tasks are assigned to the two processors in the following order:

{14, 7}, {20, 16}, {3, 0}, {6, 4}.

The larger task in each pair is assigned to the processor with the smaller cumulative
processing time. Suppose 14 is assigned to the first processor; then 7 will be assigned
to the second. Since 7 < 14, 20 will now be assigned to the second processor and 16
to the first; this continues, With 4 being the last assignment, as shown in the following
Gantt charts.

Processor 1: 0

0 14 30 36

Processor 2:

20

27 30 34

To minimize the total flow time, tasks on each processor are rearranged in SPT
order. The Gantt chart below shows the sequence on each processor:

Processor 1:

6 14 16

0 6 20 36

Processor 2:

7 20

0 3 7 14 34

The total flow time of the seven tasks is 6+20+36+3+7+ 14+34= 120.

3. Proof of asymptotic error bound. The asymptotic analysis of RLD gives an
estimate of the convergence rate of work difference. First, we will show that the work
difference between two processors is at least twice the difference of the optimal and
the heuristic makespans. Second, we show that the work difference is bounded by
O(log n/n2), almost surely, with uniformly distributed processing times. We use the
following notation:

M(X): the makespan of the heuristic algorithm for input data X.
m(X): the smaller cumulative processing time for input data X.
D(X): the difference between the larger and smaller cumulative processing times

for input data X, i.e., D(X)= M(X)-m(X).
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OPT(X): the minimum makespan for input data X.
We show that the difference between M(X) and OPT(X) is less than 1/2D(X), as follows:

(2)

M(X)-OPT(X) - M(X) Xi/2-- M(x)-[M(X)-I- re(X)]
i=1

[M(X)- re(X)] 1D(X)’2
Applying the above inequality to the example in 2, we see that the difference between
the optimal and heuristic makespans is at most 1/2(36-34)= 1.

To show that the difference between the optimal and heuristic makespans is
bounded by O(logn/n2), almost surely, we prove that D(X) is bounded by
O(log n/n2), almost surely, when the processing times are independently and identi-
cally distributed (i.i.d.) random variables from the uniform distribution on [0, 1]. In
Step 3 of RLD, 6i’s are the differences between successive order statistics of a sample
of n i.i.d, uniform random variables. The following lemma, derived from Pyke [8],
shows that each ai is distributed as the ratio of an exponential random variable to the
sum of n + 1 i.i.d, exponential variables.

LEMMA 1 (Si’S as uniform spacing). Let Yl,Y2,’’’,Yn+ be i.i.d, exponential
random variables with mean 1. Let S y + Y2 +" + Yn+ then 6i is distributed as y2i/S.

Proof In [8, 4.1], it is proved that 1--X(),X(1)--X(),X()--X(3),’’’,X(n)--O are
distributed as y/S, Y2/S, Y3/S, , Yn+l/S. Since 6i x(:i_)- x(2), 6i is distributed as

Y2i / S. E]

The work difference, obtained by implementing the RLD algorithm using the x’s
as inputs, behaves like the difference between cumulative processing times obtained
by implementing the LPT algorithm using the i’s as inputs. Let DRo(X) and D(X)
be the resulting work differences for input data X, as determined by the RLD and
LPT algorithms, respectively.

LZMMa 2. DRLo(X) D().
Proof. The LPT algorithm will assign ti’s in nonincreasing order of their weights,

i.e., in the order ,, ,..., t,./. Let di be the difference of cumulative processing
times on two processors after , is assigned. Since 60- is assigned to the processor
with the smaller cumulative processing time, di Idi_- t I, i> 1, and d . Then
from (1), we can verify that di is also the difference of cumulative processing times
after {x<2,_), x<,} are assigned to different processors by applying algorithm RLD
on the xi’s. Hence, DLPT(6)--din DRLD(X ).

Let DLPT(Y) be the work difference achieved by the LPT algorithm with input
data Yl, Y2," Y[n/2]. By Theorem 3 of Frenk and Rinnooy Kan [5], if the processing
times are n i.i.d, exponential random variables, then the difference between the largest
and average processing times is bounded by O(log n/n), almost surely. In (2), we
showed that for systems with two processors, the work difference is twice the difference
between the largest and average total processing times. Hence, DLPT(Y) is bounded
by O(log n/n), almost surely.

THEOREM 1. DRLD(X O(log n/nZ), almost surely.
Proof By Lemma 2, DRLD(X OLPT(t), and by Lemma 1, OLPT(t) is distributed

n+l
as DLPT(Y)/i= y. Hence DRLD(X) is distributed as DLPT(Y)/"+I=I Y" The strong
law of large numbers shows that

n+l

(3) lim y/(n+l)=l, a.s.
n-oo i=1
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From Theorem 3 of [5],

(4) lim sup (n/log n)DLPT(Y) < c, a.s.

Applying Theorem 4.4. of Rudin [9] to (3) and (4),

lim sup (n/log n)DLPT(Y)/ yi/(n+ 1) <,
i=1

a.So

Therefore,

n+l

lim DLPT( Y)/ E Yi O(log n n2),
i=1

a.s.

Finally, lim,_ DRLD(X O(log n n2), almost surely. [3

To reduce the total flow time, we could execute the tasks on each processor in
SPT order. This reordering will not alter the work and cardinality differences, but it
will achieve the advantage of minimizing the total flow time.

THEOREM 2. After tasks are assigned according to the RLD algorithm, the total

flow time is minimized if tasks on each processor are executed in SPT order.
Proof We show that the total flow time achieved by RLD followed by SPT is

equivalent to that achieved by another optimal algorithm (called CMM) for total flow
time, which was developed by Conway, Maxwell, and Miller [4]. The CMM algorithm
minimizes total flow time of n tasks on k identical processors. Though cardinality
balance is not an objective of CMM, it is achieved in the schedule derived by CMM.
For two processors, CMM first assigns each pair of tasks {x2i_l), x2)}, i= 1, 2,. .,
In/2], to different processors. Tasks on each processor are then executed in SPT order.
Total flow time can be expressed as a weighted sum of processing times. The weight
of a task’s processing time is equal to one plus the number of tasks that are executed
after it on the same processor. If tasks are executed in SPT order, the weight is also
equal to one plus the number of tasks with larger processing times that are assigned
to the same processor. Therefore, for both CMM and RLD followed by SPT, is the
weight of x(2i_l) and x2), i--1, 2,..., In/2]. Hence they have the same total flow
time. [3
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CONDITIONS FOR
UNIQUE GRAPH REALIZATIONS*

BRUCE HENDRICKSONt

Abstract. The graph realization problem is that of computing the relative locations of a set of
vertices placed in Euclidean space, relying only upon some set of inter-vertex distance measurements.
This paper is concerned with the closely related problem of determining whether or not a graph has a
unique realization. Both these problems are NP-hard, but the proofs rely upon special combinations
of edge lengths. If one assumes the vertex locations are unrelated, then the uniqueness question can
be approached from a purely graph theoretic angle that ignores edge lengths. This paper identifies
three necessary graph theoretic conditions for a graph to have a unique realization in any dimension.
Efficient sequential and NC algorithms are presented for each condition, although these algorithms
have very different flavors in different dimensions.

Key words, graph embeddings, graph realizations, graph algorithms, rigid graphs, connectivity
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1. Introduction. Consider a graph G (V, E) consisting of a set of n vertices
and rn edges, along with a real number associated with each edge. Now try to assign
coordinates to each vertex so that the Euclidean distance between any two adjacent
vertices is equal to the number associated with that edge. This is the graph realization
problem. It appears in situations where one needs to know the locations of various
objects, but can only measure the distances between pairs of them. Surveying and
satellite ranging are among the more obvious problems that can be expressed in this
form [27], [39]. A less obvious but potentially more important application has to
do with determining molecular conformations. It is possible to analyze the nuclear
magnetic resonance spectra of a molecule to obtain pairwise interatornic distance
information [13]. Solving the graph realization problem in this context would allow
us to determine the three-dimensional shape of the molecule, which is important in
understanding the molecule’s properties.

Unfortunately, the graph realization problem is known to be difficult. Saxe has
shown it to be strongly NP-complete in one dimension and strongly NP-hard for
higher dimensions [35]. In practice, this means that we are unlikely to find an efficient
general algorithm to solve it. However, the graphs and edge lengths that Saxe uses
in his proofs are very special and are highly unlikely to occur in practical problems.

This paper will address a closely related problem: when does the graph realiza-
tion problem have a unique solution? (For our purposes, translations, rotations, and
reflections of the entire space are not considered to be different realizations.) Clearly,
if the location of a satellite or an atom is to be determined unambiguously the solution
to the realization problem must be unique.

Saxe has shown this uniqueness problem to be as hard as the original realization
problem, but again his proofs rely on very special graphs. In particular, he needs
special combinations of edge lengths, implying specific algebraic relations among the
coordinates of the vertices. This paper will address the more typical behavior of
graphs.
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A realization of a graph G is a function p that maps the vertices of G to points in
Euclidean space. The combination of a graph and a realization is called a framework
and is denoted by p(G). A realization is satisfying if all the pairwise distance con-
straints are satisfied. Consider a set S with nonzero measure. A subset T of S is said
to contain almost all of S if the complement of T, {q E SIq T}, has measure zero. A
realization is said to be generic if the vertex coordinates are algebraically independent
over the rationals. This computationally unrealistic requirement is actually stronger
than we truly need. We just have to avoid several specific algebraic dependencies.
However, the set of generic realizations is dense in the space of all realizations, and
almost all realizations are generic.

Restricting ourselves to generic realizations will greatly simplify our analysis. It
will allow us to ignore the edge distances and base our analysis solely on the underlying
graph. The results we develop will apply to graphs in almost all realizations. However,
nongeneric realizations might have different properties.

How can a framework have multiple realizations? There are several distinct man-
ners in which nonuniqueness can appear. First, the framework can be susceptible to
continuous deformations, like the one in Fig. 1. The rightmost vertex in this graph

FIG. 1. A flexible framework in two dimensions.

can pivot freely since it is underconstrained. A framework that can be continuously
deformed while still satisfying all the constraints is said to be flexible; otherwise it is
rigid. Even a rigid framework can suffer from nonuniqueness. The rigid framework in
Fig. 2 has two realizations in the plane. One half of the graph can reflect across the

FIG. 2. A graph with two realizations in the plane.

central two vertices. Continuous deformations and graph rigidity will be discussed in

2. Although graph rigidity is a well-studied problem, the connections to the graph
realization problem have not been well explored. Discontinuous transformations like
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reflections will be covered in 3 and 4. The definition of redundant rigidity in 4 and
its importance in this context is entirely new.

The graph realization problem can be posed in any dimension. Clearly, the most
practically interesting dimensions are two and three. Where possible, this paper will
present the most general results. However, there are some substantial theoretical
differences between two-space and three-space that will be elucidated in 2. These
will lead to completely different algorithms for these different dimensions.

2. Graph rigidity. A graph that has a unique realization cannot be susceptible
to continuous flexings. It must be rigid. Questions about the rigidity of graphs have
occupied mathematicians for centuries. More recently, structural engineers have been
drawn to the problem because of novel building architectures like geodesic domes.
The framework of a building can be thought of as a set of rigid rods, joined at their
endpoints. One can consider, the endpoints to be vertices of a graph and the rods to be
edges of a fixed length. For the building to bear weight, the corresponding framework
must be rigid. For an old problem with an easy description, the characterization
of rigid graphs has proved to be difficult, and many important questions remain
unanswered.

Section 2.1 will develop the essentials of rigidity theory, stressing the importance
of the rigidity matrix. A more complete discussion can be found in some of the
references [2], [3], [33], [11]. Section 2.2 will present sequential and parallel algorithms
for rigidity testing.

2.1. Basic concepts. A mathematical analysis of rigidity requires a formal defi-
nition of our intuitive notion of a flexible framework. Everything in this section occurs
in an arbitrary Euclidean dimension d.

A finite flexing of a framework p(G) is a family of realizations of G, parameterized
by t so that the location of each vertex is a differentiable function of t and (p(t)
pj(t))2 constant for every (i,j) E E. Thinking of t as time, and differentiating the
edge length constraints we find that

(vi vj). (pi pj) 0 for every (i, j) e E,

where vi is the instantaneous velocity of vertex i. An assignment of velocities that
satisfies (1) for a particular framework is an infinitesimal motion of that framework.
Clearly, the existence of a finite flexing implies an infinitesimal motion, but the con-
verse is not always true. However, for generic realizations infinitesimal motions always
correspond to finite flexings [33].

The infinitesimal motions of a framework constitute a vector space. Note that a
motion of the Euclidean space itself, a rotation or translation, satisfies the definition
of a finite flexing. Such finite flexings are said to be trivial. In d-space there are d
independent translations and d(d- 1)/2 rotations. If a framework has a nontrivial
infinitesimal motion, it is infinitesimally flexible. Otherwise it is infinitesimally rigid.
As noted above, for generic realizations infinitesimal motions correspond to finite
flexings. Since we are considering only generic realizations we will drop the prefix and
refer to frameworks as either rigid or flexible.

We would like to be able to determine whether a particular framework is rigid or
flexible. Conveniently, this is substantially a property of the underlying graph, as the
following theorem indicates [18].

THEOREM 2.1 (Gluck). If a graph has a single infinitesimally rigid realization,
then all its generic realizations are rigid.
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This theorem is critical for a graph theoretic approach to the realization problem.
The frameworks built from a graph are either all infinitesimally flexible or almost all
rigid. This allows for the characterization of graphs as either rigid or flexible according
to the typical behavior of a framework, without reference to a specific realization. It
also allows us to be somewhat cavalier in the distinction between rigid frameworks
and graphs that have rigid realizations. Henceforth such graphs will be referred to as

rigid graphs.
How can a rigid graph be recognized? Clearly, graphs with many edges are

more likely to be rigid than those with only a few. In some sense the edges are
constraining the possible movements of the vertices. In d-space a set of n vertices
has nd possible independent motions. However, a d-dimensionM rigid body in d-space
has d translations and d(d- 1)/2 rotations. (If the body has dimension d’ < d then
it has only d(2d -d- 1)/2 rotations. This corresponds to a framework with only
d + 1 vertices.) The total number of allowed motions is the number of total degrees
of freedom, nd, minus the number of rigid body motions. For convenience, we will
call this quantity S(n, d), where

S(n d) nd- d(d + 1)/2
[ n(n-1)/2

if n _> d,
otherwise.

If each edge adds an independent constraint, then S(n, d) edges should be required to
eliminate all nonrigid motions of the graph. This intuition is sound, as the theorems
in this section will demonstrate.

Any realization of a flexible graph has a nontrivial infinitesimal motion. An
infinitesimal motion is a solution for velocities in (1). The matrix of this set of
equations is the rigidity matrix. It has rn rows and nd columns. Each row corresponds
to an edge while each column corresponds to a coordinate of a vertex. Each row
has 2d nonzero elements, one for each coordinate of the vertices connected by the
corresponding edge. The nonzero values are the differences in the coordinate values
for the two vertices. For example, consider the graph K3, the complete graph on
three vertices, positioned in IR2. If the realization maps the vertices to locations
(0, 1), (-1, 0), and (1, 0), the rigidity matrix would be:

el,2 /’ 1 1 -1 -1 0 0 N
el,3 -1 1 0 0 1 -1 )2,3 0 0 --2 0 2 0

The rank of the rigidity matrix is closely related to the rigidity behavior of the
framework, as this section will elucidate.

THEOREM 2.2. A framework p(G) is rigid if and only if its rigiditymatrix has
rank exactly equal to S(n, d).

Proof. All infinitesimal motions must be in the null space of M since the rigid-
ity matrix expresses all constraints on the infinitesimal velocities. By construction,
S(n, d) is the size of the rigidity matrix minus the number of trivial infinitesimal mo-
tions. If the null space of M contains any nontriviM infinitesimal motions, then the
rank must be less than S(n, d). D

So the question of whether a framework is flexible can be reduced to a question
about the rank of the rigidity matrix. The framework is rigid if and only if the rank
of the rigidity matrix is maximal, S(n, d).
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THEOREM 2.3. Every rigid framework p(G) has a rigid subframework with exactly
S(n, d) edges.

Proof. The rigidity matrix has rank S(n, d) and each of its rows corresponds to
an edge. Simply discard redundant rows and the corresponding edges until only S
remain. D

COROLLARY 2.4. For a framework p(G), if ra > S(n,d), then there is linear
dependence among the rows of the rigidity matrix.

Proof. The maximum rank of the rigidity matrix is S(n, d).
Dependence among rows in the rigidity matrix can be expressed in terms of a

matroid [30], [15]. For our purposes it will be sufficient to say that a set of edges is
independent if their rows in the rigidity matrix are linearly independent in a generic
realization. A rigid graph has S(n, d) independent edges.

THEOREM 2.5. If a framework p(G) with exactly S(n, d) edges is rigid, then there
is no subgraph G’ (V’, E’) with more than S(n’, d) edges, where n’= IV’I.

Proof. Since there are only S(n, d) edges, their rows in the rigidity matrix must all
be independent by Theorem 2.3. But if G’ has IE’I > S(n’, d), then by Corollary 2.4
there must be linear dependence among these edges, which is contradiction.

Theorems 2.3 and 2.5 say that a rigid graph with n vertices must have a set of
S(n, d) well-distributed edges, where well-distributed means that no subgraph with n
vertices has more than S(n, d) edges. This requirement is often referred to as Laman’s
condition after Laman [28], who first articulated the two-dimensionM version. This
condition is necessary for a graph to be rigid in any dimension. It is sufficient in one
dimension where S n- 1. It is straightforward to show that this is equivalent to
requiring the graph to be connected. Laman was able to show that it is also sufficient
in two dimensions where S 2n- 3.

THEOREM 2.6 (Laman). The edges of a graph G (V, E) are independent in two
dimensions if and only if no subgraph G (V, E) has more than 2n 3 edges.

COROLLARY 2.7. A graph with 2n- 3 edges is rigid in two dimensions if and
only if no subgraph G has more than 2n 3 edges.

This was the first graph theoretic characterization of rigid graphs in two-space.
Several equivalent characterizations have since been discovered [36], [24], [30], [37],

Unfortunately, for all its intuitive appeal Laman’s condition is not sufficient in
higher dimensions. A three-dimensional counterexample is depicted in Fig. 3. AI-
though this graph has the required 18 well-distributed edges, it is still flexible. The
top and bottom halves can pivot about the left- and right-most vertices.

The problem with Fig. 3 is that its edges are not independent in the sense of
Theorem 2.2. The rows of the rigidity matrix are linearly dependent. Expressing
this independence graph theoretically has proved to be a very difficult problem. No
general characterization of rigid graphs in three dimensions is known, although the
problem has been considered by many researchers, and several special cases have been
solved. Cauchy proved that triangulated planar graphs (those with all 3n- 6 edges)
are generically rigid in three-space [6]. Fogelsanger recently generalized this result
to include complete triangulations of any two-manifold in three-space [14]. Another
class known to be rigid is complete bipartite graphs with at least five vertices in each
vertex set [5], [38]. However, the characterization of general graphs remains open.

Recent work by Tay and Whiteley [37] has brought such a characterization almost
within reach. However, it is difficult to see how this possible solution could lead to
an efficient algorithm. Any straightforward implementation of their approach would
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FIG. 3. A flexible graph in three-space that satisfies Laman’s condition.

have a worst-case exponential time behavior.

2.2. Algorithms for rigidity testing. In one-space, rigidity is equivalent to
connectivity. There are simple connectivity algorithms that run in time proportional
to the number of edges in the graph [1].

2.2.1. Rigidity algorithms in two dimensions. In two dimensions Laman’s
condition characterizes rigidity, but in its original form it gives a poor algorithm.
It involves counting the edges in every subgraph, of which there are an exponential
number. Sugihara discovered the first polynomial time algorithm for determining
the independence of a set of edges in two dimensions [36]. Imai presented an O(n2)
algorithm for rigidity testing using a network flow approach [24]. This time complexity
was matched by Gabow and Westermann using matroid sums [15]. In this section we
will develop a new O(n2) algorithm based on bipartite matching. Besides any intrinsic
interest, this new algorithm will be needed in 4 when we need to test for a stronger
graph condition.

We will first need to introduce a particular bipartite graph B(G) generated by our
original graph G (V, E). The bipartite graph has the edges of G as one of its vertex
sets, and two copies of the vertices of G for the other. Edges of B(G) connect the edges
of G with the two copies of their incident vertices. More formally, B(G) (V1, V2, ),
where V1 E, V2 (ql, q12,..., q, q2n, and ((e, q), (e, q), (e, q), (e, q)
e (vi, vj) e E}. B(G) has 2n + m vertices and 4m edges, where n and m are,
respectively, the number of vertices and edges in G. A simple example of the corre-
spondence between G and B(G) is presented in Fig. 4 for the graph K3.

This bipartite graph leads to an alternate form of Laman’s condition, expressed
in the following theorem. As:above, a set of edges is said to be independent if the
corresponding rows in the rigidity matrix are linearly independent in a generic real-
ization.

THEOREM 2.8. For a graph G (V, E) the following are equivalent:
(A) The edges of G are independent in two dimensions;
(B) For each edge (a, b) in G, the graph Ga,b formed by adding three additional

edges between a and b has no subgraph G in which m > 2n;



UNIQUE GRAPH REALIZATIONS 71

J1 J2 3

FIG. 4. The correspondence between G and B(G).

(C) For each edge (a,b), the bipartite graph B(Ga,b) generated by Ga,b has no
subset of V1 that is adjacent only to a smaller subset of V2.

(D) For each edge (a,b), the bipartite graph B(Ga,b) generated by Ga,b has a
complete matching from VI to V2.

Proof. The equivalence of A and B is a restatement of Laman’s condition. The
equivalence of B and C is a straightforward consequence of the construction of B(Ga,b).
Property D is equivalent to C by Hall’s theorem from matching theory. Assertions C
and D were first discovered in a slightly different form by Sugihara [36]. E]

Our algorithm will be based upon the characterization in Theorem 2.8(D). The
basic idea is to grow a maximal set of independent edges one at a time. Denote
these basis edges by . A new edge is added to the basis if it is discovered to be
independent of the existing set. If 2n- 3 independent edges are found, then the graph
is rigid. Determining whether a new edge is independent of the current basis can be
done quickly using the bipartite matching characterization.

Assume we have a (possibly empty)^set of independent edges/. Combined with
the vertices of G these form a graph G, which generates a bipartite graph B(().
Note that I/1 O(n) and so B(() will have O(n) edges. We wish to determine if
another edge, e, is independent of/. Adding e to G produces ( and B((). By
characterization (D), e is independent of E if and only if there is a complete bipartite
matching in B after any edge in G is quadrupled. Actually, only e needs to be
quadrupled, as the following Lemma demonstrates.

LEMMA 2.9. If a complete matching exists when e is quadrupled, then e is inde-
pendent of .

Proof. Assume the matching succeeds but e is not independent of/. Then there
must exist some edge in E whose quadrupling causes G, a subgraph of (, to have
m > 2n- 3. Since the edges of/ are independent, this bad subgraph must include e.
But this bad subgraph has the same number of edges it had when e was quadrupled.
Since the matching succeeded when e was quadrupled, we have a contradiction. [:]

Determining whether a new edge can be added to the set of independent edges
is now reduced to the problem of trying to enlarge a bipar.tite matching. This is
a standard problem in matching and it is performed by growing Hungarian trees
and looking for augmenting paths. The basic idea is to look for a path from an
unmatched vertex in V to an unmatched vertex in V2 that alternates between edges
that are not in the current matching and edges that are. When such an augmenting
path is found the matching can be enlarged by changing the unmatched edges in
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the path to become matching edges, and vice versa. These paths can be found by
growing Hungarian trees from the unmatched vertices in V1. These trees grow along
the unmatched edges from the starting vertex to its neighbor set in V2. Matching
edges are followed back to V1 and unmatched edges back to V2. If an unmatched
vertex in V2 is ever encountered, an augmenting path has been identified. Growing
Hungarian tree takes time proportional to the number of edges in the bipartite graph.

LEMMA 2.10. If , is independent and a corresponding matching in B() is

known, then determining whether a new edge is independent requires O(n) time.

Proof. By Lemma 2.9, testing for independence of e requires just enlarging the
matching in B(() to include the four copies of e. This involves growing four Hungarian
trees in a bipartite graph of size O(n).

This gives a two-dimensional rigidity testing algorithm that runs in time O(nm).
Build a maximal set of independent edges one at a time by testing each edge for
independence. Each test inv.olves the enlargement of a bipartite matching requiring
O(n) time. If the matching succeeds, the edge is independent and is added to the
basis. Otherwise it is discarded.

To improve this to O(n2) we need to make use of failed matchings to eliminate
some edges from consideration. Define a Laman subgraph as a subgraph with n
vertices and 2n/- 3 independent edges. A matching will fail precisely when the
new edge lies in a subgraph that already has 2n 3 independent edges. No edge
can be added between vertices in this subgraph, so it is a waste of time even to
try. By avoiding these unnecessary attempts, we can improve the performance of our
algorithm. To accomplish this we will need some further insight into the bipartite
matching.

THEOREM 2.11. In a bipartite graph (V1, V2, ), if a Hungarian tree fails to find
an alternating path, then it spans a minimal subgraph that violates Hall’s theorem.
That is, it identifies a minimal set of k vertices in V1 with fewer than k neighbors.

Proof. The proof is a simple consequence of Hall’s theorem. [:]

LEMMA 2.12. If the new edge e is tripled instead of quadrupled, generating a

graph G_G_ from , then B(G__) has a complete matching.

Proof. Assume the contrary. Then there is some subgraph G of G with m > 2nt.
Remove the three copies of e from this subgraph and quadruple one of the other edges.
This altered subgraph still has rn > 2nt, but it is the graph generated by quadrupling
an edge in . But since the edges of are assumed to be independent, this is a
contradiction.

LEMMA 2.13. If edfle e fails the matching test, then the failing Hungarian tree
spans a set of edges of E that form a Laman subgraph.

Proof. By Lemma 2.12, when e is quadrupled the first three copies of it can be
matched. By Theorem 2.11, when the fourth fails it spans a set of vertices of V1
adjacent to a smaller set from V2. Discarding the four copies of e leaves a set of k
elements of V adjacent to no more then k / 3 vertices from V2. By the construction
of the bipartite graph this is a set I of k edges of incident upon no more than
(k / 3)/2 vertices. That is, m’ >_ 2n’- 3. Since the edges of/ are independent, we
must have equality.

We will need the following result to analyze the running time of our algorithm.
LEMMA 2.14. Let G (V,/) be a graph whose edges are independent. If two

Laman subgraphs of G share an edge, then their union is a Laman subgraph.
Proof. Let the subgraphs be (V’,E’) and (V",E") with union (IF,/). Let rh

m + m and n + nt k. Since the subgraphs share at least one independent
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edge, _< 2k- 3. Hence,

2n+2n"-6-1
> 2n+2n’-2k-3

2(n’+n"-k)-3
2- 3.

Since the edges are independent, we must have equality.
We are now ready to present our algorithm. We will maintain the appropriate

bipartite graph with a matching of all the independent edges discovered so far. We
will also keep a collection of all the Laman subgraphs that have been identified,
represented as linked lists of independent edges. The algorithm is outlined in Fig. 5.

basis - 0
For Each vertex v

Mark each vertex in a Laman subgraph with v, and unmark all others
For Each edge (u, v)

If is unmarked Then
If (, v) is independent of basis Then

add (u, v) to basis
create Laman subgraph consisting of (u, v)

Else a new Laman subgraph has been identified
Merge all Laman subgraphs that share an edge
Mark each vertex in a Laman subgraph with v

FIG. 5. An O(n2) algorithm .for two-dimensional graph rigidity.

By Lemma 2.14 we know that no edge need be in more than one subgraph.
By merging whenever a new Laman subgraph is found, we guarantee that the total
number of elements in all the subgraphs is kept to O(n). This ensures that the
marking and merging operations can be done in O(n) time. As above, checking for
independence of (u, v) requires O(n) time. Each time an edge is checked it results in
either a new basis edge or a merging of components, so this can only happen O(n)
times. Hence the total time for the algorithm is O(n2).

2.2.2. Rigidity algorithms in higher dimensions. For dimensions greater
than two there are no graph theoretic characterizations of rigidity, so there are no
good combinatoric algorithms to test for it. One approach would involve a symbolic
calculation of the rank of the rigidity matrix by symbolically constructing the deter-
minant. However, the determinant can have an exponential number of terms, so this
requires an exponential amount of time. A different approach is possible that relies
instead upon Theorem 2.1. Since this theorem is valid in all dimensions, the following
discussion is applicable to all spaces. If the graph is rigid, then almost any realization
will generate a rigid framework. Simply select a random realization for the graph.
Once these vertex locations are selected it is a straightforward matter to determine
the rigidity of the framework using Theorem 2.2. Just construct the rigidity matrix
M and determine its rank. If the rank is S(n, d), then the graph is rigid. A lower
rank indicates that the framework is flexible. Unless the selection of vertex coordi-
nates was extremely unlucky the underlying graph will be flexible as well. So even
without a graph theoretic characterization an efficient practical randomized algorithm
for rigidity exists.
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To determine the rank of M we suggest using a QR decomposition with column
pivoting, requiring O(mn2) time [19]. This is more numerically stable than Gaussian
elimination, but not as costly as a singular value decomposition. A QR factorization
has several advantages over an SVD in this application. Performing a QR on MT will
identify a maximal independent set of rows of M one at a time, corresponding to a
maximal set of independent edges in the graph. This ability to identify independent
rows will be needed in 4. Also, the rigidity matrix is quite sparse, having only 2d
nonzeros in each row. To save time and space, sparse techniques could be used for
large problems. There are sparse QR algorithms, but none for SVD [8], [16], [17].

There are also efficient parallel algorithms for finding the rank of a matrix. Ibarra,
Moran, and Rosier [23] discovered an algorithm that runs in O(log2 m) time on O(m4)
processors. This means that rigidity testing is in random NC for any dimension. The
class NC is the set of problems that can be solved in polylogarithmic time using a
polynomial number of processors. It is a standard measure of a good parallel algorithm,
although its applicability is more theoretical than practical.

3. Partial reflections. Even rigid graphs can have multiple realizations as was
shown in Fig. 2. This discontinuous flavor of nonuniqueness has not been well studied,
probably because it is not relevant to structural engineers. Buildings can only deform
continuously. For the graph realization problem these discontinuous transformations
must be considered. This section and the next will be concerned with multiple real-
izations that do not arise from flexibility. These are cases in which there are two or
more noncongruent realizations that satisfy all the distance requirements, but there
is no continuous flexing of the framework to transform one to another while main-
taining the constraints. Whereas flexible graphs have an infinite number of potential
configurations, the number of realizations of a rigid graph is finite, although possibly
exponential in the size of the graph.

A two-dimensional example of the simplest type of discontinuous transformation
is depicted in Fig. 2. The right hMf of this graph is able to fold across the line formed
by the two middle vertices. When can this type of nonuniqueness occur? As in Fig. 2,
there must be a few vertices about which a portion of the graph can be reflected. These
vertices form a mirror. There must be no edges between the two halves of the graph
separated by this mirror. For the general d-dimensional problem, the mirror vertices
must lie in a (d- 1)-dimensional subspace. We will say that a framework in d-space
allows a partial reflection if a separating set of vertices lies in a (d- 1)-dimensional
subspace.

The realizations in which more than d vertices lie in a (d-1)-dimensional subspace
are not generic. Sofor almost all frameworks, partial reflections only occur when there
is a subset of d or fewer vertices whose removal separates the graph into two or more
unconnected pieces, that is, when G is not vertex (d + 1)-connected. This gives us
the following well-known result.

THEOREM 3.1. A rigid graph positioned generically in dimension d will have a
partial reflection if and only if it is not vertex (d + 1)-connected.

The connectivity of a graph is an important property, and it has been well studied.
There are well-known O(m) time algorithms for vertex two-connectivity, also known
as biconnectivity [1]. Avoiding partial reflections in two dimensions requires a vertex
three-connected (or triconnected) graph, nopcroft and Tarjan [22] were the first to
discover an O(m) time algorithm to find triconnected components. Miller and
machandran [31] have recently proposed a parallel algorithm to identify triconnected
components in O(log2 n) time with O(m) processors, placing triconnectivity in NC.
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Four-connected components are more difficult, but Kanevsky and Ramachandran
[25] have recently found an O(n2) time algorithm. They also discovered a parallel
implementation of their algorithm that runs in O(log n) time using O(n2) processors.
So the problem of partial reflections is in NC in both two and three dimensions.

For k greater than 4, the question of k-connectivity for a general k is less well
understood. Consequently the partial reflection problem is more difficult in spaces
of dimension greater than three. There are randomized algorithms for general k-
connectivity that run in time proportional to n5/2 [4], [29]. Recently, Cheriyan and
Thurimella have described an algorithm with a time complexity of O(k3n2), which
reduces to O(n2) for a fixed k [7]. There are also NC algorithms that run in time
O(k2 log n) [26].

4. Redundant rigidity. Rigidity and (d+ 1)-connectivity are necessary but not
sufficient to ensure that a graph has a unique realization. A two-dimensional example
of a rigid, triconnected graph with two satisfying realizations is given in Fig. 6.

b c b

d

FIG. 6. Two realizations of a rigid triconnected graph in the plane.

To understand this nonuniqueness, consider Fig. 7. Edge (a, f) has been removed
from the original graph. This resultant graph is now composed of a quadrilateral bcde
with two attached triangles abe and cdf. The quadrilateral is not rigid, so this new
graph can flex. The flexing will lift vertex d up until it crosses the line between c and
e as depicted in the center picture of Fig. 7. Eventually vertex c can swing all the
way around to the right. As the graph moves, the distance between vertices a and f
varies. When vertex c swings far enough around, this distance becomes the same as
it was originally, as shown in the rightmost picture of Fig. 7. Now the missing edge
can be replaced to yield a new satisfying realization.

The fundamental problem with the graph in Fig. 6 is that the removal of a single
edge makes it flexible. We will define an edge of a framework to be infinitesimally
redundant if the framework remaining after its removal is infinitesimally rigid. A
framework is infinitesimally redundantly rigid if all its edges are infinitesimally re-
dundant. Redundant bracing is a familiar concept to engineers who wish to build
frameworks with additional strength and failure tolerance properties, but this precise
formulation and its significance with regards to the unique realization problem are
entirely new.

Infinitesimal redundant rigidity is clearly a more restrictive property than in-
finitesimal rigidity, but the two properties have many similarities. For generic real-
izations infinitesimal motions always correspond to finite flexings. So as with rigidity,
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b

d

d

FIG. 7. Intermediate stages in the construction of Fig. 6.

since we are only interested in generic realizations we can drop the prefix and refer
to frameworks as redundantly rigid. The following theorem is a trivial consequence
of Theorem 2.1.

THEOREM 4.1. If a graph has a single infinitesimally redundantly rigid realiza-
tion, then all its generic realizations are redundantly rigid.

As with Theorem 2.1 for rigid graphs, Theorem 4.1 says that either none of a
graph’s realizations are redundantly rigid, or almost all of them are. Almost all again
means that the set of counterexamples has measure zero. This blurs the distinc-
tion between a redundantly rigid framework and its underlying graph. Graphs with
redundantly rigid realizations will be referred to as redundantly rigid graphs.

In Fig. 6 the lack of redundant rigidity led to multiple realizations. This is usually
true, and the proof will be the main result of this section. Intuitively, a flexible
framework can move around, but it must always end up back where it started. That
is, the path it traces in rid-space will be a loop. If the removal of an edge allows the
graph to flex, then the distance corresponding to that edge must be a multivalued
function as the flexing completes its loop. However, there are some graphs for which
this argument fails. Consider the triangle graph K3. It has only one realization, but
if an edge is removed it becomes flexible. To understand which graphs need to be
redundantly rigid to have unique realizations, we will need to carefully investigate the
space of satisfying realizations for flexible graphs. This will require an incursion into
differential topology, and is the subject of the next section.

5. The necessity of redundant rigidity. The proof that flexible graphs typ-
ically move in closed loops will rely upon some special properties of the graph re-
alization problem. Given a framework p(G) there is a pairwise distance function
q IRd --. IRn(-l)/2 that maps vertex locations to squares of all the pairwise vertex
distances. That is,

q(p(vl), ,p(Vn)) (’’’, Ip(vi) p(vj)12, "’’).
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For the molecule problem, we are only interested in a specific set of pairwise distances,
namely, those corresponding to the edges of G. These can be obtained from Rn(n-1)/2

by a simple projection r. We will define an edge function f to be the composition
of these two operations, f r o q. These functions are described by the following
commutative diagram.

P ]ndV
f

]Fn(n-1)/2

The functions f and q have many nice properties. We will say a function is smooth
at a point x if it has continuous partial derivatives of all orders at x. The functions
f and q are everywhere smooth. Also, the Jacobian of f is twice the rigidity matrix
introduced in 2.1.

The realization problem is really that of finding the inverse of the edge func-
tion. Of course, this inverse is multivalued because edge lengths are invariant under
translations, rotations, and reflections of the entire space. Two realizations will be
considered equivalent if all pairwise distances between vertices are the same under the
two realizations. That is, two realizations are equivalent if they map to the same point
under q. We will be interested only in the inverse of f modulo equivalences. More
formally, define the realization set of p(G) to be r-lf(p(G)), the set of nonequivalent,
satisfying realizations for the graph realization problem generated by p(G). For p(G)
to be a unique solution to the realization problem it is necessary and sufficient that
this realization set consist of a single point. Our goal in this section is to investigate
the structure of the realization set. Our first result is the following theorem.

THEOREM 5.1. If a graph G is connected, then the realization set of p(G) is
compact.

Proof. The realization set is a subset of ]Rn(n-)/2. It is bounded since the graph
is connected, and it is trivially closed.

Although every point in IRnd corresponds to a realization, the image of IRnd under
q does not cover ]Rn(-l)/2. Define this image to be a space W c IR(n-1)/2. The
space W has a natural topology and measure inherited from the larger Euclidean
space. For technical reasons we will restrict our consideration of realizations to those
in which not all the vertices lie in a hyperplane. Call this subset of realizations T.
The space T is a dense, open subset of IRnd. Define X to be the subset of points in
W that are images of points in T under q. If the graph has d or fewer vertices, then
X is empty. Otherwise, X is a dense, open subset of W, with a nice structure, as we
will see shortly. Define Z to be the image of X under r. This gives us the following
structure.

f
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We will need the following notation from differential topology. Say the largest
rank the Jacobian of a function g A B attains in its domain is k. A point x E A is
called a regular point if the Jacobian of g at x has rank k. A point y E B is a regular
value if every point in the preimage of y under g is a regular point. If a point or value
is not regular, it is singular. Note that for the edge function singular points are not
generic. A j-dimensional manifold is a subset of some large Euclidean space that is
everywhere locally diffeomorphic to lRj.

Consider the following procedure for identifying equivalent realizations, which is
defined for any realization in T. Select a set of d + 1 vertices from p(G) whose affine
span is all of ]Rd. Translate the realization so that the first of these vertices is at the
origin. Next rotate about the origin to move the second of these vertices onto the
positive Xl axis. Now rotate, keeping the first two vertices fixed, to move the third to
the (xl, x2) plane so that the x2 coordinate is positive. Continuing this process in the
obvious way gives a smooth mapping that makes d(d / 1)/2 of the vertex coordinates
zero. Finally, if the d + 1st vertex has its d / 1st coordinate less than zero, reflect the
vertices through the hyperplane defined by the xl,’",Xd-1 axes.

This procedure maps all equivalent realizations to a single one. This single re-
alization can be described by its remaining variable coordinates, of which there are
nd- d(d + 1)/2. Since each of these remaining coordinates can vary continuously,
the realization can be considered to be a point in ]nd-d(d+l)/2. This defines a coor-
dinate chart for X. Note that the sequence of operations performed on the original
realization is smooth and invertible. If a different set of d + 1 initial vertices was
selected, a different coordinate chart would have been generated. Since these coor-
dinate transformations are smooth and invertible, on regions of intersection the two
charts are diffeomorphic. The union of all such charts gives a differentiable structure
to our space X. This construction provides a diffeomorphism between each open set
of a collection that covers X and ]nd-d(d+l)/2, giving us the following theorem.

THEOREM 5.2. If the graph has at least d + 1 vertices, then X is a smooth
manifold of dimension nd- d(d + 1)/2.

The dimension of this manifold is a quantity that will come up frequently, so it
will be convenient to reintroduce the following notation: S(n, d) nd- d(d + 1)/2.
This function was first defined in 2.1 as the maximal rank of the rigidity matrix of
a graph with n vertices positioned in d-space.

The procedure described above gives us an alternate way in which to view the
space X. The sequence of translations, rotations, and reflections constitute a function
that maps an entire set of equivalent realizations to a single one. The remaining

variable coordinates uniquely define a point in X. Considering these to be the inde-
pendent variables, the mapping from X to Z becomes more complicated than a simple
projection. We will define this function to be f, giving us the following commutative
diagram.

V T
f

This function f is closely related to the edge function f. In fact, f is everywhere
smooth in X, and the rank of the Jacobian of f(x) is the same as that of f((t(x)). So
the singular values of f are the same as the singular values of ](c). If we designate the
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number of independent edges of G by k, then the rank of these Jacobians is almost
always k. The following is a special case of a well-known theorem due to Sard [34].

THEOREM 5.3 (Sard). The set of singular values of f has k-measure zero.

LEMMA 5.4. If Z is a subset of Z with k-measure zero, then for almost all
realizations p, f(p) Z’.

Proof. The singular points of f constitute an algebraic variety in ]nd with di-
mension less than nd. Hence, the regular points of f can be covered by a countable
number of open neighborhoods in such a way that the rank of the Jacobian of f is
maximal within each neighborhood. Consider one of these neighborhoods T, and let
its image under f be Z. By the implicit function theorem from analysis, there is
a submersion from 7 to Z. That is, on this neighborhood f is diffeomorphic to
projection from ]nd to lRk. Since Z has k-measure zero its inverse image under this
submersion must have (nd)-measure zero in . The countable union of these sets of
(nd)-measure zero yields apreimage for Z’ with (nd)-measure zero. [:]

These last two results imply the following theorem.
THEOREM 5.5. For almost every realization p, f(p) is a regular value.
All this has been leading up to the following crucial result.
THEOREM 5.6. For almost every realization p, the realization set of p(G) re-

stricted to X is a manifold.
Proof. Almost all realizations map to regular values of f and hence of f(). The

preimage of a regular value is a submanifold of X by the implicit function theorem
from differential topology [20].

If the graph is flexible, then this manifold describes the allowed flexings. At any
point in the manifold, the tangent space is exactly the null space of the Jacobian
of f. To show that flexings typically move in closed loops (actually, one-manifolds
diffeomorphic to the circle), we will need the flexings to remain entirely in our manifold
X. This can be ensured if the graph has enough independent edges. Enough means
more than can be independent in a lower-dimensional space, as the following theorem
demonstrates.

THEOREM 5.7. If G has more than S(n, d-1) independent edges, then for almost
all realizations p(G), the realization set of p(G) stays within X.

Proof. Assume the theorem is false. By the definition of X this means that the
realization set must include a point at which all the vertices lie in a (d-1)-dimensional
hyperplane. When this happens the edges can only constrain infinitesimal motions
within the hyperplane. The rows of the rigidity matrix describe these infinitesimal
constraints, so when the vertices lie in a hyperplane the rank of the rigidity matrix
can be no larger than S(n, d- 1). Since there are more than S(n, d- 1) independent
edges, this implies that f(p(G)) is a singular value, but by Theorem 5.5 this cannot
be the case for almost all realizations.

We can finally prove that flexings typically move in closed loops.
THEOREM 5.8. If a graph G is connected, flexible, and has more than d + 1

vertices, then for almost all realizations p(G) the realization set of p(G) contains a

submanifold that is diffeomorphic to the circle.

Proof. Generate a new graph G from G by arbitrarily adding additional edges
until G’ has S(n, d) 1 independent edges. The realization set of p(G’) must be a
subset of the realization set of p(G). Since n > d + 1, it is easy to show that the
number of independent edges is now greater than S(n, d- 1). By Theorems 5.6 and
5.1 we know that for almost all realizations the realization set of p(G) is a compact
manifold of dimension one. It is a well-known result from differential topology that
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such manifolds are diffeomorphic to the circle. D
This finally leads us to the main result of this section.
THEOREM 5.9. If G i8 not redundantly rigid and G has more than d + 1 vertices,

then almost all realizations of G are not unique.

Proof. Assume the only interesting case, that G is rigid. Then the graph G must
have S(n, d) independent edges, and there is some edge eij of G whose removal gener-
ates a flexible graph G. By Theorem 5.8, for almost all realizations p the realization
set of p(G) contains a submanifold diffeomorphic to the circle. The distance between
vertices and j will be a multivalued function for almost every point on this cir-
cle. The only distances that might not be multivalued are the extremal ones. When
a flexing reaches a realization that induces an extremal value between and j, the

2 is zero in the direction of the flex. In this case the realization is notderivative of di,j
generic [32]. So almost all realizations do not induce extremal edge lengths. V1

Theorem 5.9 means that the example in Fig. 6 was not a fluke. Redundant rigidity
is a necessary condition for unique realizability.

5.1. Algorithms for redundant rigidity. How difficult is it to test for redun-
dant rigidity? A simplistic approach would use the algorithm for rigidity repeatedly,
removing one edge at a time. This approach parallelizes easily by simply running the
rn different problems on independent sets of processors. Since rigidity testing was
shown to be in deterministic or random NC for all dimensions, redundant rigidity is
as well.

In one dimension redundant rigidity is equivalent to edge two-connectivity. This
property can be determined by looking for cut points of the graph, requiring O(m)
time [1].

For the two-dimensional case a simple modification of the rigidity testing algo-
rithm described in 2.2 can be employed. The rigidity algorithm grows a basis set of
independent edges one at a time by checking them against the existing independent
set. If a new edge is found to be independent of the existing set, then it is added.
Independence is determined by the success of a particular bipartite matching. If the
matching fails, then there must be some dependence among the edges. Identifying
and utilizing these dependencies will lead to an efficient redundant rigidity algorithm.

As in 2.2, we will denote by B(G) the bipartite graph constructed from G
(V, E). The current set of independent, basis edges is E, generating a subgraph
G (V,/). When a new edge e is to be tested for independence, four copies of it
are added to (, generating ( with its corresponding bipartite graph B((). As we
saw in 2.2, if a complete bipartite matching exists in B(G), then e is independent
of/. For our current purposes we are interested in dependent edges and how they
contribute to redundant rigidity. Dependent edges fail to have complete matchings
in B(). However, if we triple e instead of quadrupling it, generating __G and B(__G),
then Lemma 2.12 guarantees that B(__G) always has a complete matching. So only a
single vertex in B(G) can go unmatched. This is important because of the following
general property of bipartite matching.

THEOREM 5.10. Let B (V1, V2, g’) be a bipartite graph with a matching from
V1 to V2 involving all but one vertex from V1, denoted by v. Also let ];1 be the subset
of V1 that is in the Hungarian tree built from v. Then if any vertex from ]21 is deleted
from B, the resulting graph will have a complete matching.

Proof. The removal of a vertex w from ;1 creates an unmatched vertex in V2 that
is reachable from v along an alternating path. v1

Theorem 5.10 identifies which vertices of a bipartite graph can be removed to
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result in a perfect matching. For our purposes, these are vertices in B(G), which
correspond to edges of (. If any of these edges of is removed, then the new edge e
will be independent of the remaining basis edges. That is, e can replace any of these
edges identified by the Hungarian tree, leaving the number of basis edges unchanged.
More formally, we have the following theorem.

THEOREM 5.1 1. In the rigidity algorithm, assume a new edge e is found to be not
independent of the current set of k independent edges. Let ]71 be the subset of vertices

of V1 that are in the Hungarian tree of the failed matching. Then if e replaces any of
the edges in the resulting set of k edges is still independent.

Theorem 5.11 gives an efficient algorithm for redundant rigidity testing. An edge
is not independent of the current basis set if the bipartite matching fails. When this
happens the Hungarian tree identifies precisely which edges are dependent. All these
edges are redundant because any of them could be replaced by the new edge. In
the O(n2) algorithm from 2.2 a Laman subgraph is identified by this Hungarian tree.
Hence, any edge in the Laman subgraph is redundant. When the algorithm is finished,
if there is a basis edge that has not been merged into a larger Laman subgraph, then
it is not redundant and the graph is not redundantly rigid. Note that if the full graph
is not redundantly rigid, then the Laman subgraphs identified by this procedure are
redundantly rigid components. This takes essentially no more effort than testing for
rigidity, so two-dimensional redundant rigidity can be decided in O(n2) time.

In dimensions greater than two there is no graph theoretic characterization of
redundant rigidity. As in 2.2 an algorithm will have to randomly position the vertices
and then examine the rigidity matrix. Like the two-dimensional case, the basic idea
will be to build a set of independent edges one at a time, and then determine which
of them are redundant. Every time a new edge fails to be independent it supplies
information about the redundancy of some of the independent edges. If a full set of
redundant, independent edges are found, then the graph is redundantly rigid.

Begin by positioning the vertices randomly and constructing the rigidity matrix
M. The rigidity of the framework can be determined by performing a QR factorization
on MT to find its rank. This procedure will form an independent set of edges one
at a time. A new column is added if it is linearly independent of the current set of
k columns; otherwise it is discarded. A discarded column, corresponding to an edge
e, can be expressed as a linear combination of some set of the independent columns.
The discarded column could replace any of the columns in the linear combination that
forms it, without altering the span of the independent set.

How difficult is it to determine which of the current columns contribute to the
linear combination? Assume the algorithm has identified k independent columns of
MT. Place these columns together to form an nd k matrix Ak. The QR factorization
has been proceeding on these columns as they are identified, so there is a k k
orthogonal matrix Qk and an ndk upper triangular matrix Rk satisfying QkRk Ak.
If a new column b of MT is linearly dependent upon the columns of Ak, then there
must be a vector c satisfying Akc (kRkc b, or alternately, Rkc (kb.T In the
course of the QR factorization the column b has been overwritten with TQk b, so it is
easy to solve the upper triangular system for c. The nonzero elements of c identify
which columns of Ak contribute to the linear combination composing b, that is, which
columns are redundant.

How much work does this take? There are O(m) triangular systens to solve, each
of which requires O(k2) operations, where k is always O(n). So the total additional
time is of the same order as the QR factorization itself, O(mn2). As in the two-
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dimensional case, the redundant rigidity of a graph can be determined by modifying
the rigidity algorithm without incurring substantial increased cost.

As was noted in 2.2, the rigidity matrix consists mostly of zeros. For large
problems this property should be exploited by using sparse matrix techniques. The
only real modification to the rigidity algorithm required to verify redundant rigidity
is a sequence of triangular solves. These can be done sparsely, so the entire algorithm
can be implemented in a sparse setting. An algorithm very similar to this has been
described by Coleman and Pothen [9].

6. Conclusion. Three necessary conditions for almost all realizations of a graph
to be unique in d dimensions have been derived. They are, in order of appearance,
rigidity, (d + 1)-connectivity, and redundant rigidity. The first condition is a trivial
consequence of the third so there are really only two independent criteria. However,
flexibility leads to a very different kind of nonuniqueness than lack of redundant
rigidity, so it is useful to think of them independently. Efficient algorithms for testing
each of these three conditions have been presented that deal solely with the underlying
graph, ignoring the edge lengths. The price for this convenience is that there are
combinations of edge lengths for which these conditions are not necessary. But these
counterexamples are very rare. For almost all realizations, a graph that violates one
of these conditions will have multiple satisfying realizations.

Establishing necessary conditions for a graph to have a unique realization makes
it possible to prune the initial graph before attempting the difficult task of finding
coordinates for the vertices. If the entire graph does not have a unique realization,
then it would be impossible to assign coordinates unambiguously. Instead, portions of
the graph that do satisfy the necessary criteria can be identified and positioned. Not
only does this alleviate the confusion of a poorly posed problem, but since the cost
of finding the realization can grow exponentially with the size of the graph, it should
be possible to save time by positioning a sequence of smaller subgraphs instead of the
original full one.

Following this idea to its logical conclusion, even if the original graph has a
unique realization it might be possible to position subgraphs first and then piece
them together. Since the running time grows rapidly with problem size, this could
lead to a substantial reduction of computational effort. In fact, an approach to the
molecule problem using precisely this approach has recently been proposed [21]. For
this approach to be infallible we would need to develop sufficiency conditions for a
graph to have a unique realization. Unfortunately, the necessary conditions developed
in this paper are not sufficient. Connelly has identified a class of bipartite graphs that
satisfy the conditions presented here, while still allowing multiple realizations in high-
dimensional spaces [10]. There are no graphs in this class in one or two dimensions,
and K5,5 is the only example in three-space. A complete characterization of uniquely
realizable graphs remains an open problem. In fact, it is also unknown whether
uniqueness itself is a generic property. That is, if a single generic realization of a
graph is unique, are almost all realizations unique?
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SIMPLIFICATION OF NESTED RADICALS*

SUSAN LANDAUt

Abstract. Radical simplification is an important part of symbolic computation systems. Until
now no algorithms were known for the general denesting problem. If the base field contains all
roots of unity, then necessary and sufficient conditions for a denesting are given, and the algorithm
computes a denesting of when it exists. If the base field does not contain all roots of unity, then
it is shown how to compute a denesting that is within one of optimal over the base field adjoining
a single root of unity. Throughout this paper, a primitive /th root of unity is respresented by its
symbol l, rather than as a nested radical. The algorithms require computing the splitting field of
the minimal polynomial of a over k, and have exponential running time.

Key words, denesting, Galois theory, nested radicals, radical simplification
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1. Introduction. In his magical way, Ramanujan observed a number of striking
relationships between certain nested radicals:

These remained innocent curiosities for decades. Then symbolic computation came
of age, and such manipulations assumed greater importance. Consider the equation:

V’/5 + 2v"- x/ + x/-.

The field

Q(V/5 + 2x/)

has

{1, V/5 + 2x/-, 5 + 2-, (15 + 2v/-)a }

as a basis over Q. But (1, x/, x/-, V} is also a basis for

Q(15 +
over Q. In many cases, the first basis is preferable--it is of the form {1, a, a2, a3}
but people often find the second basis easier to understand. The basis { 1, x/, x/, v/-}
is simple to manipulate. An important issue then, is the "denesting" of radicals--a
term which will be precisely defined in the next section. It is also independently
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interesting: under what circumstances can a radical be expressed in terms of radicals
with a lower depth of nesting?

In 1985, Borodin, Fagin, Hopcroft, and Tompa [3] gave an efficient algorithm for
decreasing the nesting depth of a class of expressions involving square roots. Also
in 1985, Zippel [18] gave some conditions under which a radical could denest. The
general case remained open. It was unknown how to determine whether a radical
could be denested.

We show that if the base field contains all roots of unity, then a radical can be
denested if and only if there is a denesting which occurs within its splitting field. That
is, a radical c can be denested over a field k containing all roots of unity if and only
if there is a denesting which occurs with each term of the denesting lying within the
splitting field of the minimal polynomial of over k. If the base field does not contain
all roots of unity, we show that a denesting within one of optimal can be achieved
over k(l), l a primitive /th root of unity, where is the lowest common multiple
(lcm) of the exponents of the derived series of the Galois group of the splitting field
of k(c) over k. We also show how to achieve an optimal denesting by adjoining a root
of unity that is dependent on the presentation of (. We represent a primitive/th root
of unity by the symbol rather than as a nested radical itself. This presents certain
problems, which we discuss in 3.

Following the measure of the size of univariate polynomials in the factoring prob-
lem, we define the size of the denesting problem to be the minimal polynomial for (
over k. (In the Appendix we show how to go from the presentation as a nested radical
to its minimal polynomial.) Next we show that given a radical a over a field k of
characteristic 0, we can denest a in the time it takes to compute the splitting field of
the minimal polynomial of a over k. In the worst case this takes exponential time.

Our paper is organized as follows: 2: Background; 3: Ambiguity; 4: Algebraic
Structure; 5: The Algorithm and Running Time Analysis; 6: Conclusions; and the
Appendix.

2. Background. We begin with a brief review of some algebraic concepts. The
reader who is unfamiliar with this material is advised to consult [8] or [14] for algebraic
number theory and Galois theory, and [13] for group theory.

Let k be a field. Throughout this paper we assume that k is of characteristic 0.
An element a is algebraic over k if and only if a satisfies a polynomial with coefficients
in k. The degree of a is the degree of the minimal irreducible polynomial of a over
k. If L has finite dimension [L: k] over a subfield k, then L k(O) for some 0 in L,
where the degree of 0 over k equals [L k].

An extension field L is algebraic over a field k if and only if every element of L
is algebraic over k. It is well known that every finite extension of a field is algebraic;
the finite extensions of Q are called the algebraic number fields. If k is an algebraic
number field, it contains a set of elements which satisfy integer monic polynomials
over Z; this is called the ring of integers of k, and is frequently denoted Ok.

In 1982, Lenstra, Lenstra, and Lovsz [11] showed that f(x) in Q[x] can be
factored in polynomial time. If f(x) is a polynomial in Ok, where k Q[t]/g(t) is a
number field, then there are polynomial time algorithms for factoring f(x) over Ok
[6], [10].

Following [3], a formula over a field k and its depth of nesting are defined as
follows:

(1) an element of k is a formula of depth 0 over k,
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(2) an arithmetic combination (A+B, A B, A/B) of formulas A and B is a
formula whose depth over k is max(depth(A), depth(B)), and

(3) a root of a formula A is a formula whose depth over k is 1+ depth(A).
We will call such a formula a nested radical. A nesting of a means any formula A

that can take a as a value. We will say the formula A can be denested over the field
k if there is a formula B of lower depth than A such that A-B. We will say that A
can be denested in the field L if there is a formula B-A of lower nesting depth than
A with all of the terms (subexpressions) of B lying in L. For any a, we define the
depth of a over k to be the depth of the minimum depth expression for a. When we
are given a formula A for a such that A can be denested, we will sometimes instead
say that a can be denested. We will write a primitive nth root of unity as a special
symbol n rather than as a nested radical, and we will define the depth of nesting for
a primitive root of unity that is not already in the field to be 1.

We return to the examples mentioned earlier. At first they seem mysterious. In
fact, each equation is a result of a complex algebraic structure. Consider:

A natural question to ask is: What is the relationship between / and f? There is
no obvious one. But there is a relationship between

and /-; is an element of the field

This fact is unexpected.
The second and third equations in 1 give similar results. A natural question

arises: In which field do denestings occur?
Let k be an algebraic number field, and let f(x) be an irreducible polynomial of

degree n with coefficients in k, and roots o1,... On. Then k(ai) _-_ k[x]/f(x)
but in general k(ai) # k(aj). The field L k(cl,..., an) is called the splitting field
of f(x) over k. This is the smallest field containing k(al) that is Galois2 over k. We
consider the set of automorphisms of L which leave k fixed. These form a group,
called the Galois group of L over k. As we can think of these automorphisms as
permutations of the hi, this group is sometimes called the Galois group of f(x) over
k. The Galois group is transitive on {al,... ,Cn} that is, for each pair of elements
ci, aj, there is an element a in G, with a(ai) aj. Galois’s great insight was
the discovery of the relationship between the subgroups of G and the subfields of L
containing k.

Let H be a subgroup of G. We denote by LH the set of elements of L which are
fixed pointwise by each element of H. This set forms a field. Furthermore, H fixes k,
so that we have:

kcLHCL.

Of course, an nth root is a multivalued function. See 3 for a discussion on ambiguity.
2 We say a field F

_
k is Galois over k if every irreducible polynomial p(x) in k[x] which has a

root in F splits completely in F.
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Conversely, suppose that J k(/l,"’,/r) is a field such that k c J c L. Then
the i can be written as polynomials in ,..., c, and H, the subgroup of G which
fixes J, consists of those elements of G which fix the i pointwise. The relationship
between the fields and the groups can be formally stated as Theorem 1.1.

THEOREM 2.1 (Fundamental Theorem of Galois Theory). Let k be a field, and
let f(x) in k[x] be a polynomial of degree n, with roots ,’"(n. Then:

1. Every intermediate field J, with k C J C L k(,..., c) defines a sub-
group H of the Galois group G, namely, the set of automorphisms of L which
leave J fixed. Furthermore, L is Galois over J.

2. The field J is uniquely determined by H, for J is the set of elements of L
which are invariant under the action of H.

3. The subgroup H is normal if and only if J over k is a Galois extension. In
that case the Galois group of J over k is G/H.

4. IGI- [L: k], and IHI [L: J].
The Galois groups we will be looking at are rather special. Our field extensions

are extensions by radicals. Thus the groups we are looking at are solvable, that is,
there is a sequence of subgroups G Go D G D D G, with Gi+ normal in Gi
(written Gi+l < Gi), and Gi/Gi+ cyclic of prime order. We introduce the following
definiton.

DEFINITION. The commutator subgroup DG of G is the subgroup
(aTa--lT--11(7, T e G}. We will denote D2G D(DG) and DiG D(Di-G) for
i>2.

If G is a solvable group, there is an s such that DG {e}. The sequence
DiG/Di+G is called the derived series of G. The following are well known.

LEMMA 2.2. Let G Ho D H D D Ht be a sequence of groups such that
Hi <1 Hi- and Hi-l/Hi is abelian. Then Hi D DiG.

LEMMA 2.3. The groups DiG are normal in G for all i.

LEMMA 2.4. If g is normal in G, then Di(G/N)
_
Di(G)N/N.

We say that an extension K over k is abelian if it is Galois and the resulting
Galois group is abelian. Similarly, we say an extension is cyclic if it is Galois, and the
resulting Galois group is cyclic. If K k() for some/ that satisfies an irreducible
polynomial of the x b for some b in k, we say that K is a simple radical extension
of k. A tower of such extensions will be called a radical extension. Let denote a
primitive nth root of unity. The following classical theorems will prove useful.

THEOREM 2.5. Let k be a field. The following are equivalent:
1. ( is a nested radical over k.
2. There exists a solvable Galois extension L over k with in L.
3. The splitting field of k(() over k has solvable Galois group.

This will be made more precise in Lemma 4.1, where the depth of nesting of a
radical expression for a is related to the length of the derived series for the Galois
group of L over k.

THEOREM 2.6. Let k be a field, with K a cyclic extension of k of degree n, and
suppose n is in k. Then there is a in K such that K k(), and satisfies xn- b

.for some b in k.
THEOREM 2.7 (Hilbert’s Theorem 90). Let K be a cyclic extension over k, and

let a be a generator of the Galois group G. For every element in K with norm 1,
there is an element 9/ 0 in K such that/ /().

THEOREM 2.8. Let k be a field with n in k, and suppose is a root of x b.
Then k() is cyclic over k of degree d, where d divides n, and d is an element of k.
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If n is not in k, the situation is not quite as simple.
THEOREM 2.9. Let k be a field, and n an integer greater than or equal to 2. Let

a be an element of k, a O. Assume that for all prime numbers p dividing n, that a
is not a pth power in k, and moreover, if 4 In, then a is not equal to -4j4 for some
j in k. Then xn -a is irreducible in k[x].

We are now ready to state our two main results which we will prove in 4.
THEOREM 4.2. Suppose ( is a nested radical over k, where k is a field of char-

acteristic 0 containing all roots of unity. Then there is a minimal depth nesting of c
with each of its terms lying in the splitting field of the minimal polynomial of ( over
k.

THEOREM 4.7. Suppose ( is a nested radical over k, where k is a field of char-
acteristic O. Let L be the splitting field of k(c) over k, with Galois group G. Let be
the lcm of the exponents of the derived series of G. If there is a denesting of c such
that each of the terms has depth no more than t, then there is a denesting of over

k(z) with each of the terms having depth no more than t + 1 and lying in L().
We also have an alternative version of this result in which we can achieve minimal

depth at the expense of adjoining a primitive rth root of unity where r is dependent
upon the presentation of the input.

COROLLARY 4.8. Let k, (, L, G, l, t be as in Theorem 4.7. Let m be the lcm of the
(mij), where the mij runs over all the roots appearing in the given nested expression
for . Let r be the lcm of (m, 1). Then there is a minimal depth nesting of ( over

k(r) with each of its terms lying in L(r).
Roots of unity, and indeed the radicals themselves, are more complicated than

they might first appear. Before we prove the theorems, we discuss ambiguity of radical
expressions and primitive roots of unity more closely.

3. Ambiguity. When we write the equation

it is ambiguous. Which v/ do we mean? Which xfl? The usual interpretation is
the positive real roots for all four choices in the equation above. Under those choices,
the equation is correct; under others, it may not be. Similarly, when we talk about
denesting a nested radical, we must be careful about what we mean.

For example, suppose we are interested in denesting the expression:

The polynomial X3 9 factors over the field

Q(/f 1).

To denest

we need to know to which root of X3 9 we are referring in
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the one which satisfies x -as -4a5 -4a2, or one of the two satisfying x2 + (a8 +
4a5 + 4a2)x + (3a4 + 6a), where

The problem, of course, is that e/-d is a many-valued function. Once we choose
which value it has, the same value must be assigned to it every time it appears. If
the roots are specified at the time a nested radical is given, there is no difficulty, and
we will choose those roots. If they are not, we have two choices: we could run the
denesting algorithm for all possible choices of the values of the roots and compute the
denesting in each case, or we could arbitrarily pick values. For the sake of simplicity,
in this paper we choose to do the latter. When we adjoin d, we do so in a way
that makes the smallest (in terms of degree) field extension possible. In the above
example, we would choose the / that is already in the field.

Sometimes radicals may be given in a reducible form, e.g., /. The obvious
simplification to x/ (which omits -x/ as per above) is not right, since the minimal
polynomial for / over Q has two roots =t=ix/, which this "simplification" omits.

Let a be a reducible radical, that is, suppose x’ -a factors. By Theorem
2.9 this can happen in two ways. We might have a that is a pth power, where p
divides n. In this case, a Ac where gcd(c, n) d. Then the roots of xn -a are

Jn ’/’/Ac/d, J 0,’", n 1. Note that ’//A/d is an irreducible radical. Thus what
we can do is replace each instance of a reducible radical (7) by its irreducible

cousin (’//Ac/d), and adjoin the appropriate n to the splitting field by letting the
of Theorem 4.7 be the lcm of the indices and the exponents of the derived series.

The other situation, where 4In and a -4ja for some j in the base field is handled
similarly. Because of the way we handle roots of unity, this will not increase the deplhh
of nesting.

Roots of unity present a more serious problem. We have chosen to write a primi-
tive/th root of unity as l, rather than as a nested radical. The reason is that we are
trying to write expressions in as simple a form as possible. In many situations l is a
more meaningful expression than the nested radical it represents.

There are difficulties with this approach. A primitive/th root of unity may be
of log nesting depth. The symbol hides that complexity. Adding roots of unity
to k changes k in surprising ways. By the Kronecker-Weber Theorem, every abelian
extension over Q can be embedded in an cyclotomic extension. Thus, we may have
the ill fortune to be expressing ee/-d over Q(z), where is an irrational number that
happens to be in Q(z). Such is the case for in the field Q(5). Thus, v/ will be
represented as a polynomial in 5, rather than as the more usual expression x/. This
type of simplification may drop us a single level of nesting.

A more serious problem is that in writing a root of unity as we are in some
sense masking it. There are subtle ways in which we pay for that. For example, we
can write

as 5 1/@. Which symbol is easier to understand:

V/X/r-5/2 or 5-1/5?
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That is certainly open to debate. In choosing to express

as 5 1/5, it is not clear that we have really simplified things. This problem seems
unavoidable in the current approach.

If k Q, then the minimal polynomial of t is the unique irreducible factor of
xt- 1 of degree (1). If k : Q, this minimal polynomial may factor. Since the
primitive/th roots of unity are all powers of one another, the fields k(t) are all equal.
The denested expression we find for a is dependent on our choice of t, however, a
different t will give a different denesting expression. When we denest a nested radical
c, we will always specify the minimal polynomial of the associated primitive/th root
of unity.

Now we are in a position to prove our main theorems, which we will do in the
next section.

4. Algebraic structure. In this section we discuss the algebraic structure sur-
rounding nested radicals. We begin with Lemma 4.1.

LEMMA 4.1. Let c be a nested radical, and suppose c can be denested in a field
L

_
k. Suppose that the denested expression has nesting depth 1. Let be the splitting

field3 of L over k, with Galois group G, and assume that all roots of unity of L appear
in k. Then there are subgroups H1,..., H of G, with G Ho > HI > > H and
Hi/Hi+ abelian for 0,... ,1- 1, with H

_
H, where H is the subgroup of G

associated with k((). Conversely, if there is such a sequence of subgroups, then has
nesting depth at most 1.

Proof. If c can be denested, then ( q(,...,/t), with each i having nesting
depth li <_ over k. Each i has a nesting sequence of the form:

i ", Pi E k,

"’, Z i,

where the pij’s and q are multivariate polynomials over k. (Since each i has a possibly
different depth of nesting, without loss of generality, let It be the maximal depth
of nesting, and let iy i for j > li.) Without loss of generality assume that

Pij(l tj-

is of degree my over k(ll,"" ,tj-1). Since x’ -pj(,.-. ,ty-) has a root in, it splits completely in . Thus we know that m is in k for every pair i, j. (Since
all the necessary roots of unity lie in k, we do not run into problems with ambiguity.)

Number the extensions of k in the following way: k k(ll,’",tl) k2
kl (12,’", t2) kl kl-1 (1/,’", tl) k(ll,"’, tl). Let Hi be the
subgroup of G corresponding to ki. Observe that ki+ is a Galois extension of

3 This is usually called the normal closure of L over k, i.e., the minimal field , containing L in
which every polynomial in k[x] that has a root in L splits completely in .
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since the appropriate roots of unity lie in k. Thus we have G H0 > H1 >... > HL.
Furthermore, ki+l is an abelian extension of ki, since it is contained in the composite
of cyclic extensions. Thus Hi/Hi+ is abelian. Finally, k() c k(/,..-,/tL,); thus
HH.

The converse follows immediately from Theorems 2.5 and 2.6 and the fact that
the needed roots of unity lie in k. D

We are now ready to proceed with Theorem 4.2
THEOREM 4.2. Suppose c is a nested radical over k, a field of characteristic 0

that contains all roots of unity. Then there is a minimal depth nesting of c with each
of its terms lying in the splitting field of the minimal polynomial of c over k.

Proof. Let L be the splitting field of k(a) over k, with Galois group G. Suppose
c can be denested over k with all of its terms lying in K, a field. Let L be the normal
closure of K over k; then D L. Let be the Galois group of over k; then the
field ], is a Galois extension over L with group/. Furthermore, by the Fundamental
Theorem of Galois Theory, G

_
GIN. Let H be the subgroup of G associated with

k(c), and let/ be the pullback of H. Then/ D .

Lg

normal closure of K/k

Galois group of

K

Now since c can be denested over ,, by Lemma 4.1 there is a series of subgroups,... ,/-)t of such that 0 >/1 >"" >/-)t" with /i//i+ abelian for
0,..., 1- 1, and/ D/-)t. We will show how to pull this down to a sequence in G,

thus showing that a can be denested in L.
Consider the sequence 1/,/2/,"’,/t. Clearly, /-)i/ > i+/. That

/-)i//i+/ is abelian follows imediately from the facts that (i)/iJ/i+ is abelian,
(ii) N is normal in . Let aHi+N, bHi+l be elements of ig/Hi+l. Then
there are a,a2,b,b2 in Hi and n,n2, n3, n4 in/ such that a nlal a2n2 and
b n3bl b2n4. Then

Finally, since/ D N and H
Now consider the sequence Hi in G defined by/i// Hi. That the sequence

G Ho, H1,..., HL satisfy Hi > Hi+l for 0,...,1- 1 follows from the third
isomorphism theorem. That Hi/Hi+l is abelian follows from the fact that

Hi/Hi+ IY-Ii/i+N.
Hi+I]/N

The isomorphism is a consequence of the third isomorphism theorem. That H D Ht
is clear, since H-// D t// Hr.

Thus we have taken a chain of subgroups in and mapped it to one over G. The
fact that all the needed roots of unity lie in k means that we can apply Theorem 2.8,
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and we have taken a denesting over and mapped it to one over L. The theorem is
proved. [:]

This is a pleasing theorem. Although it is subsumed by Theorem 4.7, its proof
is different, and it shows how any denesting expression for c can be mapped to one
in which all the subexpressions are in L, the splitting field of a over k, assuming all
roots of unity lie in k. By Lemma 2.2, a sequence of minimal nesting depth for a is
found by finding the derived series and computing the associated fields. This will be
explained in detail in 5.

In general, it will not be the case that all roots of unity lie in k. Of course, one can
adjoin them, but this may be an infinite extension. From a computational standpoint
this is not a good approach. Instead we will find a single primitive root of unity we
can adjoin to k that will give us a denesting. We begin with the following definition.

DEFINITION. The least positive integer n such that (n {e} is the exponent of
G.

THEOREM 4.3. Suppose k C kl C C kt is a series of abelian extensions
an abelian extension of ki), with K k(a) c kt. Let L be the splitting field ofK over

k, and L1 be the splitting field of kt over k, with Galois group G. Then L c L, and
let N Gal(L/L). If s is minimal such that DsG c N, then s <_ t. Furthermore s
is the length of the derived series for GIN Gel(L/k).

Proof. We begin with some notation. Let

Gal(L/K) H0,

Gal(L/k) =G,
Gal(L/ki) Hi, 1,

Gal(L/kt) Ht H.
,t,

Observe that G H1 Ht H, and that Hi DiG, since Hi-/Hi is
abelian. Furthermore, we know that eGaHa-1 {e}, since L is the smallest
normal extension of kt over k. Similarly, eG aHoa- N, since L is the smallest
normal extension of K over k, and N Gal(L1/L). Note that N is a normal subgroup
of G.

Now let s be the least integer such that DSG C N. We know that {e}
GaHa-1 GaDtGa-1 DtG- DtG" Thus DG {e}. This implies
that DG c DG, or that s <_ t. Furthermore, note that Di(G/N) Di(G)N/N,
which implies that D(G/N) {e}. Since s is the least integer such that DG c N,
we have that s is the length of the derived sequence of GIN Gel(L/k).

This theorem almost gives us a minimal denesting. Let be the lcm of the
exponents of the derived series of G Gel(L/K). Then if z, a primitive/th root of
unity, is in k, by Theorems 2.5 and 2.8 all the extensions by the derived series can
be achieved as radical extensions. If z is not in k, but is in L, we can still achieve a
minimal denesting with all of the terms lying in L. This is because of the following
lemma.

LEMMA 4.4. Let L be the splitting field of the minimal polynomial of ( over k,
with Galois group G, and suppose is in L. If H DG is the commutator subgroup
of G, then LH

_
k().

Proof. Let J be the subgroup of G associated with k(t). Now k(t) is an abelian
extension of k, thus J<l G, and G/J is abelian. By Lemma 2.2, J

_
DG, and therefore

k(z) Lg C_ LOG. [:]

Of course, it will not always be the case that lies in L. We can adjoin it to k.
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Thus the field extensions of k made by considering the fixed fields LDG can all be
made to be radical extensions. We will need to make use of Theorem 4.5.

THEOREM 4.5 (Lang [8, pp. 196-197]). Let K be a Galois extension of k, and
F be an arbitrary extension of k. Then KF is Galois over F, and K is Galois over
K N F. Let H be the Galois group of KF over F, and G the group of K over K N F.
If cr is in H, then the restriction of a to K is in G, and the mapping a -- a K is an
isomorphism.

LEMMA 4.6. Suppose kl k(a) is an abelian extension of k with group G, which
has exponent 1. Let z be a primitive lth root of unity, and let K k(z). Then K(a)
is an abelian extension of K, and if G is the associated Galois group, is divisible by
the exponent of . If, furthermore, kl k(a) is a cyclic extension of k, then K(a)
is a radical extension of K, that is, K(a) K(), for some 3 which satisfies an
irreducible polynomial of the form xn b for some b in K.

Proof. Consider the following picture"

K(a)

F-Kk

K-

Now kl is an abelian extension over k; thus so is kl over F. Furthermore, by
Theorem 4.5, G is isomorphic to Gal(kl/F), which is just a subgroup of G. Thus
the exponent of G divides the exponent of G. If kl is a cyclic extension over k, so
is k over F. Thus so is K(a) over K. Again ( can be viewed as a subgroup of G.
The exponent of G will divide the exponent of G. But then, by Theorem 2.6, the
extension K(a) over K can be realized as a radical extension. D

THEOREM 4.7. Suppose a is a nested radical over k, where k is a field of char-
acteristic O. Let L be the splitting field of k(a) over k, with Galois group G. Let be
the lcm of the exponents of the derived series of G. If there is a denesting of a such
that each of the terms has depth no more than t, then there is a denesting of over

k(t) with each of the terms having depth no more than t + 1, and lying in L(t).
Proof. Since a is a nested radical with nesting depth t, a can be expressed as a

polynomial in/1,"’,/r, with each/i having a nesting depth ti

_
t over k. Each/3i

has a nesting sequence of the form"
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Of course, the symbol "/Pij(#11,’", #-) will mean the same thing each time it

appears. Let m lcm(ml, mtl, mrs,’", mrt), and let/ k(m).
Consider the sequence of fields k /(11,"" ,1) c_ k2 k(/32,... ,2) c_

C_ kt kt- (lt,""",/t). For each i, ki+l is a composite of cyclic extensions of ki.
Thus for each i, k+l is an abelian extension of k. Let L be the splitting field of k(a)
over k, with Galois group G. We know that L is contained in the normal closure of kt
over k. If the length of the derived series for G is s, then by Theorem 4.3, s _< t 4- 1.

Let Li LDG. Then the sequence of fields k- L0 c LI... c Ls-1 C Ls L is
a tower of abelian extensions. The associated Galois group is D-IG/DG.

Each D-G/DG is an abelian group and can be written as a direct product of
cyclic groups, say, D-IG/DG Jil "" Jit. For each and j, 1,...,s,
j 1,..., t, let j {e} {e} Jj {e}... {e} c_ DG/D-IG. Then n LJJ
is a cyclic extension of L-I, and

is a composite of cyclic extensions.

Now let K Li(z). By Lemma 4.6 the extension K over Ki-1 is abelian, and-
the extension

Ky LJj ()

over K is a radical extension for every pair i, j. The maximal depth of nesting for
any expression in Ks over k is s, the height of the derived series for G. The theorem
is proved.

Observe that the reason the depth of nesting achieved in Theorem 4.7 is one more
than minimal is because the abelian tower created by the derived series begins with
the field k rather than k(m). But , is, after all, just a root of unity. If we begin
our tower of fields at k(m) instead, then we have Corollary 4.8.

COROLLARY 4.8. Let k, c, L, G, l, t be as in Theorem 4.7. Let m be the lcm of
(mj), where the mj runs over all the roots appearing in the given depth t nested
expression for . Let r be the lcm of (m, 1). Then there is a minimal depth nesting
of c over k(r) with each of its terms lying in L().

Proof. This proof is a variation on the one above. We want to show that there is
a denesting of c over k(r) of minimal depth, with all of its terms lying in L(r). We
do it by showing something slightly stronger, that there is a denesting achieving this
with all of its terms lying in L, the splitting field of the minimal polynomial of c over

We begin with some notation. Let ] k(), and let ( be the Galois group
of the splitting field of the minimal polynomial of a over ]. Note that by Theorem
4.5, L(r) over is Galois. If ( is the group of that extension, then ( is isomorphic
to a subgroup of G, the subgroup corresponding to L over k(a) N k(). (Note that
k(a) k() is an abelian extension of k.) We have the following picture:
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G

Consider the tower ] C t, and let us compare it to a tower of abelian exten-
sions in , over ]. Theorem 4.3 applies. If s be the length of the derived series for (,
we have s < t.

We let ]-i D. As in the previous theorem, the sequence of fields C ,1 c
c ,8 is an abelian tower. Again,^ this can be transformed so that for each i, i is

a composite of cyclic extensions of L_I.
Since 0 is a quotient group of , the lcm of the exponents of the derived series for

divides the lcm of the exponents for the derived series of , which in turn divides
the lcm of the exponents of the derived series for G. This divides r. Thus ] contains
the roots of unity needed to make the field extensions of over corresponding to
the derived series into composites of radical extensions. The corollary follows. D

Although Corollary 4.8 appears to give a better bound than Theorem 4.7, it does
so in a dissatisfying way, by introducing roots of unity which have to do with the input
and are not necessarily a genuine part of the problem. For example, in denesting

Cx/- + 2- x/- 2

over Q, Corollary 4.8 indicates that one would want to add a primitive sixth root of
unity to Q to denest. In fact,

and thus no new root of unity is needed (a fact which would be discovered in computing
the minimal polynomial for

over Q). For this reason we have chosen to use the Theorem 4.7 variety of denesting
as the basis for our algorithms. The algorithms can be easily modified to handle the
Corollary 4.8 version if desired.

Now we are in a position to denest general radicals. Theorem 4.7 tells us which
root of unity we must add. Before we proceed with the algorithm, we briefly discuss
computing the minimal polynomial of a; details may be found in the Appendix.
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From an algebraic point of view, a sensible measure of the size of the denesting
problem is the size of the minimal polynomial of a. There is some disagreement
about this issue. Borodin et al. [3] define the size of a to be m, the depth of
nesting of c. Under this measure, they gave an algorithm for denesting a nested
class of square roots. This algorithm has polynomial arithmetical complexity, but
exponential bit complexity. The latter comes from the doubling of bits which occurs
at each extension. We believe that this problem is inherent in any denesting scheme,
and that the measure defined by [3] is too conservative. Under our measure, their
running time is polynomial.

We can view a nested radical a as a sequence of polynomials i5, in k[xl,..., Xm- 1]
such that

+
with a a. In the Appendix we show how to go from this description to minimal
polynomial of a a over k.

5. The algorithm and running time analysis. At this point we have pre-
sented ll the new ideas that were needed in order to compute denestings. In this
section we show that we can effectively compute the denesting, and we give a running
time analysis. There are some computations we have not yet shown how to do, the
most important of which is how to go from an rbitrary description of a radical ex-
tension (e.g., K k[x]/f(x), f(x) irreducible) to a description as a radical extension

(K k[x]/(xn -b), with xn -b irreducible). The answer is Lagrange resolvents, and
we use these and Artin’s normal basis to achieve what we want.

We begin this section with a briefbut completedescription of the algorithm.
The rest of the section is concerned with the details of running time analysis and
coefficient blowup. Because it is remarkably esy to miss the forest for the trees,
we urge the first-time reader to read the briefbut completedescription of the
algorithm, and then to read about normal bases and Lagrange resolvents. A second
reading can cover the running time analyses, and the other algorithms presented. We
end the section with a more precise version of the algorithm and, of course, a running
time analysis.

Suppose we wish to denest the nested radical a. We begin by computing the
minimal polynomial of a over k. We construct the splitting field L of the minimM
polynomial of a over k. We compute G Gal(L/k), and the series of commutator
subgroups DG, 1,..., s, where DG {e}. We also compute l, the lcm of the
exponents of the derived series of G.

Next, for ech i,i 1,..., s, we compute D-G/DG J ... Jt as
direct product of cyclic groups. Let j {e} ... {e} z Jy z {e} ... {e}, and

let L LDG. Thus for each i,

is a composite of cyclic extensions of L_. For each and j, we compute y such
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that

Thus Li Li-1 (i1,""", iti).
We write K0 k(z), where Cz is a primitive/th root of unity. By Lemma 4.6,

Kij K-l(ij) can be written as a radical extension of Ki-1, and each Ki
Kil." Kit is a composite of radical extensions of Ki_l. We achieve the radical
extensions as follows.

Following Artin, we construct a polynomial sij (x) whose roots 0iyl,""", 0jr form
a "normal" basis for K over K-I. The degree of sj(x)is r [Ki’K_I], and
its roots are linearly independent over Ki-1. Then we will use Lagrange resolvents
to find a /3ij in Kij such that Kij K-l(i.), where ij satisfies an irreducible
polynomial of the form xn -biy over Ki-1. In our construction we will actually
have two descriptions of the fields Ki, namely, Ki-l(i,... ,/3u) and Ki_[x]/gi(x),
where gi(x) is irreducible. We will do computations using the latter representation.

In this section we show that all the computations described:.above can be carried
out in time polynomial in the size of the splitting field of the minimal polynomial of
c over k. Unfortunately, the splitting field can be large. In worst case, the splitting
field is of exponential degree over the base field. Our bounds are chosen for the
relative simplicity of presentation, and are not necessarily the tightest possible. We
will restrict our running time analysis to k Q for the present.

In [6], it was observed that the splitting field and Galois group G can be computed
in time polynomial in r IGI [L" k] and log lf(x)l. More precisely, we have
Theorem 5.1.

THEOREM 5.1. Let f(x), an irreducible polynomial of degree m over k, be the
minimal polynomial of , a nested radical over k. The Galois group of f(x) over k

com .t d in

Proof. Suppose f(x) has roots al,..., am. The following algorithm computes L,
the splitting field of f(x) over k, and G, the associated Galois group.

Step 1" g(x)- f(x);
Step 2" WHILE f(y) does not split completely in k[x, y]/g(x) Do:

BEGIN
Factor f(y) IIf(y) in k[x, y]/g(x);
Let h(y) be some f(y)of degree > 1;
Pick c such g(x)- Rest(g(t),h(x- ct))is square-free;

END;
Step 3: p ,- root of g(x);

Factor g(y) H(y- pi(p)) in k[x, y]/g(x);

FOR each a in G, compute a acting on pj by

By Theorem A.4, it is not hard to see that this algorithm computes a polynomial
g(x) such that L k[x]/g(x). The roots of this polynomial are the conjugates of

QI (Cl’"" Cm--1)21 -}- (Cl’"" Cm--2)202 "+""""-" Om,

where

ci < di [k(al,..., ai) k(al,..., oi_1)].
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How long the process takes depends on the structure of G. We will assume a worst
case scenario. Note that not all worst case assumptions can occur simultaneously (and
thus what we have is really an exaggerated worst case scenario).

We loop through Step 2 at most m < log r times. The maximal possible g(x)
occurs in the last iteration of the loop, and it is bounded by the size of its roots. Now
g(x) is of degree r over k in the final iteration. Then

since IIc111 < 1 + If(Y)l. Using Theorem A.4 and the fact that degree(g(x))
degree(f(x))- r, we have that factoring f(y) over k[x]/g(x) takes no more than

steps. We loop through at most m times, getting

O((r/m)9+mT+ log2 (rl f(Y) l)2+ log2+ f(y) (r(rlf(y) )2+)(rm))m
< O(r9+" log2(rlf(Y)l)+" log2+’(rlf(Y)l)4)
< O(r12We log4+’(rlf(y)l))

steps. [:]

Thus in time polynomial in the degree of the splitting field, and the size of the
minimal polynomial of a over k, we can compute the Galois group. It has long been
known how to compute commutator subgroups quickly from a group table; recently
Babai, Luks, and Seress [2] showed how to do so in O(r4 logc r) steps, for a permutation
group on r elements.

We say a polynomial g(x) over a field k is normal if and only if it is irreducible and
k[x]/g(x) is a Galois extension of k (equivalently g(y) splits completely in k[x]/g(x)).
It is not hard to go from such a polynomial to one which splits completely and whose
roots are linearly independent over k. Artin gave an effective method for calculating
such a polynomial. We reproduce it here.

THEOREM 5.2 (Artin [1]). If L is a Galois extension of k, and al,..., err are the
elements of the group G, then there is an element in L such that the r elements
1 cr (),..., 0r err(O) are linearly independent with respect to k.

Proof. Let L k(p), and let g(x) be the minimal polynomial for p over k. Let
cri(p) Pi. We let h(x) g(x)/(x- p)g’(p), and hi(x) ai(h(x)) g(x)/(x-
pi)g’(pi). Then hi(x) is a polynomial over n having Pi as a root for j i, and thus
hi(x)hj(x) 0 (mod g(x)) for i j. In the equation

(1) h (x) + h2(x) +... + hr(x) 1 0,

the left side is of degree at most r- 1. If the equation were true for r different values
of x, the left side would be identically 0. But we have r such values Pl,’", Pr, since
hi(pi) 1, and hj(pi) 0 for j i. Multiplying this equation by hi(x), and using
the fact that h(x)hj(x) 0 (mod g(x)) for i j, we find that

(2) (hi(x))2 hi(x) (mod g(x)).

We next consider the determinant

(3) D(x) =1 aay(h(x)) I,
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and prove that D(x) is not identically 0. If we square the corresponding matrix we
get the identity matrix (modg(x)), because of (1)-(3).

Now D(x) can have at most r2 roots in k. If we avoid them, we can find a value
a for x such that D(a) O. Let 0- h(a). Then

o-(o)I# o.

Consider any relation of the form alal(O) +... + a,a,(O) 0, where the a are in k.
Applying the automorphisms aj to it would lead to r homogeneous equations for the
r unknowns a. Then a 0, and we are done. rl

ALGORITHM: COMPUTE NORMAL BASIS.
input: g(x), a normal polynomial over k with root p
output: , an element in k[x]/g(x) whose conjugates form a normal basis for k[x]/g(x)
over k.

Line 1: BEGIN
Line 2: h(x)
Line 3: FOR 1,...,r DO:

FOR j 1,..., r aj -- aaj(h(x));
Line 4: D(x)
Line 5: Pick a in k such that D(a) 0;
Line 6: /7 +--- h(a);
Line 7: END.

THEOREM 5.3. Algorithm Compute Normal Basis computes a normal polynomial
whose roots form a basis for k[x]/g(x) over k. It does so in O(r
steps.

Proof. That it does so correctly is clear from the proof of Artin’s theorem. We
already know by Theorem 5.1 that

Ig(x)l < (’lf(y)l):+.
Thus

Ig’(x)l < (’lf(y)l):+’

and

Ih(x)l < (rlf(Y)l)4+.

We know the entries in the matrix are bounded by Ih(x)l, and that D(x) is a polyno-
mial of degree at most r2. By Hadamard’s inequality [5], the coefficients of D(x) are

bounded by (rlf(y)l)9r. There is an a less than r2 for which D(a) is nonzero. Now- h(a) < r. (re)(r,lf(y)l)4+ < (rlf(y)l)s.
The computations in Lines 3 and 5 dominate the running time. Line 3 can be com-

puted in O(r r3 log+ Ih(x)l) O(r7+ log+(rlf(y)l)) steps, as can Line 5.
Observe that if s(x) is the minimal polynomial for 0 over k, then

I(x)l < " ,,/2 I1<11 < "2"("lf(y)l)S < (’lf(Y)l)s"+"
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We are now ready to compute fixed fields. Without loss of generality, suppose
that {ffl,’’’,ff/} are the elements of H. Let EajOj, with aj in k, be an arbitrary
element of LH. For each ai in H, we have

rae (rae) ra(e).

Since the Galois group sends roots of s(x) to roots of s(x), we have ai(Oj) 0t for some
1. Because the Oj are linearly independent over k, the only way the above equation
can be satisfied is if a at. Each element a in H gives rise to equalities amongst
the a, which leads to a series of relationships amongst the 0. That is, if ai at, then
in LH any expression containing 0 must have 0t appearing with the same coefficient.
Computing all such relationships gives us exactly the fixed field associated with H.
We make this precise in the following algorithm:

ALGORITHM: COMPUTE FIXED FIELD
input: 0 h(a), an element in k[x]/g(x) whose conjugates form a normal basis for
k[x]/g(x) over k, and {al,..., at} H, a subgroup of Galois group
of k[x]/g(x) over k.
output: {3’1,’", /r}, where (k[x]/s(x))H k(’l,..., /r).
Line 1: BEGIN
Line 2:

Line 3:
Line 4:

O’s}

1 if a(h(a)) aj(h(a)),
aj 0 otherwise;

T - transitive closure of (aij);
Let C1,..., Cn be the connected components of the graph given by A:

/ Eyecay(h(a));

Line 5: END.

THEOREM 5.4 Algorithm Compute Fixed Field computes the fixed field of a given
oH. t do o 0( o(1/()1)) t.

Proof. If K LH, then K k(71,..., /), where the 7j are sums of the 0i. (Note
that the 7y partition the 0.) In Algorithm Compute Fixed Field, we set up an n n
matrix (aij), with l’s on the diagonal, O’s elsewhere. If a in H takes 0y to 0k, then
ajk and akj are both assigned a 1. This is shorthand for saying that 0j and 0k appear
with the same coefficient in K.

In Line 2 we set up the matrix. We compute the transitive closure in Line 3.
Then in Line 3 we set up the 3’, 1,..., n, to be the sum of all the 0 that have
the same coefficient. We do this by computing the transitive closure of A. Clearly,
K k("/1,... r).

The computation is dominated by the calculations of Line 2 which take O(r2.
r log2 ]s(x)l -O(r5 log2(rlf(y)l))steps since Is(x)l < (rlf(y)l)8+.

At this point we observe that it is easy to calculate the minimal polynomial for
a primitive/th root of unity. If k Q, it will be the irreducible factor of x 1 of
degree (1). If l(t) is the minimal polynomial for 4t over k, then II(t)l < 2t. If k Q,
the minimal polynomial is a little more complicated to find, and there may be more
than one choice for it (that is, there are nonconjugate primitive/th roots of unity in
that case), but the bound on degree and coefficient size remains the same.
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All that remains is to show how to transform a cyclic extension of degree over k,
where I, a primitive/th root of unity, is in k, into a radical extension. The technique
was developed by Lagrange, two centuries ago.

DEFINITION. Let L k(a) be a cyclic extension of degree l, and suppose that l
is in k. Let a be a generator of G Gal(L/k). For any element T in L, define

The element (l, T) is called a Lagrange resolvent.
It is not hard to show that the a’s are linearly independent over k, thus there is

a T that makes the Lagrange resolvent nonzero. Such an element will generate L over
k, and in particular will satisfy an irreducible polynomial over k of the form x b.
Observe that if 01,..., 0g is a normal basis for L, then (, 0) is nonzero, and this will
suffice.

ALGORITHM: COMPUTE DENESTING.
input: f(x), an irreducible polynomial of degree n over k, and n, the lcm of the indices of the
reducible radical expressions for a.

output: A sequence of fields Ki, 1,..., s, and an expression for a, where
1. the expression for c, a root of f(x) in Ks, that is within one of minimal nesting depth over

k(),
2. and =lcm (n, exponent G/DG, exponent DG/D2G, exponent Ds-IG/DSG), and

is a primitive/th root of unity.

Line 1: BEGIN
Line 2:
Line 3:
Line 4:
Line 5:
Line 6:
Line 7’:
Line 8:
Line 9:
Line 10:
Line 11:

Line 12:
Line 13:
Line 14:
Line 15:
Line 16:
Line 17’:
Line 18:

Line 19:
Line 20:
Line 21:

Line 22:
Line 23:
Line 24:
Line 25:

Line 26:
Line 27’:
Line 28:
Line 29:
Line 30:

Compute L, the splitting field of f(x) over k;
Compute G Galois group of L over k;
DO +-G;
i--0
WHILE DiG {e} Do:
BEGIN

i,-- i+ 1;

END;
lcm (n, exponent G/DG, exponent DG/D2G,

exponent D 1G/D G);
Find l(x), minimal polynomiM for t over k;
o k();
FOR TO s DO:

BEGIN
Li LDG"

Ki
Write Di-G/DiG as a product of cyclic groups,

J x... x J;
FOR j= woti DO:

BEGIN
j {e} x... x (e} x Jj x {e} x... (e} C D-IG/DG;
Lij L[
K L(,);
l [K K_];
Compute a normM basis for K{j over K{_ 1,

Oijl, , Oijlij
Pick a({j), a generator of {;

K_();
END;

Ki K_ (i, , it);
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Line 31: END;
Line 32: Express in Ks;
Line 33: END.

THEOREM 5.5. Let f(x) of degree m be the minimal polynomial for c, a nested
radical over k, and let L be the splitting field f(x) over k, with Galois group G.
Let DiG represent the ith commutator subgroup of G, with D8G (e}, and let
l-lcm (n, exponent G/DG,..., exponent Ds-IG/DSG). On input f(x), Algorithm
Compute Denesting computes a denesting of( that is within depth one of optimal over

k(), where is a primitive lth root of unity. It does so in O(r12+C log4+C(rlf(y)[))
steps, where r is the order of the Galois group G.

Proof. As always, we prove correctness, then analyze running time. We want a
minimal depth denesting for c. By Theorem 4.7 there is a denesting of over k()
that is within depth one of minimal and which has each of its terms lying in L(),
where L is the splitting field of the minimal polynomial of ( over k.

Thus what we must do is calculate L, the splitting field of f(x) over k, G, its
Galois group, the derived series, and l, the lcm of the indices of the reducible radicals
in the original exression for , and the exponents of the derived series. Then if
L1 C 52 C C 58 i(() is a series of abelian extensions, so is K1 51() C

L2 k2(t) c... c K8 ns(t) by Lemma 4.6. More to the point, by Lemma 4.6
Ki is a composite of radical extensions of Ki-1 for each i. In particular, c will have
an expression that is within one of minimal nesting depth in Ks.

In Line 2 we calculate the Galois group. It is straightforward to compute G, its
derived series, the exponent I. This takes us to Line 12. Line 13 simply begins the
process that will create the fields K L() by setting K0 k().

In Line 16 we compute the fields Li LDG, which correspond to the subgroups of
the derived series. In Line 16 we create the corresponding tower of fields Ki Li(t).
What we need to do next is compute the tower of fields Ki and express them as radical
extensions.

We begin by computing the groups DiG/Di-IG as a product of cyclic groups
Jl "" Jt. The we cycle through and compute first the groups Jij {e} {e}
J {e} ... {e}, and then the fixed field associated with each such ,L. By
Lemma 4.6, the field calculated in Line 23, Kiy Liy(t) is a radical extension of
Li-1. In Line 25 we compute the normal basis Oil,’", 0 for Kiy over Ky_, and
in Line 26 we pick an element from the associated Galois groups Jij. The element

l 1--1ij Oij -li(Tij Oij --’’’"{l (Tijil or some ordering of the 0’s. Since the O’s are
linearly independent, the element is perforce nonzero, hence by the theory of Lagrange
resolvents, generates Kij over Ky-1. In particular, ij satisfies an irreducible cyclic
polynomial over Kj-1.

How long does the computation take? We claim no more than
O(r1+ logn+(rlf(y)l)) steps, where r [L: k]. Certainly the computations in Lines
1-11 are dominated by the time it takes to compute the Galois group; by Theorem 5.1,
that can done in O(r1+ log2+(r21f(y)l)) steps. Lines 12 and 13 are a simple compu-
tation (even when k : Q). We run through the loop in Lines 14-29 at most O(log r)
times. Its running time is dominated by Line 25, which takes O(rs+C log2+ If(Y)l)
steps. The computation in Line 32 takes no time at all.

To simplify the computations, we view the fields Ki as simple extensions of K,
and do the computation in terms of a primitive element, with minimal polynomial
giy(t) over k. However, since what we want is a basis for L with a minimal depth of
nesting, we will store two different bases for Kiy; one with the iy that come from
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the computations, and then Kij k[t]/gij(t) written as an extension by a primitive
element. We do not run into coefficient blowup in computing gij(t) because each of
the fields Kj can be viewed as a subfield of L(l). (In the interests of making the
algorithm as clear as possible, we have not included those fine points in the algorithm.)

We have presented the running time analysis for the algorithm over Q. The only
reason for that is simplicity. The only requirement for the base field is that one needs
to be able to factor polynomials over k. Theorem A.4 shows how a factorization over
k can be raised to a factorization over k((). We can generalize Algorithm Compute
Polynomial to compute a minimal polynomial for ( over k. Of course, we can gener-
alize Theorem 5.1, and Algorithms Compute Fixed Field and Compute Denesting.

Note also that the running time for Algorithm Compute Denesting can be simply
stated as the time required to compute the splitting field of f(x) over Q, which is in
turn the time needed to factor f(x) over its splitting field.

6. Conclusions. A number of open questions remain.
Can the bound in Theorem 4.7 be made optimal, that is, can we improve it
to s _< t without involving the form of the input (as per Corollary 4.8)? What
is the trade-off between this and the roots of unity?
Suppose a is a nested radical over a field k, and suppose there is a denesting
expression for a involving roots of unity. When is there a way to transform
that to an expression of the same depth which avoids using the roots of unity?
(The expression

makes it clear it that will not always be possible to do so.)
Our algorithm is not fast. Thus the other important issue in this problem is

speed. We have several comments regarding this.
Is there a way to perform these computations via a straightline program? The
encoding in the straightline version would avoid the problem of coefficient
blowup. The main difficulty seems to be in computing the Galois group. We
do not see how to determine the group without determining both f(x), the
minimal polynomial of c over k, and the splitting field of f(x) over k. If a
way could be found around these problems, then the entire algorithm could
be sped up. We do not think this will be easy. In particular, it is likely that
any technique that works here will also work to determine the Galois group in
the solvable case. No polynomial time algorithms are presently known, and
this would be a surprising and exciting breakthrough.
It is important to remember that the bounds given here are really upper
bounds. The running time is exponential if and only if the splitting field is
of exponential degree over k. If the degree of the splitting field is polyno-
mially bounded, then so is the running time of the algorithm. Recall also
that nearly all of the bounds follow from the factoring bound given in [Ii],
and that bound is almost certainly not optimal. It is important to remember
that what is theoretically slow may be practically fast, and vice versa. In
particular, the exponential time polynomial factorization algorithm of [9] is
more practical than any of the current polynomial time algorithms for poly-
nomial factorization. Any improvements in the running time for factoring
polynomials will lead to great improvements in our bounds.
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Our algorithm does not specifically examine the issue of determining if the
expression equals zero. (We answer it, of course, in computing the minimal
polynomial for c over k, but not efficiently.) Examining it leads to some
interesting open questions on linear combinations of nested radicals. The
case of nested square roots was treated by Borodin, Fagin, Hopcroft, and
Tompa [3].

A. Appendix. As we stated earlier, we can view a nested radical c as a sequence
of polynomials i5i, c in k[xl,... ,Xm-1] such that

(4) al 1, i51 k,

(5) (12 nV/2(Ol)

(7)
(8) Om (O1,’’’ ,Om_l) + nmv/m(Ol,... ,O/m_1)

with c c,. We show how to compute the minimal polynomial of a o/m over k.
This polynomial is polynomial size in n Hn,
II(xl,’" ",x,-l)ll, and 11ihi(xj.,’" ",xi-1)ll. Whether or not the minimal polynomial
is polynomial in the length of the expression for c is an open question.

We begin with some background. In particular, we define the size of a polynomial
over Z, and over an algebraic number field, and quote some important results on
polynomial factorization in these domains.

DEFINITION. Let f(x) ax + an_lxn-1 -}-...-}-ao be a polynomial in Z[x].
The size of f(x), denoted If(x)l, is defined to be (Ea/2) 1/2.

THEOREM A.1 (Mignotte [12]). Let f(t) be a primitive polynomial in Z[t], and
let g(t), also primitive, be a factor of f (t). Then

DEFINITION. Let h(xl,... ,xn) hal,...,,x x +"" - hat,...,txt’’" x be
a polynomial over O[xl,..., x,]. Then the size of h(xx,..., x,), which we will denote
by IIh(xl,’" ,Xn)ll, is (Eh,...,j) 1/2.

THEOREM A.2 (Lenstra, Lenstra, and Lovsz [11]). Let g(t) ant /... + ao
be a primitive polynomial of degree n over Z[t]. There is an algorithm to factor g(t)
into irreducible factors over Z[t], which requires O(n9+ + n7+ log2+ Ig(t)l) steps.

DEFINITION. Let be an algebraic number. We define the size of
to be the maximum of the absolute values of the conjugates of/.

DEFINITION. Let g(t) be a monic irreducible polynomial over Z, with roots
m--1al,"" am. If f(x) =/nx +... + o with i j=0 biJ aj then the size of f(x),

written IIf(/)ll, is defined to be the maxi(E_lbi) 1/2.
THEOREM A.3 (Weinberger and Rothschild [16]). Let g(t) be a monic irreducible

polynomial of degree rn over Z, and let K Q[t]/g(t). Let be a root of f(x), a
polynomial in OK[X]. Then II/11 <_ 1 + IIf(x)ll. Assume that f(x) is monic, and that
h(x) hrxr+...ho is a factor off(x)in OK[X]. Then IIh(x)ll < mllf(x)ll(mlg(t)l)m.

THEOREM A.4 (Landau [6]). Let g(t) be a monic irreducible polynomial of degree
m over Z, and let K Q[t]/g(t). Let f(x) be a polynomial of degree n over OK.
Then there is an algorithm to factor f(x) into irreducible factors over OK. It runs in
O(m9+enT+e log2 Ig(t)l log2+(llf(x)ll(mlg(t)l)n(mn)n)) steps.

In order to calculate the minimal polynomial for a over k, we introduce two
important concepts from number theory: the norm and the resultant. The norm
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relates elements in extension fields to elements in the base field. Let/ a0 + al’ +
+ am_’m- be an element of the field k(-). Then

Normk()/k() Nk()/k() Hi(co + a/i +... + am_l"a-l),
where the product is over the conjugates of "7. If a is an element of the Galois group
of the minimal polynomial of - over k, then a() -j for some conjugate -j of "7.
Then

a5(Nk(n)/k()) ah(IIi(ao + avi +’" am-l")’n-1))
IIi(7j (ao - al’)/i -- -- am-l’n-l)Hi(a0 + a’7i +’" + am-19/-Nk()/k(Z).

Since aj just permutes the "Ti’s, we conclude that N() is in k. Further, the norm
is multiplicative. We can extend the definition of norm to include polynomials, by
thinking of f(x) in k()[x] as a polynomial in two variables: x and -, and we denote
it by f(x). Then

N()/(f(x)) nf, (x).

If f(x) is in k(-)[x], then the norm of f(x), Nk()/k(f(x)), is in k[x]. We will need
the following important property of norms of polynomials.

LEMMA A.5 (Weyl [17], Trager [15]). If f(x) is an irreducible polynomial over

k(/), then Normk()/k(f(x)) is the power of an irreducible polynomial over k.
How do we calculate the norm of a polynomial? The coefficients of the norm

are all symmetric functions in -i. A simple algorithm for computing norms using
determinants has been known since the nineteenth century; this is the resultant.
Let g(t) gmtm+ gm_ltm-1 +’’’ + go, and f(t) fntn -[-... + to. We define
Rest(g(t), f(t))

fn 0 0 0 gm 0 0 0
fn--1 fn 0 0 gin--1 gm 0 0
fn--2 fn--1 fn 0 gm--2 gm-1 gm 0

]0 ]1 ]2 f-lgm--ngm-n/lgm--n/2"’’gm

.:. 0 ]0 b .:. 0

The coefficients gi,fj 0 whenever i,j < 0, respectively. It can be shown that
Resx(g(x), f(x)) gHf(i). Thus N(f(x)) IIf (x) (Rest(g(t), f(x, t)))/g,
where f(x, t) is f(x) with t’s substituted in for ,’s, and g(t) is the minimal polynomial
for -), over k.

The nesting expressions for a in (4)-(8) is general, but cumbersome. Instead of
multivariate polynomials ,i5i, we would prefer to have univariate polynomials q, pi.
We can do this by using Lemma A.6.
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LEMMA A.6 (Trager [15]). Suppose [k(a, fl): k(a)] n, and [k(a) k] m.
Then there is a c < (mn)2 such that k(a, ) k(a+c). Ifh(x) is the minimal polyno-
mial for over k(a), then k(a, )

_
k[x]/H(x) whenever H(x) Normk(a)/k(h(x--

ca)) is square-free.
LEMMA A.7 (Landau [6]). Let k, a, , c, m, and n be as above. If g(x) is the

minimal polynomial for a over Q, then H(x), the minimal polynomial for a +c over
Q, has coefficients no larger than (clg(x)lllh(x)ll)m+n.

Thus for each ai there is an associated 7i, with 71 al, and
Then k(al,... ,ai) k(Ti). The multivariate polynomials in (4)-(8), , i, can be
replaced by univariate polynomials q, pi, and a nesting expression can be more simply
written as:

0/1 nrP-i-, Pl ( k,

0/2 nV/P2 (71), 71 0/1,

aa pa(/),/ a + c1,

+ +

with the ci < (Hj<inj)2. Lemma A.6 gives a method for computing the minimal
polynomial of 7i over k. We will show how to compute these polynomials in Algorithm
Compute Polynomial, where we also compute f(x), the minimal polynomial for 0/over

k. We will first sketch the idea behind the algorithm.
It is easy to see what the minimal polynomial for 0/1 over k is. Suppose/hi(x) is

dth power of an element in k, say, pl, and let d be the largest integer dividing nl for
which this statement is true. If we let al nl/d, then g/- ap-, and 0/1 satisfies
fl(x) xal -Pl. If this polynomial is irreducible, we are done. We could factor to
check irreduciblity, but a more efficient test would be to use the criterion of Theorem
2.9. If the conditions of Theorem 2.9 are not satisfied (i.e., 4 al, al is not in k,
pl -4j4 for some j in k), then xat --Pl is reducible. In this situation, we do factor
xa -Pl Hji(x), and set fl(x) to be the ji(x) for which ji(Pl) 0. Of course,
the minimal polynomial for a@pl (q) over k, is equal to fl (t).

To compute the minimal polynomial for 0/2 over k, we do nearly the same com-
putation. We find d, the largest integer dividing n2 such that i52(0/1) is a dth power
of an element in k(71), say, P2(q). Again, a2 n2/d, nV/2(0/1 v/p2(q), and 0/2

satisfies xa2 -P2(71). We check irreducibility as before, and set f2(x) equal to the
minimal polynomial of.0/2 over k(71). By Lemma A.5, the polynomial

S2(X) Nk(l)/k(f2(x) Rest(t pl (q), f2(x, t))

is a power of an irreducible polynomial over k which 0/2 satisfies. If h2(x) is that
polynomial, then h2(x) s2(x)/gcd(s2(x), s2(x)).

Next we compute the minimal polynomial of 72 over k. (Note that that is really
equivalent to computing a primitive element of k(71,0/2) over k.) By Lemma A.6, it
suffices to find a c2 such that g2(t) Nk(-n)/k(f2(t- c271)) is square-free, and there
is a c < (ala2)2 that will work. We calculate the norm by

Nk()/k(h2(t c271)) Resy(gl(y),h2(t c2y, y)),

thinking of h2(t) in k(71) as a polynomial in t and y in kit, y]/gl (y).
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At this point, the pattern begins to emerge. We are first calculating the minimal
polynomial of ai over k(/i-1), either Xa --Pi(i--1), or a divisor of it. Call it f(x).
Then si(x) Rest(gi_(t), fi(x,t)) is the power of an irreducible polynomial over

k, hi(x) si(x)/gcd(si(x),s(x)). We then compute a primitive element of k(’i)
k(Ti-,ai) over k. We do that by finding a ci such that gi(t) Nk(7,_l)/k(fi(t-
ciTi-1)) is square-free. We are then ready to repeat the process.

Aao: Co,Poo.
input: ((Xl,.", x-l), Hi, 15(Xl,..., X-l)), 1,... m, where al n4cf, a2 n/152(al, a2)," ,

(,..._) + ’/(,... ,_).
output: f(x), the minimal polynomial of a over k, and g(t), where k(al,..., a)

_
k[t]/g(t) for

1,..., m, and n =lcm of the indices of the reducible radicals

Line 1: BEGIN
Line 2; Compute minimal polynomial for 151, and call it hi (x), f (x);
Line 3: gl (t) fl (t);
Line 4: n 1;
Line 5: FORi--2TOm--1 DO"
Line 6: BEGIN
Line 7: Express al,..., hi-1 as elements in k[t]/gi-l(t)

and Rewrite 15i(a,.’., a_) as pi(t);
Line 8: Find fi(x), minimal polynomial for pi(t) over k[t]/gi-l(t);
Line 9: Write "hi satisfies fi(t) over k[t]/gi_(t)";

(This is either xn p(t), or a divisor of it;
we will pick a divisor of minimal degree.)

Line 10: If 15 is a reducible radical, n lcm(n, n);
Line 11: si(x) Rest(gi-1 (t), fi(x));
Line 12: h(x) si(x)/ gcd(s(x), s(x));
Line 13: Find c such that g(t) Resy(g_(y), f(t- cy, y))

is square-free;
Line 14: END;
Line 15: Rewrite Ibm(a1,"" ,am-l) as pro(t),

and rewrite c(al,... ,am-i) as q(t);
Line 16: Find fro(x), minimal polynomial for q(t)+ Vpm(t)

over k[t]/gm-1 (t);
(This is either (x (t(t))n’ Ibm(t), or a divisor of it.)

Line 17: sin(x) Rest(gm- (t), fm(X));
Line 18: f(x) Sm(X)/ gcd(sm(X), ());
Line 19: Find Cm such that gm Rest(gm-(y), fm(t- cmy, y))

is square-free;

Line 20: END.

THEOREM A.8. On input the sequence c n-,..., (m (c1,’", am-l)
q/15,(a,""", a,-l), where the i, (t are polynomials in Ok[xl, ,Xm] for 2,...,
m, and is in Ok, the Algorithm Compute Polynomial computes f(x), the mini-
mal polynomial for ( (m over k, and the polynomials gi(t), i 1,..., m, where

in :1

and P max(llihi(x,..., xi-)ll, II(x,"""
Proof. As usual, we begin with a proof of correctness. We will prove that gi(t) in

Ok[t] is an irreducible polynomial generating k(al,..., hi), i.e., that k(Cl,..., hi) ---k[t]/gi(t), that f/(x) is the minimal polynomial of ai over k[t]/gi_ (t), and that hi(t)
is the minimal polynomial for ci over k.

That fl (x), h (x), and gl(t) calculated in Lines 2 and 3 satisfy these conditions
is clear. We prove by induction that the f(x), hi(x), and gi(t) calculated in Lines
4-14 do so also. It is clear that ci satisfies xa -pi(t). By using the criterion of
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Theorem 2.9, and factoring if necessary, we find fi(x), the minimal polynomial of ai
over k[t]/gi-1 (t).

Since gi-1 (t) generates k(al ,..., hi-l) over k, we have that
Rest(gi_l(t),f(x)) Nk(al,...,,_l)/k(fi(x)) is a polynomial over k which ai sat-
isfies. Furthermore, by Lemma A.5, si(x) Rest(gi_(t), f(x)) is the power of an
irreducible polynomial over k. Thus hi(x) is the minimal polynomial of ci over k.
Finally, by Lemma A.6, the gi(t) calculated in Line 13 is the minimal polynomial of
ai + ciTi-, where 7i-1 is a root of gi-l(t), and thus generates k(al,.--, hi), that is,

How long does the computation take? In order to discuss the time issue, we need
to know how big the coefficients of f(x), si(x), hi(x), and gi(t) can be. We analyze
that first. Our bounds are not tight, but are chosen for the relative simplicity of the
analysis.

Let n degree (f(x)),and let ,4 max/Ilaill. Observe that hi(x) has root ai
over k, and that thus each coefficient of hi(x) is less than 2nl[oi[In by the binomial
theorem. Therefore Ihi(x)l < (n(2nlloilln)2) 1/2 < (24)n+e. Then 7i cl’"cicl +
Cl’"ci-a2 +"" +hi-l, a root of gi(t), is less than nn.4, and the coefficients of gi(t)
are less than 2n(2n4)n. Thus Igi(t)l < (n(2n(n2n,4)n)2) 1/2 < (nA)4n+e.

It is easy to analyze the size of si(x). Observe that all the irreducible factors of

si(x) appear in hi(x). Thus Isi(x)l < 2nlhi(x)l < (44)n2+e.
Finally we are ready to tackle f(x). Rewriting ihi(al,"’,ai-1) as pi(t) will

increase the coefficient size only slightly. This is because all we are doing is a
matrix computation. Let Ni IIj<_inj. The coefficients of fi(x) are bounded by
([gi(t)[l[i(Xl,’" ,xi-1)I[)NjNj! <

The running time of the algorithm is dominated by the factorizations of Lines 2,
8, 11, 13, and 16. The factorizations of Lines 8 and 16 are over algebraic extensions
of k, and are thus most expensive. They take at most

O(ng+nT+ log2 (n44n+)
< O(n2+ loga+(AT))

steps, where :P max(l[i(Xl,... ,xi-1)l[, [l((Xl, ,Xm-1)l[). The loop is repeated
at most rn times, hence the bound in the theorem. D
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GOSSIPING IN MINIMAL TIME*

DAVID W. KRUMMEt, GEORGE CYBENKO*, AND K. N. VENKATARAMAN

Abstract. The gossip problem involves communicating a unique item from each node in a graph
to every other node. This paper studies the minimum time required to do this under the weakest
model of parallel communication, which allows each node to participate in just one communication
at a time as either sender or receiver. A number of topologies are studied, including the complete
graph, grids, hypercubes, and rings. Definitive new optimal time algorithms are derived for complete
graphs, rings, regular grids, and toroidal grids that significantly extend existing results. In particular,
an open problem about minimum time gossiping in complete graphs is settled. Specifically, for a
graph with N nodes, at least logp N communication steps, where the logarithm is in the base of
the golden ratio p, are required by any algorithm under the weakest model of communication. This
bound, which is approximately 1.441og2 N, can be realized for some networks and so the result is
optimal.

Key words, gossiping, broadcasting

AMS(MOS) subject classifications. 68Q20, 68R10

1. Introduction. Gossiping generally refers to the process of distributed infor-
mation dissemination and can easily be described in graph-theoretic terms. Each
node in a graph initially contains a unique piece of information to be communicated
to all other nodes. At each time step, a node can only communicate with those nodes
that share an edge with it. Information can be combined between communications.
Variants of the gossip problem involve the minimal total number of communications
and the minimal total time required. Different models of communication have been
proposed. Known results about gossiping are summarized in a 1988 survey paper by
Hedetniemi, Hedetniemi, and Liestman [16].

In this paper, we study gossiping in minimum time under the weakest model of
communication and derive a number of optimal results for various graph families.
Our motivation for studying this problem is threefold and stems from the identifi-
cation between multiprocessor interconnection schemes and graphs. First, gossiping
challenges the data throughput capabilities of any interconnection graph while at the
same time it is a model for a number of parallel communications problems. Second,
minimum time solutions for gossiping provide lower bounds for the communication
complexity of algorithms for a large class of problems. Finally, the efficiency of an
optimal time algorithm for gossiping on a particular topology is a useful measure of
that graph’s parallel communication capability when viewed as an interconnection
scheme. As such, it introduces what we believe to be a valuable metric in evaluating
multiprocessor interconnection networks.

1.1. The gossip problem. Our interest in the gossip problem stems from its
relationship to communications problems in distributed memory multiprocessor sys-
tems. Distributed memory multiprocessors share data by passing messages along
dedicated channels that connect pairs of processors. A prototypical example is the
commercially successful binary hypercube architecture [15], [25]. These architectures
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are idealized as graphs where nodes are processors with local memories and edges are
direct communication channels. Any pair of processors can communicate but if they
are not neighbors then messages have to be routed through the network and the time
required is, to the first order, proportional to the length of the route used. Although
our original motivation for studying gossiping came from working with multiprocessor
systems, we use the language of graphs to simplify and generalize our discussions and
results.

The gossip problem is easy to formalize. Each node in a graph has a token, or
unit of data, that needs to be communicated to all other nodes in the graph. Tokens
can be combined so that all communications involve constant time. The time needed
for combining is irrelevant and treated as zero. A formal definition is simply stated:

Initialization: Let G (V, E) be a graph (interconnection net-
work). With each node v, associate an initial singleton set S(v)
(the initial data). These initial singleton sets are disjoint.

Allowable Steps: Each node can send its set to a neighbor or
neighbors and/or receive a set from a neighbor or neighbors
depending on the model of communication used. After receiving
any sets, nodes take the union of their existing sets with all sets
received at that step, thus forming new sets for the next step.

Final State: All nodes must have the same sets locally, containing
all elements in the initial singleton sets.

The only unspecified ingredient in the gossip problem as described above is the
model of what a feasible communication is. There are two independent parameters
that we believe can model most distributed memory systems realistically and we re-
strict discussion to them. They are: (a) the degree of a feasible communication step
and (b) the duplex mode of communication channels. The degree of a feasible commu-
nication is the maximal number of simultaneous communication activities allowed at
each node. We assume that this number is either one or the maximal degree possible
(although intermediate situations are surely conceivable) and we refer to these two
models as pairwise and simultaneous, respectively. The duplex mode is either full or
half. Th.is refers to whether simultaneous reading/writing can take place between a
pair of connected nodes (processors).

We will use some abbreviated notation when referring to these models of com-
munication. Specifically, F1 and H1 refer to the full-duplex and half-duplex pairwise
models, respectively--the suffix of 1 indicates that a node can only communicate
with one other node at a time. Similarly, F, and H. denote simultaneous communi-
cations models with full-duplex and half-duplex modes so that communication with
any number of neighboring nodes is allowed. This leaves open the possibility of study-
ing models like H2, H3, F2, F3, and so on with the obvious meaning that Hn allows
n channels to be used simultaneously (see [14] for a discussion of a specific multipro-
cessor design allowing this). The gossip problem for the complete graph under the
Fn model has been studied by Schmitt [24] and, under a restricted version of the Hn
model, by Entringer and Slater [8].

A solution to this problem is just a sequence of feasible communication steps (an
algorithm). Each communication between neighboring pairs of nodes takes one time
unit. Our measure of the complexity of an algorithm for solving this problem is the
number of time units required to complete the algorithm. When we discuss optimal
algorithms we typically mean optimal to within an additive constant number of steps.
However, in some instances we are actually interested in tight optimality, since we are
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interested both in asymptotic complexity and in specific cases representative of real
systems.

We study this problem on basic topologies that include linear arrays, regular and
toroidal grids, rings, hypercubes, and complete graphs. Our results are primarily for
the H1 model of communication, although we do mention results for other models
as well. A recent paper of Bagchi, Hakimi, Mitchem, and Schmeichel [4] contains
conjectures and results, for grids, hypercubes, and rings under the H1 model, which
we describe in 6, 7, and 9, respectively.

One result derived in the paper settles an open problem in the field [8]. (Initial
announcement of it appeared in [28]. Subsequently, Even and Monien [9] discovered
the same result.) Assume the H1 model of communication so that in one time step, a
node can only be engaged in one communication activity (either sending or receiving
with one of its neighbors). Then a lower bound for solving the gossip problem for any
graph consisting of N nodes is logp N where the logarithm is in the base of the golden
ratio p- (1 + v)/2 so logpN 1.44 log2N- 1.441gN and this bound is optimal.
To contrast this with some well-known algorithms for the hypercube, note that a
common solution on the hypercube uses 2 lg N, which is a constant factor of about

worse than the optimal solution for an optimally connected graph. A companion
paper to this one shows that 2 lg N, is not optimal for hypercubes in general; optimal
algorithms for hypercubes in this model of communication are not known.

1.2. Background. There are a number of common situations in multiprocessing
where gossiping occurs. One application is that of global processor synchronization,
or a barrier type of construction [3]. All processors are to suspend execution at a
certain breakpoint, or barrier, until such time as all other processors have reached the
appropriate breakpoints in their executing programs.

The gossip problem is also an abstraction of a large class of distributed com-
putation problems. Suppose that a parallel computation requires both input and
output data to be distributed across the network. If the outputs require all inputs,
then whatever algorithm is used, there is an implicit solution to the gossip problem
in the communication pattern used by the algorithm. Optimal solutions to the gos-
sip problem therefore provide lower bounds on the communication complexity of any
algorithm for performing such a computation. Based on this observation, it should
be evident that the gossip problem thus provides communications lower bounds for
problems such as linear system solving, Discrete Fourier Transform evaluation, and
sorting. For example, consider the problem of inverting a square n n matrix where
the entries of the matrix are distributed over n2 processors. If the inverse matrix is
to have elements distributed likewise, then our results show that under the H1 model
described above, any algorithm running on any interconnection network will require
at least 1.441g n2 2 logp n communications .steps. This should be compared with
algorithms requiring O((logn)2) arithmetic operations for matrix inversion [7], [21].

The study of algorithms for the gossip problem on standard topologies naturally
leads to asking whether there is an effective procedure for finding optimal algorithms
for any interconnection network. We show that for the H1 and F1 models of commu-
nication this problem is NP-complete by a reduction of the broadcast problem of [11]
to the gossip problem studied here. This is discussed in 4.

Throughout the remainder of this paper we will use log n to denote the logarithm of n in the
base r, p (1 + x/-)/2 to denote the golden ratio, and lgn log2 n.
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1.3. Related research. The communication complexity of parallel algorithms is
an area receiving more attention from the research community. The earliest work that
we know of in this direction is due to Gentleman [12], who studied the communication
complexity of matrix computations on grid interconnection networks like that in the
ILLIAC IV. Gentleman used what we call the F, model of communication and showed,
for example, that at least 0.70n communication steps were needed to invert an n n
matrix stored in an n n grid.

A variety of communications problems have recently been studied by researchers
interested in optimal routing for data movement problems or specialized communi-
cations. Stout and Wager [27] study several communication problems for the binary
hypercube under the F, model. Saad and Schultz [23] compared the performance
of algorithms for various communications problems on a variety of standard multi-
processor architectures. The model of communication used for distributed memory
architectures is equivalent to the H, model of this paper. Other recent works on
communication complexity and optimal routing can be found in [2], [5], [22].

Our results on optimal lower bounds for complete interconnection graphs are the
same as lower bounds for semioblivious PRAM machines computing functions with
critical input [6]. Specifically, semioblivious PRAMs require at least 0.5 logp n
0.72 lg n PRAM-steps to compute a function with critical input. PRAMs allow simul-
taneous reading of memory locations but require serialization of writing, but this does
not match any natural model of interprocessor communication in distributed memory
systems.

1.4. Organization. This paper is organized as follows. Section 2 introduces and
discusses our models of communication in more detail. Section 3 surveys results under
three of the communication models (all but H1). The rest of the paper deals with the
H1 model. Section 4 shows that the derivation of optimal time algorithms for gossiping
on an arbitrary graph using the H1 or the F1 model is NP-complete. Section 5 deals
with the important case of the complete graph. This case is fundamental because
it provides a lower bound on the time required for gossiping on any graph and as
mentioned above it provides lower bounds on the communication required to solve a

large class of distributed computation problems. All of these topics are presented in 5.
Sections 6-10 deM with specific interconnection topologies--linear array, rectangular
grids, toroidal grids, hypercubes, and rings. Section 11 is a discussion.

2. Realistic models of communication cost. In a distributed memory multi-
processor, a communication transaction is an interplay of both hardware and software
activity. As already noted, the H1 model of communication makes the weakest as-
sumptions about both hardware and software capabilities. Detailed discussions of the
relevance of the various models in real multiprocessor systems, such as hypercubes,
can be found in the longer technical reports [19], [20]. We can summarize those obser-
vations by stating that the H, and F, models tend to reflect hardware characteristics,
while the H1 and F1 models reflect software characteristics. A real system will reflect
some combination, possibly a complex one, with perhaps either software or hardware
effects dominating.

In the gossip problem it is assumed that tokens may be freely combined and
transmitted as cheaply as one, or in other words, that the time required to transmit
a message is a fixed constant independent of the length of the message. Cases where
such assumptions would be valid include the following: when the messages are small,
for example, if synchronization or control information is being passed, so that the
dependence of transmission time on message size is negligible; when it is possible
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to coalesce the message contents, such as when a global sum or maximum is being
computed; where the transmission hardware or software uses very large packet sizes
as on the first-generation Intel iPSC; and where local per-message overhead is high
enough that actual message transmission time is negligible. Furthermore, results
obtained under this assumption provide a lower bound for the case where transmission
time does depend on message size.

We also assume that communication occurs as if globally synchronized, i.e., at
each discrete time step, one set of communications across links in the network occurs.
It suffices to note that the algorithms we describe can be viewed as self-synchronizing
since the algorithms are deterministic and so each processing node can store the se-
quence of communications required and initiate a transmission only when that trans-
mission’s precedents have been completed.

Of the four models, we consider H1 to be the most important. It is the weakest.
in fact, it represents the minimal communication capability that a loosely coupled
multiprocessor could possibly have. Thus upper bounds developed under the H1
model apply to all models, while lower bounds under H1 serve as upper bounds
for potential lower bounds under other models. It characterizes one real machine
fairly well (the first generation NCUBE), especially for small messages. Algorithms
developed under the H1 model will generally impose the least load on a system since
they represent the smallest use of communication resources.

3. Full-duplex and simultaneous models. Analysis of the problem under the
F,, H,, and F1 models is easy for most of the graphs we deal with. In this section
we treat these three models in turn, leaving the H1 model for the rest of the paper.
Before proceeding, we observe that the number of steps required under the H1 model
is no more than twice what is required under the F1 model and no more than a factor
of v times what is required under the H, model, where v is the maximum degree of
any node. Similarly, the complexity under the F1 model is no more than a factor of
v times the complexity under the F, model, and under the H, model it is no more
than twice that under the F, model. Although this indicates a potential range from
D (the diameter) under F, to 2vD under H1, we shall find that solutions in close to
D steps are almost always obtained under all four models.

3.1. Full-duplex simultaneous communication (F,). Under the F, model,
the gossip problem on any graph has the graph’s diameter as a tight bound: each
node can simply send its tokens to all its neighbors at each step, and the time needed
to gossip will simply be the diameter.

3.2. Full-duplex pairwise communication (F1). For the complete graph
with an even number N of nodes (and for the hypercube of N nodes), the time
to gossip under the F1 model is the same as the time required to broadcast from a
single node, or [lg N];if N is odd, it is [lgN + 1 [17].

Farley and Proskurowski [10] have carried out an extensive analysis of the gossip
problem under the F1 model for rings and two-dimensional grids, toroidal grids, and
Illiac grids. Their results include the following. For the N-node ring the minimum
time is N/2 (the diameter) if N is even; if N is odd it is [N/2] + 1 (two more than
the diameter). The minimum time for any two-dimensional grid other than the 3 3
grid is the diameter of the grid; for the 3 3 it is 5 (one more than the diameter).
The minimum time for an N M toroidal grid is equal to the diameter if N and M
are even, is between 1 and 2 greater than the diameter if just one of N and M is odd,
and is between 2 and 4 greater than the diameter if both are odd. Similar results are
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obtained for the Illiac grid.
For d-dimensional grids and toroidal grids in general, their results indicate that

the minimum time is no greater than 2d plus the diameter. Whether it is possible
to do better than that is an open question; for example, it is not known whether the
3 3 3 grid can be solved in six steps under the F1 model.

3.3. Half-duplex simultaneous communication (H,). For any bipartite
graph with diameter D under the H, model, there is a (D + 1)-step solution to
the gossip problem: two-color the nodes red and black and have red nodes transmit
to all neighbors on even time steps and black nodes do so on odd time steps.

For the complete graph, it takes exactly two steps to solve the problem regardless
of the size of the graph. It is impossible to solve the problem in one step, and for a
two-step solution we just select a subgraph consisting of one node and one edge from
it to every other node and apply the above construction with the first transmissions
going toward the central node.

Since the d-dimensional hypercube is bipartite, the above bipartite approach
yields a (d + 1)-step solution. For d _< 2 this is optimal, but for d _> 3, solutions
in d steps exist. They are hard to find and describe--for example, there are 236 dif-
ferent three-step strategies to consider on a 3-cube--and we treat them in a separate
paper [18]. One significant result of that work is that for all d _> 4, time-invariant
optimal solutions, that is, solutions where the transmissions are the same at each step
exist.

For the d-dimensional grid of diameter D, 7 shows that the problem can be
solved in D steps even under the pairwise model, and this automatically provides an
optimal solution under the simultaneous model.

A ring with an even number of vertices N is bipartite, and the above bipartite
algorithm gives an optimal.solution of (N/2 + 1) steps, one step more than the di-
ameter. (It is impossible to do it in N/2 steps.) With an odd number of vertices,
the following modified version can be used. On each step, one link is omitted from
involvement, the choice of which link to omit proceeding around the ring one step at
a time. The other links participate in the basic bipartite pattern, where directions
are chosen so that each node alternates sending and receiving. This yields a solution
taking (N- 1)/2 + 2 steps, two steps more than the diameter.

For the d-dimensionM toroidal grid the same construction can be used. In each
dimension where the size is odd, the pattern must be modified as with the ring, where
the omitted links are chosen with matching coordinates so that they form entire rows
or columns (or hyperplanes). This yields solutions that take (D + k + 1) steps, where
k is the number of dimensions where the size is odd.

The rest of this paper is devoted to the half-duplex pairwise (H1) model, the
analysis of which yields a surprising richness of nontrivial and interesting problems
and results.

4. Complexity of finding optimal solutions. In this section we demonstrate
that the problem of finding time-optimal algorithms for gossiping is NP-complete
under either the H1 or the F1 model of communication. This result serves to justify the
detail required to find optimal algorithms for specific interconnections. Our reduction
uses the Minimum Broadcast Time Problem as described by Garey and Johnson [11]
giving the result for the H1 model, which we then show can be modified to yield the
same result for F1. We also need a simple result about reversibility when using the
H1 model. First, we restate the Minimum Broadcast Time problem from [11].
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Minimum Broadcast Time Problem (MBTP)" Given a graph G (V, E), a subset
Vo of V, and a positive integer K, can a message that is originally resident on all nodes
in Vo be distributed to all of V in K steps using the H1 model?

This formulation uses our terminology instead of the set and edge formulation in
[11] but the reader can easily verify that the two are precisely the same. The result is
NP-complete even for IVol 1, that is, for broadcasting from a single node. Observe
that any single source broadcast algorithm becomes a single sink gather algorithm
when the sequence of communications is reversed. That is, by running a broadcast
algorithm backwards, we collect tokens from all nodes.

Given an instance of the MBTP involving a graph G (V, E) and a specified
node v, we construct another graph G* (V*, E*) that depends on the choice of v
with the property that the MBTP for G and v has a solution using k or fewer steps
if and only if the gossip problem for G* has a solution using 2k + 2 or fewer steps.

The graph G* is constructed as follows. Take two copies of G and connect the
nodes corresponding to v from each copy. This is G*. We denote the two versions of
G by G1 and (2 and the two corresponding versions of v by vl and v2.

Suppose that we have a solution to the MBTP for G and v that uses k steps. Run
the algorithm in reverse on each copy of G in G*. That takes k steps. Now all tokens
from G are at v and all tokens from (2 are at v2. It takes two steps to exchange
the sets between Vl and v2 in the H1 model. We then run the MBT algorithm on
each copy of G from v and v2. This solves the gossip problem in 2k / 2 steps.

Now assume that we have a solution to the gossip problem that uses s _< 2k / 2
steps. Let t be the step after which the last token from G first reaches v2. Since the
last token reached v2 after t steps, all other tokens have already reached v2. Moreover,
all the tokens must have first reached vl by time t- 1 since it takes one time step
to cross from ( to (2. Since this is a solution to the gossip problem using s steps,
that last token to reach v2 after t steps must be broadcast to all of (2 in s t steps.
Hence we have two MBTP candidate algorithms: the gather algorithm that used
t- 1 steps to gather all tokens at v (when run in reverse, this would be a broadcast
algorithm for G and the broadcast algorithm from v2 to all of (2 that uses s- t
steps. Since ((s t) + (t- 1))/2 (s 1)/2, one of the algorithms must use no more
than [(s- 1)/2] _< k steps.

Thus a solution to the MBTP for G and v in k steps exists if and only if there
is a solution to the gossip problem for G* in 2k / 2 steps. Since the construction of
G* uses only polynomially much resources, we have shown that the mininum-time
gossip problem is NP-complete.

Finally, we observe that in broadcasting from a single node (or collecting to a
single node), the full-duplex capability is useless: there can be no case where the
replacement of a half-duplex transmission by a full-duplex one would improve any of
the above algorithms. Hence the entire above proof can be repeated for the F1 model,
with 2k / 1 being used in place of 2k / 2 because the exchange between Vl and v2 can
be done in one step.

5. The complete graph. Analysis of the gossip problem for the complete graph
is important because it provides a benchmark for all other graphs. Entringer and
Slater [8] have presented an algorithm that provides an upper bound, and we show
that this algorithm is optimal by deriving a matching lower bound. After presenting
this derivation, we present their algorithm and then discuss some implications for
parallel algorithms.
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5.1. Lower bound. We develop a lower bound by introducing a measure of
aggregation and showing that there are limits on the rate at which that measure
can grow. Given the complete graph with N 2n vertices Vl,V2,’",v2n, let us
denote by xi(t) the number of distinct tokens present at vi at any time t. Writing
these values as a vector x (Xl,X2,.. ",x2n) we can use as our measure the norm

/p(X) (-n X)I/P for some suitable 1 _< p _< oc. (For p x, /p(X) maxl
2n

xi.
We will choose p so as to maximize the resulting lower bound on the number of steps
required in the complete algorithm.

Let us denote by mp(t) the maximum value that the measure lp can possibly
achieve after t steps and seek a relationship between mp(t) and mp(t + 1). Our
derivation is based on the following formula.

LEMMA 5.1. If A1,A2,". ,As,B1,B2, ,Bs are positive real numbers, then

A1 + A2 +... + A8 Aimax
B1 + B2 +’" + B Bi

Proof.

AiAj <_ Bj mx- == E ==, j Aj Ai< max--.

Step t consists of pairwise communications; assume that the number of tokens
present at the senders and receivers are 81,82,’..,8n and rl,r2,..., rn, respectively.
If M denotes the maximal value of me(t+1)

mp (t) we have

Mp 8 -t- (81 - rl)P - + 8Pn -- (Sn -t- rn)p
max

P (sy ry)p P P and at theNow we apply Lemma 5.1 with Aj sj + + and Bj sj + rj,
same time observe that the maximum is achieved when s se Sn and
r re rn, so that we obtain

sp + (s + r)pMp max
<_s,r 8p - rP

Now before considering our choice of p, let us see what the measure says about
how many steps the token exchange will take. Initially, each node has just one token,
SO mp(O) N1/p. Upon completion at time T, each node will have N tokens, so that
rap(T) N(p+I)/p. By definition of M, we must have rnp(T) <_ MTmp(O), which
yields the following lower bound:

lgN
T>

lgM"

Now to obtain the best possible lower bound with this approach, we choose p to
maximize T in the above equation. This means that we want to minimize M. Now
define

V(p)= max ([siP+Is+riP)
1/p

+
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It is immediate that M <_ V(p), so minp M _< minp V(p); it is the latter quantity that
we can find using some properties of vector and matrix norms. (It turns out that
minp M- minp V(p).) Consider the linear operator

or in matrix notation,

F r s+r

1] :1.
Denote the matrix representing F in this basis by F also. We need some standard
norm definitions at this point (see [13] for more about the definitions and properties
of these norms). Define the vector p-norm according to:

I111 (11 + IriS)1/ where z r

A fundamental Net about vector norms is that for 1 p < and lip + 1/q 1,
we have

111- m z-max
where yW denotes transposition. For a matrix G the matrix norm of G is defined as

a] mx ax.
Now, note that

by these definitions. By a classical theorem of Riesz, log ]G]]p is a convex function of
p [26, p. 179]. Moreover,

max max yTFx

max max xTFTy
]=1 ]]=1

But F and Fw clearly have the same norms since, apart from a bis permutation,
they are the same operator. Thus, for 1/p + 1/q 1, we have Y(p) Y(q). Using
this and the fact that log V(p) is convex as a function of p, we see that the minimum
value of V(p) is attained for p 2.

Now we seek the value V(2). Observe that the maximum cannot occur for s a

(compare, for example, s 0, r 1 with s r 1), so that we can set z r/s and
write

V(2) max (1 + (1 +z)2) /2

z 1+z2
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Using elementary calculus one can now show that the maximum occurs for z p- 1,
where p is the golden ratio. Evaluating the formula at that point yields

T > lgN lgN
1.44 lg(N) logp.N.

lg V/(1 + p2)/(1 + (p- 1)2) lgp

Thus we have the following result.
THEOREM 5.2. The gossip problem for the complete graph under the H1 model

of communication requires at least Ilogp N 1.44 lg N steps, where p is the golden
,-atio (1 + /

5.2. An optimal algorithm. In this section we present in our own notation an
optimal algorithm for the gossip problem under the H1 model which was described by
Entringer and Slater [8]. For completeness, we restate the proof of its performance.
The algorithm uses the Fibonacci sequence, which we define by F0 0, F1 1,
Fk+ Fk + Fk-1 for k > 1.

We assume N is even; if not, choose any one node and send its token to another
site, solve the problem on all nodes but the one, and lastly, send from some site to
the chosen node. Let n N/2 and label the nodes P0, pl,’", Pn-1, q0, ql,’’’, qn-1.

Denote by P (Q) the token originating at p (q). Transmit as follows until the token
exchange is complete:

Step 0: Transmit from pi to qi for all i, 0 _< _< (n- 1).
Step 1" Transmit from qi to pi for all i, 0

_
i

_
(n- 1).

Step k, k >_ 2: If k is even transmit from pi to q+Fk-1 for all
i, where + denotes addition modulo n. If k is odd, transmit
similarly from qi to Pi+Fk-1 for all i.

LEMMA 5.3. After step k >_ 2, where Fk+l

_
n, if k is even (odd), for each i, q

(pi) has the tokens Pi, Qi, Pi-I, Qi-1," P-F+I+I, Q-F+I+I, and pi (qi) has the
tokens Pi, Qi, Pi-1, Qi-1," ,Pi-F+I, Qi-F+l.

Proof. This is easily proved by induction on k.
THEOREM 5.4. The gossip problem for the complete graph under the H1 model

of communication can be solved in [logp N] + 4 steps.
Proof. From the above lemma, it is clear that after step k, nodes pi and qi (k

even) or nodes qi and p (k odd) have 2Fk and 2Fk+l tokens, respectively. Then it can
be seen that when Fk >_ n, every node has all tokens and the broadcast is finished.
Now the result follows from the well-known inequality Fk

This algorithm asymptotically takes exactly the same number of steps given by
the lower bound discussed in the preceding section. In fact it achieves at each step very
close to the maximum rate of growth of information as we defined it in establishing
the lower bound, and it solves the broadcast problem efficiently (usually within 1 step
of the lower bound) for all even values of N including small ones.

5.3. Lower bounds for specific problems. As mentioned in the introduction,
the gossip problem provides a lower bound on the communication complexity of al-
gorithms for which all outputs require all inputs. Specifically, suppose we have an
arbitrary interconnection network and we have data distributed over N1 nodes, say,
di at node vi for 1,..., N. Furthermore, suppose that we desire to compute func-
tions fj at nodes wj for j 1,..., N2. These functions are such that fj(d,..., dg)
depends explicitly on all data di. Thus in terms of tokens, we can say that all tokens
at the input nodes must be distributed to all output nodes.
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Following the idea in the proof of Theorem 5.2, note that the initial value of the
aggregate information measure is m2(0) N/2 and the final aggregate information

/Tllmeasure must be at least Nl,2 It can be readily verified that the construction
leading up to Theorem 5.2 applies to this case as well, so that a lower bound on the
number of communication steps required to compute the functions is given by

lg((NiN2) /2)T>
lgM

(gN + gN)
21gp

where p is the golden ratio as before. Note that we made no assumptions about
whether some or all of the input nodes were the same as the output nodes; a slightly
tighter bound can be derived if the input and output nodes are distinct.

This result is interesting to juxtapose against some well-known parallel algo-
rithms. Consider first the computation of the Discrete Fourier Transform on N points.
The Discrete Fourier Transform itself consists of N outputs, each one of which de-
pends explicitly on each input. Thus the above result states that at least 1.44 lg N
communication steps are required for the computation of the transform using any
algorithm and any architecture, providing of course that the data is distributed as
above. By comparison, the standard approach to parallelizing the Fast Fourier Trans-
form requires 2 lg N communication steps. Thus from a communications complexity
point of view, the Fast Fourier Transform is a constant factor of about worse than
the optimal communications algorithm would be. The optimal algorithm from a com-
munications point of view would be the optimal token exchange algorithm described
above for the complete graph followed by a brute force Discrete Fourier Transform
calculation at each output node.

A similar result can be stated for matrix inversion. Suppose that the n2 entries
of a matrix are distributed over n2 processors. Suppose that we wish to compute the
inverse of the matrix with the entries of the inverse distributed over the n2 processors
likewise. Since the entry of every element of the inverse depends on every element of
the original matrix, this leads to a gossip problem on n2 processors. It has been known
for some time [7], [21] that the inverse is computable in O(lg2 n) parallel computation
steps. Our results show that at least 2.88 lg n communication steps are required.

It is clearly possible to obtain bounds on the communication complexity of a large
class of problems for which input data and output are distributed across the nodes of
a distributed memory multiprocessor.

6. The hypereube. The hypercube is the most difficult of the graphs for which
we have analyzed the gossip problem. Its importance derives from the fact that it is the
topology used in the most commercially successful and widely available multiprocessor
computers. We believe the main reason for the difficulty is its low diameter: for graphs
whose diameter is large relative to their size, it is usually possible to solve the problem
in a number of steps close to the diameter. Since the diameter is a trivial lower bound,
tight upper and lower bounds are typically derivable. However, for graphs with small
diameters, relatively fast solutions are possible in principle, but it becomes difficult
to either find them or find a nontrivial lower bound. The analysis for the complete
graph follows this pattern, while the hypercube proves to be even more difficult.

The best known upper bound for the hypercube using the H1 model follows from
an algorithm presented in another paper [18]. That algorithm is quite complex and
so is not included in this paper, but we will summarize the results.
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We note that there is a large class of algorithms solving the gossip problem on
a d-dimensional hypercube in 2d steps. This class of algorithms has been known to
many hypercube researchers (see, for example, [28], [23], [27]) and we only summarize
it here. Let ri_ (ri+) denote the parallel transmission of tokens from nodes with their
ith bits cleared (set) to their neighbors with their ith bits set (cleared). Let r be the
composition of these 2d unique transmissions in any order. The claim is that every
such r solves the gossip problem in precisely 2d steps.

This is easy to demonstrate by picking any two nodes from the hypercube, say, a
and . These two labels differ in some number of bits and we obtain ’s label from a
by toggling no more than d of a’s bits. Now r effectively involves sending tokens along
each direction of each communications channel in the hypercube at some time, which
can be viewed as toggling bits in labels. Hence some subsequence of transmissions
will result in toggling the bits of a in such a way that/’s label is obtained.

Furthermore, if r is composed of any 2d- 1 or fewer of these transmissions in any
order, then r does not perform a complete token exchange. This is because, given an
omitted ri_ or ri+, one simply looks at the a and/ that require the toggling of the
bit of a that this omitted transmission corresponds to.

It is tempting to believe that this class of algorithms is optimal for hypercubes.
(This is conjectured in [4].) Surprisingly, it is not. We know from the complete
graph case that the lower bound for a hypercube is at least 1.44d while the above
construction demonstrates the existence of algorithms requiring 2d steps. In [18], an
algorithm for performing token exchange on a nine-dimensional hypercube in only
17 steps is presented showing that 2d is not in fact optimal for all cubes. The nine-
dimensional cube is the smallest cube for which an algorithm using fewer than 2d steps
is known. That algorithm generalizes for larger-dimensioned cubes giving an upper
bound of 1.88d steps and this is the best known for hypercubes. This gap between
1.44d and 1.88d leaves plenty of room for future improvement, but at present we have
no concrete ideas about how to proceed nor do we have strong intuition about which
direction is most fruitful to pursue (that is, whether it is easier to raise the lower
bound or to lower the upper bound).

7. The grid. Multidimensional grids have relatively large diameters, and this
makes it relatively easy to solve the gossip problem optimally (in a number of steps
equal to the diameter of the grid). Farley and Proskurowski [10] showed that two-
dimensional grids other than 3 3 are solvable in optimal time under the F1 model.
Recently, Bagchi, Hakimi, Mitchem, and Schmeichel [4] have shown that for n m
grids under the H1 model where n >_ 6 and m is even (odd), gossip is possible in one
step (two steps) more than the diameter. They also showed that if m 2, then gossip
in optimal time is impossible.

In this section we sharpen those results by showing that optimal solutions exist
for all sufficiently large two-dimensional grids, and we extend this result to grids in
an arbitrary number of dimensions. The time to gossip under the H1 model on small
grids is left open, although we are able to show that optimal solutions do not exist
when a multidimensional grid’s size is 2 or 3 in any dimension.

Figure l(a) shows a communication pattern for the 5 5 grid. The numbers
alongside the arrows indicate on which step(s) of the algorithm the indicated com-
munication steps occur. The large solid dots will be called primary points and the
hollow dots secondary points. The reader can verify that tokens present at the pri-
mary points are distributed to all primary points in optimal time. A further property
that will be used in the case of three-dimensional grids is that any token present at a
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FIG. 1. Distribution among primary points accomplished in optimal time.

secondary point after the second step is distributed to all primary points by the end.
Similar patterns with these two properties can be constructed for the 6 6 grid, as
shown in Fig. l(b), and for the 5 6 grid (not shown).

Given, then, a 9 9 or larger two-dimensional grid, if its size is odd in both
dimensions we select a 5 5 subgrid exactly centered in the larger grid. If its size
is even in one or two dimensions, we select a centered 5 6 or 6 6 subgrid. The
reader can easily verify that if K is the distance from a corner of the larger grid to a
corner of the subgrid, it is possible to simultaneously send each token on the grid to
some primary point in K steps. (This is easier to do on larger grids; the 9 9 is the
smallest grid where it is easy to do. Observe that each corner point of the subgrid
can collect tokens from a 4 4 corner region of the larger grid in four steps.) To solve
the token exchange on the full grid, then, we concentrate all tokens at the primary
points, apply the communication pattern of Fig. 1, and then distribute tokens from
the primary points using the reverse of the pattern that was used to concentrate the
tokens. This gives a solution for any two-dimensional grid containing a 9 9 grid in
a number of steps equal to the diameter.

We can extend this result to higher dimensions. Suppose we are given an nl

n2 nd grid with all n >_ 9. By holding all but the first two coordinates fixed
we define n3na’"nd independent two-dimensional grids. In parallel, we solve the
problem on those grids in optimal time. Then we hold all but the third and fourth
coordinates fixed and solve the problem optimally on those grids, and so on. If d is
even we are finished after solving d/2 two-dimensional problems, while if d is odd we
must at the end solve a three-dimensional version of the problem.

We can solve the three-dimensional version of the problem in optimal time on any
grid large enough to contain a 9 9 5 subgrid. For an nl n2 n3 grid, we first
hold the third coordinate fixed and concentrate tokens at the primary points of the
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FIG. 2. Distribution to secondary points throughout the third dimension.

central subgrids of all the n n2 grids. Now for each pair consisting of a primary
and associated secondary point, consider the 2 n3 subgrid defined by selecting that
pair using all possible values of the third coordinate. After collecting tokens at the
primary points, we apply the n3-step pattern depicted in Fig. 2 on all these grids;
we use this in place of the first step of Fig. 1. This sequence carries tokens from
primary to associated secondary points while distributing the tokens throughout the
third dimension. Lastly, we apply the remainder of the two-dimensional strategy on
all the n n2 grids. Since the communication pattern in Fig. 1 takes tokens present at
any secondary point to all primary points, we have distributed tokens throughout the
three-dimensional grid in optimal time. We summarize these results in the following
theorem.

THEOREM 7.1. Assuming that d >_ 2 and ni >_ 9 for all i, the gossip problem for
the nl nd grid under the H1 model of communication is solvable in a number
of steps equal to the diameter of the grid.

For small multidimensional grids the minimum time to gossip is still open. We
can show that the grid’s size cannot be 2 in any dimension if the problem is to be
solved in optimal time. Assume we have an optimal solution for a multidimensional
grid of diameter D whose size in some dimension is 2. Consider neighbors p and q
at a corner: points at a distance D from opposite, points/ and . The token from
p must reach i in D steps, and thus it must be advanced toward that goal on every
step so that after k steps there is a unique point P(k) at distance k from p that has
received the token. Similarly, there is a unique point Q(k) at distance k from q that
has received the token from q after k steps. Now let K be the unique time such that
the token from q is not present at P(K) after step K and is present at P(K + 1) after
step K + 1. Since step K + 1 is a transmission from P(K) to P(K + 1), the token
from q must be present at P(K + 1) after step K. Since P(K+ 1) is at distance K + 1
from p, it is at distance K or more from q; the fact that the token from q is present
there after K steps means that P(K + 1) Q(K). But this is a contradiction since
the token from q is not advanced from Q(K) on step K + 1.

A similar argument can be used with a grid of diameter D whose size in some
dimension is 3. Let p, q, and r be points in a corner with p at distance D from i, q at
distance D from , and r in between p and q. Define P(k) and Q(k) as before. Let Kp
be the unique time such that the token from r is not present at P(Kp) after step Kp
and is present at P(Kp + 1) after step Kp / 1, and let Kq be the unique time such that
the token from r is not present at Q(Kq) after step Kq and is present at Q(K + 1)
after step K + 1. Reasoning as before, we determine that the token from r travels
distance Kp in optimal time to P(Kp + 1), from which point it does not advance on
the next step; and it travels distance K in optimal time to P(K + 1), from which
point it does not advance on the next step. Since P(Kp + 1) and P(Kq + 1) must be
different points, this is impossible.
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FIG. 3. The basic pattern for the toroidal grid.

We have thus determined that for the gossip problem under H1 to be solved in
optimal time, the grid’s size in each dimension must be at least 4. In two dimensions
we have found optimal-time solutions for 7 7 and larger grids, which we do not show
because of space limitations. (See [20].) This leaves open the question of optimal-
time solutions for grids between 4 4 and 6 n. In three dimensions the smallest
optimal-time solution we know is the one described above for the 9 9 5 grid.

8. The toroidal grid. The toroidal grid is obtained from the regular grid by
adding connections that "wrap around" to connect the end points in each dimension.
Formally, an nl n2 ... nd toroidal grid has as vertices the points (pl,... ,Pd)
in d-dimensional Euclidean space where 0 _< p < n for all i, and where there is an
edge connecting two points if their coordinates differ in just one component and
that difference is +1 modulo ni. The diameter of the toroidal grid is half that of the
regular grid, making it much harder to solve the gossip problem in a number of steps
close to the diameter. We show that for d _> 2 the gossip problem on a d-dimensional
toroidal grid with diameter D is solvable in D / 18d / 39 steps. (If d 1 then we
have the degenerate case of a ring that is quite different in nature and that is taken
up in 9.) First we sketch the strategy for the case d 2, and then we present a
general version for d _> 2. These strategies are best suited for grids whose sizes in all
dimensions are divisible by four while adjustments must be made for other sizes.

8.1. The algorithm for two dimensions. The basic pattern for two dimen-
sions is shown in Fig. 3. It uses a cycle of four steps that is repeated indefinitely.
Arcs that have transmissions occurring on the first step of the cycle are labeled with
0, those with transmissions on the second step 1, and so on.

The following properties are evident: (1) Tokens move at maximal speed in both
horizontal and vertical directions. (2) Horizontal lines alternate between right-going
and left-going directions, and vertical lines alternate between up-going and down-
going. (3) A token traveling in one direction will, with a delay of two steps, be picked
up at any node and also begin traveling in the orthogonal direction from that node.
(4) The pattern corresponds to a synchronization of stoplights in a grid of alternating
one-way city streets so that traffic can move forward at constant speed on all streets
simultaneously without ever having to stop at a red light. (The downtown of Tulsa,
Oklahoma has just such an arrangement.)

The optimality of the strategy is apparent from the following observations. Given
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1

FIG. 4. The solution for a 7 5 toroidal grid. Hollow points represent emulator and extra
points. Apparently conflicting vertical transmissions at the top are carried out in alternating cycles.

some source node and some target node, the token from the source will, within some
constant number of steps, arrive at a nearby location where the horizontal line is
oriented toward the target. Then it can travel along that horizontal line at a rate
of one step per time unit until it reaches a vertical line that is oriented toward the
target and that passes within one unit of the target. Then, after a delay of 2, it can
proceed along this vertical line at the rate of one unit per time step until it arrives
at a point near the target from which it will reach the target within some constant
number of final steps. Thus the token from an arbitrary source reaches an arbitrary
target in a number of steps equal to the distance between them plus some constant
that is independent of the two-dimensional grid size.

This strategy is most easily implemented on a grid whose horizontal and vertical
sizes are multiples of 4, in which case one can verify that the solution takes at most 18
steps more than the diameter of the grid. The strategy can be modified to handle the
other cases, as can be seen in Fig. 4 for the 7 5 toroidal grid. Roughly speaking, the
above strategy is used on as many nodes as possible, leaving at most one line of nodes
in each dimension that violate the consistency of the sequence of transmissions. Those
extra nodes then perform only a subset of transmissions in a way that is consistent with
neighboring nodes’ transmission sequences. The reader is encouraged to generalize the
situation depicted in Fig. 4, while more details can be found in the longer technical
report [20].

8.2. A strategy for arbitrary dimensions. One would hope that toroidal
grids in 3, 4, dimensions (with all sizes divisible by 6, 8, ...) could be handled
by transmission patterns with periods of 6, 8, that propagate tokens at maximal
speed along lines in all directions, directly generalizing the two-dimensional strategy.
Efforts at constructing such strategies have convinced us that no such pattern exists
in three dimensions. Our strategy for grids of larger dimension generalizes the two-
dimensional version in the following, weaker way. We retain the same basic four-step
pattern and we specify transmissions in the horizontal directions exactly as before.
(We base this on a node’s horizontal coordinate coupled with its distance from the
horizontal axis; this specification is formalized in the function T below.) In place of
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FIG. 5. The basic pattern for the three-dimensional toroidal grid.

the vertical lines, we consider hyperplanes orthogonal to the horizontal lines. In each
hyperplane we choose one direction (forward or backward through some dimension)
and provide transmissions in that direction in the same way as in the two-dimensional
version. We choose these dimensions (using function U below) and directions (with
forward and backward pairs) so that as one proceeds along a horizontal line, one
passes all directions and dimensions in a cyclic pattern. Figure 5 shows the pattern for
d- 3. The following description presents the construction precisely, and it includes
the special treatment necessary for sizes that are not multiples of four, treatment
which differs from what was used in the two-dimensional case for sizes not divisible
by four.

We begin with a toroidal n x... x nd grid with d _> 2, n _> 8d, and all other
ni > 4. For each let mi be the largest integer less than or equal to ni that is divisible
by 4. We shall divide the points of the grid into three groups: a point p (pl,’", Pd)
is a regular point if Pi < mi for all i; it is an emulator point if Pi >_ mi for exactly one
i; otherwise (Pi _> mi for two or more values of i) it is an extra point. The regular
points form a m x x md subset of the grid that is the largest one that has a size
divisible by 4 in every dimension. The emulator points lie outside this subgrid on the
lines occupied by the regular points. In general, there may be no emulator and/or
extra points for a particular grid; our constructions work in those cases just as well
(faster, in fact) as when the emulator and extra points are present.

Let U be any bijection from {0, 1,..., d- 2} to {2, 3,..., d}. Now define functions
Q and T:

Q(y,z) z + y(-1) (mod 4),
T(p) Q(pl,p2 +"" + Pd).

These two facts about Q are used in the first proof below: Q(y+l,z) Q(y,z)+(-1)z

and Q(y,z + 1) Q(y,z)+ (-1)y.
We now define Strategy G for the regular and emulator points. Each regular point

transmits alternately through dimension 1 (called the horizontal direction) and some
other dimension (called the orthogonal direction), with the exact choices determined
by the functions T and U. Specifically, regular point p transmits through dimension
1 at all time steps that are congruent to T(p) modulo 4; the transmissions go in the
forward direction (toward increasing values of Pl) if p2 +... + Pd is even and they go
in the reverse direction if it is odd. At time steps congruent to T(p) + 2, p transmits
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in a way determined by pl" if pl is even, p transmits in the forward direction through
dimension

and if it is odd p transmits in the reverse direction through dimension

U(p (modd-1)).
Emulator points, if there are any, occur in groups of one, two, or three along lines

whose other points are regular points. If transmissions along those lines are defined
for the regular points, we extend the transmissions to the emulator points as shown
in Fig. 4. The result is that a token moving toward emulator points crosses from the
last regular point before them to the first regular point after them in at most nine
time steps. (In contrast, if there are no emulator points, this crossing is made in one
time step, so there is an added delay of eight caused by the presence of the emulator
points; this delay can also be expressed as seven more than the distance covered in
the crossing.)

LEMMA 8.1. Strategy G is well defined under the pairwise model of communica-
tion.

Proof. All we must check is that when a point p transmits to its neighbor q, q
is not supposed to be involved in any other transmission. We assume both p and
q are regular points surrounded by regular points; when they or their neighbors are
emulator or extra points, the proof is similar but easier. We treat the case where both
p and p2 /"" /Pal are even; the other cases are similar. (a) For transmissions through
dimension 1, observe that q (pl + 1, P2 +"" + Pd). Now note that T(q) T(p) + 1,
and thus the strategy specifies transmissions away from q at times congruent modulo
4 to T(p) / 1 and T(p) + 3, which do not conflict with the transmissions from p to
q at times congruent to T(p). Regarding transmissions toward q, let us identify all
nodes that transmit toward q: p is the only one that transmits toward q through
dimension 1, and otherwise the dimension of a transmission to q is determined by
pl + 1. Since all nodes with first coordinate pl / 1 transmit in the same direction,
exactly one such node r transmits to q. Since p + 1 is odd, the transmission is
in the reverse direction and it occurs at times congruent modulo 4 to T(r) / 2
Q(p + 1, p2 +"" + Pd + 1) + 2 T(q) + 1 T(p) + 2, which causes no conflict with
the transmissions from p to q at times congruent to T(p). (b) For the transmissions
from p at times congruent to T(p) / 2 the analysis is similar. The transmissions go to
a point q for which T(q) T(p) / 1. Point q transmits in the same direction at times
congruent to T(q) / 2 T(p) / 3, transmits in the reverse direction in dimension
1 at times congruent to T(q) T(p) / 1, and receives from a point r in dimension
1 at times congruent to T(r) T(q)- 1 T(p). None of these conflicts with the
transmission from p to q at times congruent to T(p) / 2.

Now we proceed to solve the gossip problem using Strategy G. We distinguish
between central regular points for which 2 _< Pl < m- 2 and boundary regular
points, which are the others. Our solution consists of three phases: compression,
Strategy G, and expansion. The compression phase consists of at most 2d / 2 steps
in which we send all tokens from extra, emulator, and boundary regular points to
central regular points" we simply treat each dimension in turn, and in one or two
steps send each token toward its nearest regular point; for the horizontal dimension,
we go two additional steps so that the tokens are sent to the central regular points.
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In the second phase we perform a complete token exchange among the central regular
points by letting Strategy G run for a suitable number of time steps. Finally, the
expansion phase is the compression run in reverse and it distributes all tokens and
the problem is solved. This leaves us with the problem of determining how Strategy
G solves the token exchange among the central regular points.

We begin with a lemma that captures the essence of the solution. Let the distance
between points x and y be denoted by 5(x, y).

LEMMA 8.2. Suppose we have regular points p and r meeting either of the follow-
ing conditions: horizontal transmissions at both p and r are in the forward (backward)
direction, and in proceeding forward (backward) horizontally from p one encounters
exactly 2d-2 regular points, including the beginning and ending points, by the time the
horizontal position of r is reached. (This means that if no emulator points intervene,
p and r are separated by a horizontal distance of 2d- 3.) Then under Strategy G, if a
token is present at p at time t where t is congruent to T(p) (i.e., ready for a horizontal
transmission away from p), then the token reaches r by time t + 14d + 10 + 5(p, r).

Proof. Assume, without loss of generality, that horizontal transmissions at p go
in the forward direction. We shall describe a path by which the token from p reaches
r. The token generally proceeds forward horizontally. Each time it is located at a
node where the transmissions in the orthogonal direction proceed toward r, we check
whether the difference between p and r is even in that coordinate. If even, our path
follows the orthogonal direction to the point where the coordinates match, and then
it proceeds again in the horizontal direction; since the coordinates differ by an even
amount, the path will continue again from there in the forward horizontal direction.
If odd, we note the horizontal coordinate and let the path continue in the horizontal
direction without following the orthogonal direction. When we encounter another
such orthogonal direction representing an odd difference in coordinates, we have our
path go in that direction until reaching the point where the coordinates match. From
there, the transmissions in the horizontal dimension proceed backwards, and we follow
them until reaching the horizontal coordinate that we previously noted. From there
our path proceeds through the orthogonal direction at that point until reaching the
point matching r in that coordinate. From this point, since we once again traveled an
odd distance in the orthogonal direction, the horizontal transmissions will once again
be proceeding in the forward direction, and we continue as at the beginning. The
assumptions ensure that every possible direction will be encountered exactly once,
and since there must be an even number of coordinates (other than the horizontal
coordinate) where p and r differ by an odd amount--this is because the horizontal
lines containing p and r are separated by an even distance--the token will eventually
arrive at r.

Now let us count the number of time steps this process takes. The reader can
verify that the slowest path involves the maximal amount of backward motion: three
forward steps initially, then orthogonal motion, three backward steps, orthogonal
motion, seven forward steps, orthogonal motion, three backward steps, orthogonal
motion, seven forward steps, and so on. We can count steps by charging 0 for a trans-
mission that reduces the distance to the target, 1 for a delay, and 2 for a transmission
that increases the distance to the target, and then adding the distance between p and
r. Each instance of orthogonal motion, then, is charged 4 for initial and final delays
plus 7 for the fact that the orthogonal motion might traverse emulator points. Each
instance of backward motion is charged 6. With d- 1 instances of orthogonal motion
and half that number of backward moves, the total charge is 14(d- 1). The horizontal
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motion might cross emulator points up to three times, and this adds up to 24 extra
steps. Thus the time to get from p to r is at most 14d

Now we can establish the time Strategy G takes to exchange tokens among the
central regular points. First observe that if we start at a central regular point p, with
at most two horizontal steps we can proceed orthogonally one step to a regular point
R(p). This is true because at the starting point there might be an extra point in the
place where an orthogonal transmission would be directed, and after one horizontal
step the orthogonals might be in a different dimension and again an extra point
be encountered, but by the second step the orthogonals would have to reverse and
necessarily go to a regular point. Similarly, if q is a central regular point, then a
regular point/(q) exists from which it is possible to reach q with an orthogonal step
followed by 0, 1, or 2 horizontal steps.

Given central regular points p and q, we check the horizontal separation between p
and q: we will follow the token from p in either the forward or the backward horizontal
direction, according to which yields the shorter path to q. Without loss of generality,
assume the forward direction is used.

Now if the horizontal distance between p and q is large enough, we can calculate
the minimum time for the token from p to reach q as follows. If horizontal trans-
missions from p are in the backward direction, let i5 R(p), otherwise let 15 p.
It takes up to 10 steps to reach i5 ready for a horizontal transmission. If horizontal
transmissions from q are in the backward direction, let -/(q), otherwise let q.
By Lemma 8.2, it takes up to 14d + 10 + 5(i5, r) additional steps to reach the point r,
which is on the same horizontal line as . Traveling from r to forward horizontally
incurs only a delay of two at the beginning--the possibility of crossing emulator points
has already been accounted for in Lemma 8.2. Finally, it takes up to seven steps to
reach q from . The total is then 14d+ 29 + (15, ) <_ 14d+ 35 + (p, q) <_ 14d+ 35 + D.

If the horizontal distance between p and q is not large enough that it is possible
to travel, as described above, forward from r toward q, then the horizontal distance
between p and q is at most 2d, and using the fact that n _> 8d one can show that the
token from p reaches q in 14d + 33 + D steps. See [20] for details.

Combining the maximum time to distribute tokens among the central regular
points with the 2d + 2 steps for the initial compression and final expansion phases
gives the following result.

THEOREM 8.3. Assuming that d >_ 2, nl >_ 8d, and ni >_ 4 for i >_ 2, the gossip
problem for the n nd toroidal grid under the H1 model of communication is
solvable in D + 18d + 39 steps where D is the diameter of the grid.

9. The ring. The ring with N vertices has diameter [N/2J. Unlike the toroidal
grid where tokens can be sent in different directions along different paths, tokens
must travel both directions around the ring at the same time if we are to approach
an N/2-step solution. Bagchi, Hakimi, Mitchem, and Schmeichel [4] have derived an
upper bound of N/2 + 3x/-/2 where N is the square of an even number, establishing
an upper bound of N/2 + O(v/) in general. We sharpen this result by deriving

general upper bound of LN/2] + ]x/- + 2 in 9.1 and a general lower bound of

IN/2] + x/- -l in 9.2.
9.1. Upper bound. Consider a ring with N vertices vo, v,..., Vg-, and for

convenience define vi Vi(modY for < 0 and
81 < 82 < < sp < N, nearly evenly spaced around the ring and with ample
space between them, and use them in this way. Initially we let both vs vs_ and



GOSSIPING IN MINIMAL TIME 131

81

4 82

2 1 0

71/6 4\\1

1 7

FIG. 6. An optimal solution for the 18-node ring.

vsj+l vsj+2 at t 0, for all 1 _< j _< P. For the rest of the strategy we propagate
the transmissions in the following sense. If vi receives from vi-1 at time t and if vi+l
and vi+2 were not involved in transmissions at time t, then at time t + 1 let vi vi+.
Similarly, if vi receives from vi+ at time t and if vi-1 and vi-2 were not involved in
transmissions at time t, then at time t + 1 let vi vi_. Otherwise we recognize two
other possibilities: a good crossing where at time t, vi receives from vi-1 and Vi+l
receives from vi+2, and a bad crossing where at time t, vi receives from vi-1 and vi+2
receives from vi+3. (In general, other cases might occur but they do not arise in our
strategy.) For a good crossing we let vi+ - vi at time t + 1, vi - Vi+l at time
t + 2, and both Vi+l - vi+2 and vi - vi_ at time t + 3. For a bad crossing we let

vi+2 -- vi+l at time t + 1, vi+ -- vi at time t + 2, vi - Vi+l at time t + 3, and both
vi+ - vi+2 and vi -. vi_ at time t + 4.

It can be seen that the above propagation technique carries groups of tokens
forward and backward around the ring simultaneously, even when crossings occur.
We visualize buckets moving forward and backward around the ring, picking up one
token at each node and moving the accumulated collection forward. All buckets move
at the same speed except that they are delayed when forward- and backward-moving
buckets experience crossings. Backward-moving buckets are always delayed by one
time step in a crossing, while forward-moving buckets are delayed one time step in a
good crossing and two time steps in a bad crossing. The idea of the strategy is that
each token should be carried to half the ring by a forward-moving bucket and to the
other half by a backward-moving bucket. We will choose starting points spread out
around the ring so as to minimize the time it takes to complete the algorithm. The
spacing between forward-moving buckets is maintained during the algorithm, and so
is the spacing between the backward-moving buckets, so that buckets moving in the
same direction never overtake one another.

An example of this strategy for an 18-node ring is shown in Fig. 6. This ring
happens to have an optimal solution that is symmetric, as shown in the figure. The
solution is based on an eight-step cycle that repeats, completing the token exchange
in 14 steps.

We first treat the case where N is even. Denote by Aj the gap sj+ s between
successive sj values, where we for convenience define sp+ s. Suppose all values

si and therefore Aj are even. In this case it is easy to verify that only good crossings
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will ever occur. How long does it take the above given strategy to complete the
token exchange? First choose some j and consider the locations vf and Vb where
f sj +Aj/2 and b f+l. At time t Aj/2- 1 the former is reached by
the forward-moving bucket that started at vs+l and the latter is reached by the
backward-moving bucket that started at v8+1. Now let us denote by T the additional
number of steps that pass before these two buckets reach a point where they are
about to begin another crossing of each other. Clearly the forward-moving bucket
must pass every backward-moving bucket exactly once during these T steps, and the
backward-moving bucket must pass each forward-moving bucket exactly once. It is
easy to see, then, that T P + N/2 and that after T steps the two buckets are
at Vf+N/2 and Vr+N/2, respectively. At this point t Aj/2- 1 + P + N/2, and
we claim that all points between vs+ and v+ have had their tokens broadcast
to all locations. This is because each such point has been passed by both of the
buckets, and every location on the ring has subsequently been passed by at least one
of these two buckets. Therefore, the time taken for this strategy for the entire ring is

max<_j<_p Aj/2- 1 + P + N/2, and we seek to minimize this quantity by choice of P
and A.

Note that if Ay and P were real numbers we could find the minimum of the
above expression by setting all Aj A -- and using elementary calculus to obtain

A -, P A/2. This result can be achieved if M N/2 is a square, for then
if a we can set A 2a and P a, obtaining a strategy that completes in

N/2 +-- 1 steps. We come as close to this result as we can by using values Ay
that are as near as possible to x/-. We do this in the following way. First, we must
establish the following lemma.

LEMMA 9.1. Given an integer M and real numbers a, b such that ab- M and
a <_ b, let aL, av aL + 1, bL, bu bL + 1 be integers such that aL

_
a <_ av and

bL

_
b <_ bv then one can find integers nL and nv with bL

_
nL + nv

_
bu so that:

M nLaL + nvav.

Proof. Consider the set

S S1 [-J $2 where

Let

ml min s, M1 max s, m2 min s, M2 max s.
sES1 sES sS2 sS2

Clearly, ml bLaL < m2 buaL and M1 bLau < M2 buau.
CLAIM. (1) m2 _< M + 1;
(2) $1 contains every integer between m and M1; and
(3) $2 contains every integer between m2 and M2.
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Proof. (1) a <_ b = aL <_ bu => aLbL +aL <_ aLbL + bL + l = aL(bL + l) _<
(aL -+- 1)bL -+- 1 = bvaL <_ bLav -+- 1;

(2) by induction: $1 contains ml, and suppose S contains x < M1; then x

aaL+bv where a > 0 and < bL and thus S1 contains x+l (c--l)aL+(+l)av;
(3) similar to (2). Now (1), (2), and (3) together imply that S contains every

integer between m bLaL and M2 bvav. Since m _< M <_ M2, S must contain
M. D

Now using this lemma with M N/2, a b x/-, we set P nL -+-nu,
Aj 2aL for 1 <_ j <_ an, and Aj 2av for nL -+- 1 <_ j <_ P. Now observe that
Aj/2 _< av _< V//2 + 1 and P <_ bv _< x//2 + 1, so that

__
N<Nmax -1 +P+--_ -- + x/-+ 1.

I_j_P

Now for odd N, we use a slight modification of the same approach and obtain a
very similar result. We let M (N + 1)/2 and apply the lemma with a b
once more, setting P and all Aj as before, except that we set Ap 2av 1. This
puts an odd gap between sp and s and we have to observe the effect. By tracing
the steps, it is easy to see that the odd gap stays in front of the backward-moving
bucket that starts at S as it travels around the ring. This means that this bucket
always experiences bad crossings and it is the only backward-moving bucket to have
bad crossings, and also that forward-moving buckets experience bad crossings just
when they cross this bucket. For j P, we consider vf and Vb with f sj + Aj/2
and b f + 1 as before, but this time we find that T P + (N + 1)/2 steps occur
before the two buckets meet for a second time. In that amount of time the forward
moving bucket, which experiences just one bad crossing in passing all backward-
moving buckets, advances (N-1)/2 links around the ring, while the backward-moving
bucket experiences no bad crossings and advances (N + 1)/2 links; this brings the
two buckets to the adjacent sites Vf+(N_I)/2 and Vb+(N_I)/2. Now we observe that

Aj/2 <_ au <_ V/2(N + 1)/2 + 1 and P <_ bu <_ V/2(N + 1)/2 + 1, so that

Aj (N + 1) (N + 1)
max 1 + P + < + V/2(N + 1) + 1.

l<_j<_P-1 2 2 2

For j P, we look at vf and Vb with f 8p--(Ap- 1)/2 and b f + 2. At
time t (Ap- 1)/2- 1 the former is reached by the forward-moving bucket from
vsp+l and the latter is reached by the backward-moving bucket from v81. Then the
forward-moving bucket experiences just one bad crossing in passing all backward-
moving buckets so that in T P + (N + 1)/2 more steps it reaches v+(N+)/2-.
The backward-moving bucket experiences all bad crossings but they do not retard it
so it reaches Vb+(N+l)/2_ in T steps. These two final sites are two links apart and
in one more step the first step of the ensuing bad crossing reaches the intermediate
location. This time we observe that (np- 1)/2 _< av- 1 _< V/2(N + 1)/2 and
P <_ bu <_ V/2(N + 1)/2 + 1, so that the overall time for j P is

(N+I)(Ap 1)
1 + P +2 2 + 1 _< (N + 1)2 + V/2(N + 1) + 1,

just as for j - P.
Now we combine results for even and odd N, expressing the result in a form

that will match the lower bound derived in the following section. For even N, the
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number of steps is an integral value bounded above by N/2 +- + 1 and it is

therefore bounded by [N/2J + [x-J +1<_ [N/2J + ]x/] + 1. For odd N, this

same reasoning yields a bound of [N/2J + 1 + [v/2N -tf 2J + 1 <_ [N/2J + [v/-] + 2.

Combining these gives the following upper bound.
THEOREM 9.2. The gossip problem for the N-node ring under the H1 model of

communication can be solved in

steps.

9.2. Lower bound. In establishing a lower bound for the ring, we must treat
transmissions that go in different directions separately. We arbitrarily designate one
direction around the ring as the forward direction and the other as the backward
direction. We suppose that we have a strategy for the ring that completes in T steps,
and we shall establish a lower bound for T. Let stF(v) (stB(v)) be the forward-most
(backward-most) site to which v’s token is carried by time T via forward (back-
ward) transmissions in the given strategy. Let pB(v) (RE(v)) be the backward-most
(forward-most) point w for which SFT(W) ST(V) (S(W) ST(V)). The token from
PB(v) going in the forward direction is, by time T, moving along with the token
from v, and it is the backward-most such token. Now for each location v, we form
a set G(v) containing all points starting with P(v) forward through v, up to and
including pF(v), and we consider the collection S {G(v)}. S is partially ordered
by set inclusion and we take the set S of maximal elements under this order. This
gives us sets we shall denote as U1, U2,..’, UK. These sets correspond to the buckets
used in the algorithm of the previous section. We have defined these sets according
to conditions at the ending time T, and we cannot assume that all tokens are first
organized into the buckets and then sent around the ring. Instead we must admit that
tokens may coalesce at any step, although we shall in the end show that coalescing at
the beginning is optimal.

The buckets as we have defined them here have a number of important properties.
Each Ui consists of a contiguous set of vertices of the ring whose backward-most
point we shall denote by Bi and forward-most point by F. All B are distinct, and
all Fj are distinct (otherwise one set would be included in another and hence not
maximal). In general the buckets can overlap, although in an optimal solution they
do not. The maximality of the U means that if tokens from some bucket Uj going
backward cross tokens from U and then tokens from U before time T, they must
cross them at different times: the token from Bil must be crossed later than the token
from B and hence later than any token from U2. Similarly, tokens from Uj going
forward must cross all tokens from U before crossing the token from F. This means
that we can bound the number of crossings by counting the buckets. And finally we
observe that the token exchange cannot be complete until for each i backward-moving
transmissions have carried the token from F and forward-moving transmissions have
carried the token from Bi past each other once and then more or less halfway around
the ring until they are adjacent and about to pass each other again. To see this,
simply observe that by construction, there is some v whose token has been carried
no further by backward transmissions than the token from F, and no further by
forward transmissions than the token from B, by time T. Thus if v’s token has been
broadcast to all points by time T, then the tokens from F and B have been carried
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to the positions described above.
Let i j be given and let t be the latest time such that {stF(Bi) 0 < t < tl}

and {stB (Fj) 10 < t < tl} have an empty intersection. Let t2 be the earliest time
such that {stF(Bi) lO <_ t < t2} and {stB(Fj) 10 <_ t < t2} have an intersection
consisting of at least 2 elements. (As long as i j it is not difficult to see that there
must be such values t and t2" the token from Fi stays "behind" the token from
in moving in the backward direction, and by t T meets the token from Bi, so that
the token from F must have met the token from Bi before that and gone past it.)
Before t and after t2 the tokens from Bi and Fj can move at the same time; between
t and t2 we say that the two tokens have experienced a crossing. Define D.F. to be

t dR where dF is the distance between s (Si) and s (Bi); similarly definetD..2 to be t2 t ds where dB is the distance between s (F) and s (Fj).
is the delay experienced in the given strategy by the forward-moving token from Bi
in crossing the backward-moving token from Fj and D.F. is the delay experienced
by the backward-moving token from Fj in crossing the forward-moving token from
Bi. It is easy to see that D.F. + D.s. > 2; this is because the forward and backward

,3 3,

transmissions required to cross the tokens cannot occur in parallel, there being at
least two steps where one but not the other token is advanced. With only a little
extra effort we can now also include the case j and obtain the same inequality. If
Bi Fi, then all the above definitions and arguments go through and we immediately
have D.F. + D.s. > 2. Otherwise we define t 0 and t2 as before, so that D.F. and
D.s. can be defined as above with the same interpretation as the crossing delays for
the forward-moving token from Bi and the backward-moving token from Fi. Now,
conveniently, we still have the inequality D.F. + D.. > 2 (actually D.F. + D.s. > 3 is
true); this is because the tokens adjacent to Bi Fi on either side must move first
before the token at B can (otherwise, U would not be maximal). Thus in all cases
we haveD.F. D.s.>2.

Now we can write some inequalities based on the above observations. For each i
we look at what is required to complete the strategy and what delays are involved.
Let x be the distance traveled by the token from Fi in backward transmissions and
y the distance traveled by the token from Bi in forward transmissions. By the above
analysis, we have

K

T>x+ED.B.
and

K

T>y+ED.F.
j--1

Now we add these two inequalities and observe that since B and F must meet, we
must have x + y > N 2 + C, where C

2T>N-2/C/D.F./EDB,3 i,j"

To establish a lower bound for T, we seek the minimum of the above expression. First
and use the facts that C > N and D.F. + D.. > 2we sum over

,3 3,

N N
T_> -- + K+ -- 1.
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Then elementary calculus can be used to find the minimal value of T.

g v/N/2,
Nr _> -5- + 1.

Since the number of steps is an integral quantity, we can express the lower bound
in the following way:

THEOREM 9.3. The gossip problem for the N-node ring under the H1 model of
communication requires at least

steps.
The algorithm establishing the upper bound that we gave above actually achieves

this when 2N is a square, so this bound is tight.

10. Other topologies. It was previously shown that the determination of op-
timal solutions to the gossip problem for general graphs is an NP-complete problem.
At the same time, there is a large class of regular graphs that have been proposed
as multiprocessor interconnection networks but that not have been discussed in this
paper. Such classes include trees, pyramids, cube-connected cycles, and shuffle ex-
change graphs. Our decision not to expand the present work with a comprehensive
treatment of those classes is based on one primary factor: the possibility for using
such classes in actual systems seems unlikely at this point in time.

The Fibonacci algorithm of 5.2 only uses O(log N) edges and those edges define
an interconnection network that is ideal for the gossip problem. This network has
some 50 percent more edges than the hypercube, a slightly smaller diameter, and it
supports a solution to the gossip problem that is about 20 percent faster than our
best solution for the hypercube.

We can give one result that complements the lower bound of 1.44 lg N for arbi-
trary graphs. Given an arbitrary graph, we can choose a spanning tree and use a
compression-expansion approach by sending all tokens to the root and then sending
the complete collection back. Advancing tokens from one level in the tree to the next
level may cost anywhere between 1 step and K- 1 steps (K steps at the root) where
K is the maximum degree of any node, depending on the subtrees, since if subtrees
differ in their timing requirements the K- 1 transmissions can be overlapped. (This is
determined as in the well-known labeling algorithm used for compiler code generation
[1, p. 541].) For a graph of radius R whose nodes have at most K edges each, this
yields a solution in at most 2(K 1)R + 2 steps.

THEOREM 10.1. The gossip problem for an arbitrary connected graph of radius
R and valence K can be solved in 2(K- 1)R + 2 steps under the H1 model of com-
munication.

Proof. We choose, a spanning tree of height R, send all tokens to the root in at
most (K- 1)R + 1 steps, and then reverse the process to distribute the collection
to all nodes. To construct the spanning tree, choose a center as root, i.e., a node at
distance no greater than R from every node in the graph. Then in a breadth-first
manner add nodes at distances 1, 2,..., R, adding just one edge when adding a node
so that the constructed graph is always a tree. 1
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Summary of results.
graphs.

TABLE 1
In some cases assumptions are made regarding minimum sizes of the

RESULTS FOR THE H1 MODEL OF COMMUNICATION

GRAPH
Complete
N nodes
Hypercube
N 2d nodes
Toroidal grid
nl x rid

Grid
nl nd

Ring
N nodes

DIAMETER

D- lgN

D- LJ /’"/ LJ
D-nl+...+nd-d

D LN/2J

11. Conclusions.

LOWER
BOUND

1.44 lg N

1.44D

D

D

UPPER
BOUND

1.44 lg N [8]

1.88 D [18]

D + 18d + 39

D

11.1. Summary. Table 1 summarizes what we know of the time complexity of
the gossip problem under the H1 model of communication. The five types of graphs
are listed in order of increasing diameter relative to their size. The diameter always
provides a lower bound, and generally graphs with larger diameter have a better
chance of having solutions with a number of steps close to the diameter. Solution
times of 2 lg N for an N-node graph are at a borderline where the solution time
departs from the diameter.

Solutions can be analyzed in terms of the spanning tree compression and ex-
pansion approach of 10. The parallel-transmission methods of 6, if the steps are
organized in a certain order and needless transmissions deleted, use compression and
expansion along spanning trees and the number of steps used is the best possible
for a compression/expansion approach. Furthermore, these trees are optimal in that
among all trees supporting distribution of tokens in a given number of steps, they
have the most nodes. By contrast, the solutions for complete graphs, regular and
toroidal grids, and rings do not use a compression/expansion approach and they are
faster than is possible under such an approach. Instead, they can be seen to use a
parallel-compression approach where each node in the graph serves as the root of a
distinct spanning tree on which a compression-only approach is used. The best known
algorithm for the hypercube [18] uses a hybrid method: compression occurs in parallel
on a limited number of spanning trees (5 for the 9-cube, 25 for the 17-cube) followed
by expansion.

11.2. Open problems.
1. For graphs with low diameters such as the hypercube, we wonder what factors

have the strongest influences on the time required to gossip under HI: is it the
valence at the nodes, or the diameter, or the radius, or the specific geometry
of the interconnect? That is, if all other factors are equal but two graphs differ
just in valence, or diameter, or radius, or interconnect pattern, how is the time
complexity of the gossip problem likely to differ for them? Comparison of the
hypercube with the optimal interconnect pattern defined by the Fibonacci
algorithm does not shed light on this since the graphs differ in all regards:
the 16-node hypercube has degree 4, radius 4, diameter 4, and a solution in
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eight steps while the 16-node optimal graph has degree 5, radius 3, diameter
3, and a solution in six steps; similarly, the 64-node hypercube has degree 6,
diameter 6, radius 6, and a solution in 12 steps while the 68-node optimal
graph has degree 8, diameter 4, radius 4, and a solution in nine steps.

We also note that it is possible for each node in a hypercube to send
its token to its antipode (most distant node) in D + 1 steps: two-color the
cube red and black, then have red nodes transmit through dimension 1, then
black ones through dimension 2, then red ones through dimension 3, and so
on, finishing with a transmission through dimension 1. Hence the distance
that tokens must travel does not seem to be a dominating factor, although
our intuition is that it has some influence on the speed with which the gossip
problem can be solved.

2. How can the gap between 1.44D and 1.88D for the hypercube under H1 be
narrowed?

3. How many steps are required to gossip on small two-dimensional grids under
HI?

4. What is the time complexity of the gossip problem under Hn and other mod-
els? (See [8], [16] for some nonoptimal results.)

5. A graph is vertex-transitive if given any nodes v and w there is an isomor-
phism carrying v to w. (Such graphs are favored for multiprocessor topologies
because of mass-production concerns.) We have found no counterexamples
to the following conjecture" If G is a vertex-transitive graph with N nodes
and diameter (and radius) D, then the gossip problem under the H1 model
can be solved in 2 max(D, lg N) steps. The hypercube comes closest to this
bound as far as we know: for the hypercube, D lg N and the best solution
we know of takes almost 2D steps.
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USING INTERIOR-POINT METHODS FOR FAST PARALLEL
ALGORITHMS FOR BIPARTITE MATCHING AND RELATED

PROBLEMS*
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EVA TARDOS$

Abstract. In this paper interior-point methods for linear programming, developed in the context
of sequential computation, are used to obtain a parallel algorithm for the bipartite matching problem.
This algorithm finds a maximum cardinality matching in a bipartite graph with n nodes and m edges
in O(v/log3 n) time on a CRCW PRAM. The results here extend to the weighted bipartite matching
problem and to the zero-one minimum-cost flow problem, yielding O(v/log2n log nC) algorithms,
where C > 1 is an upper bound on the absolute value of the integral weights or costs in the two
problems, respectively. The results here improve previous bounds on these problems and introduce
interior-point methods to the context of parallel algorithm design.

Key words, linear programming, interior-point methods, parallel algorithms, matching

AMS(MOS) subject classification. 68Q25

1. Introduction. In this paper we use interior-point methods for linear pro-
gramming, developed in the context of sequential computation, to obtain a parallel
algorithm for the bipartite matching problem. Although Karp, Upfal, and Wigder-
son [6] have shown that the bipartite matching problem is in RNC (see also [12]),
this problem is not known to be in NC. Special cases of the problem are known to
be in NC. Lev, Pippenger, and Valiant [9] gave an NC algorithm to find a perfect
matching in a regular bipartite graph. Miller and Naor [10] gave an NC algorithm to
decide whether a planar bipartite graph has a perfect matching.

The best previously known deterministic algorithm for the problem, due to Gold-
berg, Plotkin, and Vaidya [4], runs in O* (n2/3) time on graphs with n nodes, where an
algorithm runs in O*(f(n)) time if it runs in O(f(n)logk(n)) time for some constant
k. In this paper we describe an O*(V) algorithm to find a maximum cardinality
matching in a bipartite graph with rn edges, which is based on an interior-point algo-
rithm for linear programming and on Gabow’s algorithm [3] for edge-coloring bipartite
graphs. For graphs of low-to-moderate density, this bound is better than the bound
mentioned above.
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The results presented in this paper extend to the maximum-weight matching prob-
lem and to the zero-one minimum-cost flow problem. The resulting algorithms run in
O*(yr log C) time, where C > 1 is an upper bound on the absolute value of the inte-
gral weights and costs in the two problems, respectively. The best previously known
algorithm for the zero-one minimum-cost flow problem runs in O*((nm)2/5 log C)
time [4]. The new algorithm is better for both the zero-one maximum flow and the
zero-one minimum-cost flow problems for all graph densities.

Interior-point algorithms work as follows. The algorithm starts with a point in
the interior of the feasible region of the linear program and its dual that is close to the
so-called central path. In its main loop, the algorithm moves from one interior point
to another, decreasing the value of the duality gap at each iteration. When this value
is small enough, the algorithm terminates with an interior-point solution that has a
near-optimal value. The finish-up stage of the algorithm converts this near-optimal
solution into an optimal basic solution.

Karmarkar’s revolutionary paper [5] spurred the development of the area of in-
terior-point linear programming algorithms, and many papers have followed his lead.
Karmarkar’s algorithm runs in O(NL) iterations, where N and L denote the number
of variables and the size of the linear program, respectively. Renegar [15] was the
first to give an interior-point algorithm that runs in O(x/L) iterations. Since then,
several different O(v/L)-iteration algorithms have been developed. For an overview
of work on interior-point algorithms, the reader is referred to the survey paper of
Todd [17]. The matching algorithm discussed in this paper is based on an algorithm
due to Monteiro and Adler [11], though similar algorithms can also be based on other
O(v/-L) iteration algorithms.

Interior-point algorithms have proved to be an important tool for developing
efficient sequential algorithms for linear programming and its special cases. In this
paper we apply these tools in the context of parallel computation. For the purpose of
parallel computation, an important fact is that the running time of an iteration of an
interior-point algorithm is dominated by the time required for matrix multiplication
and inversion. Therefore, an iteration of such an algorithm can be done in O(log2 N)
time on a CRCW PRAM using N3 processors [13].

The interior-point method used here follows a central path in the interior of the
feasible region. After every v/ iterations, this algorithm has decreased the duality
gap by a constant factor. The bipartite matching problem can be formulated as a
linear program with an integral optimum value. Therefore the size of the maximum
matching is known as soon as this gap is below one. Furthermore, the gap between
the value of an initial solution and the optimal value is at most N. This suggests that
an interior-point algorithm can be used to find the value of the maximum matching
in a bipartite graph in O(x/log n) iterations, or O*(x/-) time. In this paper we
develop an algorithm running in this time bound that finds a maximum matching as
well as its value.

To find a maximum matching we need to overcome two difficulties. First, we need
to find an initial interior point and dual solution that is close to the central path and
has a small duality gap, so that the number of iterations will be small. The second
difficulty comes from the fact that standard implementations of the finish-up stage of
interior-point algorithms either are inherently sequential or perturb the input problem
to simplify the finish-up stage, increasing the number of iterations of the main loop
by an gt(n) factor. For the special case of the bipartite matching problem, we give
a parallel implementation of the finish-up stage that runs in O(log2 n) time using m
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processors. This implementation is based on Gabow’s edge-coloring algorithm [3].
Our techniques apply to the more general maximum-weight matching problem.

The algorithm and its analysis are only slightly more involved. For brevity we focus on
the more general case. The results for the maximum matching problem are obtained
as a simple corollary of the results for the maximum-weight matching problem. The
main loop of our maximum-weight matching algorithm runs in O(v/log2 n log nC)
time and uses m3 processors, and the finish-up stage runs in O(logn log nC) time
and uses m processors. Therefore, the algorithm runs in O*(v/-log C) time. A
standard reduction between the weighted matching and the zero-one minimum-cost
flow problems (see, e.g., [1], [6]) gives an O* (v/-log C) algorithm.

This paper is organized as follows. Section 2 introduces definitions and terminol-
ogy used throughout the paper and reviews the Monteiro-Adler linear programming
algorithm. Section 3 gives a linear programming formulation of the bipartite matching
problem that has an initialinterior point close to the central path with a small duality
gap, and shows how to use the linear programming algorithm to obtain a near-optimal
fractional matching. Section 4 describes a parallel procedure that, in O* (log C) time,
converts the near-optimal fractional matching into an optimal zero-one matching.
Section 5 contains concluding remarks.

2. Preliminaries. In this section we define the matching problem and the linear
programming problem, and review some fundamental facts about them. For a detailed
treatment, the reader is referred to the textbooks by Papadimitriou and Steiglitz [14]
or Schrijver [16]. We also give an overview of the Monteiro-Adler algorithm.

The bipartite matching problem is to find a maximum cardinality matching in
a bipartite graph G (V, E). The maximum-weight bipartite matching problem is
defined by a bipartite graph G (V, E) and a weight function on the edges w E ---R. We shall assume that the weights are integral. The weight of a matching M is

-eEM w(e). The problem is to find a matching with maximum weight.
We use the following notation and assumptions. Let G (V, E) denote the

(bipartite) input graph, let n denote the number of nodes in G, let m denote the
number of edges in G, and let C denote the maximum absolute value of the weights
of edges in G. To simplify the running time bounds, we assume, without loss of
generality, that m _> n- 1 > 1, and C > 1. We denote the degree of a node v by d(v),
and the set of edges incident to node v by 5(v). For a vector x, we let x(i) denote the
ith coordinate of x. We use a PRAM [2] as our model of parallel computation.

Consider the following standard linear programming formulation of the bipartite
matching problem.

Matching-l maximize

subject to: f(e)_ 1,
e(v)

>o.
forv 1,...,n,

A feasible solution to the system of the linear inequalities above is called a fractional
matching. We denote an optimal solution of the linear program by f*.

The constraint matrix of Matching-1 is the node-edge incidence matrix of the
bipartite graph G. A matrix is totally unimodular if all of its submatrices have deter-
minants +1, -1, or zero. It is well known that the node-edge incidence matrix of a
bipartite graph is totally unimodular [14]. This implies the following theorem.

THEOREM 2.1. [14] Any optimal solution of the linear program Matching-1 is the
convex combination of maximum-weight matchings. The optimal value of this linear
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program is equal to the maximum weight o] a matching.
The Monteiro-Adler algorithm handles linear programs in the following form:

Primal LP: minimize c*x
subject to: Ax b,

x>0

where A is a matrix, and b, c, and x are vectors of the appropriate dimensions. We.
assume that the matrix A and the vectors b and c are integral. We use N to denote
the number of variables in the (primal) linear programs we consider. A vector x is a

feasible solution if it satisfies the constraints Ax b and x _> 0. A feasible solution x
is optimal if it minimizes the objective function value c*x, and is an interior point if
it is in the interior of the nonnegative orthant.

The linear programming duality theorem states that the minimum value of the
Primal LP is equal to the maximum value of the following Dual LP:

Dual LP: maximize b*r
subject to: A*r + s c,

s>0

where r and s are the variables of the Dual LP, the dimension of r is equal to the
dimension of b, and the dimension of s is equal to the dimension of x. Feasible and
optimal solutions and interior points for the dual problem are defined in the same
way as for the primal problem.

Let x be a feasible solution to the Primal LP, and let (r, s) be a feasible solution
to the Dual LP. The value c*x is an upper bound and b*r is a lower bound on the
common optimal value of the two problems. Hence the difference ctx- btr s*x
measures how far the current solutions are from being optimal. This quantity is
called the duality gap. The central path of this pair of linear programs is defined
as the set of points with s(i)x(i) identical for every i, 1,... ,N. Note that the
complementary slackness conditions state that the pair of primal and dual solutions
is optimal if these products are 11 zero.

The Monteiro-Adler algorithm is applied to a pair of primal and dual linear
programs in the above form. The algorithm starts with a vector (x0, r0, so), where x0
and (r0, so) are interior points of the primal and dual linear problems, which are in
some sense close to the central path. At each iteration of the main loop, the algorithm
moves from the current interior point to another interior point, so that the duality
gap is decreased by a factor of (1- (1/x/-)) every iteration.

The measure of closeness to the central path required by the algorithm is defined
as follows. Consider a primal-dual solution pair (x, r, s). Define # s*x/N, and define
the vector a such that a(i) s(i)x(i) for i 1,..., N. The solution pair is close to
the central path if Ila- #111 _< #, where 1 denotes the vector with all coordinates 1,
I1" [I denotes the Euclidean norm, and is 0.35, as suggested by Monteiro and Adler.

Monteiro and Adler prove the following theorem.
THEOREM 2.2. [11] /f we have an initial solution (xo, ro, so) that is close to the

central path, then .for any constant > O, after O(v/log(sxo)) iterations the duality
gap s*x of the current solution (x, r, s) is at most .

To get the algorithm started, one has to provide an initial solution (x0, r0, so) that
is close to the central path. Monteiro and Adler present a way to obtain an equivalent
linear programming formulation with such an initial solution. In the next section
we give a slightly simplified version of this construction for the bipartite matching
problem, for which the initial solution also has a sufficiently small duality gap.
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3. Finding a near-optimal solution. In this section we show how to convert
the Matching-1 linear program into a linear program that is in the form required by
the Monteiro-Adler algorithm and has an initial solution close to the central path
with a small duality gap. Then we show how to compute a near-optimal fractional
matching from the initial solution to this linear program.

We restate the matching problem as follows:

Matching-2 minimize

subject to:

N2Cw f + -4-:-f_1 z

E f(e)+(n-d(v))g(v)-z- 1, for--1,
e6(v)

ltf + ltg + y n / m + 1,
f,g,z,y>_O.

We denote the objective function of this linear program by the vector c, and coefficients
of the left-hand side of the constraint (.) by the vector a. The number of variables in
this linear program is m / n + 2 N. We denote a feasible solution to Matching-2
by x (f, g, y, z), and a feasible solution of the corresponding dual problem by r
and s, where 7r(i), for i 1,..., n, is the dual variable corresponding to the primal
constraint for node i, and 7r(n+ 1) is the dual variable corresponding to the constraint
(,).

Intuitively, the transformation works as follows. Variables g(v) are the slack
variables introduced to replace inequality constraints by equality constraints. The
positive multipliers (n- d(v)) scale the slack variables so that there is a feasible
solution with all original and slack variables equal. The coefficient of z in the objective
function is large enough to guarantee that z 0 in an optimal solution. The variable
z is introduced to make it possible to have a starting primal solution with coordinates
of f, g, and y equal (for example, to 1). The constraint (.) does not affect the primal
problem since y is not in the objective function and, as we have just mentioned, in an
optimal solution z 0 and therefore gtl + fl _< n is automatically satisfied. This
constraint, however, allows us to obtain an initial solution for the dual problem such
that the dual slack variables corresponding to the primal variables f, g, and y are
roughly equal. This will imply that the starting solution is close to the central path.

LEMMA 3.1. If (f g, y, z) is an optimal solution of Matching-2, then f is an
optimal solution to Matching-1.

Proof. Every solution to Matching-1 can be extended to a solution to Matching-2
with z 0; this follows from the fact that both f and the slacks in Matching-1 are at
most 1.

Next we have to show that every optimal solution to Matching-2 has z 0. Con-
sider a feasible point xl (fl, gl, Zl, yl) with z 7 0. Since f satisfies }-e6(v) f (e) _<
1 + z for every node v, decreasing fl on some edges, by a total of at most zln, con-
verts fl into a vector f2 that is a fractional matching. Above we observed that any
fractional matching can be extended to a feasible solution of Matching-2. Let x2
denote a feasible solution extending f2. If we replace X by x2, the decrease in the
objective function value caused by the reduction in z is zl(N2C/(n- 1)) > ziNC.
The increase due to the change in f is bounded by zlnC < zNC. Therefore, the
value cx2 is smaller than cx, which implies that any optimal solution must have
z=O.

We define initial primal and dual solutions as suggested by the above discussion.
The initial primal solution x0 is defined by

f 1, g 1, y 1, z n- 1.
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The initial dual solution (r0, so) is defined by

r(i) 0, for 1 _< i _< n,
r(n + 1) -N2C,

s(i) c(i)+ N2Ca(i) for 1 _< i _< N.

LEMMA 3.2. The vectors xo and (to, so) are interior-point solutions of the primal
and the dual problems that are close to the central path, and the value of the duality
gap is O(N3C).

Proof. It is easy to verify that xo is a primal solution and (ro, so) is a dual
solution. Recall that N n / m + 2. The duality gap is

soxo nN2C + mN2C wl + 2N2C N3C wl O(N3C),
as required.

Next we have to verify that the initial solution is close to the central path. Let
# SoXo/N N2C- (wtl/N), and define the vector a with coordinates a(i)
s(i)x(i). Consider a(i)-# for each type of variable separately. For variables s(i) and
x(i) corresponding to z, y, and g, we get

[a(i) #[- [so(i)xo(i) #[- Iwtl/NI.
For variables s(i) and x(i) corresponding to f, we get

I(i) #1 Iso(i)xo(i) #1 Iwtl/N w(i)[.

Using these values we get that

Ila(i) #112 <_ N(wI/N)2 + w=(i) <_ 2NC2.

Since N >_ 3, we have that 2NC <_ e=(NC= 2NCwtl) <_ (0)2. This proves the
lemma. D

Now we are ready to give the O*(vf log C)-time algorithm to compute the weight
of an optimal matching and to find a near-optimal fractional matching. In the next
section we show how to convert such a near-optimal fractional matching into an op-
timal matching.

1 less than theLEMMA 3.3. A fractional bipartite matching with weight at most
weight of an optimal matching can be computed in O*(-log C) time on a PRAM
with m3 processors.

Proof. By applying Lemma 3.2 and Theorem 2.2 (with 5 1/4), we see that after

O(log(NO)) O(vlog(he)) iterations of the LP algorithm, we have obtained
a point (x, r, s) with a duality gap xts <_ 1/4. Hence we have

N2C 1
+ + <
n-1 -4’

where f* is an optimal solution to Matching-1. Since z _> 0, this implies that w f*
wtf <_ 1/4. As in Lemma 3.1, we can argue that f can be converted to a feasible
solution of the Matching-1 problem by decreasing its value on some of the edges by
a total of at most zn. Therefore, wtf* >_ wtf- znC. From (1), this implies that
zN2C/(n- 1) _< 1/4 + znC. Thus,

n-1 1z< <4C(N2 n2 / n) 4mC"
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Now round all values of f and g down to have a common denominator 4mC, and
1denote the rounded solution by fl, gl. Clearly, w f* w fl < 1/4 + (me)/(4me) < .

After the rounding, we have:

fl (e) + (n d(v))gl (v) < l+z.

The left-hand side is an integer multiple of (4mC)-1 and z < (4mC)-1. This implies
that

fl (e) + (n d(v))gl (v) < 1.

Hence, the resulting vector f is a fractional matching whose weight is within 1/2 of
the optimum.

COROLLARY 3.4. The cardinality of the maximum matching in a bipartite graph
can be computed in 0"(--) time using ms processors.

4. The finish-up stage. In the previous section we have shown how to compute,
in O* (x/- log C) time, a fractional bipartite matching with weight at most 1/2 less than
the optimum. In this section we give an O* (log C) algorithm for converting any such
fractional matching into a maximum-weight matching. Note that for the unweighted
bipartite matching, this algorithm runs in polylogarithmic time.

Let f be a fractional bipartite matching that has weight at most 1/2 less than the
maximum weight, and let f* denote a maximum-weight matching. First we construct
a fractional matching f’, such that the values of f’ have a relatively small common
denominator that is a power of two and the weight of f’ differs from the maximum
weight by less than 1. Define A by

By definition, A is a power of 2 and A O(mC). Let f’ be the fractional matching
obtained by rounding f down to the nearest multiple of 1/A. Note that

mC mC 1Itf tf’l <

Therefore, w f* w f < 1.
Consider a multigraph G’= (V, E’) with the edge set containing A-f’(e) copies

of e for each e E, and no other edges.
LEMMA 4.1. For any colong of the edges of G with A colors, there exists a

color class that is a maximum-weight matching of G.
Proof. The proof is by a simple counting argument. The sum of the weights of

the color closes is equal to Awtf > A(wtf 1). Since there e A color closes, at
let one of them h weight above w f* 1. The claim follows from the inteality
of w.

The above lemma implies that, in order to find a mimum-weight matching, it is
sufficient to edge-color G using A colors. Since G is bipartite graph and its mimum

deee is bounded by A, which is a power of 2, we can use a parallel implementation of
Gabow’s algorithm [3] to edgcolor G’ using A colors. However, G’ h O(mC) edges
and therefore the algorithm uses (mC) processors. In order to reduce the processor
requirement, we use a somewhat different algorithm. The algorithm does not use an
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procedure Round(E, f);
A - 2ogmC]+

f -- f rounded down to a common denominator of A;
d A;
while d’ > 1 do begin

Eo {e e e E,d’. f’(e) is odd};
(E,E2) Dege-Split(V, E0);
W1 w(E1);
W w(E);
if W W
then begin

for e E do f’(e) f’(e) + lid’;
for e E2 do f’(e) f’(e)- lid’;
end;

else begin
for e E2 do f’(e) f’(e) + lid’;
for e E do f’(e) f’(e)- lid’;
end;

d d/2;
end;
t ({ ’() 1})

end.

FIG. 1. Rounding an approximate fractional matching to an optimal integral one.

explicit representation of the multigraph, but rather uses a weighted representation
of a simple graph. A divide-and-conquer approach is then used to split the (implicit)
multigraph so that the bound on the maximum degree of a note is halved, and then
recurses on the part with greater weight. A subroutine for finding such a partitioning
is also the basis of Gabow’s edge-coloring algorithm.

Figure 1 describes the algorithm to find a maximum-weight matching given a
near-optimal fractional matching. The algorithm starts by rounding the fractional
matching to a small common denominator, as described above. A fractional matching
f’ with common denominator A, can be written as f’ 1/2 (fl + f2) such that both
fl and f2 are fractional matchings with common denominator A/2. On edges with
Af’(e) even, we can set f(e) f2(e) f’(e). Otherwise we set f(e) f’(e) + 1/A
and f2(e) f’(e)- 1/A or the other way around. Whether to add or to subtract 1/A
on these edges is decided with the help of the procedure Degree-Split. This procedure
partitions the edges of a bipartite graph Go (V, Eo) into two classes E and E2,
so that for every node v, the degree of v in the two induced subgraphs differs by
at most one. The procedure is used for the graph on V with edges Eo {e E E
Af’(e) is odd}. To obtain f we increase f’ on one color class and decrease it on the
other one. Both f and f2 are fractional matchings with common denominator A/2.
Now f is replaced by f or f2 depending on which one has larger weight. This process
is iterated O(log(mC)) times, until the current fractional matching is integral. The
resulting matching has an integral weight that is more than w f* 1, and therefore
the matching is optimal.

The heart of the algorithm is the procedure Degree-Split described in Fig. 2. This
procedure decomposes the graph into cycles and paths, such that at most one path
ends at each node. This can be accomplished by pairing up the edges incident to
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procedure Degree-Split(V, E);
Construct a new node set V by replacing each node v E V by an independent set of

size d(v)/2;
For each node in V, assign its incident edges to nodes in V, so that each node v

in V’ has d(v) <_ 2;
Edge-color the resulting graph using two colors;
Return the edges of each color class;

end.

FIG. 2. Splitting the maximum degree of the graph.

each node separately. Then we two-color the paths and cycles separately. This gives
a two-coloring of the graph where the difference in the degree of a node in the two
subgraphs is at most 1.

LEMMA 4.2. The algorithm Round produces a maximum-weight matching.
Proof. Consider the parameter d used in the algorithm in Fig. 1. Initially d A.

Note that after iteration we have d A/2i. We show by induction that after
iteration i:

f is a fractional matching,
wtf’>wtf*-l,
coordinates of f have common denominator d.

Initially all three conditions are satisfied. Assuming that all three conditions are
satisfied after iteration i- 1, we prove that they remain satisfied after iteration i. Let
dl and fl denote d and f before iteration i and let d2 and f2 denote d and f after
iteration i.

The last claim follows from the fact that the coordinates of fl that are odd
multiples of l/d1 are adjusted by plus or minus l/d1 in this iteration, and so all
coordinates of f2 are even multiples of lids, and hence multiples of l/d2.

The second claim follows from the fact that the components of f2 that have
been increased correspond to edges of greater total weight than those that have been
decreased.

Now consider the first claim. By the inductive assumption, e(v)f(e) _< 1.
By the definition of procedure Degree-Split, ’ee(v)f2(e)
1 + l/d1. However, we have already seen that f2 has a common denominator of d2.
Hence, e(v)f2(e) is an integer multiple of l/d2 2/dl and is therefore at most
one.

After log A iterations we construct an f that is integral and whose weight is
above wtf 1. By the integrality of w, the set of edges where this f is 1 is the
desired maximum-weight matching of the input graph.

LEMMA 4.3. The procedure Degree-Split partitions the input graph into two graphs
with disjoint edge-sets, such that the degrees of any node v in the two graphs dier by
at most one. The procedure can be implemented in O(log n) time.

Proof. Observe that the graph constructed on V is bipartite, and the degree of
a node is at most two. Therefore the graph consists of paths and even cycles. Hence
it can be two-edge-colored in O(log m) time using m processors [7], [8]. The claim of
the lemma follows from the fact that each node v E V is an end point of at most one
path.

LEMMA 4.4. The algorithm Round runs in O(log n log nC) time using m proces-
801"8.
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Proof. The number of iterations of the loop of the algorithm is O(logA)
O(lognC), because d is halved at each iteration. The running time of each iteration
is dominated by Degree-Split, which takes O(log n) time by Lemma 4.3. [3

THEOREM 4.5. A maximum-weight matching in a bipartite graph can be computed
in O* log C) time using m3 processors.
The exact running time of our algorithm on a CRCW PRAM is O(x/- log2 n log nC),
which is the time required to approximately solve the linear program.

COROLLARY 4.6. A maximum cardinality bipartite matching can be computed in
O* v/-) time using m3 processors.

5. Concluding remarks. Interior-point methods have proved to be very pow-
erful in the context of sequential computation. In this paper we have shown an
application of these methods to the design of parallel algorithms. We believe that
these methods will find more applications in the context of parallel computation. We
would like to mention the following two research directions.

One direction is to attempt to generalize our result to general linear programming,
showing that any linear programming problem can be solved in O*(v/L) time. This
would require a parallel implementation of the finish-up stage of the algorithm that
runs in O* (x/L) time. A related question is whether the problem of finding a vertex
of a polytope with the objective function value smaller than that of a given interior
point of the polytope is P-complete.

The other direction of research is to attempt to use the special structure of the
bipartite matching problem to obtain an interior-point algorithm for this problem
that finds an almost-optimal fractional solution in less than O* (x/-) time; an O*(1)
bound would be especially interesting, since in combination with results of 4 it would
imply that bipartite matching is in NC.

Acknowledgments. We would like to thank an anonymous referee for very use-
ful comments on an earlier version of this paper.
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EFFICIENT EMBEDDINGS OF TREES IN HYPERCUBES*
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Abstract. The boolean hypercube is a particularly versatile network for parallel computing.
It is well known that multidimensional grid machines can be simulated on a hypercube with no
communications overhead. In this paper it is shown that every bounded-degree tree can be simulated
on the hypercube with constant communications overhead. In fact, the proof shows that every
bounded-degree graph with an O(1)-separator can be embedded in a hypercube of the same size
with dilation and congestion both O(1). It is also proved that not all bounded-degree graphs can be
efficiently embedded within the hypercube.

Key words, graph embedding, binary trees, boolean hypercube, dilation, expansion, congestion,
tree decomposition
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1. Introduction. The binary hypercube is emerging as one of the most popular
network architectures for parallel machines. This is due partly to the facts that the
hypercube has a simple recursive structure and that there are simple algorithms for
message routing on the hypercube that work well in practice.

Another important consideration in the choice of network architecture is its ability
to accommodate different algorithms efficiently. The problem of efficiently implement-
ing various algorithms on parallel architectures has traditionally been studied as the
"logical mapping problem" [2], [10] so that the problem of implementation becomes
one of embedding the "data-dependency graph" underlying an algorithm within the
processor interconnection graph. Many structured algorithms such as those in linear
algebra [20] or the FFT algorithm [17] can be efficiently mapped onto the hypercube
with minimal communication overhead. As an example, the N-node hypercube con-
tains every N-node multidimensional grid, each of whose sides is a power of 2, as a
subgraph. Hence grid-based algorithms can be executed efficiently on hypercubes.

In this paper we examine the ability of the hypercube to accommodate divide-
and-conquer algorithms whose underlying structures are bounded-degree trees. Our
main result is that the N-node hypercube can emulate every N-node bounded-degree
tree with only a constant factor slowdown. In particular, we show how to embed any
N-node bounded-degree tree within an N-node hypercube so that:
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1. The mapping of tree nodes to hypercube nodes is one-to-one (i.e., the max-
load of the embedding is one).

2. Each tree edge is mapped onto a hypercube path of length O(1) (i.e., the
dilation of the embedding is constant). The dilation of an embedding is a
lower bound on communication delay, measured by the number of links a
message must traverse.

3. Each hypercube edge is used to route only O(1) tree edges (i.e., the congestion
of the embedding is constant). Congestion bounds message-throughput rates,
and thereby communication delay and queue sizes for holding messages in
transit.

4. Only O(1) tree edges are routed through each hypercube node (i.e., the node-
congestion of the embedding is constant). Node-congestion bounds the total
queue-size required at each node to hold messages in transit.

In other words, every tree can be embedded into a hypercube with expansion
1, and every other resource bounded by a constant. The embedding uses a divide-
and-conquer approach involving multicolor separator theorems for binary trees, and
is reminiscent of earlier work [8] on embedding graphs in grids for VLSI layout.
Our techniques in this paper consequently translate into efficient embeddings (all re-
sources bounded by a constant) for all bounded-degree graphs with O(1)-separators.
Bounded-degree trees fall within this class, as do bounded-degree outerplanar graphs.

The paper is organized as follows. Section 2 summarizes related results; 3
presents a simple lower bound for embedding random trivalent graphs in hypercubes;
4 presents the basic technique for decomposing binary trees; 5 presents the final
embedding. Section 6 concludes with some open questions.

2. Related results.

2.1. Previous work. The hypercube is known to contain, or nearly contain,
many other natural structures as subgraphs. For example, the nl n2 nk
grid is a subgraph of the ik=l log ni-dimensional hypercube. Curiously, it is not
a subgraph of any smaller hypercube. For example, a 3 5 grid is a subgraph of
the 32-node hypercube, but it is not a subgraph of the 16-node hypercube. However,
Chan [11] has recently shown that every n n2 grid can be embedded in a [log nn2-
dimensional hypercube with dilation no more than 2, and has further shown that the
n nk grid can be embedded one-to-one in the [lognln2 ...nk-dimensional
hypercube with dilation O(k) [12].

The (N-1)-node complete binary tree is not a subgraph of the N-node hypercube,2

although it can be embedded with dilation 2 since the N-node two-rooted complete
binary tree (see Fig. 1) is a subgraph of the N-node hypercube [7], [18]. As a conse-
quence, the (N- 1)-node complete binary tree is a subgraph of the 2N-node hypercube

Even more complex and computationally powerful structures can be efficiently
embedded within the hypercube. For example:

1. Leighton [22] showed that meshes of two-rooted trees are subgraphs of the
hypercube; and Efe [13] showed that the mesh-of-trees is a subgraph of the
hypercube;

In this paper all logarithms are base 2.
Both the tree and the hypercube are bipartite graphs. While the bipartite node sets for the

hypercube are equal in size, they differ by a factor of 2 in the complete binary tree.
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FIG. 1. The two-rooted complete binary tree.

2. Stout [28] showed that pyramid graphs can be embedded with dilation 2 and
minimal expansion in the hypercube. Ho and Johnsson [19] improved this
result to dilation 2 and congestion 2; and

3. Greenberg, Heath, and Rosenberg [17] showed that every FFT network is a
subgraph of the smallest hypercube that can contain it. They also showed
that the same result holds for butterfly networks of even order; butterflies of
odd order can be embedded with dilation 2 in the smallest hypercube that
can contain them.

In fact, the only bounded-degree graphs known not to have efficient embeddings
in the hypercube are random graphs and expander-based graphs. In 4 we show that
any constant-expansion, one-to-one embedding of such a graph into the hypercube
must have dilation f(log N), the worst possible (to within constant factors) since the
N-node hypercube has diameter log N.

We conjecture that the shuffle-exchange and deBruijn graphs are examples of
bounded-degree graphs that cannot be embedded one-to-one into the hypercube with
constant dilation and expansion. We know of no lower bounds for either case. We do
not even know whether or not every bounded-degree planar graph can be embedded
with constant dilation and expansion.

2.2. Extensions and subsequent work. This paper extends the results com-
municated earlier by the authors [5] when the node-congestion was not known to be
O(1). Our earlier communication [5] has since led to developments along a number of
different directions, some of which we mention below.

Building on an earlier version [5], Monien and Sudborough [27] claim to have
reduced the constants for dilation over our construction, but do not consider either
node- or edge-congestion. For example, they claim that every N-node binary tree
can be embedded with expansion 1 and dilation 5, or with dilation 3 and expansion
O(1). Whether or not any binary tree actually requires dilation 3 is open. Wagner [29]
showed that every N-node binary tree is a subgraph of the hypercube with O(N log N)
nodes. It is not known if every binary tree is a subgraph of an O(N)-node hypercube.
Mayr [26] examined parallel algorithms which efficiently compute our embeddings.

The techniques in this paper were extended to embeddings within the butterfly,
and related, networks. For example, the N-node complete binary tree can be em-
bedded with constant expansion and dilation within the butterfly network [4] and, as
a consequence of results in this paper, every N-node binary tree can be embedded
one-to-one with constant expansion and O(log log N) dilation and congestion within
the butterfly network.

In [6] the authors applied the techniques used in this paper to construct a bounded-
degree N-node graph that contains all N-node binary trees as spanning subgraphs.
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This provided the first known example of a bounded-degree graph which is universal
for all binary trees. Using an entirely different approach, Friedman and Pippenger
[14] proved that every N-node bounded-degree tree is a (not necessarily spanning)
subgraph of an O(N)-node expander graph.

Leighton and Malitz [23] constructed examples of N-node graphs with O(Na)-
separators for which every one-to-one constant-expansion embedding into the hyper-
cube must have dilation at least t(c log N/- log (). Thus, for example, there exist
graphs with O(x/)-separators for which every constant-expansion one-to-one em-
bedding must have dilation at least D(log N). This implies that embedding strategies
based on separators alone cannot be used to obtain constant-dilation embeddings for
planar graphs even if such embeddings exist.

Bhatt and Cai [3] considered the problem of maintaining dynamically evolving
trees on the hypercube. They showed, among other results, that a simple random-
ized embedding technique guarantees dilation O(log log N) and, with high probabil-
ity, O(1) max-load to maintain an N-node dynamic tree on the N-node hypercube.
Leighton, Newman, Ranade, and Schwabe [24] improved this result to dynamic em-
beddings with O(1) dilation, node-congestion, and edge-congestion while maintaining
load balance.

The results mentioned above are all concerned with embedding bounded-degree
graphs within hypercubes. For such graphs, embeddings with constant dilation and
congestion utilize only O(N) out of the 1/2N log N communication edges of the hyper-
cube. Greenberg and Bhatt [16] and Aiello, Leighton, Maggs, and Newman [1] extend
these embeddings to multiple-path embeddings in which each edge of the host graph
is mapped to multiple, edge-disjoint, short paths in the hypercube.

Along a different direction, Koch et al. [21] extend the study of graph embeddings
to examine work-preserving emulations among different interconnection networks.

3. Definitions. Before proceeding with our results, we need a few definitions.
An embedding <,p> of a graph G (VG, EG) into a graph H (VH, EH) is
defined by a mapping from VG to VH, together with a mapping p that maps each
edge (u, v) e EG onto a path p((u), (v)) in g that connects (u) and (v). The
load on a node v E H is the number of nodes of G that are mapped onto v; the
max-load of an embedding is the maximum load over all nodes of H. The expansion
of an embedding is the ratio of the size of VH to the size of Vv.

The dilation of the edge (u, v) under <, p> equals the length of the path p((u),
(v)) in H; the dilation of an embedding <,p> is the maximum dilation of an
edge in G. The congestion of an edge eH in H under <,p> equals I{e E Ev
p(e) contains ell}l; the congestion of an embedding <,p> is the maximum con-
gestion of any edge in H. The congestion of a node VH H under <, P/ equals
I{e e Ev: p(e) contains VH }1; the node-congestion of an embedding <,p> is the
maximum congestion of any node in H.

We are interested in efficient embeddings of one family of graphs into another
family ?-/ of graphs. The families and :H are parameterized by the number of
nodes they contain. By an expansion e(N), dilation d(N) embedding of g into ?-/we
formally mean a set of embeddings where every N-node graph (g is embedded
into Hge(N with dilation no greater than d(N). Embeddings for which the
expansion and dilation do not grow with N are of particular interest. In what follows,
we always mean embeddings among families of graphs, although we do not always
make that explicit.
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4. A lower bound. Not all bounded-degree graphs can be embedded one-to-one
within hypercubes with small dilation and expansion. In particular, in what follows
we show that every constant-expansion, one-to-one embedding of expander graphs [25]
within hypercubes must have dilation Q(log N), the worst possible. One property of
the family of expander graphs is that the removal of any m nodes from an N-node
expander graph, m <_ N/2, requires that at least cm edges be cut, where c > 0 is a
constant independent of N.

PROPOSITION 4.1. Every constant-expansion, one-to-one embedding of the family
of expander graphs into the family of hypercubes requires dilation Q(log N).

Proof. In fact, we will prove that the average dilation grows as Q(log N). Consider
an embedding of an N-node expander G in the 2kN-node hypercube, where k is a
nonnegative constant. Partition the set of k + log N dimensions of the hypercube into
t [(k + log N)/(k + 1)] subsets S, 1 _< i <_ t, of k + 1 dimensions each, and possibly
one more set with fewer than k + 1 dimensions.

We first count the number of times edges of G traverse hypercube edges that lie in
one of the dimensions of Si, 1 _< _< t. The removal of hypercube edges in dimensions
within Si splits the hypercube into 2k+l blocks, each with N/2 nodes. This also
splits the nodes of G into 2k+l blocks, one of which contains at least N/2k+l nodes,
and at most N/2 nodes. Since G is an expander, this means that at least oN/2k+l
edges of G (c > 0 is some constant independent of N) each traverse at least one
dimension of Si. This is true for all i so the total number of dimension traversals is
at least tN/2k+l Q(NlogN). Because the number of dimension traversals is a
lower bound on the sum of dilations of all edges, we have that the average dilation,
and hence the dilation, is 2(log N). D

5. Embedding binary trees in thistle trees. To embed an arbitrary N-node
binary tree T within the hypercube, we proceed in two stages. In the first stage,
T is decomposed and efficiently embedded within the N-node thistle tree. The next
section gives efficient embeddings of thistle trees within hypercubes; this second stage
induces an efficient embedding of T in the hypercube.

Before defining thistle trees, however, we first present results on tree decompo-
sition. These results are based on combinatorial techniques developed previously for
VLSI layout [8], [9] and for constructing universal graphs for trees [6]. In particular,
we will use a minor variant of the decomposition lemma from [6]. As mentioned in
[8], the decomposition can be obtained in time polynomial in the size of T.

We begin with the notion of k-color bisectors. Suppose that every node of a graph
G is colored with one of k colors. Further, let S be a set of nodes of G whose removal
partitions the remaining nodes into two equal (to within one) subsets, both containing
equal (again, to within one) numbers of nodes of each color, and such that there is
no edge in G connecting a node from one subset to the other. Such a set S is called a
k-color bisector of (.3 Finally, we note that every N-node binary forest has a k-color
bisector of size less than k log N [8], [9].

The following lemma is fundamental to our result. In what follows, the depth of
a node in a tree is defined to be the distance from the root to that node; the root is
at depth 0. In an N-node complete binary tree, a node at depth d is said to be at
level log N- d; leaves are at level 1.

3 An immediate consequence of the definition is that a k-color bisector S for G can be extended
into a k-color bisector S

_
S of any larger size, by removing nodes of the same color one by one,

and alternating between the two separated subsets.
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LEMMA 5. l. Every N-node binary tree T can be mapped (many-one) to the level-
(logN- 1) complete binary tree C so that (a) exactly 6 log (N/2) / 18 nodes of T
are mapped onto a node of C at depth t < log N- 7, and at most 60 nodes of T are
mapped to any node at depth t log N- 7, and no nodes of T are mapped at greater
depth, and (b) any two nodes adjacent in T are mapped to nodes at most distance 3
apart in C. Furthermore, for every node of C, the numbers of nodes of T embedded
within its two subtrees differ by at most 1.

Remark. Lemma 5.1 is almost identical to Lemma 1 in [6]; the main difference
being that the "exactly" in condition (a) above is replaced by "at most" in [6]. The
proof remains almost identical, with the difference that whenever the proof in [6] uses
bisectors of smaller size than stated in condition (a), we invoke the previous footnote
to extend the bisector to the required size. By counting the number of nodes of
T mapped at different depths, one can show that nodes of C at depths 0 through
log N- 8 are filled exactly as required, and at depth (log N- 7) each remaining
subgraph has less than 60 nodes. The details are straightforward and are left to the
reader.

For our purposes we will need to modify the above embedding slightly. Suppose
that each node of C at level (depth logN- 1 -i) has maximum capacity i; i.e., at
most nodes of T can be placed at a level-/node of C. The number of nodes of T
placed at nodes of depth log N- 8 or less of C by Lemma 5.1 exceeds their capacity.
In contrast, nodes at depth log N- 7 and greater in C are assigned fewer nodes of
T than their capacity allows. The following lemma states that we can perturb the
mapping of T slightly so that capacity constraints are satisfied at every node of C,
and without greatly increasing the distances between nodes adjacent in T.

LEMMA 5.2. Every N-node binary tree T can be mapped (many-one) to the level-
(log N- 1) complete binary tree C so that (a) at most nodes of T are mapped onto
a level-i node of C, and (b) any two nodes u and v that are adjacent in T are mapped
to nodes U and V in C whose least common ancestor is at most distance 8 from each
of U and V.

Proof sketch. Given the embedding of Lemma 5.1, at each node of C make an
ordered list of the nodes of T that are embedded there. Starting with the root, we
"push" excess nodes of T down to lower levels as follows: when a node b is ready
for "pushing," we fill b to capacity with the appropriate number of the "leftmost"
vertices in the ordered list of nodes currently at b. The remaining nodes on the list
are divided into two equal (to within 1) sublists and appended at the left end of the
ordered lists for the children, b0 and bl, of b. The nodes b0 and bl are now ready to
be "pushed."

To establish that the above procedure maps every node of T within C (i.e., that
no nodes of T are pushed out of C), we show inductively that the total number of
nodes of T assigned to the subtree rooted at any node of C cannot exceed the total
capacity of the subtree. Initially, this is true at the root. Suppose this is true at node
b when it is ready to be pushed. We claim that after b has been pushed, the inductive
hypothesis holds at each of the subtrees rooted at b0 and bl. Before b is pushed,
the number of nodes of T mapped in the subtrees rooted at b0 and bl are equal (to
within one). Furthermore, equal (to within one) numbers of nodes are pushed onto
b0 and b when b is pushed. The result is that the total numbers of nodes of T within
the two subtrees remains equal (to within one) after b has been pushed. Therefore,
if the capacity of either b0 or bl is violated after b is pushed, it must be the case
that the capacity of b was violated before b was pushed; this contradicts the inductive
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FIa. 2. The thistle tree T5.

hypothesis.
For the second part of Lemma 5.2 we need to bound how far the push procedure

can force a node of T to ripple down the tree. This is a simple calculation; the result
is that the number of nodes assigned by Lemma 5.1 to depth at most g in C is less
than the total capacity of nodes with depth at most g + 5. This means that a node of
T will be reassigned to a node of C with depth at most 5 greater than by Lemma 5.1.
This suffices to guarantee part (b) of Lemma 5.2. [:]

5.1. Thistle trees. The decomposition of Lemma 5.2 motivates the definition
of thistle trees. The thistle tree Th is obtained by starting with a complete binary
tree of 2h 1 nodes and attaching to each level-/node, 1 _< i _< h, i- 1 additional
leaves called thistles. The thistle tree T5 is shown in Fig. 2. The thistle tree Tk (of
depth k- 1) has 2k/l k- 2 nodes. For convenience we assume that our binary trees
have size N 2k/l k- 2. This assumption will be removed later.

DEFINITION. If U is a thistle adjacent to node w, then we call w the central node
of u, and denote X(u) w. If u is not a thistle node, then it is a central node and
we define X(u) u.

6. Embeddings in the hypercube.
THEOREM 6.1. Every N-node binary tree can be embedded one-to-one in a hy-

percube with expansion 1, dilation 0(1), and congestion 0(1).
Proof. The decomposition of Lemma 5.2 is invoked to embed an arbitrary N-node

binary tree one-to-one within a thistle tree. Map the nodes of T that are embedded
within the same internal node in Lemma 5.2 onto distinct thistles adjacent in the
thistle tree, with one node of T per thistle. This gives an embedding of T in the
thistle tree with expansion 1 and max-load 1.

It remains to embed the N-node thistle tree within the hypercube. The next
section investigates embeddings of thistle trees within hypercubes. We then complete
the proof of Theorem 6.1 by showing that in the induced embedding both node- and
edge-congestion are O(1).

6.1. The inorder embedding of complete binary trees. There is a very
natural way of embedding complete binary trees within hypercubes. As may be seen
in Fig. 3, an inorder labeling of the 15-node tree yields an expansion-l, dilation-2
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000010.00001001-00Oil0101 001
FIG. 3. The inorder embedding o a complete binary tree.

embedding. Each node v in the tree is labeled with the log N-bit binary representation
b(v) of its inorder number; the hypercube address of v, (v), is defined to equal b(v).
This embedding scales to larger trees. In general, the ith leftmost node at level k
(k _> 1, i _> 0) has inorder number i2k / 2k-1 1; its left child (the 2ith node at
level k- 1) has inorder number i2k / 2k-2 1; and its right child has inorder number
i2k - 2k-1 + 2k-2 1. From this it follows that the inorder label of the left child of
every node at level k differs from the inorder label of the node in bit position k- 2
while the right child differs in bit positions k- 1 and k- 2. In other words, every
left-edge (between a node and its left child) has dilation 1, and every right-edge has
dilation 2.

We associate with each node u in the complete binary tree a path, T(U), the trace
of u, which starts at the left child of u and follows the rightmost path down the tree
to a leaf. It is easily seen that every node w of the tree (except along the rightmost
path from the root) lies in the trace of exactly one other node u. If a node w lies in
T(u), then we call u the source of node w.

The inorder numbering of a complete binary tree C of 2n 1 nodes also has the
following useful properties which can be verified in a straightforward manner.

1. The descendants of an internal node u that lie g levels below u occupy an
l-dimensional subcube. The descendants that lie no more than / levels below
u reside in an (g + 1)-dimensional subcube.

2. For every i, each node u at level is adjacent in the hypercube to source(u)
along an edge in dimension i. Therefore, the nodes in T(u) are adjacent to u
along dimensions i- 1, i- 2,..., 1.

3. If S is the set of descendants of u that lie at most distance m away from u,
and if u is at level i of C, then the set of nodes at level j (j < i) which are
in the trace of nodes in S lie within an (m / 1)-dimensional subcube. As j
varies, these subcubes are disjoint but are defined by the same set of rn -+- 1
dimensions for all j.

6.2. Embedding the thistle tree. We embed a height-h thistle tree into a
height-h complete binary tree as follows: embed the central node of each thistle onto
its counterpart in the complete binary tree, and embed the i- 1 thistles connected
to a central node u at height i one-to-one onto the i- 1 nodes in the trace T(u).
The properties of the inorder embedding mentioned in the previous section induce an
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embedding of the height-h thistle tree into a 2h+l-node hypercube with dilation 2,
max-load 2, and expansion 1/2. Of the two thistle-tree nodes mapped to one hypercube
node, one is a central node and the other a thistle. We obtain a one-to-one embedding
by first constructing a 2h+2-node hypercube by taking two cubes of half the size. The
entire thistle tree lies in one of the half-size cubes. We project each thistle node over
to the corresponding empty hypercube node across the matching that connects the
two half-size cubes to obtain an embedding with dilation 2, expansion 1, and max-load
1.

For convenience, we fix the following notation. Let VT, VTT, VEST, and VH be,
respectively, the node sets of the binary tree, thistle tree, complete binary tree, and
the hypercube, so that [VTI IVTT[ <_ IVHI N, and [VcBTI (N- 1)/2. The maps
between these node sets are named as follows:

0 VT VTT,
/3 VTT -* VeST (not one-to-one),

VTT VH,
Yr

We now proceed with the proof of Theorem 6.1. In the embedding c, nodes u
and v adjacent in T are mapped to nodes (u) and a(v) whose central nodes are

X((u)) and X((v)). The images (X((u))) and (X(c(v))) lie within a nine-
dimensional subcube. How far apart can the images (u) and (v) be? In the worst
case, (u) (c(u)) and (v) ,(c(v)) can be distance 1 away from
and -y(X((v))), respectively, so the distance between (u) and (v) can be no greater
than 11.

We have to find an assignment of paths within the hypercube to tree edges such
that both node- and edge-congestion in the hypercube are O(1). In the general case,
suppose that we have to route tree edge (u, v) between hypercube nodes (u) and

Let V -y(X(c(u))) and Y -(X(c(v))) denote the images of the central nodes
of u and v. Let Dug be the set of hypercube dimensions in which U and V differ.
Further, suppose that /3((u)) and/(c(v)) are at levels and gv of the complete
binary tree, respectively, so that (u) and U differ in dimension g, and (v) and Y
differ in dimension gv. Assume that < g (the case when they are equal is covered
as a simpler subcase).4

The naive way (Fig. 4) to route edge (u, v) is to follow dimension g from (u) to
U, follow images of thistle-tree edges (within a nine-dimensional subcube) to V, and
finally follow dimension v to reach (v). The problem with this scheme is that the
congestion along images of thistle-tree edges can be as large as (log N).

We can make both node- and edge-congestion O(1) by traversing the dimensions
in a different order, in three stages. As indicated in Fig. 5, in Stage 1 we follow
a path which traverses dimensions in buy (in any order within the corresponding
nine-dimensional subcube) from (u) to the node U1. Observe that/3(-((u))) and
/(’y-(U)) lie at the same level in the complete binary tree. In Stage 2 we follow
dimension g. from U to U2, and in Stage 3 we follow dimension gu from U2 to reach
(v). Because g < ., it follows that/(’-1(U2)) in the complete binary tree lies
in the trace of/((v)), and also that/(-(U2)),/(--(U)), and/((u)) all lie at
level u of the complete binary tree.

4 The general case includes degenerate cases such as, for example, when c(u) or c(v) is a central
node. We do not explicitly mention these cases.
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Stage 2

Stage 3: gv

U
Stage 1: /

FIG. 4. The naive scheme for routing paths.

Stage 2: gv to U2 .- U1 -
Stage 1" Duv

FIG. 5. The modified scheme.

With this modified routing, we claim that both node- and edge-congestion are
O(1). Consider the set of routes in Stage 1. By property 3 of inorder embeddings,
the path from (u) to U1 lies within a nine-dimensional subcube; the sources of their
pre-images in the complete binary tree can be no further than eight levels away from
their lowest common ancestor. Now u can be adjacent in T to another node w, in
which case the route from (u) to W1 in Stage 1 (define W, W1, W2 accordingly as
for U, U1, U2) will lie within a nine-dimensional subcube defined by a set Dvw. The
two sets Duv and Dvw can be different so that the two routes starting at (u) can
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lie in different nine-dimensional subcubes. However, every route starting at (u) is
restricted to lie in one of only nine possible nine-dimensional subcubes because there
are only eight choices for the lowest common ancestor, and each choice fixes a distinct
nine-dimensional subcube. Because each such subcube has O(1) nodes, and each node
in a binary tree is the origin of up to three routes, both node- and edge-congestion in
Stage 1 are O(1).

Next consider Stage 2, in which each route is a single step. Because the node-
congestion in Stage 1 is O(1), we are guaranteed that each node in Stage 2 is the
origin of only O(1) messages. This suffices to guarantee that the edge-congestion in
Stage 2 is O(1). Observe that in Stage 3 all edges leaving nodes whose pre-images
in the complete binary tree are at level gu are routed along dimension lu; therefore,
at the end of Stage 2, routes terminating at U2 correspond to edges incident to tree
nodes which are mapped either onto U2 or onto (v). Since each tree node has
bounded degree, the node-congestion in Stage 2 is O(1). In Stage 3 the node- and
edge-congestion are O(1) because of bounded-node degrees. Overall, therefore, both
node- and edge-congestion are O(1).

Finally, when the size N of the tree lies between 2k+l k 2 and 2k/l, we first
remove N- 2k/l - k + 2 nodes, and embed the subtree of 2k/l k- 2 nodes. Next,
we use the fact [15] that within an m-dimensional hypercube m node-disjoint paths
can be found to connect any m source nodes to any m sinks. By creating a sink which
is vacant and sources wherever one of the removed nodes must be embedded, k + 1
additional nodes can be embedded by percolating nodes along the flow paths. This
increases dilation, node-, and edge-congestion by O(1). The last node can be inserted
similarly, and the overall dilation, node-, nd edge-congestion remain O(1). [:]

7. Extensions and conclusions. This paper gives simulations of tree struc-
tures in the hypercube. The decomposition lemma (Lemma 5.2) for binary trees also
provides optimal embeddings of binary trees within other networks. For example, we
can show that every N-node binary tree can be embedded within an N-node complete
binary tree with expansion 1 and dilation O(loglog N). By embedding a complete
binary tree within the shuffle-exchange graph with expansion 1 and dilation 2, we
obtain O(log log N) dilation for arbitrary trees embedded within the shuffle-exchange
graph. We have not yet determined whether or not these bounds are optimal to within
constant factors.

All of our results on embeddings within the hypercube extend to arbitrary graphs
of bounded degree with O(1) separators. While our simulations are optimal to within
constant factors, there is much room for reducing the overhead in expansion and
dilation further. It would be satisfying to discover simpler ways to embed binary
trees in the hypercube. For example, we do not know of any specific binary tree that
cannot be embedded in the hypercube either with expansion 1 and dilation 2 or with
expansion 2 and dilation 1.

Acknowledgments. Thnks to David Greenberg for helpful discussions and for
his careful reading of the manuscript. Thanks also to Lennart Johnsson for early
suggestions.
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ON THE EXACT LOCATION OF STEINER POINTS IN GENERAL
DIMENSION*

TIMOTHY LAW SNYDER

Abstract. The Steiner Problem is to form a minimum-length tree that contains a given set
of points, where augmentation of the point set with additional (Steiner) points is permitted. The
Rectilinear Steiner Problem is one in which edge weights are determined by the LI, or Manhattan,
distance between points in d.

Let S be a set of n points d, where d

_
2. By generalizing a planar theorem of Hanan

(SIAM J. Appl. Math., 14 (1966), pp. 255-265.) to all dimensions, a set of O(nd) points that is
guaranteed to include all the Steiner points of a minimum rectilinear Steiner tree of S is constructed,
complementing Hanan’s result in d- 2.

The theorem here and its proof illuminate new combinatorial and geometrical facts about recti-
linear Steiner trees; one immediate benefit is algorithms that are asymptotically faster than all known
algorithms for the problem in dimensions three and greater. The theorem also yields a polynomial
algorithm in all dimensions for a version of the problem known as the Rectilinear k-Steiner Problem.

Key words, rectilinear Steiner trees, L1 Metric, Hanan’s Theorem
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1. Introduction and main results. The purpose of this paper is to construct,
given a point set S in any dimension d, a relatively small set of points that is guaranteed
to contain all the Steiner points of a minimum rectilinear Steiner tree of S. This
construction immediately yields faster algorithms for the Rectilinear Steiner Problem
in general dimension.

Let S be a finite set of points (or vertices) in d. A Steiner tree of S is a tree
whose vertex set spans S. This means that a Steiner tree can contain vertices that do
not belong to the original point set S; these vertices are called Steiner points. If we
let l(e) > 0 be the weight (length) of an edge e connecting two distinct points of Rd,
then we can define a minimum Steiner tree of S as a tree T* satisfying

(1.1) Z l(e)-nn{Zl(e)’TisaSteinertreefS IeET* eET

The Steiner Problem, named after an eighteenth century mathematician and signifi-
cantly popularized in this century by Courant and Robbins (1941), is: given a point
set S c d and a method for assigning edge weights to the complete graph on S, find
a minimum Steiner tree of S.

Edge weights in the Steiner Problem are often determined using a distance met-
ric. If e joins the points x (Xl,X2,... ,Xd) and y (yl, y2,..., Yd) E jd, then the
rectilinear distance r(e) is defined by r(e)
Geometrically interpreted, the edge e having rectilinear distance r(e) consists of con-
tiguous line segments that parallel the d coordinate axes.

Since the given point set in the Steiffer Problem is a subset of /d, it is not
obvious a priori that the problem can be solved in finite time, for the Steiner points

*Received by the editors September 17, 1990; accepted for publication (in revised form) February
11, 1991.
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can occupy an infinite number of places in any region of d. Unlike the Minimum
Spanning Tree Problem, which forms a minimum-length tree on a given set of points
without the ability to augment the point set with additional points, the Rectilinear
Steiner Tree Problem is NP-complete for a discretized version of the L1 metric (see
Garey, Graham, and Johnson (1976) and Garey and Johnson (1977)).

By results contained in Melzak (1961) and the comprehensive paper of Gilbert
and Pollak (1968), however, algorithms for the Euclidean Steiner Problem exist in all
dimensions. Unfortunately, these methods are not metric-independent, hence they do
not apply to the Rectilinear Steiner Problem (nwang (1976)).

The only known algorithm for the rectilinear problem in general dimension is due
to Sankoff and Rousseau (1975), who showed that, given a set of points and a topology
of a Steiner tree spanning those points, where the topology includes some Steiner
points whose locations are unknown, the location of the Steiner points can be found in
polynomial time using dynamic programming. To find a minimum rectilinear Steiner
tree (MRST) using this algorithm, one must enumerate all possible tree topologies for
all possible numbers of Steiner points; this is costly. The algorithms that result from
the theorem in this paper are asymptotically faster than the algorithm of Sankoff and
Rousseau (1975), but the Sankoff-Rousseau algorithm is valid for any metric.

An algorithm for the Rectilinear Steiner Problem in dimension two was first
established by Hanan (1966) using the following theorem.

HANAN’S THEOREM. Let S {(xl,y), (x2, Y2),..., (Xn, Yn)} C :2. Then, there
exists a minimum rectilinear Steiner tree T of S such that, if Q is a Steiner point of
T, then Q (xi, yj), for some 1 <_ i <_ n and 1 <_ j <_ n.

Hanan’s Theorem tells us that if we construct a grid by drawing lines parallel
to the x and y axes through each of the points of S, then there exists an MRST of
S, each of whose Steiner points belongs to the set of intersection points of the lines
that form the grid. Hanan’s Theorem is used to yield a finite (though enumerative)
solution to the problem in d- 2, for it makes finite the number of places at which a
Steiner point can occur.

By generalizing Hanan’s Theorem to all dimensions d >_ 2, given a set of points
S c d, we can construct a point set that is polynomial in size and is guaranteed to
contain all the Steiner points of an MRST of S. One immediate application of the
theorem is a faster algorithm for the Rectilinear Steiner Problem in all dimensions.
This is done in 2, where we use our generalization of Hanan’s Theorem to form a graph
that is amenable to the graph-based algorithm of Dreyfus and Wagner (1972). We then
use the theorem to form a simple algorithm for the k-Steiner Problem, which restricts
the number of Steiner points to be k or less. The algorithm solves the rectilinear
k-Steiner Problem in polynomial time for k O(1). This result complements the
algorithm of Georgakopoulos and Papadimitriou (1987) for the Euclidean 1-Steiner
Problem, and it is the first polynomial algorithm for the rectilinear problem in general
dimension.

The generalization of Hanan’s Theorem is nontrivial. An exhaustive analysis like
Hanan’s is impossible in higher and general dimension, where the consideration of
all local topologies of a Steiner point becomes unwieldy, and where the degree of a
Steiner point can be as large as 2d, as opposed to the degrees 3 and 4 guaranteed
in d 2. Hence, to generalize Hanan’s Theorem to higher dimensions requires a
new understanding of Steiner trees. The proof is made possible only by some new
combinatorial objects, namely, the wire codes, canonical forms for local topologies,
and trombone wires introduced in the first half of this paper.

Because of its applications to VLSI and general circuit design, rectilinear distance
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is often the metric of interest in the Steiner Problem, since a minimum rectilinear
Steiner tree in dimension two represents the minimal cost of connection of electronic
components when wiring is constrained to travel in strictly vertical and horizontal
directions. For this reason, edges in an MRST are traditionally referred to as wires;
we adopt this convention here.

In higher dimensions, the Steiner problem has applications in communication
networks and three-dimensional circuit technologies. There is also some intriguing
biological literature using Steiner trees in higher dimensions to analyze neural opti-
mization in the brain (Cherniak (1989)) and to suggest historical evolutionary patterns
for problems in phylogeny (see, e.g., Foulds, Hendy, and Penny (1979); Foulds and
Graham (1982); Foulds (1984); and Gusfield (1990)).

Furthermore, the length of the minimum Steiner tree in all dimensions is linked
to the length of other d-dimensional combinatorial objects, including the optimal
traveling salesman tour; the minimum enclosing rectangle of the point set S for
d 2 (Hanan (1966) and Chung and Hwang (1979)); and the minimum spanning tree
(Hwang (1976) and Bern (1988) for the rectilinear case and Chung and Graham (1981)
(and others) for the Euclidean case).

This paper is organized as follows. Section 2 formally states our Generalized
Hanan Theorem and our algorithms. The theorem, which is necessary to establish the
algorithms’ correctness, is proved in 3-8.

Some of the objects and analyses used in the proof of the theorem are of inde-
pendent interest. In 3, we begin to examine the local topology of a Steiner point in d
dimensions by developing the notion of wire codes. Section 4 proves the existence of an
MRST whose wire codes satisfy certain properties by assuming a particular canonical
form; these properties are then used in 5 to further elucidate the local topology of
a Steiner point. Section 6 introduces trombone wires and trombone trees, along with
some of their properties, and 7 and 8 conclude the proof by sliding the trombone
wires into place such that our theorem is satisfied. Section 9 concludes with some
remarks and open problems.

2. A Generalized Hanan Theorem and its algorithmic implications. In
this section, we present our Generalized Hanan Theorem and the algorithms that
immediately follow from it. In general dimension d _> 2, we will find that given any
point set S c K/d, there exists an MRST of S, each of whose Steiner points lies at an
intersection point of a grid formed by hyperplanes normal to the coordinate axes. We
call this set of hyperplanes the Hanan Grid of S.

To formally define the Hanan Grid of S, let xl, x2,..., and Xd be the coordinate
axes (or dimensions) of K/d, and consider the point P (Pl,P2,...,Pd) E S. There
exist d distinct hyperplanes containing P that are normal to the coordinate axes. For
1 _< _< d, we let N(P, i) be the hyperplane passing through P that is normal to the
xi-axis. In other words,

(2.1) N(P, i) { (xl, x2,..., Xd) Xi pi }, where 1 _< i _< d.

We now define the Hanan Grid of S as

(2.2) H(S) U N(P, i),
PES
l<i<d

i.e., the Hanan Grid H(S) is formed by passing d hyperplanes normal to the coordinate
axes through each member of S. The grid H(S) consists of dis (not necessarily
distinct) hyperplanes.
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For each subset of d mutually orthogonal hyperplanes of H(S), i.e., for each subset
of H(S) of the form {N(P1, 1), N(P2, 2),..., N(Pd, d) }, where, for 1 _< i _< d, the
points Pi E S are not necessarily distinct, there is a point at which the d hyperplanes
intersect. We call the set of these intersection points IH(S). We note that S c IH(S)
and nsl _< ISi

We can now state our generalized theorem.
GENERALIZED HANAN THEOREM. For any finite set of points S c d, there

exists a minimum rectilinear Steiner tree T of S such that, if Q is a Steiner point of
T, then

(2.3) Q E IH(S).

This generalization of Hanan’s Theorem tells us that, given S C jd, there exists an
MRST of S, all of whose Steiner points are intersection points of the Hanan Grid
H(S).

The Generalized Hanan Theorem allows us to use an algorithm of Dreyfus and
Wagner (1972) to obtain a faster algorithm for the Rectilinear Steiner Problem in
all dimensions. For purposes of comparison, we first note that, given n points, the
algorithm of Sankoff and Rousseau (1975) must enumerate for each 0 _< k _< n- 2 all
possible topologies of a tree on n -t- k vertices. Since there exist exactly (n -t- k)n/k-2
topologies of a tree of n-t- k vertices (due originally to Cayley; see, e.g., Roberts (1984,
p. 130), the running time of Sankoff and Rousseau’s algorithm is

(2.4)

n-2

TsR(n + (n + >
k--0

0(4,-2(n 1)2,-4n),

where Cl is constant. Here, TsR(n+k) is the (polynomially bounded) time the Sankoff-
Rousseau procedure takes to find the location of Steiner points given the topology of
a tree on n + k points. (The locations of the n given points are known.)

Dreyfus and Wagner’s algorithm is designed for the Steiner Problem on graphs.
Given a weighted graph G with t distinguished vertices called terminals and m vertices
total, the Dreyfus-Wagner algorithm finds a minimum-weight subgraph (tree) of G
that spans the set of terminals in O(m3 / m22 + m3) time.

Given a point set S c Fid, we can use the Generalized Hanan Theorem to form
a graph problem amenable to the Dreyfus-Wagner algorithm that is equivalent to the
problem of finding an MRST of S. Specifically, we let the intersection points of the
Hanan Grid H(S) be the vertices of the graph, with the vertices of S comprising the
terminals to be spanned.

The edges of the graph are the line segments of each subset of d- 1 mutually
orthogonal intersecting hyperplanes of H(S). Let ISI n. Since IIH(8)I

_
nd, Dreyfus

and Wagner’s algorithm applied to the Hanan Grid runs in O(nd3’) time, since d
is fixed. This algorithm is the fastest known algorithm for the Rectilinear Steiner
Problem in general dimension.

As a second algorithmic application of the Generalized Hanan Theorem, we con-
sider the Rectilinear k-Steiner Problem, which is to find an MRST T of a given point
set under the restriction that T contains at most k Steiner points. The Euclidean ver-
sion of the 1-Steiner problem in d 2 was solved in quadratic time by Georgakopoulos
and Papadimitriou (1987). The Generalized Hanan Theorem can be used to form a
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simple "minimum spanning tree-based" algorithm that solves the k-Steiner Problem
in polynomial time if k O(1). This algorithm enumerates all (,d) subsets K c IH(S)
for each 0 <_ k <_ n- 2 and computes for each K the minimum spanning tree TK of
K U S. Over all trees TK, a tree of minimum weight is an MRST of S. This algorithm
has a running time of

n--2

k--0

where Tmst(nA-k) is the (polynomial) time necessary to compute a minimum spanning
tree of n A- k points. From the bound

it is easily seen that the algorithm solves the rectilinear k-Steiner Problem in polyno-
mial time for any constant k, and does so even if we only bound k as k O(1). We
remark that this algorithm is easily implemented once one has the minimum spanning
tree code on hand.

The limitations of these algorithms and further implications of the theorem are
discussed in 9.

To prove the Generalized Hanan Theorem and establish the correctness of our
algorithms, we will analyze the local topology of a Steiner point, demonstrating that
for every Steiner point Q of a certain MRST, we can find in each hyperplane N(Q, i),
where 1 < < d, a member of the original point set S. To achieve that end, we first
must characterize the local topology of a Steiner point in general dimension; this is
the topic of the next three sections.

3. Wire codes. The Generalized Hanan Theorem in 2 tells us that we can
find all the Steiner points of a certain MRST at the intersection points of the Hanan
Grid. To prove the theorem, we must first attempt to characterize the local topol-
ogy of a Steiner point. We begin by generalizing some elementary observations of
Hanan (1966), then defining wire codes, which will assist in describing the local topol-
ogy and eventually proving our theorem.

Let d(P) be the degree of the vertex P in an MRST. We have the following lemma,
which contains generalizations of some elementary facts.

LEMMA 3.1. If T is an MRST of S c d and Q is the set of Steiner points of
T, then

(i) for all Q E Q, 3 < d(Q) < 2d;

(3.1) (ii) for all P S, 1 < d(P) < 2d; and

(ii ) 0 _< IQI _< Isl- e.

Observations (3.1(i)) and (3.1(ii)) are obvious. For a proof of (3.1(iii)), one can
consult Hanan (1966) or Gilbert and Pollak (1968) for dimension-two proofs; the proof
in d dimensions follows, fl

To examine the local topology of a Steiner point, we develop the notion of wire
codes. Let w be a rectilinear wire incident with a Steiner point Q, and let s(w) be
the number of segments of w. The wire code of w, c(w), is a sequence of s(w) symbol
pairs ejij, where 1 <_ j <_ s(w). Formally,

(3.2) c(w) (1il, 2i2,..., s(w)is(w)).
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Each symbol pair of c(w) represents a segment of the wire w in the order of its
appearance, if we begin at Q and traverse w until we reach another vertex of the
Steiner tree. The parameter ej represents the direction of travel and ij represents the
axis that the segment parallels; we use "+" or "-" and i E (1, 2,..., d}
as the allowable symbols.

We can completely specify w if we have information on the lengths of its segments.
These are represented by the distance code

(3.3)

where, for 1 _< j _< s(w), pj is the Euclidean length of the jth segment of w if we
traverse w, beginning at Q.

Wire codes and distance codes are simply devices that chronicle some notes that
might be taken by an electron traveling along a wire from a Steiner point Q. For each
segment traversed, the electron notes its direction of travel by a symbol pair in c(w),
and it notes the distance it travels in p(w). The chronicle terminates once the electron
reaches a "new" vertex in the tree.

As an example, consider a wire w in 3 that is incident with a Steiner point Q
(ql, q2, q3). Suppose w consists of s(w) 3 segments, traveling (in order from Q) one
unit in the positive x2 direction, one unit in the negative x3 direction, and two units in
the positive xl direction, terminating at a point with coordinates (q /2, q2 + 1, q3 1).
Then, w has wire code and distance code

(3.4)

and

(3.5) p(w) (p, P2, P3) (1, 1, 2),

respectively.
Since the Steiner point of interest will always be made clear when using wire and

distance codes, we have suppressed Q from the notation of the codes.
We will find wire codes convenient in the next section, where we define the local

topology of a Steiner point.

4. The local topology of a Steiner point in do In this section, we charac-
terize the local topology of a Steiner point and show that we can locally restructure a
Steiner tree to a canonical form that will benefit us in subsequent sections.

Consider first a Steiner point Q with degree d(Q). If we arbitrarily label the
wires incident with Q as Wl, w2,..., Wd(Q), then we can completely specify the local
topology of the Steiner point Q as wire codes C(Wl),C(W2),... ,C(Wd(Q) and distance
codes p(w), p(w),..., p(Wd(Q)), bearing in mind that each code c(wj) or p(w) is an
s(wy)-tuple. The components of the c(wy) are symbol pairs, and the components of
the p(wy) are Euclidean lengths. We have the following lemma.

LEMMA 4.1. If ( is a Steiner point of an MRST, then, for any distinct wires w
and w’ incident with Q, the wire codes c(w) and c(w’) can share no symbol pair.

Proof. Let T be an MRST of a point set S and let Q be a Steiner point of T. We
proceed by contradiction. Without loss, assume that the symbol pair ei appears in
both c(w) and c(w’). We will reconstruct the local topology of Q to produce a tree T’
such that EwET, r(w) < EwET r(w), where r(w) is the rectilinear length of w; this
will contradict the minimality of T.
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+3

()

+2

-2

FIG. 1. Wires w and w, whose wire codes share the symbol pair ei in dimension 3. Wire codes

appear adjacent to their corresponding segments, Q is a Steiner point, and ei +3.

The initial situation is reflected in the following codes:

() (i, i,..., _i_, i, +i+,..., ()i()),
p(W) (pl,P2,..., Pj-l, Pj, pj+l, Ps(w));

(4.1) c(w’) (elil, e2z2,’" e_lz_l," ei, " i’.... %++,. e(,) (,)),
p(,) (p;, p’, ’_,, p’, p+,

This notation uses primes to denote the components of the codes for w, and the
common symbol pair ei appears as the jth and kth components of c(w) and c(w’),
respectively.

We can replace w and w’ with a set of three wires, *, w*, and w’*, as shown in
Figs. 1 and 2, to form the tree T’. The wire * is a single-segment wire that travels
in the ei direction from Q to a new Steiner point Q*, which is located at a distance
of min{pj, p} from Q.

Without loss, assume that pj _< p. The wire w* is then defined to be w with
its jth segment removed, and w* originates from the new Steiner point Q*. The wire
w* is identical to w
with p- pj and again originate from Q*. Figures 1 and 2 demonstrate that these
operations really just combine the segments of w and w that have the same symbol
pair ei into a single wire, *, which travels to a new Steiner point. This allows us to
remove a segment of w or w. (In this case, where pj

_
Pk, we remove a segment from

w.) Formally, the new set of wire and distance codes (assuming pj _< p) is

(.) (i),
p(*) (min(p, p})- (p);
c(w*) (elil, e2i2,..., ej-lij-i, ej+lij+l, es(w*)is(w*)),

(4.2) p(,) (p, p,..., p-, p+,...,

c(w’*) (elii,e’il,...,e’_i’_1,ei, dk+lik+, "",es(,’*) its(,’*)),
p(,,,) (p;, p’, p’_, p’ p, p+,

An easy calculation shows that, proceeding from the new Steiner point Q*, the
wires w* and w* terminate in the same places as do wl and w2, respectively. Hence,
T is a Steiner tree of S.
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+3

-{-2

+1
-2

w’* +3

/
/

/

FIG. 2. The wires (v*, w*, and w*, which replace the suboptimal wires w and w of Fig. 1.

(The dotted line indicates parts oy w that are no longer present.) Q* is the new Steiner point.

Let A be the difference in total weight between the trees T and T. Then,

A-- E r(w)- Er(w)
wET wET

r()*) -]- r(w*) -}- r(w’*) (r(wl) -]- r(w2))
+ +

<0,

so -’wEr’ r(w) < ’wET r(w). This contradicts the minimality of the MRST T and
proves the lemma. [:]

Let ejij and ekik be two symbol pairs appearing somewhere in the wire codes of
the local topology of a Steiner point Q, though not necessarily in the same wire code.
If ej ek or if i ik, then we say the symbol pairs ei and ki are distinct. When
we originate from a Steiner point and traverse a wire or wires, distinct symbol pairs
correspond to segments that either parallel different coordinate axes or parallel the
same axis but travel in opposite directions.

If all the symbol pairs of the local topology of Q are distinct, and if, for each wire
code c(w) in the local topology of Q, the dimensional symbols i in c(w) are distinct,
then we say the local topology is in canonical form. By Lemma 4.1, we see that if T
is an MRST, then the only place a symbol pair can appear twice in a local topology
is within the same wire code. This situation is handled by the following lemma.

LEMMA 4.2. Any wire incident with a Steiner point of a Steiner tree T can be
removed and replaced by a wire that contains distinct dimensional symbols ij, if nec-
essary, without increasing the total weight of T.

Proof. Let w be a wire incident with a Steiner point Q of T. If w contains no
multiple occurrences of a symbol, then there is no need to modify T.

Suppose therefore that the local topology of Q is not in canonical form; i.e.,
suppose there are two or more identical symbols in w. In this case, it is easily seen
that w can be replaced with a wire with its segments reordered so that identical
symbols appear contiguously. These segments can then be combined as one segment.
Doing this iteratively forms a wire with at most d segments, all of whose dimensional
symbols are unique.

Lemmas 4.1 and 4.2 tell us that we can easily change the local topology of any
Steiner point to obtain a topology in canonical form, without altering the total weight
of the tree. This gives us the following.
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COROLLARY. For any set of point S C d, there exists an MRST T of S such
that if Q is a Steiner point of T, then the local topology of Q is in canonical .form.

With this corollary, we can now better characterize the local topology of a Steiner
point; this is done in the next section.

Before doing so, we note for later reference that a canonical form of a local
topology is not unique, for we can arbitrarily permute the components of any wire
code of an MRST T (and their respective components in the corresponding distance
code) to obtain a tree T’ such that Ew6T, r(w) Ew6T r(w). Since T and T’ are
also isomorphic, we say that T and T’ are equivalent.

5. The view from a Steiner point. To complete the proof of the Generalized
Hanan Theorem, we must prove that, given a point set S c d, there exists an MRST
T of S such that all Steiner points of T lie at intersection points of H(S), the Hanan
Grid formed by S. We can "view" the theorem from the perspective of a Steiner point
of T, as in the following equivalent formulation.

THEOREM (ALTERNATE GENERALIZED HANAN THEOREM). There exists an
MRST T of S c d 8tch that, if Q is a Steiner point of T, then, for all 1 <_ i <_ d,

(5.1) N(Q, i) contains a point P E S.

This version of the theorem says that in each of the d hyperplanes containing the
Steiner point Q and normal to the d coordinate axes, we will find a member of the
original point set S. If this is the case, then Q must be an intersection point of the
Hanan Grid H(S).

The goal of this section is to prove a relaxed version of the Alternate Generalized
Hanan Theorem. We first look at what happens as we traverse a wire w incident with
a Steiner point Q, whose local topology is in canonical form. Beginning at Q, the
origin Q itself is contained in all hyperplanes N(Q, i). If we next travel one segment,
say, in a direction parallel to the xj-axis, then we arrive at a vertex that is contained
in all the N(Q, i) except for N(Q, j). If we now travel one segment parallel to the Xk-
axis, then we arrive at a vertex contained in all the N(Q, i) but N(Q, j) and N(Q, k).
Because the local topology of Q is in canonical form, w can never "return" to the
hyperplanes N(Q,j) and N(Q, k) once it has traveled in the jth and kth directions.
This generalizes to the following lemma.

LEMMA 5.1. Let w be a wire incident with a Steiner point Q whose local topology
is in canonical form. If

(5.2)

and we traverse w from Q, then w must terminate at a vertex P such that

(5.3) P e N N(Q, i),

where I {1,2,...,d}- {il,i2,...,is(w)}; i.e.,

(5.4) P {N(Q, il),N(Q, i2),...,N(Q, is())}.

So, if s(w) k, then w terminates at a vertex that lies in all but k of the N(Q, i).
(Note that if s(w) d, then w terminates at a vertex that lies in none of the N(Q, i).)
This is summarized in the following.
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COROLLARY. Let Q be a Steiner point whose local topology is in canonical form.
If w is a wire incident with Q and terminating at a vertex P, then

(5.5) I{ P E N(Q, i) }l d s(w).

Let (Q) { P" P is a vertex adjacent to Q in T }; this is the set of neighbors
of Q. The next lemma tells us that, for any given point set S, there exists an MRST
T of S such that if Q is a Steiner point of T, then each N(Q, i), where 1 _< i <_ d,
contains a neighbor of Q. In many ways, this captures much of the essence of the
Generalized Hanan Theorem.

LEMMA 5.2. There exists an MRST T of S c d such that, if Q is a Steiner
point of T, then, .for each 1 <_ i <_ d, there exists a vertex P and a wire w connecting
Q to P such that

(5.6)
(i) P e N(Q, i) (Q) and

(ii) w is entirely contained in N(Q, i).

Proof. Let T be an MRST of S such that if Q is a Steiner point of T, then the
local topology of Q is in canonical form. The existence of such an MRST is guaranteed
by the corollary to Lemma 4.2.

Consider a vertex P adjacent to Q via wire w. The N(Q, i).to which P does not
belong are determined by the wire code c(w) as specified be Lemma 5.1. We note
that the ej are irrelevant in determining the N(Q, i) to which P belongs, for the ej
are only directional parameters.

In eliminating any N(Q,k) from the list of normal hyperplanes containing P,
c(w) must contain the symbol pair eik for some 1 <_ i <_ s(w). But, since the local
topology of Q is in canonical form, its set of wire codes consists, by definition, of
distinct symbol pairs. This means that the symbol k can appear in a symbol pair at
most twice, once as +k and once as -k in the wire codes of the local topology of Q.
This eliminates at most two members of y(Q) from inclusion in the normal hyperplane
N(Q, k), as well as at most two wires incident with Q.

By Lemma 3.1(i), there must therefore be at least one wire incident with Q that
terminates at a vertex belonging to N(Q, k). Since this is true for all 1 _< k _< d, the
lemma is proved. D

We note that Lemma 5.2 is similar to the alternate version of the Generalized
Hanan Theorem, except that we have dropped the requirement that the neighbor
P S. So, since in each hyperplane N(Q, i), where 1 _< i <_ d, we find a member
of ri(Q), if none of the neighbors of Q are Steiner points, then we have proved the
theorem. If, however, Q is adjacent to at least one Steiner point Q, then we still have
to prove that each N(Q, i) to which Q belongs contains a member of S. In the next
section we introduce trombone wires, which will allow us to prove that we can find an
MRST with this property.

6. Trombone wires. In the last section, we saw that any Steiner point Q with
canonical local topology has a member of its neighbor set r(Q) in each of the normal
hyperplanes N(Q, i). If (Q) c S, then Q satisfies the requirements of the Alternate
Generalized Hanan Theorem. But, unfortunately, (Q) may contain Steiner points,
and, worse, we will soon see that some of the wires of an MRST can occupy an infinite
number of locations.

Consider the Steiner points Q and Q, joined by the wire w in Fig. 3. Since the
sole purpose of Q, Q, and w is to join the segments AB and CD, w is free to "slide"
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FIG. 3. A trombone wire w in d 2. Q and Q are Steiner points.

into positions parallel to itself along AB and CD without changing the total weight
of the MRST. This means that, in general, Q and Q can occupy an infinite number
of locations and need not belong to the set of intersection points of the’ Hanan Grid

IH(S). To prove the Generalized Hanan Theorem, we must find places for wires like
w that guarantee containment in IH(S) for all Steiner points.

Because w is free to travel along the segments AB and CD in Fig. 3, we call w
a trombone wire. The construction shown in Fig. 3 is a special case of the following,
more general, definition, which is illustrated by Fig. 4. Let Q be a Steiner point of an
MRST in general dimension (with all local topologies in canonical form), such that
the local topology of Q contains the symbol pairs +i and -i. Let Q be a Steiner
point joined to Q by a wire w so that Q E N(Q, i). Note that the Steiner point Q’
is guaranteed to exist by Lemma 5.2 if N(Q, i) N IH(S) , i.e., if the hyperplane
N(Q,i) contains no intersection point of the Hanan Grid. Since Q’ N(Q, i), w
cannot contain the symbol i, i.e., w is entirely contained in N(Q, i).

More generally, consider the (connected) subtree T containing Q and Q that lies
entirely in N(Q, i). None of the wire codes corresponding to wires in T can contain
the symbol i. On the other hand, the wire codes of the local topologies of theSteiner
points of - may contain +i and/or -i.

For all Steiner points Q of T (including Q) that are incident with wires whose
codes contain the symbol i, if the symbol pair containing always appears as the first
symbol in its wire code, then we call the wires of T trombone wires, and T a trombone
tree. Figure 4 shows a trombone tree in dimension three; note that T and all its
trombone wires are entirely contained in N(Q, i). Note also that if N(Q, i)NIu(s) 0,
then all the vertices of T must be Steiner points.

We now set out to prove various properties, including existence, of trombone
trees. Note first that, by definition, trombone trees contain no less than two Steiner
points.

Our main concern is with Steiner points that do not belong to IH(S). Let T be
an MRST such that all the local topologies of T are in canonical form, and let

(6.1) (T) { Q: Q is a Steiner point of T and Q Is(g }.
In other words, (T) is the set of Steiner points of T that do not lie at intersection
points of H(S). The following lemma tells us that if there is at least one Steiner point
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+i

FIG. 4. Part of a trombone tree in d- 3. The directions +i and -i are indicated, and the

plane is N(Q, i). The trombone wires are darkened.

in T not coincident with an intersection point of H(S), then there exists a member of
(T) that is adjacent to exactly three vertices, two of which are points of IH(S).

LEMMA 6.1. If T is an MRST of S c d such that the local topologies of all
Steiner points ofT are in canonical form, and if b(T) , then there exists a Steiner
point Q 6 b(T) such that

(i) d(Q)= 3 and
(6.2)

(ii) iv(Q) IH(s)I 2.

Proof. Consider the subgraph G generated by (T). Since, by Lemma 3.1, d(Q) >_
3 for all Q (T), each leaf of G must be adjacent in T to at least two members of
IH(S). Since (T) : 0, G must contain at least one leaf.

To prove the equalities of (6.2), let Q be a leaf of G. Since Q 6 (T), there is a
dimension xi such that N(Q, i) IH(S) O. The members of IH(S) connected to Q,
then, must not belong to N(Q, i). This means that the wire codes of the wires con-
necting Q to the points of IH(S) both contain the symbol i. Since the local topology
of Q is in canonical form, there can be at most two such wires; this proves prop-
erty (ii). All remaining wires incident with Q must be contained entirely in N(Q, i).
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But, since all the neighbors y(Q)N(Q, i) must belong to G and since Q is a leaf,
d(Q) 3. 0

We remark that the proof of property (ii) in Lemma 6.1 is considerably simpler
than its dimension-two counterpart in Hanan (1966).

We need one more lemma before discussing the existence of trombone wires.
Consider Q E (T), and let x be such that N(Q, i)IH(s) . By Lemma 5.2,
there exists at least one point Q’ e (Q) such that Q’ e N(Q, i). Consider Q’. Since
g(Q, i) S , Q’ must be a Steiner point. Moreover, Q’ IH(S), so Q’ e (T).
We summarize this in the following lemma.

LEMMA 6.2. If T is an MRST of S c d such that the local topologies of all
Steiner points of T are in canonical .form, and if Q (T), then there exist a Steiner
point Q of T and a dimension xi such that

(i) N(Q, i) IH(S) 0;

(6.3) (ii) Q (Q);
(iii) Q E N(Q,i); and

(iv) Q (T).

Moreover,

(6.4)

The relation (6.4) means that property (6.3(iv)) is satisfied by all (Steiner) points
Q’ adjacent to Q that lie in N(Q, i).

We use Lemmas 6.1 and 6.2 to prove the following key lemma, which sets the
stage for the movement of trombone wires in the next section. It essentially tells us
that if (T) 0, then we can find a trombone tree "rooted" at some Steiner point
adjacent to two members of IH(S).

LEMMA 6.3. If T is an MRST of S c d such that the local topologies of all
Steiner points of T are in canonical form, and if (T) 0, then there exists a tree T
equivalent to T, a Steiner point Q (T), a dimension xi, and a subgraph T Of T
such that

(i) [(Q) IH(S)[ 2;

(6.5) (ii) d(Q) 3;

(iii) Q -; and

(iv) i a oo oaidiU i N(Q, i).

Proof. We first remark that for any tree T’ equivalent to T, (T) (T’) by the
definition of equivalent trees (at the end of 4), since T and T share identical vertex
sets.

Let Q be a member of (T) attached to two members of IH(S) and one member
of (T), as guaranteed by Lemma 6.1, and let be such that N(Q, i) IH(S) , as
guaranteed by Lemma 6.2.

Since the local topology of Q is in canonical form, the two wires incident with Q
that terminate at points in IH(S) are precisely the wires in the local topology of Q
that contain the symbol pairs +i and -i; the other wire incident with Q is contained
entirely in N(Q, i).

By Lemma 6.2, there must be at least one Steiner point Q’ y(Q) N(Q, i). To
form T from T, consider the local topologies of all Q’ N(Q, i), including Q, and,
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in every wire code c(w) containing the symbol i, rearrange the symbol pairs of c(w)
(and the corresponding components of the distance code p(w)) so that the symbol
pair containing i appears first.

It is easily seen that the connected subgraph of T containing Q and lying entirely
in N(Q, i) is a trombone tree.

Since we will eventually want to move the trombone wires of an MRST so that
all its Steiner points are members of IH(8), we need to know when, where, and how
far we can move the trombone trees of an MRST. This issue is handled in the next
section.

7. Trombone lemmas. Using the lemmas of the preceding section, we can now
consider sliding the trombone wires of an MRST T into place. In the last section, it
was proved that if (T) : q}, then we can find a certain trombone tree in T. From
the definition of a trombone tree, however, it is not clear that we are able to move the
tree without sacrificing T’s minimality.

Let T be an MRST such that (T) q} and all local topologies of T are in
canonical form, and let T be a trombone tree in T containing Q E (T) satisfying
properties (i) through (iv) of Lemma 6.3. Since none of the vertices of T belong to
IH(8), Lemma 6.3 would seem to imply that - is free to move in the +i or -i direction
for some positive distance.

If, however, there exists a Steiner point Q in T such that the local topology of
Q contains a wire w- whose wire code c(w-) begins with -i, yet no wire code in the
local topology of Q begins with +i, then sliding T in the +i direction may increase
the total weight of the MRST. This is true because if Q is to remain adjacent to the
point to which it is connected by w-, then moving T in the +i direction must increase
the length of the first segment of w-, which we denote by pl (w-).

The next lemma guarantees us that for every wire such as w-, there is another
wire w+ such that c(w+) begins with the symbol pair +i. Let cl (w) be the first symbol
pair of the wire code c(w), and let

W+(T, i)- (w c (w) +i and c(w) is in the local topology of

(7.1)
a Steiner point of T and

W-(T, i)- (w c (w) --i and c(w) is in the local topology of

a Steiner point of T

In words, W+ (T, i) and W-(T, i) are the sets of wires emanating from the trombone
tree T in the +i and -i directions, respectively. These wires are orthogonal to the
hyperplane containing T.

LEMMA 7.1. If T is a trombone tree in T, an MRST of S c d whose local
topologies are in canonical form, and if T is entirely contained in N(Q, i), where
N(Q, i) IH(S) O, then

Proof. Without loss, suppose that IW+(T, i)l > IW-(T, i)l. If we move T in the
+i direction any distance 5 > 0 such that all wire codes of the local topologies of T
are preserved, then the first segments of the wires in W-(T, i) will increase in length
by 5, while the first segments of the wires in W+(T, i) will decrease by 5. If we let T
be the tree after moving T, then

(7.3) r(w) r(w) 5 IW-(T, i)l ]W+(T, i)l < 0,
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SO Ewe r(w) < -weT r(w). But, since all local topologies of T were preserved when
moving T, T is a rectilinear Steiner tree of S. This contradicts the minimality of T,
proving the lemma. D

Lemma 7.1 allows us to move a trombone tree T contained in some N(Q, i) in
either the +i or -i direction. The next lemma tells us how far we can slide T while
preserving the minimality of the MRST to which T belongs. Recall that pl (w) is the
first entry in the distance code of w, i.e., the length of the first segment of w.

LEMMA 7.2. Let T be an MRST ofS c d whose local topologies are in canonical

form..If T is a trombone tree in T such that T is entirely contained in N(Q, i), where
N(Q, i)IH(s) --, then - can be moved a distance of 5+ and - in the +i and-i
directions, respectively, where

(7.4)
0 < 5+ _< min{ Pl (w)’w e W+(T, i) }
0 < 5- _< min{ pl (w)’w e W-(T, i)},

and

to obtain a tree T such that -wer(w)= ’wT r(w).
Proof. If we slide T in the +i direction a distance of 5+ < rain{ p (w) w E

W+(T,i) }, then none of the wire codes of the local topologies of T can change, for
all vertices of T belong to (T), and we have not moved T far enough to eliminate
any symbol pairs from the wire codes. By Lemma 7.1, IW+(T,i)I IW-(T,i)I, so,
by moving T, we have increased and decreased an equal number of distance code
components, preserving the total weight of T. Note that as T is moved its wires do
not intersect wires contained in a hyperplane parallel to N(Q, i) to create a cycle.
This would contradict the minimality of T.

Suppose now that 5+ min{ p (w)" w E W+ (T, i) }. In this case, we have moved
T such that the local topology of at least one Steiner point Q of T no longer has +i in
a wire code that contained /i before - was slid. (In fact, if the wire code originally
consisted of only one component, then the wire has disappeared altogether.) It can be
shown in this case that the resulting tree T is still an MRST of S, and, using the same
logic applied in the 5+ < min{ p (w)" w e W+(T, i) } case, -]e r(w) EwT r(w).

The proof for 5- is analogous. D
All that remains is to move the trombone wires of T into position such that all

Steiner points coincide with points of IH(S). This is done in the next section, where
we conclude the proof of the Generalized Hanan Theorem.

8. Sliding the trombone wires. In this section, we conclude the proof of the
Generalized Hanan Theorem by sliding trombone wires into place so that all Steiner
points of an, MRST T of S c d belong to IH(S).

We first ensure that the local topologies of T are in canonical form. Then, if
(T) q}, we consider Q (T), the equivalent MRST T’, and the trombone tree T

that satisfy properties (i) through (iv) of Lemma 6.3.
For every point Q (T), there is a set of dimensions

(8.1) v(Q, T’) { i N(Q, i) IH(S) q} };

we call v(Q, T) the violation set of Q in T, for it is a list of all dimensions whose
normal hyperplanes containing Q are "in violation" of the (Alternate) Generalized
Hanan Theorem. The goal is to make v(Q, T) q} for all Steiner points Q in T.

The following lemma tells us that we can slide the trombone tree r so that a
dimension i is removed from v(Q, T) without simultaneously adding any dimensions
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to v(Q, T’) or any points to (T’). The resulting tree T, if v(Q, T) is not yet empty,
still satisfies the conditions required by Lemma 6.3, so we still have a Steiner point,
a dimension j i, and a trombone tree in T satisfying properties (i) through (iv)
in Lemma 6.3. This allows us to again apply Lemma 8.1, and we can do so until
Q E IH(S). Hence, Lemma 8.1 suffices to prove the Generalized Hanan Theorem: we
simply slide trombone wires in T until (T) is empty.

LEMMA 8.1. Let Q be a Steiner point of T, an MRST of S c d such that
all local topologies of T are in canonical form, with Iy(Q)IH(8)I 2 and d(Q)
3. If Q e (T) and if T is a trombone tree contained entirely in N(Q,i), where
N(Q, i) IH() --, then T can be moved in the +i or-i direction to a new location
to obtain a tree T such that

(i) T is an MRST of S;

(ii) all local topologies of T are in canonical .form;

(iii) Iv(Q, T)I <_ Iv(Q, T)I 1; and

(iv) I(T) _< I(T) I.

Proof. Note first that neither point of IH(S) attached to Q can belong to N(Q, i),
so the wire codes of the local topology of Q corresponding to wires terminating at
members of IH(S) must, respectively, contain the symbol pairs /i and -i. Let these
wires be w+ and w-, respectively.

Move T a distance of i+ min( pl(w)’w W+ (T, i) } in the /i direction. Note
that 5+ is within the bounds required by Lemma 7.2, so the resulting tree is still an
MRST, and note also that no symbol pairs have been added to any wire codes and no
existing symbol pairs have been altered, so all local topologies are still in canonical
form.

Let Q be a Steiner point in T. As T is moved, every wire incident with Q that
lies entirely in N(Q, i) is moved. There are at most two wires incident with Q that
are not entirely contained in N(Q, i) (and Q’ slides along these wires, if they exist).
Therefore, if we consider as a vertex the location occupied by Q before sliding T, then
the degree of the vertex after moving T is less than three. This means that when we
slide T, there is no need to "split" Q into two Steiner points, one at its old location,
and one at its new location. In other words, I(T)I does not increase as we slide T.

The key issue, then, is property (iii). As a first case, if 5+ pl(w+), then we
claim the lemma is proved. To prove the claim, note that w+ joins Q to a member
of IH(S), and let Q be the location of Q after sliding T. Since the local topology of
Q in T is in canonical form, the remainder of w+, including its terminal member of
IH(S), must be in N(Q’, i). This removes from v(Q, T), and since, for all j, where
1 <_ j <_ d and j i, N(Q,j) does not change as T is slid, no new dimensions are
added to v(Q, T). This proves the claim.

Suppose now that i+ pl (w+). Let Q be a Steiner point in T such that a wire
w’+ W+(T, i) incident with Q’ satisfies pl (w,+) +, and let P be the location of
Q after sliding T. Note that P can be a vertex of T or a "corner point" in w+, i.e.,
a location at which w+ simply changes direction and continues parallel to a different
axis. If P IH(S), or, more generally, if N(P, i)IH() , then by the same

reasoning as above, the lemma is proved, for Q belongs to N(P, i), removing i from
v(Q,T).

So, assume as a final case that N(P, i)IH(s) q} and consider the status of
T, which we define to be the original tree T after sliding T a distance of 5+. The
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local topologies of T1 are still in canonical form. Since i E v(Q, T), (T1) is not
empty. Furthermore, T is still contained in N(Q, i), and N(Q, i)IH() q}, for
N(Q, i) N(P, i). By Lemma 7.2, we can therefore again slide T in the +i direction,
again letting 5+ min{ p(w) w W+(T, i)}. If we continue to slide T in this
manner, T must eventually revert to one of the previously considered cases and come
to rest in a hyperplane N(Q, i) such that N(Q, i) IH() . This proves the lemma,
and the Generalized Hanan Theorem. D

9. Concluding remarks. The Generalized Hanan Theorem realizes new solu-
tions to the Rectilinear Steiner Problem in general dimension. Our algorithms proceed
along two directions. One uses the Generalized Hanan Theorem to reduce the Rec-
tilinear Steiner Problem to a graph-based problem that is amenable to the Dreyfus
and Wagner (1972) algorithm. This yields the fastest known running times in all di-
mensions. A second direction is a simple and intuitive minimum spanning tree-based
algorithm that gives the first polynomial-time algorithm for the k-Steiner problem in
all dimensions for k O(1).

An issue that must be addressed is that of practicality. Since the set of intersection
points IH(S) can be as large as ISI d, our algorithms still offer little hope for point sets
of even modest size. Though we make no attempt here to refine the algorithm, our
theorem opens the door for algorithms with better performance bounds.

The Generalized Hanan Theorem and some of the combinatorial tools used to
prove it may be of use in ways other than algorithmic ones. For example, using the
wire codes of local topologies in canonical form, one can easily generalize Hwang’s
"Corner Lemma" (Hwang (1976)), which states that, in d 2, no Steiner point can
be incident with more than one corner wire, where a corner wire is a wire composed
of two orthogonal segments. In general dimension, Hwang’s lemma becomes:

CORNER LEMMA. If T is an MRST of S c d such that the local topologies of
T are in canonical form, then the total number of corners in wires incident with any
Steiner point of T is at most 2d- 3.

In addition to combinatorial applications such as the Corner Lemma, the Gener-
alized Hanan Theorem also has applications in computational geometry, e.g., proba-
bilistic and worst-case weights of MRSTs in bounded space (see Snyder (1990)), since
it makes precise the locations where Steiner points can occur.

The theorem may be applicable to new heuristic algorithms for the Rectilinear
Steiner Problem as well.

Acknowledgments. The author thanks Frank Hwang and Marshall Bern for
providing key references and for useful comments concerning an early version of this
paper. Thanks also to Raimund Seidel for pointing out an absurdity in another version.
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Abstract. The problem of learning ring-sum-expansions from examples is studied. Ring-sum-
expansions (RSE) are representations of Boolean functions over the base {A,@, 1}, which reflect
arithmetic operations in GF(2). k-RSE is the class of ring-sum-expansions containing only monomials
of length at most k. k-term-RSE is the class of ring-sum-expansions having at most k monomials.
It is shown that k-RSE, k _> i, is learnable while k-term-RSE, k >_ 2, is not learnable if RP :/: NP.
Without using a complexity-theoretical hypothesis, it is proven that k-RSE, k _> 1, and k-term-RSE,
k _> 2 cannot be learned from positive (negative) examples alone. However, if the restriction that the
hypothesis which is output by the learning algorithm is also a k-RSE is suspended, then k-RSE is

learnable from positive (negative) examples only. Moreover, it is proved that 2-term-RSE is learnable
by a conjunction of a 2-CNF and a 1-DNF. Finally the paper presents learning (on-line prediction)
algorithms for k-RSE that are optimal with respect to the sample size (worst case mistake bound).

Key words, pac-learning, Boolean functions, Vapnik-Chervonenkis-dimension, worst case
mistake bounds
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1. Introduction and definitions. The learnability of various classes of Bool-
ean formulas from examples has been intensively studied in the last few years, (see,
e.g., Kearns, Li, Pitt, and Valiant, for a survey [KLPV 87]). In this paper, we study
a normal form of Boolean functions with a nice algebraic structure, the ring-sum-
expansion (RSE). RSE formulas are basically polynomials over the field GF(2). Any
Boolean function can be uniquely represented in this way, although succinct represen-
tations are only obtained for parity-like functions. We shall see that linear algebra is
very helpful for the construction of learning algorithms for RSE.

Let n E [N. A concept is a Boolean function with domain {0, 1n. The set
f-l(1) {v e {0, 1)n f(v) 1) is the set of positive examples for f while f-l(0) is
the set of negative examples for f. A sample .for f is a collection of labeled examples
for f possibly with repetitions: ((v,a),..., (Vm, OZm)), (vi, ozi) e {0, 1}n {0, 1}, and
f(vi) hi. The size of the sample is m. g is consistent with a sample if g(v) a
for 1 _< <_ m. We say that v satisfies g if g(v) 1.

If n is some set of Boolean formulas on n variables, then C LJn= C is a class

of representations. For example, C might be the class of Boolean polynomials (also
called DNF expressions). Given some f e C, then POS(f) (NEG(f)) are sources
of positive (negative) examples for f. Each time POS(f) is consulted it will give a
positive example. D+, respectively, D- are distributions on {0, 1} such that

D+(v)=l, D+(v)-0, D-(v)-l, D-(v)-0.
vf-l(1) vef-l(O) vf-1 (0) vf-l(1)

By [If we denote the size of the formula f.
A learning algorithm for f is an algorithm that has access to POS(f) and NEG(f).

A call to POS(f) or NEG(f) will count as one step. A class C of representations is

*Received by the editors March 23, 1990; accepted for publication (in revised form) February
25, 1991.
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learnable if there is a polynomial p and a learning algorithm L such that for all n, all

f E (n, all distributions D+, D- as above, and all > 0 and all i > 0,
i halts in time p(n, Ilfll, , ),
L outputs a formula g E Cn, called hypothesis, that with probability at least (1-5)
has the property

D+(v)<e and D-(v)<e.

A class (: of representations is pos-learnable (neg-learnable) if C is learnable by a
learning algorithm that uses only positive (negative) examples.

A class ( of representations is predictable if there is an algorithm that meets
the requirements of a learning algorithm with the exception that it may produce a

hypothesis g of arbitrary type (g need not even be a Boolean formula). The terms
pos-predictable and neg-predictable are defined as for learnability.

We would like to mention that what we call learnability is called proper learnability
by some authors. We shall first prove some results within this framework, before we
turn to the more important notion of predictability, where we allow the hypothesis
to have an arbitrary syntactic form. We shall show that, with this relaxation, some
problems that are not (properly) learnable are predictable.

The consistency problem for a class of Boolean formulas ( is defined as follows.
Given a labeled sample ((Vl,0ll),’’’,(Vm, Olm)), (Vi,Oli) {0, l}n X {0, 1}, is there a
formula f (n that is consistent with the sample.

In order to save indices we introduce the following abbreviation. For I C_ { 1,..., n}
we write xi to denote the (monotone) monomial AielXi. We make the convention that
xi= l for I=qJ.

A ring-sum-expansion is a Boolean formula that is a modulo-2-sum of monomials
containing only unnegated variables:

for some j[ C_ P({1,-.., n})

where P(A) denotes the powerset of A. Every Boolean function can be uniquely
represented as an RSE. For more details, see, e.g., Wegener [W 87].

For k IN, a k-RSE is a ring-sum-expansion where each monomial contains at
most k variables. It will prove useful to introduce the class 1-RSE* of all 1-RSE
formulas not containing the monomial 1.

Fork , a k-term-RSE is a ring-sum-expansion consisting of at most k mono-
mials.

We shall denote a class of representations by the type of formulas that it contains.
For instance 1-RSE will denote the class of 1-RSE-formulas. Note that the learning
problems for RSE, DNF, and CNF are not easily reduced to each other because the
respective sizes of the formulas are not polynomially related.

2. Learnability of k-RSE. In [BEHW 87] Blumer, Ehrenfeucht, Haussler, and
Warmuth gave a combinatorial criterion for learnability of Boolean formulas.

THEOREM 1 (Blumer, Ehrenfeucht, Haussler, and Warmuth). A class C of rep-
resentations is learnable if there are polynomials p and q such that the following con-
ditions hold:

(i) For all n, [C,[ <_ 2p(,0;
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(ii) For all r and all samples of size r a consistent representation g E Cn can be
produced in time q(r, n).

THEOREM 2. 1-RSE* is learnable.
Proof. We shall show how to produce in polynomial time a 1-RSE* g consistent

with a sample for a 1-RSE* f. Then Theorem 2 follows from Theorem 1, noting that
I_RSE*I 2n.

Let f E 1-RSE*.
Let S ((vj, aj))l<j<, be a sample for f. We set up the following linear system

of equations over GF(2) (the variables are the yi):

ylVjl ( y2vj2 ... ynvj ai for 1 _< j _< m.

As f is consistent with the sample the system has a solution. It can be solved in
polynomial time with respect to n and m. The set of solutions forms an affine subspace
of (0, 1}’. Given any solution (tl,... ,tn) define a 1-RSE* r as follows

r’-- xi.
l(i(n

Then r is consistent with the sample because

l<i<n
ti=l

Theorem 2 has been independently proved by Helmbold, Sloan and Warmuth
[HSW 90]. Now the learnability of k-RSE, k >_ 1, follows from a substitution re-
sult in [KLPV 87a]. Moreover, the learning algorithm always produces a consistent
hypothesis.

COROLLARY 3. k-RSE is learnable, k >_ 1.

3. Nonlearnability of k-term-RSE. The class 1-term-RSE is exactly the class
of monotone monomials, which is learnable (see e.g [KLPV 87]). In [KLPV 87a] it
was proved that k-term-DNF, k _> 2, is not learnable. Here we shall prove that
k-term-RSE, k _> 2, is not learnable.

For the proof of our results we need the following theorem.
THEOREM 4. Let C be a class of Boolean formulas. If RP NP, then C is not

learnable, if the consistency problem for C is NP-hard.
Proof. See [KLPV 87a] for the proof. D
We first turn to the nonlearnability of k-term-RSE. The proof is split into two

parts, one for k 2 and one for k > 2. For the case k 2 we .follow the proof of
Kearns, Li, Pitt, and Valiant [KLPV 87a] for k-term-DNF. For k-term-RSE, k >_ 3,
however, we need a different and more complicated proof. Observe that learnability
of (k / 1)-term-RSE does not imply learnability of k-term-RSE. Given a k-term-RSE
r it may be possible to find a (k + 1)-term-RSE r’ in polynomial time that is a good
approximation for r, but it can be impossible to efficiently find a k-term-RSE that
approximates r. Thus nonlearnability of k-term-RSE does not imply nonlearnability
of (k + 1)-term-RSE.

THEOREM 5. 2-term-RSE is not learnable, if RP NP
Proof. The proof is similar to the one for 2-term-DNF in [KLPV 87a].
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We show that the consistency problem for 2-term-RSE is NP-hard by reducing
to it the 2-colorability question for hypergraphs, which itself is NP-complete (see [GJ
79]). Theorem 5 then follows from Theorem 4.

Let an instance of the 2-colorability problem for hypergraphs be given, i.e. let
{1,...,n} be the set of vertices of a hypergraph H and $1,..., Sm

_
{l,...,n},

Sjl >_ 2 be its hyperedges. Then f {1,...,n} --. {1, 2} is called a 2-coloring of
{1,...,n} by 1 and 2 if f(S)l 2 for 1 <_ <_ m. We define our sample by the
following positive and negative examples.

pi :- (1,..., 1, 0, 1,..., 1), 1 <_ <_ n, where the only 0 is at the ith position.
ni x(S), 1 <_ i <_ m, where x(S) is the characteristic vector of S.
Let us first show that a 2-coloring can be converted into a consistent 2-term-RSE.

To this end let mj be the monomial that consists of all variables that correspond to
vertices colored by j, i.e.,

m "= A xi, j=l,2.
f(i)=j

Let r :-- ml m2. In the following we shall identify the monomials with the set of
variables they contain. Thus xi E mj means that xi is a variable in mj. Note that
m and m2 induce a partition of (1,..., n}.

For all 1 _<

_
n the positive example pi is evaluated to 1 by exactly one

of m or m2, namely, by the unique monomial not containing xi. Hence r(pi)
1.

For all 1 _< i _< m the negative example ni is evaluated to 0 by m and m2.
Recall that for every hyperedge Sj example nj has 0s at exactly those positions that
correspond to vertices of Sj. As H is 2-colorable, Si contains vertices of either color
and therefore variables from both monomials. Hence r(ni) rn (Hi)@ m2(n) 0.

Now let r m @ m2 be a 2-term-RSE that is consistent with the examples. We
show that r induces a 2-coloring of H. The variables of ml and m2 form a partition of
{ 1,..., n} because exactly one monomial maps pi to 0 and thus exactly one monomial
contains xi. Let us define the 2-coloring f of H by

f(i)=j iff xiEmj, l <_i<_n, j--l,2.

It remains to show that no hyperedge is monochromatic. Let St be some hyperedge
of H. Then, by consistency, r(nt) ml (nt) m2(nt) 0, hence, rnl (nt) m2(nt).
Note that n is mapped to 0 by at least one of m or m2. Thus ml(nt) m2(nt) 0,
which means that there are j,j’ such that j e m and j’ m2 and ntj nt, 0.
Hence j,j’ St and f(j)- 1 and f(j’) 2, whence St is not monochromatic.

Note that the reduction is clearly polynomial. [:]

For the case k >_ 3 we need the following simple lemma.
LEMMA 6. The problem GC[k] of deciding whether a graph with maximum degree

at most 2k- 1 is k-colorable is NP-complete .for k >_ 4.

Proof. The problem of deciding whether a graph with maximum degree 4 is 3-
colorable is NP-complete (see, e.g, [GJ 79]). We describe the reduction of this problem
to GC[k].

First we reduce GC[3] to GC[4]. Given a graph G- (V, E), Y- {1,..., n} with
maximum degree 4, construct a graph G’ (V’, E’) as follows. For each i V let
be a new vertex and let {i, } be an edge. Take n- 1 copies of the complete graph K3
on three vertices and connect all vertices of the jth copy to ) and j +1, 1 <_ j _< n- 1.
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Let V and E be the resulting sets of vertices and edges and G (V, E). Then the
maximum degree in G is 7. If G is 3-colorable, then G is 4-colorable, by using a new
color for the vertices and the old colors for the K3’s.

Note that every 4-coloring of G has to assign the same color to all vertices
because of the interconnecting K3. Thus three colors suffice to color the vertices
i E V, whence G is 3-colorable.

The general reduction of GC[k] to GC[k + 1] is similar. The interconnecting
graphs are then Kk’s. D

We proceed by proving a lemma that will be useful for the next theorem. Let
G- (V, E) be a graph with vertex degree at most 2k- 1, Y- (1,..., n}. For i E Y
let Fi denote the set of neighbours of including i. We say that a monomial m selects
a variable xi if xi m and xy m for all j Fi (i}, i.e., m contains all neighbours
of i but not itself.

We define our sample by the following positive and negative examples.
pi :- (1,..., 1, 0, 1,..., 1), 1 _< i _< n where the only 0 is at the ith position.
For all 1 _< i _< n and all T c_ F such that ITI _> 2 and i T the vector x(T) is
a negative example, x(T) is the 0-1-vector having 0s at exactly those positions j
with j T.
We let D+ and D- be uniform on these positive and negative examples and zero

elsewhere.
LEMMA 7. Let the sample be as above and let r ml @ mk be a k-term-

RSE with the property that it is not satisfied by any negative example, and, for some
1 <_ <_ n, there are positive examples Pil,"" ,Pit that satisfy r. Then, for each
1 <_ <_ there exists a 1 <_ j <_ k such that my selects xi.

Proof. Without loss of generality we may assume that (il,... ,i} (1,... ,1}.
Now for each 1 _< i _< there is a monomial m not containing xi, because r(pi) 1.
Suppose, for a contradiction, that for some i E (1,... ,1}, no my selects xi, i.e., for all
1 _< j _< k if x my, then there is some t F- (i} such that x my. Let s(i) be the
number of monomials m such that xi m. Note that s(i) is odd because r(pi) 1 and
m(pi) 1 if and only if xi m. Let T :- (T c_ Fili T, ITI _> 2}. For T T let
q(i, T) be the number of monomials m such that" for all t Fi t E T x m,
(i.e., such that exactly those neighbours of i which are in T are not in m). Then

s(i)- q(i,T).

As s(i) is odd some q(i, T) must be odd. Let T* be maximal (with respect to c_) such
that q(i, T*) is odd. Recall that u x(T*) is the 0-1-vector which has 0s at exactly
those positions t with t T*. Therefore, m(u) 1 for exactly those monomials m
such that: t T* = x m. Let s(i, T*) denote their number. Then

s(i,T*) Z q(i,T) q(i,T*) + q(i,T)
TT* TDT*
TeT TeT

q(i, T*) is odd and, by maximality of T*, all other q(i, T) appearing in the sum are
even. Hence s(i, T*) is odd. But this implies that an odd number of monomials is
satisfied by u. Hence r(u) 1, contradicting the consistency of r. D

Remark. Lemma 7 implies the existence of a subgraph of G of size at least which
is k-colorable. Indeed, for each node i, 1 _< i _< l, choose the minimal j such that my
selects x and color i with j. Then for all its neighbours t F- {i} we have xt my,
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whence they receive a color different from j. Thus the monomials of the consistent
k-term-RSE r induce a k-coloring on a subgraph of size at least 1.

The next theorem has been independently proven by Blum and Singh [BS 90].
THEOREM 8. For k > 3, k-term-RSE is not learnable, if RP 5 NP.
Proof. Let k > 3. We show that the consistency problem for k-term-RSE is

NP-hard using a reduction from GC[k].
Given some instance G of GC[k] let the sample and the distributions be defined as

before Lemma 7. We first show that a k-coloring of G is polynomial-time convertible
into a k-term-RSE that is consistent with the sample. Let Uy be the set of vertices
colored by j, 1 _< j < k. Define monomials by

my :- x{1,...,n} 1Nj<_k.

Let r := ml @... 3 mk. Then r is consistent with the sample: For all 1 N j N k,
1 _< < n we have my (Pl) 1 if and only if E Uj. Hence exactly one of the monomials
is satisfied by pl, whence r(pt) 1.

Let i E Y and T C_ Fi, ITI > 2, T. Then u := X() is a negative example.
Every vertex i - i in T is colored differently from i. Consider mj for some 1 < j < k
and recall that x mj if and only if Uj. Hence either xi mj or xi, mj.
The example u assigns 0 to both xi and xi,. Hence mj(u) O, 1 N j <_ k, and thus
r(u) 0. This shows that r is consistent with the sample.

Our next aim is to show that any k-term-RSE that is consistent with the sample
induces a k-coloring of G. Let r ml ... 3 mk where each mj is a monomial over
x1,..., xn. Assume that r is consistent with the sample. Then, by Lemma 7, applied
with n, G is k-colorable.

There is only a polynomial number of examples, and the above reduction is cer-
tainly performed in polynomial time. D

4. Learnability from negative examples only. We have seen in 2 that k-
RSE is learnable. Our next aim is to show that any learning algorithm for k-RSE
needs both positive and negative examples. We start by proving two lemmas that are
needed in this section.

LEMMA 9. Let and C be classes of representations.
(a) If f C :: -f , then any pos-prediction algorithm A+ for can be

converted into a neg-prediction algorithm A- for .
(b) If, additionally, f :: -f , then any pos-learning algorithm A+ .for

C can be converted into a neg-learning algorithm A- for .
Proof. (a) Let f C (then -f E C). Now construct some hypothesis g for -f via

A+ treating negative examples for f as positive examples for -f. Then output -g.
(b) Proceed as in part (a) of the proof and note that g C and -g (. D
Remark. Note that the negation of a k-RSE is again a k-RSE because -f 1f.

Negating a k-term-RSE in the same way leads to a (k + 1)-term-RSE.
LEMMA 10. Let k >_ 1 and let f be a k-RSE on n variables. Then one of the

following cases holds:
(a) f(v) O, for all v,
(b) f(v)= 1, for all v,
(c) If-x(o)l >_ 2/2 and If-(X)l >_ 2/2.
For the next proofs we need the following definition.
DEFINITION. Let m =/kieix’, I C_ {1,..-, n}, ai {0, 1}, be a monomial. Then

Cm := {v e {0, 1}n Im(v)= 1}
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is the subcube of {0, 1}n that is determined by fixing to 0 (1) those variables that
appear (un)negated in m.

Proof (of Lemma 10). The proof is by induction on n.
n k. If f is not constant on {0, 1}’, then If-l(0)l, If-l(1)l _> 1 2n/2k.
n > k. Assume that f is not constant on {0, 1}. We shall assume that the term

1 does not appear in f and the proof of the other case is similar.
Case 1. There is some variable, say x, which is contained in all monomials of f.

Then flx=0 -_- 0, whence If-l(0)l

_
2n-1

_
2n/2k. If flx.=l 1 then If-l(1)l 2n-1

and we are done. Thus assume that flz.=l is a nonconstant (k- 1)-RSE on the (n- 1)-
dimensional subcube C. Then, by induction, If-11=1(1)1 >_ 2-/2k- 2n/2k,
whence If-l(1)l _> 2/2k.

Case 2. There is some variable, say xn, which is contained in all monomials of
length k, but there is some monomial of length less than k that does not contain x.
Then flz.=o is a nonconstant (k- 1)-RSE on C. that, by induction, has at least

2’-1/2k-1 2/2k elements in each of f-1 f-1i.=0(0) and i=o(1).
Case 3. There is no variable that is contained in all monomials of length k.

Note that this implies that flx=0 is a nonconstant k-RSE on the (n- 1)-dimensional
f- 2n-/2ksubcube C. Hence, by induction, Ifll=0(1)l >_ 2n-1/2k and i=0(0)l _>

The same considerations apply to fl= and Cx. Hence

THEOREM 11. For all k _> 1, k-RSE is not neg-learnable and not pos-learnable
even if the error bounds are constant.

Proof. We only prove that k-RSE is not neg-learnable; the other claim follows
from Lemma 9.

Let m :- xx2...hck+. Then Cm is the subcube of {0, 1)n, which consists of
those vectors that have 0s in the first k + 1 entries. We consider the following k-RSEs:
ci xi, 1 _< i _< k -t- 1. Note that each ci _= 0 on Cm. Let D- be uniform on Cm.
For ci we define.D+ to be uniform on c-1(1) Cx. We shall show that every k-RSE
learned from negative examples will have a large error relative to one of the ci. The
idea is that negative examples drawn according to D- cannot discriminate between
the ci and thus any hypothesis h produced from negative examples has to have a large
error relative to one of them.

Let 2-(k+), 5 , and assume that there is a neg-learning algorithm for
k-RSE. Let h be the hypothesis output by the algorithm.

Case 1. h 0 on Cm. Then, by Lemma 10, h(v) 1 for a fraction of at least 2-k

of all v E Cm. Hence, by uniformity of D-, we have that the error relative to each ci
is at least 2-k > .

Case 2. h =_ 0 on C,. By Lemma 10, we know that Ih-(0)l _> 2n-k. As
ICml 2’-(k+) there are at least 2-(k+l) many vectors of h-(0) outside Cm. Then
there is some i E (1,..., k + 1} such that Cx, contains a vector from h-(0). Hence,
by Lemma 10, h will compute 0 on a fraction of at least 2-k of all vectors of C. Thus
there is a concept ci such that the probability that the algorithm outputs a hypothesis
h whose error relative to ci is at least 2-k > , is at least -COROLLARY 12. 1-RSE is neither neg-learnable nor pos-learnable, even if one
allows arbitrary running time of the algorithm and a k-RSE to be produced as a hy-
pothesis, k >_ 1.

Proof. The concepts ci to be learned in the proof of Theorem 11 are 1-RSE. The
proof does not make any assumption about the size of the sample or the running
time.
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5. Predictability. Our next aim is to prove predictability of k-RSE from one
type of example. We first prove a lemma on the algebraic structure of the set of nega-
tive examples of a 1-RSE*. Let v, bl,..., bs E (0, 1}. Then v is a linear combination
(over GF(2)) of the bi’s if there are ai E (0, 1}, 1 _< i _< s, such that v i=1 aibi.
Let (b,..., bs) denote the set of linear combinations of the b’s (i.e., the subspace
spanned by the bi’s).

LEMMA 13. For every f 1-RSE*, the set of negative examples f-(O) is a linear
subspace of {0, 1}n.

Proof. The negative examples are exactly those vectors that have an even number
of ones at those positions j with fj 1, 1 <_ j <_ n. This property also holds for any
sum of two or more such vectors.

THEOREM 14. 1-RSE* is pos-predictable and neg-predictable.

Proof. We prove the neg-predictability; the pos-predictability follows from Lemma
n9. Let f (]= fx, f {0, 1}, 0 _< i <_ n, be a 1-RSE*, and let D+, D- be distri-

butions on the positive, respectively, negative examples of f. Let ql,’",qm f-l(0)
be a sample of negative examples. We have to produce in time p(m, n) (for some
polynomial p) a hypothesis h that is consistent with the sample, is of size polynomial
in the number of variables (i.e., [[hl[

_
q(n), q some polynomial, and [[hll does not

depend on the size of the sample), and has a single-sided error, i.e.,

D+(v) 0.
h(v)--O

This is a sufficient condition for predictability (as is implicitly proved in [BEHW 87]).
We shall formulate an algebraic hypothesis, namely, h will be a basis of a subspace

of {0,1}n.
To this end choose a maximal linearly independent set in the sample, say, b, ,

s _< n. Then our hypotheses will be a description of H := (hi,..., 88/, e.g., {b,...,
is such a description, whence IIh[I O(n).

The error is single-sided because H C_ f-l(0).
COROLLARY 15. k-RSE is pos-predictable and neg-predictable, k >_ 1.

Proof. The substitution theorem of [KLPV 87a] does not only hold for learning
algorithms but for prediction algorithms as well. Then the corollary follows from
Theorem 14. The substitution also yields the algorithm for the resulting class. [:]

Theorem 14 can be strengthened to learnability if the distributions D+ and D-
are uniform.

THEOREM 16. Let f 1-RSE, let D+ and D- be uniform on f-l(1) and f-l(0),
respectively. Then 1-RSE is neg-learnable and pos-learnable. In addition, the learning
algorithm identifies the original concept f with probability at least 1- .

Proof. We first investigate the case of a 1-RSE*, i.e., without the term 1. By
Lemma 9 it suffices to show neg-learnability. Let 5 > 0. We draw m negative examples
q,’", qm and construct a maximal independent set {b, , b8 }, by collecting qj’s that
are linearly independent. The q are drawn according to the uniform distribution.
Hence the probability for some q to be linearly independent of {b,..., bs} is at least

as long as the full dimension of f-l(0) has not yet been reached. The expected
number of vectors that we have to draw until the full dimension is reached is thus at
most 2n. Then 1/5 2n negative examples suffice to make the error less than 5. In
order to see this, let X be the random variable "number of examples until the full
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dimension is reached" and assume that Pr[X >_ (1/5)2n] > 6. Then

Hence we get the contradiction that the expected number is strictly larger than 2n.
The negative examples form a linear subspace. We want to check whether the

variable xi is a term in the 1-RSE* f. To this end we test for each canonical base-
vector ei, 1 _< _< n, whether e E {bl,..., bs}. Then x is a term in f if and only if
this is not the case.

Let us now assume that we have a 1-RSE that contains the term 1. Then the
negative examples contain an odd number of ls at the relevant positions. This property
is preserved under linear combinations of an odd number of such examples. Any
example containing an even number of ls at the relevant positions is positive. We use
a technique similar to the one described above to keep track of the "space" of odd
linear combinations.

In order to find out whether the target concept contains the term 1 we draw some
more examples and check whether one of them is a linear combination of an even
number of the old examples. If so, we know that the term 1 is present, otherwise
we assume it is not. On the average, two additional examples will suffice. Hence the
sample size needed becomes V1/5 (2n + 2). D

This result cannot be carried over to k-RSE using the substitution theorem of
[KLPV 87a] because substitution does not preserve uniform distribution.

We conclude with some results on predicting k-term-RSE.
COROLLARY 17. l-term-RSE is not neg-predictable, but pos-learnable, k-term-

RSE is neither pos-predictable nor neg-predictable for k >_ 2.

Proof. In [KLPV 87a] it is proven that the class of monotone monomials is not
neg-predictable but pos-learnable. This class is exactly the class l-terrn-RSE, k-term-
RSE, k _> 2 is not neg-predictable because l-terrn-RSE is not. By the remark following
Lemma 9, if k-term-RSE is pos-predictable, then (k-1)-terrn-RSE is neg-predictable.
Hence k-term-RSE cannot be pos-predictable, k _> 2. D

If both types of examples are allowed, even 2-term-RSE is predictable.
COROLLARY 18. 2-term-RSE is predictable.
Proof. Consider the 2-term-RSE r ml @ m2, where ml, m2 are monotone

monomials. Then

ml () m2 (ml V m2) A --(ml A m2) (771 V m2) A c, where c -(ml/ m2).

Now the term (ml V m2) can be transformed into a 2-CNF using the distributive law
while c becomes a I-DNF using deMorgans’s law. The class k-CNF is pos-learnable
with single-sided error and k-DNF is learnable (see [V 84]). The conjunction of a
concept class that is pos-learnable with single-sided error and one that is learnable is
itself learnable (see [KLPV 87a]).

6. Sample size and worst case mistake bounds. In this paper we presented
two algorithms concerning k-RSE. Both of them have as input a sample and the error
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parameters. One of them (Corollary 3) produces a consistent k-RSE, the other one
(Corollary 15), a consistent hypothesis that is not a k-RSE. Both algorithms can be
converted into learning or prediction algorithms that are optimal in two respects:
sample size and mistake bound.

In order to prove these results we have to know the Vapnik-Chervonenkis (VCdim)
dimension of the class k-RSE. The Vapnik-Chervonenkis dimension of a concept class
C (of Boolean formulas) is defined as follows: We say that a set S c_ {0, 1}n is shat-
tered by C if for every U C S there is a formula f C such that f(u) 1 for u e U,
and f(u) 0 for u S- U. The Vapnik-Chervonenkis dimension, VCdim(C), of
C is the cardinality of a largest set that is shattered by C. Note that, for finite
VCdim(C) <_ log

We claim that VCdim(1-RSE) is n + 1, and that VCdim(k-RSE) is O(nk). Recall
that I-RSE 2n+l, whence n+ i is an upper bound on VCdim(I-RSE). On the other
hand, the set S {z, el,..., en} is shattered by I-RSE, where z is the zero vector and
ei, i >_ i, is the ith canonical base vector. Let U be a subset of S not containing z, say,
U {ei,..., ei }, k <_ n. Then xi (... @ xi computes 1 on U and 0 on S U. If U
contains z then consider S U {ej,..., ej_, } and note that 1
computes 1 on U and 0 on S- U. Hence VCdim(1-RSE) n + 1. A similar argument
shows that VCdim(k-RSE) f(n). The following set of size () is shattered by
k-RSE: S {v e {0, 1}nlv contains exactly k ones }. Given v (v,..., vn), let m.
be the monomial containing exactly those variables xi with vi 1. Then, for every
U c S, the k-RSE defined by (,ev my is identically 1 on U and identically 0 on

S- V. On the other hand, IC 2(). Thus VCdim(k-aSE)- O(nk).
Now the conversion of the algorithm of Corollary 3 (respectively, Corollary 15)

to a learning (respectively, prediction) algorithm A is done as follows.
(1) Construct a sample X of size mA(n, , ) that is sufficiently large.
(2) Output a hypothesis consistent with X.

It then follows from results of Vapnik and Blumer and others (see, e.g., [EHKV 89])
that

mA (n, , 5) 0 log /

is an appropriate choice. Moreover, this is optimal up to a constant factor. For details,
see [EHKV 89].

Another nice feature of our algorithms for k-RSE is that they are convertible into
on-line prediction algorithms, i.e., algorithms that are applied to an infinite sequence
of examples. For any new example they first have to output a prediction whether
it is positive or negative. Afterwards the correct answer is revealed. The mistake
bound of such an algorithm is the maximum number of false predictions made on any
sequence of examples. The best worst case mistake bound of a concept class C, denoted
by OPTc(n), is the minimum of the mistake bounds taken over all possible on-line
prediction algorithms for C (regardless of their running times). For more details, see
[L 87].

For instance, our learning algorithm A for 1-RSE* can be converted to an on-line
prediction algorithm in the following way: The algorithm keeps track of the subspace
S spanned by the negative examples x (Xl,... ,xn) seen so far. Initially S is set to
{0}. In order to make a prediction on a new example x the algorithm checks whether
x is in S. If so, A can be used to produce a consistent hypothesis h. The prediction is

h(x), which is always correct. Otherwise, the prediction is 1 (default value), which is
possibly wrong. Whenever a wrong prediction is made the dimension of S is increased
by 1. Therefore the total number of mistakes is at most n / 1.
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Again the substitution method of [KLPV 87a] can be applied to show that the
total number of mistakes of the corresponding on-line prediction algorithm for k-RSE
is O(nk). Moreover, we can achieve that predictions on positive examples are always
correct, using a modification of the neg-prediction algorithm of Corollary 15.

These bounds can be shown to be tight using results of Littlestone [L 87]. There,
it is proved that the Vapnik-Chervonenkis dimension of a concept class ( is a lower
bound on OPTc, while, for finite (, log ICI is an upper bound. We summarize the
above results in the following theorem.

THEOREM 19. For k-RSE the best worst case mistake bounds are OPTI_RSE(n
n A- 1 and OPTk_RSE(n O(nk), where n is the number of variables.

7. Summary and conclusions. Table 1 shows the results on learning and pre-
dicting k-RSE and k-term-RSE.

k-RSE, k > 1

1-term-RSE

2-term-RSE

k-term-RSE,
k>3

TABLE 1

pos- neg-

Learnable learnable learnable Predictable

yes no no yes

yes yes no yes

no no no yes

no no no yes2

The result is proved using the assumption RP NP.
See Blum and Singh [BS 90]

pos-

predictable

yes

no

no

neg-

predictable

yes

no

no

no

We would like to mention that some of the above results can be extended to
c-heuristic learnability. We say that C is c-heuristically learnable by 7-/, c E (0, 1), c

rational, if there exists a polynomial p and a learning algorithm A such that for all n,
all f E Cn, all distributions D+, D-, and all > 0 and ti > 0,

L halts in time p(n, Ilfll, , 1/2),
L outputs a formula g ?-/n that, with probability at least (1- 5), has the
property:

D+(v)<l-c and y D-(v)<.
,g-l(o) ,-()

If no such g 7-/exists then A outputs some default concept.
If g is not the default concept then g correctly classifies a fraction of at least c of

all positive examples of f and the error made on the negative ones is very small.
The proof of the next theorem can be found in [FS 90].
THEOREM 20. For all c (0, 1), c rational and all k > 1, the class RSE of all

RSE-formulae is not c-heuristically learnable by k-term-RSE.
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LOCALITY IN DISTRIBUTED GRAPH ALGORITHMS*

NATHAN LINIALt

Abstract. This paper concerns a number of algorithmic problems on graphs and how they may
be solved in a distributed fashion. The computational model is such that each node of the graph is
occupied by a processor which has its own ID. Processors are restricted to collecting data from others
which are at a distance at most away from them in time units, but are otherwise computationally
unbounded. This model focuses on the issue of locality in distributed processing, namely, to what
extent a global solution to a computational problem can be obtained from locally available data.

Three results are proved within this model:
A 3-coloring of an n-cycle requires time f(log* n). This bound is tight, by previous work
of Cole and Vishkin.
Any algorithm for coloring the d-regular tree of radius r which runs for time at most 2r/3
requires at least f(x/-) colors.
In an n-vertex graph of largest degree A, an O(A2)-coloring may be found in time O(log* n).

Key words, distributed algorithms, graph theory, locality, lower bounds
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1. Introduction. In distributed processing all computations are made based on
local data. The aim of this paper is to bring up limitations that follow from this local
nature of the computation. Note that within the various computational models for
parallel computers this difficulty is specific to the distributed model. Shared memory
allows for fast dissemination of data, but no such means exist when dealing with
distributed systems.

In the present paper we are mostly interested in proving lower bounds, and there-
fore assume a powerful version of the distributed model: Each node of the undirected
graph G (V, E) is occupied by a processor. Computation is completely synchronous
and reliable. At each time unit a processor may pass messages to each of its neighbors,
and message size is unrestricted. Also, any computations carried out by individual
processors take one time unit and are not restricted in any way. This paper is only
concerned with the radius of the neighborhood around each node from which data
may be collected, this radius being the only significant parameter in this model, as
we later elaborate. Of interest is the time complexity of various "global" functions
of G, and the concrete examples are coloring and finding maximal independent sets.
Thus the theme of this paper is how local data may be utilized to find globally defined
solutions.

Before we proceed, symmetry-breaking has to be addressed (see [JS] and the
references therein for literature on symmetry-breaking). It is well known that most
functions cannot be computed in a distributed fashion by anonymous processors, even
for very simple graphs G. This impossibility usually results from symmetries that G
may have. Such symmetries are usually broken by means of either randomization or
the use of IDs, and the present paper is concerned only with the latter. Thus we
assume that there is a mapping ID from the set of vertices V to the positive integers.
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In most cases ID is a bijection onto 1,..., V I- It is assumed that at time zero the
processor occupying a node in G knows the ID of that node. Incidentally, all our
lower bounds hold even if every processor knows in advance what the graph G is, and
only the labeling function ID is unknown.

It is clear that the present model allows us to compute every function of G in
time O(diameter(G)). After this amount of time every processor obtains complete
knowledge of both G and ID. The problem is thus solved if, in the memory of each
processor a solution for the entire problem is prestored, for every possible labeling.
Our concern is therefore only with time complexities below diam(G). The major
question we raise is which functions may be computed by a nontrivial algorithm in
this model, in the sense that they can be computed faster than diam(G).

The model proposed here is, of course, of purely theoretical interest. Of the many
difficulties arising in distributed processing, it focuses only on transforming local data
into a global solution. Further research into this model may help classify problems as
either locally computable (solvable in time shorter than diam(G)) or not. One may
also look for bounds on run times which depend on graph parameters other than the
diameter. In accordance with the theory of the complexity class NC, it seems natural
to investigate graph problems whose time complexity in this model is polylogarithmic
in the number of vertices.

Here are our main results:
(1) Finding a maximal independent set distributively in a labeled n-cycle, requires

time (log* n). This bound is tight in view of the O(log* n) algorithm by Cole and
Vishkin [CV]. (Technically, their result was stated in the PRAM model, but it extends
without change to the distributed model as well.) Our proof relies on the interesting
construct of neighborhood graphs. An alternative proof based on the Ramsey theorem
was found by a number of other investigators in the area [A].

(2) Coloring trees: Let T be the d-ary tree ofheight r. In time 2r/3, it is
impossible to color T in fewer than colors. Note in contrast the algorithm by
Goldberg and Plotkin [GP], which shows that if every node in T "knows its parent
in the tree," i.e., a consistent orientation from the root outwards is given, then a
3-coloring can be found in time O(log* n). Though stated for the PRAM model, it is
easy to see that this result of [GP] applies to the distributed model as well.

(3) In a labeled graph of order n with maximal degree A, it is possible to find an
O(A2)-coloring in time (1 + o(1))log* n. This was previously shown in [GP] only in
the case of constant A.

Our terminology is standard: a k-labeling of a graph G (V, E) is 1:1 mapping
f V --. {1,..-,k}. In case k -[ V a k-labeling is called a labeling. Given a k-
labeling, G is said to be k-labeled, etc. Logarithms are to base 2. The k times iterated
logarithm is denoted by log(k) x, i.e., log(l) x :- log x and log(k) x log(logk-1 x).
The least integer k for which log(k) x < 1 is denoted by log* x.

2. Lower bound on finding a maximal independent set in a cycle. In
[CV] a very nice algorithm was presented to find a maximal independent set of vertices
(-- MIS) in the n-cycle Cn in time log* n. In this section we show that this is optimal
even in the present model, where computation takes no time. The algorithm presented
in 4 also achieves this time bound.

A basic observation is that in the present model there is no loss of generality
in assuming that processing proceeds by first collecting all data and then deciding.
That is, at time t each processor knows the labeling of all nodes at distance t or less
away. Also known are all edges between these nodes, except for edges both endpoints
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of which are at distance exactly t. Note that no further information can reach a
processor by time t. This allows us to view the problem in purely combinatorial
terms.

Let us state our theorem.
THEOREM 2.1. A synchronous distributed algorithm which finds a maximal in-

dependent set in a labeled n-cycle must take at least 1/2(log* n- 1) units of time. An
algorithm of the same class which colors the n-cycle with three colors requires time at
least 1/2 (log* n- 3). The same bounds hold also .for randomized algorithms.

Proof. The proof holds even under the assumption that there is a consistent
notion of clockwise orientation common to all processors. Given an algorithm which
finds a maximal independent set in the n-cycle endowed with a clockwise orientation,
it is easily seen that in one more timestep, the cycle may be 3-colored. The lower
bound is established for 3-coloring.

Coming back to the previous observation, at time t the data known to a processor
P is an ordered list of 2t / 1 labels, starting t places before it, through its own and on
to the next t labels. Let V be the set of all vectors (Xl,... ,x2t+l) where the xi are
mutually distinct integers from (1,..., n}. The algorithm is nothing but a mapping
c from V into { 1, 2, 3}.

Let us denote by Bt,n the graph whose set of vertices is V. All edges of Bt,n are

given by:

(xl,"’,x2t+l) and (y, xl,’.’,x2t)

are neighbors for all y # x2t+l. So St,, has n(n- 1)... (n-2t) vertices and is regular
of degree 2(n- 2t- 1). Note that the mapping c: V - {1, 2, 3} is, in fact, a proper
3-coloring of Bt,n. For suppose that c assigns

(Xl,’",x2t+l) and (y, xl,’",x2t)

the same color. Then the 3-coloring algorithm for the n-cycle fails in case the labeling
happens to contain the segment:

y Xl X2 X2t+l.

The proof follows now by standard graph-theoretic arguments which show that the
chromatic number x(B,n) of B,n satisfies

x(Bt,,) t(log(2t) n),

the 2t times iterated logarithm of n. Therefore, for x(Bt,) to be at most 3, we must
have t (log* n).

The lower bound on x(Bt,) is proved, using a family of digraphs Ds,n closely
related to Bt,n. The vertices of Ds,, are all sequences (al,...,as) with 1 _< al <
a2 < < as <_ n. The outneighbors of (al,...,as) are all vertices of the form
(a2,-..,as,b) with as < b _< n. Note that Bt,n contains the underlying graph of
D2t+l,n, SO in particular x(Bt,) >_ x(D2t+l,n).

Given a digraph H (V, E) its dilinegraph DL(H) is a digraph whose vertex set
is E with (u, w) an edge if headH(u) tailH(w). The relation between the digraphs
Ds,n is given by Proposition 2.1.

PROPOSITION 2.1. Dl,n is obtained from the complete graph of order n by re-

placing each edge by a pair of edges, one in each direction, and Ds+l,n DL(Ds,n)
for all s >_ 1.
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Proof. The statement concerning Dl,n is just the definition. For the other claim,
identify the edge connecting (x,...,xs) and (x2,...,xs,y) in D,n with the vertex
(Xl,...,x,y) in V(Ds+I,n) and check that the adjacency relationship in Ds+,n is
that of DL(Ds,,). D

The bound on x(D,n) is derived from the following simple and well-known propo-
sition.

PROPOSITION 2.2. For a digraph G,

x(DL(G)) >_ log x(G).

Proof. A k-coloring of DL(G) may be thought of as a mapping @ E(G)
{1,...,k} such that if u,w e E(G) and head(u)- tail(w), then @(u) @(w). Now
vertex-color G by associating with node x the set

c(x) ((u) x- tail(u)}.

This is easily seen to be a 2k vertex-coloring of G. Indeed if u (x, y) E E(G), then
(u) e c(x) but (u) c(y), or else is improper. Therefore c(x) c(y).
The main claim can be derived now. If an MIS can be found in time t- 1, then

necessarily

3 >_ x(B,).

But

x(Bt,n)

_
x(D2t+l,n)

_
log(2t) n.

So

2t _> log*n- 1, t _> (log 2*n- 1),

as claimed.
The claim on randomized algorithms is proved in Corollary 2.1 below. [:]

In contrast with the low time complexity of 3-coloring, we can show that for an
even n, finding a 2-coloring of Cn requires time f(n).

THEOREM 2.2. A synchronous distributed algorithm which 2-colors a labeled 2n
cycle with labels from {1,..., 2n} must take at least n- 1 units of time.

Proof. Now the lowest t has to be found such that Bt,2n is bipartite. But even
for t n- 2, the graph Bt,2n contains an odd cycle:

(1,...,2t + 1), (2,...,2t + 2), (3,...,2t + 3), (4,...,2t + 3, 1),

The claim follows.
Let us point out that for an even n the last theorem implies that finding a max-

imum independent set requires time In/2] 1. It is easily verified that the same is
true for odd n as well.

We want to elaborate on the method developed here and point out its general
features. Given a graph G (V, E) of order n, and t >_ 1, the t-neighborhood graph of
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G, Nt(G) is constructed as follows: For every x E V let St(x) be the subgraph of G
spanned by those vertices y whose distance from x is at most t. For every x consider
all the n-labelings of St(x).

Every such labeling is a node in Nt(G). Let 1 Vt(x) --, {1,-.. ,n} and
2 Vt(y) --* {1,... ,n} be two of these vertices of Nt(G). They are taken to be
neighbors in Nt(G) if Ix, y] E(G) and there is a labeling (I) V(G) -- {1,... ,n}
such that

and

Some easy observations regarding Nt(G) follow.
PROPOSITION 2.3. Neighborhood graphs have the following properties:
(1) x(Nt(G)) is the least number of colors with which G may be colored distribu-

tively on time t.
(2) x(Nt(G)) X(G) for t >_ diam(G).
(3) x(Nt(G)) is nonincreasing with t.
(4) For G Cn, the graph Ut,n is obtained from Nt(C,) by identifying vertices

in Nt (Cn) with identical sets of neighbors. In particular,

x(Bt,n) X(Nt(Cn)).

As in the case of the cycle, it is helpful to identify nonadjacent vertices with an
identical set of neighbors. Such an operation is called a reduction. Clearly it does not
change the chromatic number, while it may significantly simplify the graph. Neigh-
borhood graphs seem to be very interesting and promising constructs. Unfortunately,
the only case where we managed to calculate their graphical parameters is that of a
cycle. Particularly interesting are cases where in G the graph St(x) is independent of
x, as is the case, for example, with vertex transitive graphs.

Proposition 2.3 yields the following easy but interesting corollary.
COROLLARY 2.1. Irt the present model the time required to properly color a given

graph with a given number of colors cannot be reduced by using randomization.
Proof. The most general form of a randomized algorithm in the present model

allows each processor to precede each round of computation with any number of
coin flips, the outcomes of which are then passed to its neighbors along with all
other information, as in the deterministic version. Consider the following different
class C of randomized graph algorithms: A sufficiently long string of bits a is first
selected at random by some random source (not necessarily one of the processors in
the graph) and then announced to all processors. From this point on, the algorithm
proceeds in the usual deterministic way, where each processor gets to see its labeled
t-neighborhood (as well as the random string a, of course). It is not hard to see
that any randomized algorithm which can be performed in the present model can
be simulated by an algorithm in C. This is because a can be made long enough to
include as many random bits as may be required in any run of the original algorithm
by any processor at all. In the algorithm from C, processors get the advantage of
being informed of all these random bits, and in advance, which can only help.

Since we are interested in a lower bound, there is no loss of generality in consid-
ering only algorithms from the class C. Such an algorithm running in time t entails a
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function which computes a color for a vertex from its t-neighborhood and the random
a. Fix a graph G, an integer t, and two adjacent vertices x and y in G. Consider
the adjacent vertices and / in Nt(G) which represent compatible labelings of t-
neighborhoods of x, y, and a random string a. The color is chosen based on seeing
the labeled neighborhood , and the random a must differ from the one given for r/, a.
In other words, the coloring function constitutes a valid coloring for a graph which is
the disjoint union of copies of Nt(G), one copy per each a. This graph has, of course,
the same chromatic number as Nt(G), and the claim follows. D

3. Lower bound on coloring trees.
THEOREM 3.1. Let T Td, be the rooted d-regular tree of radius r. Any syn-

chronous distributed algorithm running in time <_ r cannot color T by fewer than
1- colors. The same bound holds for randomized algorithms as well.2

Proof. There are d-regular graphs Rd,n on n vertices of chromatic number _> 1/2 v/-,
where all cycles have length >_ (4/3) (log n/ log(d 1)) (see [LPS]). Consequently for
t < (2/3)(logn/log(d- 1)), the graph N(Td,) contains a copy of a reduction of
Nt (Rd,n). Therefore

> > >

and so Td,r cannot be colored with fewer than 1/2 colors in time t. The conclusion
follows now on observing that for Td,r,

log n > r.
log(d- 1)

Corollary 2.1 establishes the bound for randomized algorithms as well. D
Two remarks are in order now: It is probably possible to improve the lower

bound of 1/2vf to (d/logd) by using an appropriate random graph rather than
Ramanujan graphs (e.g., [B, 11.4]). It is shown in the next section that for a d-
regular graph, an O(d2)-coloring can be found in time O(log* n). The gap between
(d/log d) and d2 is quite intriguing and is closely related to the complexity of finding
an MIS distributively, as we explain below. Also, it is not clear how the number
of colors sufficient to color the tree goes down as t grows from (2r/3) to 2r, where
already two colors suffice.

4. An O(log* n) algorithm for O(A2)-coloring. This section contains some
positive results on what can be achieved distributively in this model. It is shown how
to find an O(A2)-coloring in time O(log* n). The first proof is based on the existence of
certain hypergraphs for which no explicit construction is known. However, as Karloff
pointed out [K], a slightly weaker, though constructive, set system suffices to achieve
this goal.

THEOREM 4.1. Let G be a graph of order n and largest degree A. It is possible
to color G with 5A2 log n colors in one unit of time distributively. Equivalently,

x(NI(G)) <_ 5A2 log n.

Proof. We need some combinatorial preparation.
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LEMMA 4.1. For integers n > A, there is a family J o.f n subsets o.f (1,...,
5A2 log n] } such that if Fo,..., FA E J, then

A

1

Proof. The existence of such families was considered in the literature [KSS],
[EFF], and follows, e.g., from Theorem 3.1 in JEFF]. This lemma is simple enough,
though, for a proof to be reproduced here. To prove the lemma, let m- 5A21ogn]
and consider a random collection J of n subsets of { 1,--., m} which is constructed as
follows" For 1 _< x _< m and 1 _< i

_
n, let Pr(x Si) (l/A). All the decisions on

whether x Si are made independently.
We claim that there is a selection of such a family for which the lemma holds.

The probability that for a given 1 _< x <_ m and given F0,..., FA J (i.e., Fi S,
for appropriately chosen indices), there holds

i8

1( 1
i- ->4A"

Therefore, the probability that F0 c_ UFi is at most (1 (1/4A))m. The number of
ways for choosing Fo,...,FA is (A / 1)(A_I). Therefore if

( 1)- (A+I) <1,

then there is a selection of a family J which satisfies the lemma. Standard estimates
show that this holds when

m > 5A2 log n.

To prove the theorem, fix a family J {F1,..., Fn} as in the lemma. Consider
vertex with label i whose neighbors’ labels are j,..., jd where d _< A. Since

d

there is a 1 _< x _< m with x e F\(U= Fj.). The color of this vertex is x. It is
easily verified that this is a proper m-coloring of G.

The same proof yields, more generally, the following corollary.
COROLLARY 4.1. Let G be a graph whose vertices are properly colored with k

colors and whose largest degree is A. It is possible to color G with 5A2 log k colors in
one unit of time distributively.

By iterating the coloring given by the corollary log* n times, a 10A2 log A-coloring
is obtained. To eliminate the log A term we need a result of the same type as Lemma
4.1, only in that range.
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LEMMA 4.2. Let q be a prime power. Then, there is a collection J of qa subsets

of {1,..-, q2} such that if Fo,..., F[(q-1)/2l E g then Fo

_
[.j(q-1)/] Fi.

Proof. Use Example 3.2 in JEFF] with d- 2. [2

Select q to be the smallest prime power with q _> 2A / 1. There is certainly one
with 4A + 1 >_ q >_ 2A + 1. This construction transforms an O(A3)-coloring to an
O(A2)-coloring as in the proof of Theorem 4.1.

Theorem 4.2 now follows.
THEOREM 4.2. Let G be a labeled graph of order n with largest degree A. Then in

time O(log* n) it is possible to color G with O(A2) colors in a distributive synchronous
algorithm. D

The previous proof is nonconstructive in that there is no known explicit construc-
tion as good as that which Lemma 4.1 guarantees. However, as Karloff pointed out
[K], the explicit geometric construction in Example 3.2 of JEFF] enables us, in the
same way, to reduce a k-coloring to an O((A2 log2 k))-coloring in one timestep. (The
previous proof reduces a k-coloring to an O((A2 log k))-coloring in a step.) The rest
of the proof remains unchanged, yielding the same results with only slightly worse
constants.

Proposition 3.4 of JEFF] sets a bound on the power of the present method, showing
that it does not enable one to color with fewer than (A2+2) colors. That proposition
shows that set systems of the type that would allow further reduction of the number of
colors do not exist. Other algorithms may still be capable of coloring with fewer colors.
It would be interesting to decide whether this quadratic bound can be improved when
time bounds rise from O(log* n) to polylog, for instance.

5. Some final remarks. It is well known now how to find a maximal indepen-
dent set in a graph by means of an NC algorithm ([KW], [ABI], ILl). The algorithm in

ILl can even be viewed as a randomized distributed algorithm. However, an algorithm
which is both deterministic and distributed still eludes us. In [GP] it is shown how
to find an MIS in time log*n for graphs of bounded degree. It is not clear what the
situation is for unbounded degrees. In particular, can it always be found in polyloga-
rithmic time in the present model? This, if true, would be a significant improvement
over the above-mentioned studies.

A standard trick (e.g., [L]) allows us to transform an efficient MIS algorithm to one
for (A + 1)-coloring: Take the cartesian product of G with KA+I. It is easily verified
that (A+ 1)-colorings of G and MISs of G KA+I are in a natural 1:1 correspondence.
It is therefore particularly interesting to find out the best time complexity in terms
of n for finding a (A + 1)-coloring, and in particular whether polylogarithmic time
SUiCeS.

The fact that randomness does not help in coloring (Corollary 2.1) is thought-
provoking: Getting a deterministic polylog-time algorithm for MIS seems hard, though
simple randomized distributed algorithms are known. It is an intriguing problem to
classify distributed graph problems according to how much randomization can help
in solving them.
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the proof of Theorem 2.1. Howard Karloff’s comment on the proof of Theorem 4.1 is
recorded in the text, and a similar remark was made by Noga Alon as well. That ran-
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PARTITIONING PLANAR GRAPHS*

THANG NGUYEN BUIf AND ANDREW PECKer

Abstract. A common problem in graph theory is that of dividing the vertices of a graph into two sets
of prescribed size while cutting a minimum number of edges. In this paper this problem is considered as it
is restricted to the class of planar graphs.

Let G be a planar graph on n vertices and s [0, n] be given. An s-partition of G is a partition of the
vertex set of G into sets of size s and n- s. An optimal s-partition is an s-partition that cuts the fewest
number of edges. The main result of this paper is an algorithm that finds an optimal s-partition in time
O(b2n324sb), where b is the number of edges cut by an optimal s-partition. In particular, by letting s [n/2J
the immediate corollary that any planar graph with small (O(log n)) bisection width may be bisected in
polynomial time is obtained.

Furthermore, suppose that a planar embedding ( of G is also given such that the embedding of each
biconnected component in ( is at most m-outerplanar (such an embedding is called m-outerplane-separable).
An algorithm for finding optimal s-partition of G in time O(m2n323m) is also given.

Key words, graph algorithms, k-outerplanar graphs, graph bisection, graph partitioning, edge separators,
planar graphs

AMS(MOS) subject classifications. 05C85, 68Q20, 68Q25, 68R10

1. Introduction. A common problem in graph theory is that of dividing the vertices
of a graph into two sets of prescribed size while cutting a minimum number of edges.
In this paper we consider this problem restricted to the class of planar graphs.

Let a graph G on n vertices and an integer s [0, n] be given. An s-partition of
G is a partition of the vertex set of G into two disjoint sets of size s and n- s. The
cutset of an s-partition is the set of edges with endpoints in both parts of the partition,
and the cardinality of the cutset is called the cutsize of the s-partition. Given a graph
G and an integer s, the graph partitioning problem is the problem of finding an optimal
s-partition, that is, one for which the cutsize is minimal over all s-partitions of the
graph. When s [n/2J, this is called the graph bisection problem.

The problem of finding the minimum bisection of a graph arises in many graph
algorithms which use the divide-and-conquer approach. A notable example is the VLSI
placement and routing problem [3]. It is also observed that many other divide-and-
conquer based algorithms run much faster on graphs in which a small bisection can
be found, for example, in the area of sparse matrix computation [7]; see also [13].
Despite its wide application, there is no known efficient algorithm for the graph
bisection problem, since for general graphs the bisection problem is NP-complete. In
fact, there are no known polynomial time approximation algorithms. Consequently,
work has centered on finding heuristics with good average case behaviour. A number
of methods are employed including a hill climbing heuristic 10], simulated annealing
[11], network flow [6], and an approach based on the eigenvalues of the adjacency
matrix [5]. Only the last two approaches give provably good average case behaviour.
Most of the other known heuristics have no theoretical analysis.
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For special classes of graphs the situation is a little bit better. For example, an
O(n2) time algorithm exists for trees [8], 14]. However, little is known for the class
of planar graphs, including whether the problem is NP-complete. A motivation for
studying this problem on planar graphs is that many examples found in practice involve
planar graphs, e.g., VLSI placement. Another motivation is the close relation between
the graph bisection problem and the vertex separator problem in planar graphs for
which numerous applications have been shown [13]. In [15] Rao considers similar
problems, namely the edge separator problem and some of its variations on planar
graphs. The results there, however, do not extend to the case of bisection since the
sizes of the two subgraphs are allowed to be between and 32- of the original graph.

To describe the results in this paper we need the concept of a k-outerplanar
embedding of a planar graph. Intuitively, a k-outerplanar embedding is an embedding
consisting of vertex-disjoint outerplane graphs nested at most k deep. (An outerplane
graph is a planar-embedded graph such that all vertices lie on the exterior face.) If an
embedding of a planar graph is such that each biconnected component ofthe embedding
is at most m-outerplanar, then we call such an embedding m-outerplane-separable.

The main result of this paper is an algorithm for finding an optimal
s-partition of a planar graph in time O(b2n324Sb), where b is the size of the
optimal s-partition. As a corollary, we have a polynomial time algorithm for finding
the optimal s-partition of a planar graph if the optimal s-partition is of size
O(log n).

In addition, we show that if an n-vertex planar graph G and s [0, n] be given
together with an m-outerplane-separable planar embedding of G, then the optimal
s-partition of G may be determined in time O(m2na23m). Thus if G has an O(log n)-
outerplane-separable embedding then we can find an optimal s-partition of G in
polynomial time. Note that for a planar graph the existence of an O(log n)-outerplane-
separable embedding does not imply the existence of an O(log n) s-partition, and vice
versa. Our algorithm for partitioning m-outerplane-separable graphs is based on a
dynamic programming scheme first proposed in [2].

The remaining sections of the paper are as follows. Section 2 introduces necessary
terminology. In 3 we develop a table structure for representing optimal partitions of
a graph. In 4 we give algorithms for partitioning planar graphs that have k-outerplane
and k-outerplane-separable embeddings. Section 5 describes algorithms for partitioning
general planar graphs by reducing it to the problem of partitioning k-outerplane-
separable embeddings of planar graphs. Conclusions are given in 6.

2. Definitions and terminology. A plane graph is an embedding of a planar graph.
In the remainder of this paper we will assume G to be a connected n-vertex plane
graph. Since a linear time algorithm exists (see [9]) to find a planar embedding of a
planar graph, the assumption that the input graph is plane does not affect our con-
clusions. Extension of our results to disconnected plane graphs is easy.

2.1. Vertex level, k-outerplanarity. Let G be an n-vertex plane-graph. All vertices
on the exterior face of G are level 1 vertices. Remove all vertices of level less than or
equal to i, together with their incident edges. The vertices on the new exterior face are
the level (i + 1) vertices.

A planar embedding of a graph is k-outerplanar if it has no vertices of level greater
than k. A planar graph is k-outerplanar if it has a k-outerplanar embedding. Every
planar graph is k-outerplanar for some k. The terms outerplanar and 1-outerplanar are
equivalent. In keeping with the familiar term plane graph we use k-outerplane graph
to denote a k-outerplanar embedding of a planar graph.
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FIG. 2.1. The above graph may be characterized as 3-outerplane, 2-outerplane-separable (by virtue of
articulation point a ), or 2-outerplanar (since a 2-outerplanar embedding exists). For the above embedding there
are six vertices at level 1, four at level 2, and three at level 3.

In [4] it is shown that given a planar graph G the minimum k can be found such
that G is k-outerplanar and a k-outerplane embedding of G can be constructed. The
algorithm given there runs in time O(k3n2 log n). Thus for the remainder of the paper
we assume that if G is k-outerplanar then we are also given a k-outerplane embedding
of G.

A level edge is an edge connecting two vertices at the same level in a k-outerplane
graph. An interlevel edge connects a vertex at some level to a level (i-1) or level
(i + 1) vertex. It is clear that a k-outerplane graph has only level and interlevel edges.

Consider a set of vertices in a k-outerplane graph which are connected by a path
consisting only of level edges. A level subgraph is a maximal set of such vertices together
with all level edges connecting them. A level subgraph is a level subgraph containing
level vertices. If i> 1, then a level subgraph is nested within and is connected via
interlevel edges to exactly one level (i 1) subgraph. Many level (i + 1) subgraphs may
be nested within one level subgraph.

An embedding of a planar graph is k-outerplane-separable if the biconnected
components of the embedding are k-outerplane. As before we will use the term
k-outerplane-separable graph to denote the k-outerplane-separable embedding. Intui-
tively, any nontrivial k-outerplane-separable graph looks like nested k-outerplane
components each (except the outermost) sharing a single vertex with an enclosing level
subgraph. (See Fig. 2.1.)

2.2. Vertex partitions. Recall the definitions of an s-partition, cutset, and cutsize
in 1. For a particular partition we will arbitrarily label the two vertex sets left side
and right side. Thus, it will make sense to speak of a vertex as being, for example, "on
the left side" of the partition. Once so labeled, a partition will be considered distinct
from the partition obtained by exchanging the labels "left" and "right." The number
of vertices on the left side of a partition is called the partition size.

A constrained partition is a partition formed subject to the requirement that
particular vertices must appear on the left and certain others on the right. The set of
constraining vertices is called the constraint set. Given a constraint set, we will speak
of an assignment of its vertices to the left and right sides of a partition, this assignment
being the actual constraint imposed on the partition. Size and optimality for a con-
strained partition have the same meaning as in the unconstrained case above with the
exception that some partition sizes may be impossible.

3. Slice table. In this section we develop the table structure that will allow us to
adapt a dynamic programming strategy from [2] to the partition problem on k-
outerplanar graphs. The strategy is based on a decomposition of a graph into com-
ponents called slices. We introduce the notion of a slice and show how to construct a
table recording optimal partitions of a slice subject to constraints on the boundary
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vertices of the slice. Finally, we describe a set of table operations that update a table
to represent a slice which includes additional neighboring vertices or which is the
merger of two adjacent slices.

For the sake of intuition it is useful to consider the case of simply nested graphs
in this section. By a simply nested graph we mean a k-outerplane graph in which each
level subgraph is a simple cycle and for each i [1, k] there is exactly One level
subgraph. In this case it is easy and possible to describe the process of decomposing
the graph into slices separately from the process of computing the tables for the slices
and the merging of these tables. For the case of general plane graphs, the decomposing
process is accomplished by a more complicated scheme and is intertwined with the
process of computing and merging of the tables. This process is described in [2], and
the reader is referred to that paper for more details. The concepts described in 3.2
and 3.3 remain the same in either simply nested or general plane graphs.

3.1. Slice boundary and slice. A level slice boundary, or simply slice boundary
when is understood, is a set of vertices, one from each of levels 1 to i, such that a
line joining the vertices in order of level number does not intersect any edge which
does not have an endpoint on the boundary.

A slicing of a graph is a selection of slice boundaries such that
(i) every level vertex is part of a level slice boundary;
(ii) every level slice boundary, i> 1, is the extension of some level (i- 1) slice

boundary;
(iii) a line drawn through the vertices of one boundary in order of level number

does not cut a similar line drawn for any other boundary (two boundaries may coincide
at points).

Given a slicing of a simply nested k-outerplane graph, a level slice is a subgraph
subtended by two (not necessarily distinct) level slice boundaries. More specifically,
if one boundary is chosen as the first boundary, the slice contains the vertices of the
boundaries and all vertices encountered in counterclockwise traversals of level sub-
graphs beginning at the first boundary and ending at the second boundary. All edges
with both endpoints in the slice are included except any that leave the first boundary
in a clockwise direction. Two slices are adjacent if they share a’common boundary.
In this case, we modify the definition of slice so that any interlevel edge with both
endpoints in a common boundary is arbitrarily included in one slice or the other, but
not both.

One of the contributions of [2] is to show how to extend the notion of a slice to
the case of general planar graphs while preserving an essential property that in a slicing
of a k-outerplane graph adjacent slices share no more than k vertices. This property
is essential for bounding the running time of the dynamic programming strategy.

3.2. Partition vector. A partition vector for a graph G on rn vertices is an (m +
1)-vector P, where P[i], i [0, m], is the cutsize of an optimal /-partition of G. Two
elements, P[0] and P[m], representing partitions with all vertices on one side or the
other are always zero and are included for computational convenience.

Let A and B be two sets of k vertices of G. Designate the vertices in A U B as a
constraint set for partitions of G. Let X be a k-bit vector such that X[ i] 1 (X[ i] 0)
if the ith element of A is constrained to be on the left (right) side of the partition. Let
a k-bit vector Y be defined similarly for B. A constrained partition vector PxY is defined
as in the unconstrained case except that PxY[ i] is now the optimal/-partition obtainable
subject to the constraints represented by X and Y. If a constrained /-partition is
impossible, then let Pxy[i] . Since A and B are not required to be disjoint, the
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values of X and Y may represent inconsistent assignments of some vertex in A fq B.
In this case let Pxy[i] ec for all i, that is, the table entry is undefined for all i.

In the above definition of a constrained partition vector replace G by a slice S
of G. Let the constraint sets A and B be the level 1 to level j, j =< i, vertices of the slice
boundaries of S. Then X and Y are both j-bit vectors and PxY is a constrained partition
vector for S. A slice table for S is an arrangement of the 22j possible constrained
partition vectors for S in a square table indexed by X and Y. That is, if XB, YB are
the binary values represented by the bit vectors X and Y, then the (XB, Yn)th table
entry is the constrained partition vector PxY. Note that half the information in the
table is redundant since Pxy[S] P-x-v[n- s] where X, Y are the bit complements of
X, Y. (See Fig. 3.1.) In the special case of a constraint set consisting of a single vertex
v it will be convenient to refer to a constrained partition vector Pv which, because of
redundancy, contains all the information of a 21 21 table.

3.3. Table operations. We state three lemmas describing operations on slice
tablesmmerger, extension, and constraint removal. We prove the lemma for the table
merger operation in detail and sketch proofs for the remaining two which are similar.

a a

\\\b

O0 O1 10

00 (0,,-,,) (-,-,-,-,-) (-,,,,) (
O1 (,,,,)(-,2,3, ) (,,,,) (
10 (-,1,2,,) (-,-,-,-,-) (, ,3,2,-) (
11 (-,-,3,2,-) ( ,-,-) (

FIG. 3.1. A 2-outerplane graph with some possible slice boundaries indicated by dashed lines. A partition
vector for the entire graph is P (0, 2, 3, 4, 4, 4, 3, 2, 0). Above is a slice table for the slice shown on the right
with boundaries a, b) and c, b ). The rows are indexed with the constraints on the set a, b} and the columns
are indexed with the constraints on the set c, b }. Dashes in the table represent values of oc.

LEMMA 3.1 (Table merger). Let S and $2 be adjacent level slices for which slice
tables have been computed. A slice table for the slice S $1 U $2 may be computed from
the tables for $1 and $2 in time O(23im2) where m is the number of vertices in S.

Proof Let Z be the bit vector representing the left/right assignments ofthe vertices
in the common boundary of $1 and $2. Let X, Y be the bit vectors reflecting left/right
assignments of the vertices on the remaining boundaries of $1 and $2, respectively. In
other words, X and Y are the constraints for the boundaries of S. Denote by Pxz,
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P2zy and PXY constrained partition vectors for Sl, S2, and S, respectively. Denote by
z the number of l’s in the bit vector Z. Thus, given a partition of the vertices of S, z
is the number of vertices of the common boundary of the two subslices S1 and $2
which lie on the left side of the partition.

The table for S will have rows indexed by X and columns indexed by Y. It will
contain the same number, 22i, of entries as the tables for S1 and $2. Table entries will
be (m + 1)-vectors.

To see that the tables for $1 and S: contain sufficient information to construct a
table for S observe that an optimal constrained partition of S induces optimal con-
strained partitions of $1 and $2. Further, if a partition of $1 and a partition of S have
the same left/right assignments of the common boundary vertices, then they combine
to form a partition of S. The following two claims, which are straightforward to prove,
formalize the argument. Let the number of vertices in S1 and $2 be tnl and mE,
respectively, and let X, Y, Z, and z be as above.

CLAIM 3.1. Let Xl [0, ml], x [0, m], and x [0, m] be such that Xl + x2- z x;
then

plxz[xl] + P2zy[X2] >- Pxy[X].

Proof The proof is simple. Note that if partitions of $1 and S2 have the same
left/right assignment of the common boundary vertices, then the two partitions must
together induce a partition of S. The size of the induced partition is the sum of the
sizes of the partitions of S and $2 minus z the number of common vertices which are
on the left side. The cutsize of the induced partition is the sum of the cutsizes of the
partitions of S1 and $2 since the slices are edge disjoint. This cutsize cannot be smaller
than the optimal cutsize Pxy[X]. [-]

CLAIM 3.2. Given x, there exist X [0, ml], x2 [0, m2] and a bit vector Z such that

x +x- z x and Pxz[xl] + Pz.[x] Px,[x].
Proof. The proof of Claim 3.2 is also straightforward. Let p be an x-partition of

S satisfying the constraints X and Y and having cutsize Pxy[X]. Let Z reflect the
left/right assignment of the common boundary of $1 and S induced by p; then p
induces partitions of $1 and $2, satisfying the constraints XZ and ZY, respectively.
Let Xl and x be the sizes of these partitions. It is clear that x + x2-z x and that
the cutsize of p, namely, Pxy[X], is equal to the sum of the cutsizes of the induced
partitions. This sum, however, is greater than or equal to plxz[X]+ Pzy[X], which is
greater than or equal to Pxy[X] by Claim 3.1. Hence we have Pxy[X]=
Plxz[x1] 4. Pzy[X]. []

Claims 3.1 and 3.2 imply that in order to determine Pxy[X] from the tables for
S and $2 we need only find values for Z, Xl, x that minimize plxz[Xl] + Pzv[X_] and
such that x Xl + x- z. Thus, to compute a table representing the merger of the slices
S and $2 it is only necessary to scan each entry plxz once for each entry P2zy. If
ml, tn are the numbers of vertices in S1 and S, then this can be done in time
proportional to 23iml * m2, which is 0(23im2). []

LEMMA 3.2 (Table extension). Let S be a level slice containing m verticesfor which
a slice table has been computed. Let v be a level (i+ 1) vertex such that the boundaries
ofS may be extended to include v and such that there is no edgefrom v to a level vertex
in S unless it is in one of the boundaries. A table for the extended slice may be computed
from the table for S in time 0(22m).

Proof (Sketch). The new level (i+ 1) slice contains m 4-1 vertices. Thus, a slice
table for the new slice will contain 22i+2(m 4- 2)-vectors. Since v appears twice in the
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constraint set (in both slice boundaries) half of the new table entries, those representing
conflicting assignments of v, will be undefined. The remaining table elements may be
filled in from the table for S by making adjustments to reflect edges cut by the
assignments of v. The only edges that need be considered are the (at most) two edges
from v to level vertices of S. An argument for correctness of the operation follows
the same lines as for the table merger operation. Since the procedure requires only a
single scan of the old and new tables, time is 0(22im). D

LEMMA 3.3 (Constraint removal). Let S be a level slice containing m vertices for
which a 2i 2 slice table has been computed. A 2 x 2 slice table, j < i, representing the
same slice constrained only by the first j vertices of each border, may be computed in time

0(22im).
Proof (Sketch). In the special case of a slice with a constraint set of a single

vertex v we have a single constrained partition vector Pv. Entries in an unconstrained
partition vector are P[s] =min (Pv[s], Po[n-s + 1]). For nontrivial tables proceed as
follows to compute an element of the new table. Group rows of the old table with
indices that are identical except for the last i-j bits. Likewise group the columns. The
intersection of a row group with a column group contains 2,i- partition vectors.
Compute a new partition vector, the sth element of which is the minimum of the sth
elements of the 22i- old vectors. The row and column indices of this new vector in
the new table are the first j bits of the indices in the old table. Ifj 0, then the resulting
table is a single unconstrained partition vector representing optimal partitions of the
slice. The process of constraint removal may be accomplished in one pass through the
table or in time O(29m). 1

4. Partitioning k-outerplane graphs. In this section we show how to partition
k-outerplane and k-outerplane-separable graphs in polynomial time. We also show
that the methods extend to graphs with weighted edges. Remember that in 2 we
defined a k-outerplane graph to be an embedding of a k-outerplanar graph. Since a
polynomial time algorithm exists for finding a k-outerplane embedding of a k-outer-
planar graph [4], our assumption that the appropriate-embedding is given does not
affect our result. This remark, of course, also applies to k-outerplane-separable graphs.

In [2] Baker provides a general method for building tables of solutions for various
combinatorial optimization problems on k-outerplane graphs. We provide a brief
description of Baker’s method and refer the reader to the original paper for details.

Baker’s method works generally with min-/maximization problems on the vertices
of k-outerplane graphs in which the quantity to be optimized is such that a solution
for the entire graph may be computed from constrained optimal solutions on subgraphs
which are disjoint but for boundary vertices. A problem-dependent table structure
records optimal constrained solutions on slices of a graph. A problem independent
scheme then builds up a solution table for the entire graph. The scheme works by first
defining trivial slices for which tables are easily computed and then extending and
merging these slices (while carrying out the corresponding operations on the associated
tables) until a single "slice" and table represents the entire graph.

To gain an intuition for the working of Baker’s method consider a level slice S
in a slicing of some graph. If 1, then S consists of either a single vertex or a pair
of vertices connected by an edge so a slice table is easily constructed. If > 1, then S
contains at most two level vertices, say u and v, as well as the union of one or more
level (i-1) slices. If slice tables already exist for the level (i-1) slices, then a table
for S may be constructed through a series of extension and merger operations (see

3). Care is taken to avoid violating planarity in choosing the vertex u or v for each
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table extension and at the appropriate stage the effect of the edge (u, v) on solutions
is incorporated in the new table.

Using the procedure just described it is easy to construct a recursive algorithm to
yield tables for a slicing of a simply nested graph. The resulting tables may then be
merged and constraints removed to obtain an unconstrained solution for the entire
graph. At all times the table sizes are bounded by a factor of 22k and the number of
tables and hence the number of table operations is bounded by the size of the graph.

Baker extends the above method to planar graphs that are not simply nested. A
systematic method for defining slices is developed which handles the cases of articula-
tion points and chords in level subgraphs while assuring that each slice shares boun-
daries no longer than k with neighboring slices. Further, the algorithm for drawing
the slices provides a natural order for the application of extension, merger, and
constraint removal operations which assures that these operations occur a number of
times linear in the size of the graph. Thus, the time required is linear in the number
of tables multiplied by the time for the most costly table operation.

For the graph partition problem the most costly operation is table merger, requiring
time O(23im2), where m is the number of vertices in the combined slices and is the
maximum level ofthe slice. Since m <= n and =< k, the following theorem is an immediate
result of the above discussion and the operations defined in 3.3.

THEOREM 4.1 (Partition of k-outerplane graphs). Let G be an n-vertex k-outerplane
graph and s [0, n] be given. An optimal s-partition ofG may befound in time 0(23kn3).

The algorithm returns a single partition vector P for the entire graph, where P[s]
is the cutsize of an optimal s-partition of the graph. If the actual partition is required,
then it may be found by preserving the tables and retracing the steps of the computation.
Space required by the tables is that for 2kn partition vectors which is O(2kn).

The above scheme may be made to return a constrained partition vector Pv
representing partitions constrained by a single vertex v on the exterior face (at the
start select the appropriate vertex and at the conclusion remove all constraints except
the constraint on this vertex). This is important to the following theorem, which follows
from the observation that biconnected components may be processed separately to
yield tables constrained only by articulation points.

THEOREM 4.2 (Partition of k-outerplane-separable graphs). Theorem 4.1 holdsfor
G an n-vertex k-outerplane-separable graph.

Proof (Sketch). Proof is by construction of a simple recursive algorithm to process
k-outerplane components. Note that during processing every vertex appears at some
time in the constraint set. When an articulation point becomes a constraint vertex,
recursively process each previously unprocessed component of the graph that shares
that articulation point. Merge the resulting partition vectors into the table and continue.
The table merger procedure need only be altered to reflect the possible disparity in
sizes of the tables to be merged, i.e., if the articulation point occurs at level i, then
each partition vector (the equivalent of a 2 x 2 table) must be merged into a 2 x 2 table.

The need to identify biconnected components is not a factor in the time bound
since linear time algorithms exist to do this. No other significant modifications of
Theorem 4.1 are needed. Therefore, running time remains linear in the cost of table
mergers. ]

For graphs with weighted edges cutsize and optimal cutsize may be redefined in
terms ofthe total weight of edges in the cutset. To modify the algorithm to accommodate
such graphs we need only change procedures in which the effect of cutting an individual
edge is considered as is the case, for example, in table extension. The cost of cutting
an edge is now simply its weight rather than 1. Running time is unaffected. The space
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requirement is unaffected so long as we accept a word model in which individual
elements in a partition vector may have arbitrary size. The following corollary is the
result of these observations.

COROLLARY 4.3. Theorems 4.1 and 4.2 hold for graphs with weighted edges.

5. Partitioning planar graphs with small optimal cutsize. In 4 we showed how to
find an optimal s-partition of an n-vertex plane graph G having m-outerplane biconnec-
ted components. We obtained a polynomial time algorithm when m O(log n). In this
section we show that we can still get a polynomial time algorithm when m is not
O(log n) provided that the cutsize of the optimal s-partition is small. Note that a small
cutsize does not imply that m is small, or vice versa.

The main idea here is to construct a series of edge-weighted k-outerplane-separable
subgraphs G/* of a plane graph G that isolate every cutset no larger than k of G. By
applying this construction together with Theorem 4.2 for increasing values of k, we
obtain an optimal partition of the graph.

5.1. Isolating optimal cutsets. To isolate a cutset with cutsize k or less we construct
a set of weighted subgraphs G/*, [0, k] with the property that an edge set S, ISI _-< k,
is the cutset of an optimal s-partition of G if and only if it is the cutset of an optimal
s-partition of at least one of the subgraphs. The main idea of the construction is as
follows. For any level (j+2) subgraph, j mod (3k/3), remove all but one of the
edges connecting it to the enclosing level (j + 1) subgraph. In addition, give weight
to all edges with endpoints in a level (j / 1) or (j / 2) subgraph, and weight 1 to the
rest. The result is a weighted (3k+ 3)-outerplane-separable graph G/*. We will show
that if an optimal s-partition of G has cutsize no greater than k, then for any optimal
s-partition of G there is some such that the cutset is contained completely among
the weight 1 edges of G/*. Furthermore, it is straightforward to show that the same
set of edges is also the cutset for an optimal s-partition of G*.

LEMMA 5.1. Let G be an m-outerplane graph and s [0, n]. Ifan optimal s-partition
of G has cutsize w <-k; then an edge-weighted subgraph G* of G may be constructed
such that G* is (3 k + 3)-outerplane-separable and such that an optimal s-partition of G*
is an optimal s-partition of G.

Proof. If k >- m3 1, then G is (3 k + 3)-outerplane and we are done. Assume that
k<m/3-1.

Let S be the cutset for some optimal s-partition of G. By assumption there are
no more than k edges in S. For each i [0, k] define Ji, Gi, Hi as follows.

Ji {j [j 3 mod (3 k + 3), j [0, m 2]}.
Gi is the subgraph consisting of G minus all level (j + 1) and (j + 2) subgraphs
and their incident edges for all j
Hi is the set of all edges of G which are not in

For each i [0, k] construct a weighted subgraph G* as follows. Let j J. For
every level (j + 2) subgraph of G remove all but one interlevel edge connecting it to
the enclosing level (j + 1) subgraph. Give weight to all edges of G* that are in the
set Hi. Give weight 1 to all other edges. The result is an edge-weighted (3k+
3)-outerplane-separable graph. Call the edges with weight heavy edges and the
remaining edges light edges. Observe that the light edges are exactly the edges of
and that only heavy edges have endpoints in the level (j + 1) and (j + 2) subgraphs.

The k + 1 edge sets Hi are clearly disjoint. Thus, there is some [0, k] such that
HI contains no edges of S. It follows that all of the edges of S are in GI. By our
previous observation all the edges of S are light edges in G/*.

The following claims will complete the proof of Lemma 5.1.
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CLAIM 5.1. A partition of the vertices ofG which separates the endpoints ofan edge
which is not in G* will also separate the endpoints of some heavy edge in G*i

An edge that is not in G* must connect a level (j + 1) and a level (j + 2) subgraph,
j Ji. In G* any two such level subgraphs contain only heavy edges and are joined
by a single heavy edge. Thus there is a path in G* joining the endpoints of a and
consisting entirely of heavy edges. Any partition of the vertices of G and, hence, of
G* which separates the endpoints of a must also cut some edge on this path.

CLAIM 5.2. Any cutset of G* that includes only light edges is also a cutset for G.
If this is not the case, then it must be that the vertex partition induced by the

cutset on G* separates the endpoints of some edge a G- G*. Together with the first
claim this produces a contradiction.

CLAIM 5.3. Any cutset of weight less than o of G* is also a cutset of G.
This follows from Claim 5.2 since such a cutset can contain only light edges.
CLAIM 5.4. An optimal s-partition of any G* has cutsize no less than w.
Immediate from Claim 5.3 since a cutsize less than w would imply an optimal

s-partition of G with cutsize less than w.
CLAIM 5.5. S is an optimal cutset for G*I for some [0, k].
Recall that S is the cutset for some optimal s-partition of G. Since IS[- w _-< k,

the edge set S is contained among the light edges of G* for some [0, k]. From
Claim 5.4 S must be an optimal cutset for G/*.

FIG. 5.1. A section of a biconnected m-outerplane graph. Horizontal edges are in levels (j-2) to (j + 2)
for somej Ji. Thin edges are part of a levelj subgraph. Thick edges are from the edge sets Hi_ (top) and H
(bottom).

To obtain the G* of Lemma 5.1 we need only construct the k + 1 graphs G* and
take as G* that G* with an s-partition of minimal cutsize.

In the case where G is biconnected, a more careful analysis in the proof of Lemma
5.1 shows that we need to construct only half as many subgraphs in order to isolate
an optimal cutset. Moreover, the subgraphs are only (1.5k / 1.5)-outerplane-separable.
This is demonstrated in the proof of the following lemma.

LEMMA 5.2. If G is biconnected, then Lemma 5.1 holds with G* a (1.5k+
1.5)-outerplane-separable graph.

Proof. If k >-2m/3-1, then G is (1.5k+ 1.5)-outerplane and we are done. Assume
that k <2m/3-1. For each i[0, [k/2]] we define Gi and Hi as before and modify
the definition of

Ji={jlj=3i mod (1.Sk+l.5),j[0, m-2]}.

As before let S be the cutset of an optimal s-partition of G, [S[_-< k. We must ensure
that there is some [0, [k/2J such that HI contains no edges of S. (See Fig. 5.1.)

For increasing values of examine each Hi in turn. We will show that each
either contains no edge of S or accounts for at least two edges of S. If Hi contains no
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edges of S, then we are done. If Hi contains two or more edges of S, then let Hi
account for just these edges. Otherwise, Hi contains exactly one edge e S. Observe
that e cannot lie on any simple cycle consisting only of edges of Hi since this would
imply another edge of S in Hi. Thus, e is an interlevel edge with one endpoint in a
level j subgraph F, where either j Ji or j Ji+l. In either case biconnectedness implies
that e is on a simple cycle consisting only of edges from Hi and F. There must be an
edge e’ S among the edges of F in this simple cycle. If j Ji+l, then let Hi account
for the two edges e and e’. If j Ji, then e’ may already have been accounted for by
Hi-1 if i> 0. However, note that any edge in Hi is enclosed within some face of F
which implies that e’ is on a cycle of edges from F. Thus, F must contain at least
another edge in S different from e’. Let Hi account for this edge and e.

From the above discussion for each the edge set Hi accounts for two or more
edges of S if it accounts for any, and no edge is accounted for by more than one
set Hi. Thus we must find an 1-< [k/21 such that Hi accounts for no edges of S.
Consequently, HI contains no edges of S. The remainder of the proof proceeds as in
Lemma 5.1 I3

5.2. The algorithms. We describe two algorithms that use the construction of
Lemma 5.2. Algorithm 5.1 partitions an m-outerplane biconnected graph and is easily
extended to do the same for an m-outerplane-separable graph. Algorithm 5.2 uses
Algorithm 5.1 to partition a general plane graph and gives us the proof of the main
theorem of the paper.

Let G=(V, E) be m-outerplane and biconnected and let k<=lE]. The following
algorithm finds an optimal s-partition of G for all s such that the cutsize of the optimal
s-partition is no more than k.

ALGORITHM 5.1
Input:

(3 V, E) biconnected and m-outerplane;

v a vertex on the external face of G.
Output:

A vector P.
Step 1. If k >-2m/3-1 then apply Theorem 4.1 returning a partition vector

P for the entire graph; otherwise do Steps 2-4.
Step 2: Create [k/2J + 1 edge-weighted (1.5k+ 1.5)-outerplane-separable

graphs G* as described in Lemma 5.2.
Step 3" Use Theorem 4.2 to obtain a partition vector pi for each (3*.
Step 4" Return a vector P in which P[s] =minitO.tk/2j] P[s].

Observe that if steps 2-4 are executed, then P is not strictly a partition vector
for G since P[s] is guaranteed to be optimal only if it is no more than k. If Po[s] > k,
then the optimal s-partition has cutsize greater than k, but has not necessarily been
found.

The correctness of Algorithm 5.1 follows from consideration of Theorems 4.1 and
4.2, Corollary 4.3, and Lemma 5.2. Assuming an appropriate data structure for the
input graph G, the construction of G* proceeds in linear time. Running time for steps
2-4 is therefore dominated by step 3, which must be repeated [k/2] + 1 times. By
Theorems 4.2 and 4.3, the total time requirement is min (0(23mn3), O(k24Skn3)).

Algorithm 5.1 can be extended without increasing the running time to handle
input graphs which are m-outerplane-separable. The extension is analogous to Theorem
4.2. As in Theorem 4.2, the constraint on v may be removed. We will refer below to
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the extended Algorithm 5.1. We are now ready to give an algorithm to partition general
planar graphs.

ALGORITHM 5.2
Input:

G (V, E), an n-vertex planar graph;
s, the size of the partition sought.

Output:
An optimal s-partition of G.

Step 1. Obtain a planar embedding of G, determine rn such that this embed-
ding is m-outerplane-separable.

Step 2. For increasing values of k apply the extended Algorithm 5.1 with
input G, k, returning vector P until P[s] k or k 2m/3-1;

Step 3. If step 2 does not return an optimal s-partition, then apply Theorem
4.2 to the full graph G to find an optimal s-partition.

If an optimal s-partition of G has cutsize b <2m/3, then step 2 repeats b times.
The running time for the ith repetition of step 2 is O(i245in3). If step 3 is not executed,
then the final cost is O(ba24Sbn3). If step 3 is executed, then it must be that b >= 2m/3 1.
In this case step 3 finds an optimal s-partition in time O(23mn3) by application of
Theorem 4.2. However, since we must account for the 2m/3 1 unsuccessful iterations
the final running time is O(m223mn3). Algorithm 5.2 gives us the main theorem of the
paper.

THZORZM 5.1. Let an n-vertex planar graph G and s [0, n] be given together with
a planar embedding of G. Let m be such that this embedding is m-outerplane-separable
and let b be the cutsize of an optimal s-partition of G. Then the optimal s-partition of G
may be determined in time min (O(b2n324Sb), O(m2n323m)).

Corollary 5.1 follows from Theorem 5.1 by substituting c log n for b.
COROLLARY 5.1. Let G be an n-vertex planar graph and s [0, n] be given. If the

cutsize of an optimal s-partition is O(log n) or if an O(log n)-outerplane-separable
embedding ofG is available, then an optimal s-partition ofG may befound in polynomial
time.

Corollary 5.2 is a result of the observation that a bisection of a graph is an
[n/2J-partition or an [n/2]-partition.

COROLLARY 5.2. Let G be an n-vertex planar graph. If G has O(log n) bisection
width or ifan O(log n )-outerplane-separable embedding ofG is available, then an optimal
bisection of G may be found in polynomial time.

6. Conclusions. In this paper we showed that an optimal s-partition of a planar
graph may be found in polynomial time if the cutsize of the optimal partition is
O(log n) or if an embedding of the graph is available in which the embedding of each
biconnected component is O(log n)-outerplanar. Letting s= [n/2J or s= In/2] we
have the same result for the graph bisection problem.

In the first part of the paper we showed how to construct tables that adapt a
dynamic programming strategy presented in [2] to the problem of partitioning a
k-outerplanar embedded graph with unweighted edges. We then extended this result
to graphs with weighted edges and to k-outerplane-separable graphs.

In the second half of the paper we showed how to construct an edge-weighted
(1.5k+ 1.5)-outerplane-separable subgraph of a plane graph such that if an optimal
s-partition of the subgraph has cutsize no more than k, then an optimal s-partition of
the subgraph is an optimal s-partition of the parent graph. By constructing and
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partitioning a sufficient number of these subgraphs, we were able to find the optimal
partition of the original graph.

Our method suggests some avenues for further study:
(1) It would be useful to find a different method of constructing the subgraphs

of 5.1 using a k smaller than b while preserving the essential property that some
optimal cutset is guaranteed to be contained in some subgraph. In particular, if k can
be held at most logarithmic in the size of the graph for some subclass of planar graphs,
then a polynomial time algorithm for finding optimal s-partitions would result for that
subclass.

(2) It seems that the running time of our algorithms can be improved by consider-
ing the order of processing the slices. This is because for some graph embeddings the
processing order will affect the total running time of the table merger operations.

(3) In 1] certain results on planar graphs are extended to graphs with an excluded
minor; it would be interesting to show that the results in this paper can be extended
similarly.
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A POLYNOMIAL-TIME ALGORITHM FOR THE EQUIVALENCE OF
PROBABILISTIC AUTOMATA*

WEN-GUEY TZENGf

Abstract. Two probabilistic automata are equivalent if for any string x, the two automata accept x with
equal probability. This paper presents an O((nl +/’/2)4) algorithm for determining whether two probabilistic
automata U1 and U2 are equivalent, where n and n2 are the number of states in U and U2, respectively.
This improves the best previous result, which showed that the problem was in coNP.

The existence of this algorithm implies that the covering and equivalence problems for uninitiated
probabilistic automata are also polynomial-time solvable. The algorithm used to determine the equivalence
of probabilistic automata can also solve the path equivalence problem for nondeterministic finite automata
without A-transitions and the equivalence problem for unambiguous finite automata in polynomial time.

This paper studies the approximate equivalence (or g-equivalence) problem for probabilistic automata.
An algorithm for the approximate equivalence problem for positive probabilistic automata is given.

Key words, probabilistic automata, nondeterministic finite automata, unambiguous finite automata,
equivalence, approximate equivalence, path equivalence

AMS(MOS) subject classifications. 68C25, 68D25

1. Introduction. A probabilistic automaton is a finite state machine with probabilis-
tic transitions among states. For each string x, a probabilistic automaton has a certain
probability of accepting x. Two probabilistic automata are equivalent if for any string
x the two automata accept x with equal probability. While the equivalence problem
for probabilistic automata was known to be in coNP [7], the question of whether the
equivalence problem was polynomial-time solvable was left open. In this paper we
present a polynomial-time algorithm for this problem. Furthermore, if two probabilistic
automata are not equivalent then we demonstrate that our algorithm will output in
polynomial time the lexicographically minimum string which the two automata will
accept with different probabilities. As a consequence, the covering and equivalence
problems for uninitiated probabilistic automata are also polynomial-time solvable.

For a probabilistic automaton U, the state distribution induced by a string x is
the vector of probabilities that U ends up in each state when the input of U is string
x. Our approach to the problem makes use of an algorithm which finds a basis for the
vector space generated by the state distributions induced by all strings.

The technique we use to solve the equivalence problem for probabilistic automata
in polynomial time has an interesting application to the path equivalence problem for
nondeterministic finite automata without A-transitions (empty-string transitions). Two
nondeterministic finite automata A1 and A2 are path equivalent, also called multiset
equivalent in [4], if for each string x, the number of distinct accepting computation
paths (or accepting state transition sequences) for x by A1 is equal to that for x by
A2. The path equivalence problem for nondeterministic finite automata (with A-
transitions) is PSPACE-hard. Using difference equations, however, Hunt and Stearns
were able to show that the path equivalence problem for nondeterministic finite
automata without A-transitions is solvable in polynomial time [4]. We give an alternative

* Received by the editors November 22, 1989; accepted for publication (in revised form) May 28, 1991.
Part of this paper appeared in "The equivalence and learning of probabilistic automata" presented at the
30th Annual IEEE Symposium on Foundations of Computer Science, 1989, Research Triangle Park, North
Carolina.

" Department of Computer Science, State University of New York at Stony Brook, Stony Brook, New
York 11794. This research was supported in part by National Science Foundation grant CCR-8801575.
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polynomial-time algorithm for this problem based on linear algebra. As a special case,
the (language) equivalence problem for unambiguous finite automata is also poly-
nomial-time solvable.

We also study the approximate equivalence (8-equivalence) problem for prob-
abilistic automata. Two probabilistic automata U1 and U2 are 8-equivalent, 8 >-O, if
for each string x the difference of its accepting probabilities by U1 and U2 is less than
or equal to 8. A probabilistic automaton U is positive if for any two states ql and q2

in U and any input symbol tr, the probability that U, on input tr, moves from state ql

to state q2 is greater than zero. We demonstrate an algorithm for the 8-equivalence
problem for positive probabilistic automata. The algorithm will terminate except for
the case where the input 8 is equal to the maximum difference of accepting probabilities
of a string.

2. Definitions. A (row) vector is stochastic if all its entries are greater than or
equal to zero and sum to 1. A matrix is stochastic if all its row vectors are stochastic.
Let (i,j) be the set of all (i xj)-dimensional stochastic matrices. Let h be the empty
string and [x[ be the length of string x. Let a r be the transpose of the vector a. Let
span be the function that maps a set of vectors to the vector space generated by the
vectors in the set.

DEFINITION 2.1. A probabilistic automaton U is a 5-tuple (S, E, M, p, F), where
S-{s, s2,’’ ", sn} is a finite set of states, 5: is an input alphabet, M is a function
from 5: into (n, n), p is an n-dimensional stochastic row vector, and F

_
S is a set

of final states.
The vector p is called an initial-state distribution where the ith component of p

indicates the probability of state si being the initial state. The value M(tr)[i,j] is the
probability that U moves from state si to state sj after reading symbol tr 5:. We extend
the domain of function M from 5: to 5:* in the standard way, i.e., M(xtr) M(x)M(tr)
for x5:* and o-5:, and M(A) is the (n x n)-dimensional identity matrix. Let r/F be
an n-dimensional row vector such that for 1 _-< i_-< n,

1 if si F,
r/Fill

0 otherwise.

The state distribution induced by string x for U is

Pt(x)=pM(x),

where the ith component of Pv (x) is the probability that U with initial-state distribution
p moves to state s after reading x. We also define, for each string x,

Qv(x)-- M(x)(r/F) r.
The accepting probability of x by U is

Pv(X)( r/F) T pQt(x),

which is the probability that U ends up in a final state when the input is string x.
DEFINITION 2.2. Let U1 (S1, E, M1, Pl, F1) and U2 ($2, E, ME, P2, F2) be two

probabilistic automata. Then U and U2 are said to be equivalent if for each string x,
U1 and U2 accept x with equal probability, i.e., for all x5:*, Pu,(X)(r/F,)T=
Pt2(x)( r/F2) r.

Let U (S, 5:, M1, pl, F) and U2 (S, 5:, M2, p2, F2) be two probabilistic
automata with number of states n and n2, respectively. We define, for each string x,

Mt,v2(x) [ M’(x) 1M2(x)
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where 0rs is the (r x s)-dimensional zero matrix; then we have, for any cr E,

Mu,u(XO’) Mu,u(x)Mu,u(O’).
We also define, for each string x,

Pu,u2(X) Pl, p2JMul(R)U2(X)
Since the issue of computing with real numbers is subtle, in the rest of this paper

we assume that all inputs consist of rational numbers and that each arithmetic operation
on rational numbers can be done in constant time, unless stated otherwise.

3. Equivalence of probabilistic automata. In this section we present a polynomial-
time algorithm for the equivalence problem for probabilistic automata.

THEOREM 3.1. There is an algorithm running in time O((nl+ n2)4) that takes as

input two probabilistic automata U1 and U2 and determines whether U1 and U2 are
equivalent, where nl and n2 are the number of states in U and U:, respectively.
Furthermore, if U and U2 are not equivalent then the algorithm outputs the lexicographi-
cally minimum string which is accepted by U1 and U2 with different probabilities. This
string will always be of length at most n / na- 1.

It has been shown [7] that two probabilistic automata are not equivalent if and
only if there exists a string x of length at most Hi+Ha-1 such that PUl(X)(TF,)r
Pt&(X)(qF) r. This implies that the complexity of the equivalence problem for prob-
abilistic automata is in coNP.

For two probabilistic automata U and U2, let

H( U,, U) {Pu,u2(X): x e E*}.
Recall that U1 and U2 are equivalent if and only if

VxeE*, Pu,(X)(’qv,)r= Pu2(X)(nF) T.
We can reformulate this equation as

Vx Z*, Pu,u2(X)[ tie,,- nv] w O.

LEMMA 3.2. Let U1 and U: be two probabilistic automata. If V is a basis for span
(H( U1, U2)) then U1 and Ua are equivalent if and only iffor all v6 V, v[n,,-n] =0.

Proof Since the proof is straightforward, we omit it here. [3

Because the dimension of the vector space span(H(U, Ua)) is at most nl + n2,

the number of elements in V is at most n / n:. A basic idea behind the design of our
polynomial-time algorithm for the equivalence problem for probabilistic automata is
to find a basis V_ H(U1, U2) for the vector space span(H(U1, U2)). If we are able
to find such a basis in polynomial time then we can solve the equivalence problem for
probabilistic automata in polynomial time.

Proof of Theorem 3.1. Without loss of generality, we let E- {0, 1}. We define a
binary tree T as follows. Tree T will have a node for every string in E*. The root of
T is node(A). Every node(x) (where x is a string) in T has two children node(xO) and
node(x1). Let Pt4u(X) be the (Hi + n)-dimensional vector associated with node(x).
For node(xr), tr , its associated vector Pu,u(xr) can be calculated by multiplying
its parent’s associated vector Pu,u2(X) by Mu,u(r).

The method we use to determine whether U1 and U are equivalent is to prune
tree T. Initially, we set V to be the empty set. We then visit the nodes in T in breadth-first
order. At each node node(x), we verify whether its associated vector Puu2(X) is
linearly independent of V. If it is, we add the vector to V. Otherwise, we prune the
subtree rooted at node(x). We stop traversing tree T when every node in T is either
visited or pruned. The vectors in the resulting set V will be linearly independent. We
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will show in Lemma 3.3 that the vectors in V form a basis for span(H( U1, U2)). The
traversal order does not affect whether V is a basis for span(H( U1, U2)). A different
traversal order will simply generate a different basis set. When U1 and U2 are not
equivalent, a breadth-first traversal is necessary for finding the lexicographically
minimum string whose accepting probabilities by U1 and U2 are different.

Our tree pruning algorithm appears in Table 1. In the algorithm, queue is a queue
and N is a set of nodes. At the end of the algorithm, we verify whether span(V) is a
null space of linear transformation r/F,,--r/F2] r. If it is, then U1 and U are equivalent.
Otherwise, we return the lexicographically minimum string in the set {x: node(x) N}
which is accepted by U and U2 with different probabilities.

Correctness. Let TN be the tree formed by the nodes in

N U {node(xcr): node(x) N, tr ,}

(the set of nodes that have been visited). Because the vectors in V are (nl+
n2)-dimensional, TN has at most n+n internal nodes (those in N) and at most

n + n+ 1 leaves. Set V consists of the vectors associated with the internal nodes of
Tv. Since we prune tree T at node(x) when Pu,u2(X) span(V), the vectors associated
with the leaves of TN will be linearly dependent to the vectors in V. For example, in
Fig. 1, the associated vectors Vl, v2, , v6 ofthe internal nodes are linearly independent
and the associated vectors of the leaves marked by (R) are linearly dependent to

V1 V2 V6.

TABLE
Algorithm for equivalence ofprobabilistic automata.

Input: U,=(S,,{O, 1}, M,,p,,F,), U2=($2,{0,1}, M2,P2, F2);
1. Set V and N to be the empty set;
2. queue node(h );
3. while queue is not empty do
4. begin take an element node(x) from queue;
5. if PuI u2(x) : span (V) then
6. begin add node(xO) and node(x1) to queue;
7. add vector Puu2(X) to V;
8. add node(x) to N

end;
end;

9. if /v V, v[7,- 72] 7" =0 then return(yes)
10. else return (lex-min {x: node(x) N, Puu(X)[r/,- r/]7 0});

We will prove that the vectors in the resulting set V form a basis for the vector
space span(H(U, U2)). For i_->0, let

Vi {Pulu2(xy): node(x) is a leaf, lYl i}.

Set Vo is the set of vectors associated with the leaves of TN and set V, i=> 1, is the set
of vectors associated with the unvisited nodes of T which are of distance from a
leaf. It can be seen that

span VU V span({P.u,(x)" x E*}) span(g( u, U)).

LEMMA 3.3. For all >- O, V c__ span (V).
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Proof. Let V= {vl, v2," , vr} for some r-<_ n1W n2. We prove this lemma by
induction on i. The base case V0 {vMu,u2(o-): v V, trE}_ span(V) follows from
the algorithm. Assume that V span(V). Then for any x, y, and o- E such that node(x)
is a leaf and ]Yl it will be the case that

Pu,u(xyo’) Pt,t2(xy Mt,u(o’) (i=1 mivi) Mu,u(o’)

m,(v,Mu,t:(tr)) span( VU Vo) span(V).
i=1

Thus the vectors in V form a basis for span(H(U1, U2)). By Lemma 3.2, the
algorithm can determine whether U1 and U are equivalent by testing whether for all
v V, v[ r/F, r/F] r 0 holds.

LEMMA 3.4. Let U and U_ be two probabilistic automata having number of states
n and n_, respectively. If U1 and U2 are not equivalent then the algorithm in Table 1
outputs the lexicographically minimum string which is accepted by U1 and U2 with different
probabilities. This string will be of length at most nl + n2-1.

Proof. Let lex be the function that maps a string to its lexicographic order in 5:*.
Let x be the string returned by our algorithm. Assume that the lemma is false. Let y
be the lexicographically minimum string such that lex(y)<lex(x) and such that
Pu,u2(Y)[’qF, ,--r/F2] r # O. Since node(y) N, there must exist a leaf node(z) such that
y zw for some w E*. Since we used a breadth-first traversal in our tree pruning
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algorithm, the associated vector Pul(gUz(g) of node(z) will be in span({Pcr,u2(u)’u
E*, lex(u)< lex(z)}). Hence it will be the case that

(1)

Ptqt.(Y)[ qF, r/F] r Pcqt:(z)Mcqcr2( w)[ qF, qF2] r

E muPulu2(u)Mu,(R)uz(W)[rlF,,-’rIF2] T
lex < lex

Z muPt,t:(uw)[lv,,-lv:].
lex( < lex(

Because lex(uw) < lex(zw) lex(y) for any lex(u) < lex(z), the value of equation (1)
is zero. This contradicts the assumption Pth.t(Y)[rtv, ,-r/v] r 0. Therefore the string
x returned by our algorithm will be the lexicographically minimum string whose
accepting probabilities by Ua and U2 are different. Furthermore, since no node in N
is labeled by a string of length >na+ hE--1, the length of string x will be at most

nl+ n2- 1. [3

Complexity. Recall that we assume an arithmetic operation on rational numbers
can be done in constant time. The binary tree Tn has at most na + nE internal nodes
and thus at most nl + n,_ + 1 leaves. The vector associated with node(xo’) is calculated
by multiplying its parent’s associated vector Ptht2(x) by Mtlt2(o’), which can be
done in time O((na + n,_)’). To verify whether a set of (nl + nE)-dimensional vectors is
linearly independent needs time O((na + hE)3) [1]. Thus the total runtime is O((na +
/12)4). This completes the proof of Theorem 3.1.

4. Equivalence of uninitiated probabilistic automata. In this section we show that
the covering and equivalence problems for uninitiated probabilistic automata are also
polynomial-time solvable.

DEFINITION 4.1. An uninitiated probabilistic automaton U is a 4-tuple (S, E, M,
F), where S is a finite set of n states, E is an input alphabet, M is a function from
into :K (n, n), and F

_
S is a set of final states.

Given an initial-state distribution p, we can form a probabilistic automaton U(p)
out of uninitiated automaton U.

DEFINITION 4.2. Let U1 and U_ be two uninitiated probabilistic automata. Then
U is said to cover UE if for any initial-state distribution pE for UE there is an initial-state
distribution /91 for U such that Ul(/91) and UE(PE) are equivalent.

DEFINITION 4.3. Let U1 and U2 be two uninitiated probabilistic automata. Then
U1 and U2 are said to be equivalent if U1 covers U2 and U2 covers U1.

Let Ua (S1,5:, Ma, F1) and U2 (SE, Z, ME, F2) be two uninitiated probabilistic
automata having nl and n2 states, respectively. Recall that Qv,(x)=Ml(X)(rlF) r.
Let J be an (na xr)-dimensional matrix whose column vectors

Qt,(xE)," ", Qv, (xr) for some r _-< n form a basis for the vector space span ({ Qt,(x): x
Z*}). Let G be the (nEx r)-dimensional matrix whose column vectors are Qt(xa),
Qt:(xE),"’, Qv(xr). It has been shown [7] that if B is an (nE x nl)-dimensional
stochastic matrix such that BJ G then U1 covers U2 if and only if the condition for
all trE, BMa(tr)J= ME(tr)G holds. Stochastic matrix B is a transformation from
initial-state distributions for U2 to those for U1. The condition that for all
BMl(tr)J=ME(tr)G guarantees that UE(PE) and Ul(/gEB) are equivalent for any
initial-state distribution pE for U2. Since/92 and B are stochastic, so is pEB.

LEMMA 4.4 [7]. Let U1 and UE be two uninitiated probabilistic automata and let J
and G be defined as above. Then U1 covers U2 if and only if there exists an (hE x
nl)-dimensional stochastic matrix B satisfying BJ G and iffor any such B the condition

BM1(tr)J ME(tr)G holds for all tr E.
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The problem of finding a stochastic matrix B such that BJ G can be reduced
to the linear programming problem because of the "stochastic" restriction on B. If no
such B exists then U1 does not cover U2. Once B has been found, it is easy to verify
the condition. Thus our result implies the following.

THEOREM 4.5. There is a polynomial-time algorithm that takes as input two uniniti-
ated probabilistic automata U1 and U2 and determines whether U1 covers U2.

Proof. By Lemma 4.4, we need to find matrices J, G, and B and then verify the
condition for all o-eE, BMI(r)J= M2(cr)G. Using the idea that was used in the
algorithm in Table 1, we can find in polynomial time strings xl, x2,"" ", xr for some
r--< nl such that Qte,(Xl), Qu,(x2)," "’, Qul(Xr) form a basis for span({Qt:,(x): x E*}).
Then matrices J and G can be calculated easily. The problem of finding a stochastic
matrix B such that BJ G can be reduced to the linear programming problem, which
is well known to be solvable in polynomial time [5]-[6]. If B does not exist, then U1
does not cover U. Otherwise, we need to verify whether the condition for all
BMI(r)J M(o’)G holds. If it does, then U1 covers Ue. Otherwise, U does not cover

U2.
THEOREM 4.6. There is a polynomial-time algorithm that takes as input two uniniti-

ated probabilistic automata U1 and U2 and determines whether U1 and U2 are equivalent.
Proof. By the definition of equivalence for uninitiated probabilistic automata, we

need to verify that U1 covers U2 and that U2 covers U. Theorem 4.5 implies that
these tasks can be done in polynomial time.

5. Approximate equivalence. In this section we consider the problem of determin-
ing whether two probabilistic automata are &equivalent. For 6-> 0, two probabilistic
automata are &equivalent if for every string x the probabilities that the two automata
accept x differ by at most & Two equivalent probabilistic automata are zero-equivalent
and any two probabilistic automata are 1-equivalent.

DEFINITION 5.1. Let UI=(Sa, E, M, p, F) and U2--($2, , M2, P2, F2) be
two probabilistic automata and 6 _-> 0 be a real number. Then U and U2 are said to
be &equivalent if for all xe*, ]Pta,(x)(qu)r-Pta(x)(qu)r[<=6.

We do not know the precise complexity for the &equivalence problem in general.
In the following we consider the &equivalence problem for positive probabilistic
automata only. A matrix is positive if all its entries are greater than zero. A probabilistic
automaton U (S, , M, p, F) is positive if all its transition matrices M(r), r,
are positive. The reason for the restriction to positive matrices is that under this
restriction the accepting probabilities of long strings can be estimated using the
accepting probabilities of short strings [8].

In order to explain how we can estimate the accepting probabilities of long strings
using short strings we will need an additional definition and lemma. For two probabilis-
tic automata U (S,, , M, p, F) and U2---(S2, , M2, P2, F2), we define

a*(U,, U)=sup{[Pv,(n,)-Pt(n)rl: xe >;*}

and

A(U1, U2)= min {Mi(r)[j, k]}.
i,j,k,

For a row vector a =[aa, or2,’’’, a,], we define

Ir[ max {gi} and ][a max {]aj- akl}.
<= i<= <-j,k

LEMMA 5.2 [8]. Let a be a row vector, let A be a stochastic matrix, and let r be
minio {A[i,j]}. Then [AaT--aT[ < [Jail and
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Let U1 and U2 be two positive probabilistic automata. We will show how to
estimate the value 6*( U1, U2). For any 0< e -<_ 1, let rn O(log (2/e)/A( U, U2)) such
that (1-2A( U, U2)) -< e/2. For any string x yz such that [xl--> rn and [z[ rn it will
be the case that

=e+6’

where 6’=max{[piQu,(w)-pQv2(w)[: [w[<_-m}. Since 6’<-6"(U, U2), we have
[8’-8"(U, U2)[--< e. Thus for any arbitrarily small value e >0 there is an rn large
enough such that the difference between 8’= max {[ pl Qu,(X) pzQv2(x)[: [x[ <_- m} and
8*( U1, U2) is _-< e.

We consider the following two questions.
Question 1. Given two positive probabilistic automata U and U2 and a number

0 < e _-< 1, find a number 6’ such that [6’-8*( U, U2) E.

Question 2. Given two positive probabilistic automata U and U2 and a number
0=< 6-<_ 1, determine whether U and U2 are 6-equivalent.

Our result for the first question is that for any two positive probabilistic auto-
mata U and U2 and for any e > 0, we can find in exponential time a 8’ such that

I’- *(u,, u)l < .
THEOREM 5.3. There exists an algorithm that takes as input two positive probabilistic

automata U and U2 together with a number e(O < e <= 1) and outputs a number 8’ such
that ]6’-6"(U1, U2)[_-<e. In addition, the algorithm runs in time O((2/e) (g(g/A))
where A is the minimum entry of the transition matrices for UI and U2 and k is the size

of the input alphabet of UI and U2.
Proof Let (1-2A) < e/2. We evaluate ]plQu(x)-p2Qu2(X)] for all strings x of

length -< m and let 6’= max {[pQu,(x)-p2Qu(X)[: [x[ -< m}. By the above discussion,
we can see that [’-3"( U, U2)[-< e.

Since rn O(log (2/e)/A), we have to evaluate k’-1 =(2/e)(tg(/ values.
For each string x such that ]x]=< m, pQul(x) and p2Qu2(X) can be evaluated in time
O(m. n. log (2/A)+ rn. n2 log (2/A)), where n and n2 are the number of states in
U and U2, respectively. Therefore the total runtime is

O((2/e) (’g(k/) rn. (n+ n). log (2/A))= O((2/e) (’g(k)/ (n2+ n22)).
Since we can assume that rtl, n2 l/A, the runtime can be simplified to

o((2/ o,o/).
For the 6-equivalence problem for positive probabilistic automata (the second

question), we first consider the case where 6 # 8*(U, U2). We let

N=min {n" ]6-6"(U, U2)]>=l/n, n is a natural number}
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and 8’=max {IplQtl(x)-p2Qt(x)l: lx]<=m}, where (1-2A(U, U2))" < 1/(2N). If
8’ < 8, then

8*(U1, U2)<=8’+2(1-2A(UI, U2))"<8’+l/N<-_8.

If 8’> 8, then 8*( U1, U2) > 8.
It seems dicult, however, to deal with the case where 8 8*( U, U), except for

the cases where 8 1 and 8 0 which can be solved by our previous algorithm. The
main obstacle for the case where 8 8*( U1, U2) is that the value 8*(U1, U2) may
occur in the limit in such a way that it may not be possible to calculate it in finite
steps. Consider, for instance, the following example from [8]. Let U’= ({Sl, s2}, {0, 1},
M’, [1, 0], {s}), where

M’(O)= and M’(1)=
1

It is easy to verify that for string x=..., e, 1NiNn, the accepting
probability of x by U is

[1, 0]M’(x)[0, 1] T =+ +...+
2 2""

Let U" be the probabilistic automaton that accepts every string with probability
Then we have 6*(U’, U")=, which occurs when x 111 ..

Our result about the 6-equivalence problem for positive probabilistic automata is
as follows.

THORZM 5.4. ere exists an algorithm which takes as input two positive probabilis-
tic automata U and U2 and a number 6(0
are -equivalent when 8 6"( U, U2). In addition, when the algorithm terminates, it
runs in time O((max {2, N}) (g()/a)) where N is the minimum integer such that
l-6*(U, U)[ l/N, is the minimum entry of transition matrices for U and
and k is the size of the input alphabet of U and U.

Proof Our algorithm appears in Table 2. When 8 *( U, U), the conditions in
steps 6 and 7 will not hold and the algorithm will not terminate. The complexity
analysis is similar to that of Theorem 5.3.

6. Path equivalence of nondeterministic finite automata without k-transitions. In
this section we apply our algorithm to the path equivalence problem for nondeterminis-
tic finite automata without -transitions. We first give definitions of nondeterministic
finite automata, computation paths, and path equivalence.

TABLE 2
Algorithm for 6-equivalence ofprobabilistic automata.

Input: U=(SI,,,M,p,Ft) U2=(S2,,,M2, P2, F2), O<-8<- l;
1. A min,,,j,k {Mi(tr)[j, k]};
2. if 6 then return (yes);
3. if 6 0 then run the algorithm in Table 1;
4. i-0;
5. while true do
6. begin if x, Ixl i, IQ,(x)-2Q=(x)l> th return (no);
7. if max (lQ(x)-2Q=(x)l: Ixl-i}+2(1-2A)’__< 6

then return (yes);
8. ii+l;
9. end;
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DEFINITION 6.1. A nondeterministic finite automaton A is a 5-tuple (S, E, 6, Sl,

F), where S is a finite set of states, E is an input alphabet, 8 is a transition function
from S x (E {A}) into the power set of S, sl is the initial state, and F

_
S is a set of

final states.
DEFINITION 6.2. Let A- (S, E, 8, sl, F) be a nondeterministic finite automaton.

A computation path 0 for A is a finite nonempty sequence

((ql, a,), (q_, a2),""", (qn, an), q,,+l),

where (qi, ai) S (E U {A}) for 1 -< -< n, q,+l S, and qi+l 8(qi, a) for 1 _<- i-< n. If
q s and q+ F then the sequence 0 is said to be an accepting computation path
for x, where x= aa2...a.

A nondeterministic finite automaton with A-transitions could accept a finite string
via an infinite number of computation paths. Consequently, the path equivalence
(called multiset equivalence in [4]) of nondeterministic finite automata is defined as
follows.

DEFINITION 6.3. Let A and A be two nondeterministic finite automata. Then
A1 and A_ are said to be path equivalent if for each string x the number of distinct
accepting computation paths for x by A1 is equal to that for x by A or both are infinite.

The path equivalence problem for nondeterministic finite automata (with
transitions) is PSPACE-hard. We do not know whether the problem is decidable.

TIJEOREM 6.4. Thefollowing problem is PSPACE-hard Given two nondeterministic

finite automata (with A-transitions) A1 and A, determine whether A1 and A2 are path
equivalent.

Proof. We reduce the PSPACE-complete problem of determining whether a non-
deterministic finite automaton accepts all strings [3] to this problem. For each nondeter-
ministic finite automaton A (S, E, 8, sl, F), we construct the following two automata
A and A2. Automaton A is (S, E, 8’, s, F), where 8’(S1, A)-- S and 8’(q, a) 8(q, a)
for any q S and a E [O {h}. A string is accepted by A if and only if it is accepted
by A1 via an infinite number ofcomputation paths. Automaton A2 is ({Sl}, 82, Sl, {Sl}),
where 82(Sl, a)= Sl for any d EU{A}, which accepts every string via an infinite
number of computation paths. It is easy to see that A accepts all strings if and only
if A and A2 are path equivalent.

Therefore we only consider the path equivalence problem for nondeterministic
finite automata without h-transitions. Let A-(S, E, 8, Sl, F) be an n-state nondeter-
ministic finite automaton without h-transitions. The transition function 8 can be
represented as (n x n)-dimensional transition matrices M(tr), o-E, such that

M(cr)[i,j]= { lo ifotherwise.SJ8(s,o-),
Note that the above transition matrices M(r) are not stochastic. For each string x,
PA(X)qF, which is 1, 0, 0, , O]M(x)rlF, is equal to the number of distinct accepting
computation paths for x by A.

The following result about the path equivalence problem for nondeterministic
finite automata without A-transitions was first proved in [4] (cf. [9]); we give a different
proof using our techniques.

THEOREM 6.5. There is a polynomial-time algorithm that takes as input two nondeter-
ministic finite automata A and A2 without A-transitions and determines whether A1 and
A2 are path equivalent. If AI and A2 are not path equivalent then the algorithm outputs
the lexicographically minimum string x which is accepted by A1 and Ae via different
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numbers of computation paths. The length ofx will be less than the total number ofstates
in A1 and A2.

Proof. We use transition matrices to represent the transition functions of nondeter-
ministic finite automata as described earlier and apply the algorithm in Table 1 to
verify whether A1 and A2 are path equivalent. The rest of the proof is identical to that
of Theorem 3.1.

7. Equivalence of unambiguous finite automata. A nondeterministic finite
automaton A is offinite degree ofambiguity if there exists a constant k such that every
string is accepted by A via at most k distinct computation paths. If k is 1 then the
automaton is unambiguous.

In [9] Stearns and Hunt showed that, for any fixed k, there exists a polynomial-time
algorithm for the (language) equivalence problem for nondeterministic finite automata
of degree of ambiguity less than or equal to k. Our algorithm is not applicable to the
problem in general. It can, however, solve the (language) equivalence problem for
unambiguous finite automata in polynomial time, because two unambiguous finite
automata are (language) equivalent if and only if they are path equivalent.

The result of Theorem 7.2 about the equivalence problem for unambiguous finite
automata was first proved in [9]; we give a different proof using our techniques.

LEMMA 7.1 [9]. There is a polynomial-time algorithm that takes as input an n-state
nondeterministicfinite automaton A with A-transitions and outputs an equivalent nondeter-
ministicfinite automaton A’ without A-transitions and having at most n states. In addition,
ifA is of degree of ambiguity k then A’ is of degree of ambiguity at most k.

THEOREM 7.2. There is a polynomial-time algorithm that takes as input two unam-
biguous finite automata At and A2 and determines whether A and A are equivalent. If
A1 and A2 are not equivalent then the algorithm outputs the lexicographically minimum
string which is accepted by A, but not by A2, or vice versa. Furthermore, this string will
be of length less than the total number of states in A and A2.

Proof By Lemma 7.1, we can transform A and A2 to their equivalent unambiguous
finite automata A and A without A-transitions, respectively. Although the transforma-
tion does not preserve the number of accepting computation paths for each string in
the case of general nondeterministic finite automata, it does preserve the number of
accepting computation paths for each string in the case ofunambiguous finite automata.
We then apply the algorithm in Table 1 to verify whether A and A are path equivalent.
The rest of the proof is identical to that of Theorem 3.1.

8. Conclusion. In the complexity analysis of our algorithm for the equivalence
problem for probabilistic automata, we assumed that each arithmetic operation on
rational numbers could be done in constant time. This assumption, however, is not
essential to the polynomial execution time of our algorithm. It is possible to show that
the number ofbits in the vectors associated with the nodes in tree TN grows polynomially
and that our algorithm will still run in polynomial time if arithmetic operations on
rational numbers require time proportional to their number of bits.

A probabilistic automaton U with a real-valued cut-point 7r defines the language
consisting of those strings accepted by U with probability greater than 7r. The
equivalence problem for cut-point probabilistic automata is quite different from the
(exact) equivalence problem for probabilistic automata because the emptiness problem
for cut-point probabilistic automata is undecidable [7]. This undecidability result holds
even if all input numbers are rational [2]. By a simple reduction, we can see that the
equivalenc’ pr,blem for cut-point probabilistic automata is undecidable even if all
input numbers are rational.



EQUIVALENCE OF PROBABILISTIC AUTOMATA 227

Acknowledgments. The author would like to thank Professor Ker-I Ko for his
support and for many helpful discussions, Professor Scott Smolka, who introduced
him to the problem of determining the equivalence of probabilistic automata, and the
referees for their valuable comments.

REFERENCES

[1] D. K. FADDEEV AND V. N. FADDEEVA, Computational Methods of Linear Algebra, Freeman, San
Francisco, 1963.

[2] S. GINSBURG, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.
[3] J. HOPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-

Wesley, Reading, MA, 1979.
[4] H.B. HUNT III AND R. E. STEARNS, On the complexity ofequivalence, nonlinear algebra, and optimization

on rings, semirings, and lattices, extended abstract, Computer Science Department, State University
of New York, Albany, NY, TR 86-23, 1986.

[5] N. KARMARKAR, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984),
pp. 373-395.

[6] L. G. KHACHIYAN, A polynomial algorithm in linear programming, Soviet Math. Dokl., 20 (1979),
pp. 191-194.

[7] A. PAZ, Introduction to Probabilistic Automata, Academic Press, New York, 1971.
[8] M. O. RA3IN,.Probabilistic automata, Inform. Control, 6 (1963), pp. 230-245.
[9] R. E. STEARNS AND H. B. HUNT III, On the equivalence and containment problems for unambiguous

regular expressions, regular grammars, andfinite automata, SIAM J. Comput., 14 (1985), pp. 598-611.



SIAM J. COMPUT.
Vol. 21, No. 2, pp. 228-239, April 1992

1992 Society for Industrial and Applied Mathematics
003

SUBGROUP REFINEMENT ALGORITHMS FOR ROOT FINDING IN GF(q)*

A. J. MENEZES’, P. C. VAN OORSCHOT, AND S. A. VANSTONE:

Abstract. This paper presents a generalization of Moenck’s root finding algorithm over GF(q), for q
a prime or prime power. The generalized algorithm, like its predecessor, is deterministic, given a primitive
element o for GF(q). If q-1 is b-smooth, where b=(log q)O<l), then the algorithm runs in polynomial
time. An analogue of this generalization which applies to extension fields GF(q") is also considered. The
analogue is a deterministic algorithm based on the recently introduced affine method for root finding in
GF(qm), where m > 1; it is, however, less efficient that the affine method itself.

Key words, root finding, polynomial factorization, finite fields
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1. Introduction. This paper is concerned with finding roots of polynomials in finite
fields. That is, given a polynomial f(x) over GF(q), find all elements a GF(q) such
that f(a)= O. If the degree of f(x) is n, we will assume, without loss of generality,
that f(x) has n distinct roots in GF(q). The root finding problem has received
considerable attention and a number of efficient algorithms have been devised, (e.g.,
[2]-[6], [10], [14], [17]).

An algorithm proposed by Moenck applies to fields GF(q) when q has the special
form q-1 T. 2 where T is about the size of t. Moenck shows that in this special
case, given a primitive element for the field, the roots of a polynomial can be found
in polynomial time; he provides an efficient algorithm for doing so. We generalize this
idea to q having the form q- 1 T. p’ for p a prime number, and further to the case
q-1 1-Ii=1Pi’, where the pi are the distinct prime divisors of q-1.

Using concepts from finite geometry we also show that these ideas naturally carry
over to finite extension fields, and we give an algorithm for this case. The exploitation
of the multiplicative subgroup structure in Moenck’s generalized algorithm in GF(q)
is shown to be analogous to the exploitation of the affine subspace structure in the
new algorithm developed for root finding in finite extension fields GF(q’).

Von zur Gathen [6] has shown that for primes p for which the prime factors of
p 1 are small, the problem of factoring polynomials over finite fields F of characteristic
p is polynomial-time equivalent to finding a primitive element modulo p. For such
primes p, that paper presents an algorithm which, given as input a polynomial over F
and a primitive element modulo p, achieves a factorization of the polynomial in
deterministic polynomial time. Whereas von zur Gathen generalizes Moenck’s result,
we generalize Moenck’s algorithm itself (and Moenck’s result). Von zur Gathen’s
generalization is broader--he gives a factorization technique, whereas our algorithm,
like Moenck’s original algorithm, is restricted to root finding. Of course, factoring
univariate polynomials over finite fields of characteristic p is polynomial-time reducible
to factoring univariate square-free polynomials with only linear factors over GF(p)
[6, Thm. 2.4]. Von zur Gathen’s algorithm finds a nontrivial factor of a polynomial
f(x) GF(pl)[x] in O(n8) bit operations, using asymptotically fast integer and poly-
nomial arithmetic, where n is the maximum of log p, l, degf(x), and the largest prime
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factor b of p-1. It employs a basis for the so-called Berlekamp subalgebra, and
involves the computation of pith roots in GF(p), where PilP-1. (It is interesting to
note that in the computation of pith roots, discrete logarithms in GF(p) are effectively
computed using a technique popularized by Pohlig and Hellman 13], which is efficient
when p 1 has only small prime factors.) Our algorithm (see running time given below)
is conceptually simpler than that of von zur Gathen, but then again the root finding
problem is conceptually simpler (although theoretically equivalent) than factoring.

In [15] Ronyai presents a deterministic polynomial-time algorithm for factoring
polynomials over GF(p), where p-1 T. l, and T. The algorithm is a theoretical
improvement on the von zur Gathen method in the sense that a primitive element
modulo p is not required. The algorithm does not provide a practical savings, however,
as it is not very efficient, and since a primitive element of GF(p) can be efficiently
found probabilistically given the factorization ofp- 1. Shoup 16] has recently refined
the algorithms of [6] and [15] and proven the existence of a deterministic algorithm
for factoring polynomials over GF(p), which runs in time x/(n log p)Ol) under the
Extended Riemann Hypothesis, where n is the degree of the polynomial and b is the
largest prime divisor ofp- 1. (Note that both von zur Gathen’s algorithm noted above,
and ours discussed below, run in time polynomial in b.)

In this paper we describe a class of root finding algorithms which we refer to as
"subgroup refinement algorithms." The first class of these algorithms (the generalized
Moenck algorithm) exploits the multiplicative subgroup structure, while the second
(the affine refinement method) uses the additive structure. The former is a special
purpose algorithm in that (in order to be efficient) it requires q- 1 to be smooth, and
furthermore requires a primitive element in GF(q). The second is a general purpose
algorithm in extension fields GF(q"), but is only efficient when q is small. We find
the paradigm of subgroup refinement to be useful in the root finding problem. The
two new methods presented in this paper generalize and unify previous methods. Both
methods are practical, provided that appropriate smoothness conditions hold. We
summarize the running times of the new algorithms below.

THEOREM 1. Let f(x) be a degree n polynomial over F GF(q) having n distinct
roots in F, and let q 1 be b-smooth. Then given a primitive element to in F, the generalized
Moenck algorithm is deterministic and has running time O(n2 log q(log q + b)) steps,
where a step is a GF(q) operation.

THEOREM 2. Letf(x) be a degree n polynomial over F GF(qm) having n distinct
roots in F. The running time of the affine refinement method is O(qmn(m+ n2)) steps,
where a step is a GF(qm) operation.

The remainder of this paper is organized as follows. In 2 we review Moenck’s
original algorithm for root finding. The generalization of Moenck’s algorithm is pre-
sented in 3, and its running time is given. The additive analogue of the generalized
Moenck algorithm is given in 4, and its running time and expected running time
(Theorem 7) are studied in 5.

2. A review of Moenck’s root finding algorithm for special fields. Moenck’s
algorithm for finding roots in GF(q) of polynomials over GF(q) runs in deterministic
polynomial time, given a primitive element to for GF(q) [10, IV]. The algorithm is
applicable in special fields GF(q), where q is of the form

q-l=T.2

with T t. Here, as is our convention, q refers to a prime or prime power. (Note that
while Moenck specified the algorithm in Zp, it applies equally in GF(q).) For con-
venience, we first review the algorithm.
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Let f(x)= Yi=o )tixi, )ti6 GF(q), be a monic polynomial which is the product of
n distinct linear factors over GF(q), and assume f(0) 0 (i.e.,)to 0). Noting that

X
q-1 1 (X(q-l))(x(q-l)/2 + 1),

those roots of f(x) that are quadratic residues can be separated from those that are
quadratic nonresidues via

(2.1) fl(X) god (f(x), x(q-l)/2-1).

In general at stage i, for 1 _<-i _-< t, noting

(2.2) X(q-1)/2i-1-1 (x(q-1)/2i- 1)(x(q-1)/2’nt- 1),

we may compute

(2.3) f(x) =gcd (f/_l(X), x(q-1)/2i- 1)

where fo(x)=f(x); f-l(X) contains all roots of f(x) that are (q-1)/2i-lth roots of
unity, and f(x) those that are furthermore (q-1)/2th roots of unity. Proceeding in
this manner eventually yields the polynomial f(x) containing precisely those roots of
f(x) (if any) which are (q-1)/2t= Tth roots of unity. Now these roots are necessarily
contained in the multiplicative group generated by (.0 (q-1)/T, where to is any primitive
element of GF(q), and they can at this point be found by trial and error, using direct
evaluation in f(x). For T and being O(log2 q), the maximum number of elements
to be so checked is about the same as the maximum depth of recursion t.

Those roots of f(x) "left over" at each stage by (2.3), i.e., the roots of g(x)
f_l(X)/f(x), must also be dealt with. These roots are (q-1)/2-th roots of unity
which are not (q-1)/2th roots of unity, and hence have the form

(o’-’)s
where s is odd. In order to proceed, suppose each such root sr was multiplied by eo2’-

yielding
2 S’2 2 (s+l)/2

(.O =(2) (.O ((.0 2i

Then, since 2 divides s/ 1, each such "shifted" root would be a (q- 1)/2th root of
unity, and could be processed by the refinement technique outlined above; and each
original root sr could then be recovered once the corresponding root was so found,

2i-1by dividing by to

What. remains to be specified is, given a polynomial g(x) whose roots are of the
.2i-form to for various odd s, how to determine the polynomial 7(x) with shifted

2i-!roots to’-, to It is easily verified that if the roots of h(x) Y=o 8x are ak, then
the roots of h(x)= Y=o bl-8M are bak. Hence

(x) x-,o’-’. ,o’-’ 2 (,o’- ’-x
j=l j-----0

can be computed directly from the coefficients of gi(x) and successive powers of to ’-’.
To specify the algorithm explicitly, let Search(s(x), w2’) be a subroutine that

evaluates s(x) at the T elements in the cyclic group generated by w2’, returning the
set of all roots of s(x) so found, and let Shift(s(x), tr) be a subroutine returning the
polynomial if(x) whose roots are precisely those of s(x) shifted by tr. The special form
of q-1 (i.e., T and t) is assumed known, as is a primitive element to for GF(q). The
algorithm is initially invoked as Roots(f(x), to, 1), and returns the set of roots off(x).
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Correctness of the algorithm follows from the discussion above. We let deg h(x) denote
the degree of h (x).

Roots(h(x), 3/, i)
1
2
3
4
5
6
7
8
9
10
11

if deg h(x) 0
RETURN()

else if deg h(x) 1 [i.e., h(x) x + Ao]
RETURN({-Ao})

else if i-- t+l
RETURN Search h x 3/))

else
gl(x) := gcd(h(x), x(q-1)/2i- 1)
g2(x) :- Shift(h(x)/g,(x), 3/)

RgTURN(Roots(gl(x), 3/, i+ 1)(J Roots(g(x), 3/, i+ 1)/3/)
endif

3. A generalization of Moenck’s algorithm. We now give a generalization of
Moenck’s root finding algorithm. In the original algorithm, at the top level, roots are
separated based on membership in the (multiplicative) subgroup of GF(q)* of index
2 or its coset (i.e., the quadratic residues and nonresidues). This subgroup is then
successively refined by considering (within it) membership in the subgroup of index
22 then (within this latter subgroup) membership in the subgroup of index 2 and so
forth until eventually the subgroup of index 2 is exploited. At each stage, to facilitate
further refinement, roots in the subgroup of index 2 that are not elements of the
subgroup of index 2i+l are appropriately mapped ("shifted") into this latter subgroup.

We first consider the generalization from the case q- 1 T. 2 to the case where
q-1 T. p t, for any prime p. The quadratic residues and nonresidues are replaced
by the subgroup C(p= {to kp. Of k < (q-1)/p} of index p, and its cosets w;C(p,
1-<j <p; here again, to is a primitive element for GF(q). This subgroup of index p is
then refined using the successively smaller subgroups of index p i, 2 <= <= t. Let \ denote
set difference. Whereas for p 2 only a single "shift" is required to map the elements
of c(2i)\ C(2i+1) onto C(2i+l) now at the ith stage a distinct ’shift" is required to map
each of the cosets of Cp’+’) within Cpi onto C(P’+); we make use of the following
result. We use the notation a[b to stand for "a divides b."

LEMMA 3. If A, B are positive integers such that AB q- 1), then
(i) x(q-1)/A- 1 I-IjB=; (x(q--1)/aB--o’J), where O’-- to

(q-1)/B"

(ii) the roots of cj(x)= x(q-)/A--rJ, O<--j < B are precisely the elements of the
coset toJAc(An= {WjA+An" 0 < k < (q- 1)lAB}; and

(iii) for each j, 1 <-j < B, the mapping " toJAc(A C(An) defined by (
to(n-J)At maps the coset

Proof To prove (ii), let etoJac(A. Then /3 =tojA+An for some k, O_-<k<

(q- 1)/AB, and

(q-1)/AB (to(q-1)/B)j, (toq-1)k O.

so that c;(/3)=o-;-o’; =0. This characterizes all roots of c(x), since deg c(x)=
(q-1)/AB.

To prove (i), note that by (ii), the set of roots of the product on the right consists
of the union of all cosets of C(AB in C(A, and hence consists of C(a), which is
precisely the set of roots of the left-hand side.

Statement (iii) is immediate. El
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The original algorithm, at stage i, used A 2i-1, B 2, and required the single
shift to2,-, (cf. (2.2)). For q-1 T.p t, l<-i<=t, we may use A=pi-l, B=p’, and the
jth coset may be shifted by (toP’-’)P-J. With this note, the modified algorithm for
q-1 T.p can be given.

Rootsl(h(x), y, i)
1 if deg h(x) 0
2 RETURN ()
3 else if deg h(x) 1 [i.e., h(x) x + Ao]
4 RETURN ({-Ao})
5 else if i= t+ 1
6 RETURN (Search (h (x), /))
7 else
7.1 for j from 0 to p- 1 do

{
8 g(x) := gcd (h(x), x(q-1)/Pi--o’P-J)
9 gj(x) := Shift(g(x), /)

10 RETURN U 2=o Rootsl(g2(x), ")/P, i+ 1)/3,j)
11 endif

As before, the algorithm is initially invoked as Roots l(f(x), to, 1). For use in line 8,
O" 0.)

(q-1)/p may be precomputed.
We now make the following observations. We have as an invariant y topi-, SO

that at line 9, yJ= toP’-. Before line 7.1, we have the assertion h(x)l(x(q-1)/p’-l- 1).
After line 9, the assertion gj(x)l(x(q-1)/pi- 1) holds, since the roots of g(x), which
from line 8 and Lemma 3 are elements of to(p_jp,-1C (p’, are shifted by to,p,-1 in line
9. Correctness of the algorithm follows from these assertions.

The algorithm for q- 1 T. p can be further extended when T is composite; the
full generalization then applies to GF(q) where q-l=l-[i=l p, with the p being
distinct primes, and say p Pl and el. If we define b maxl<__i__<r {pi}, then q- 1 is
said to be b-smooth; the full generalization is then efficient if b is small with respect
to q-1. To begin further refinements, the subgroup C(p’ of order T is partitioned
into a subgroup of (preferably prime) order s, where siT (say, s p2), and its cosets
within C(P’; as before, these cosets are then mapped to this subgroup. This corresponds
to using Lemma 3 with A =p, B s giving

s--1

xr- 1 I-I xr/s -’),
j=0

(q-1)/s

Note here that the roots of xr/S-cr are elements of the coset (.oJPtC(Sp’) and a shift
pt(s--j)mapping this coset onto C(sp’ is to

Subsequent refinements are now possible if T/s is composite, and so on. In this
way the generalization can be completed. To this end, let q- 1 1-[= P’, e _-> 1, where
the Pi are now ordered distinct primes with Pl <P <" "<Pr. Let Y=I e, and let
LIST[1... l] be a 1 x array whose first el entries are Pl, whose next e2 entries are
P2, and so on, with the last er entries being p. The complete algorithm, which we
formally call the generalized Moenck algorithm (or informally, Roots2), can then be
specified as follows.

Roots2(h(x), 3’, i, d)
1 if deg h(x) 0
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2
3
4
5
6
7
7.1
7.2
7.3
7.4

10
11

RETURN ()
else if deg h(x) 1 [i.e., h(x) x + Ao]

RETURN ({-Ao})
else if i=

RETURN (Search h x y
else

s := LIST[ i]
di:=d.s

(q-l)/2

forj from0to s-1 do

g(x) := gcd (h(x),
g(x) := Shift(g(x), )

}
RETURN U =o-’ Roots2(g(x), y, + 1, di)/ y)

endif

To determine the roots of a polynomial f(x) whose factors are all linear and distinct,
the initial call is now Roots2(f(x), w, 1, 1). The second formal parameter y is a generator
for the subgroup of GF(q)* currently being refined; the third formal parameter
specifies the location of the next prime to be used in the list LIST[ of prime factors
of q-1; the fourth formal parameter d gives the index in GF(q)* of the subgroup
generated by 3/. Note that d H211 LIST[j] and d l--[j=1 LIST[j].

The correctness of this algorithm is now established.
THEOREM 4. Let f(x) be a degree n polynomial over GF(q) having n distinct roots

in GF(q). The generalized Moenck algorithm computes precisely the roots off(x).
Proof As mentioned above, the initial invocation establishes parameters h(x)=

f(x), y w, i= 1, d 1. We establish correctness by arguing (using recursion) that a
call to the routine Roots2(h(x), y, i, d) returns precisely the roots of h(x). We establish
the following assertions:

(A1) prior to line 1" y w a,
(A2) prior to line 1" h(x)]x(q-/d-1.
Clearly both assertions hold for i= 1. Note that (A2) says that all roots of h(x) are
in the subgroup generated by oo d y. For 1, also note that the invocation to Roots2
performs according to claim for deg h(x)= 0 or 1. Next, consider line 5 and the case
i=l (possibly l= 1, or otherwise). Then Search(h(x), y) evaluates h(x) at the Pr
elements in the cyclic group generated by y, and is successful at finding the deg h(x)
roots of h(x), due to (A2). To analyze lines 7.1-9, we apply Lemma 3 with A d and
B s (so AB ds d). By Lemma 3(i), the s gcds in line 8 partition the root set of
h(x) into the root sets of the s resulting polynomials g(x) (where the root set of
g(x) 1 is ) and for each j,

g(x) lx(q-1)/aS--o’S-J"
By Lemma 3(ii), all roots of g(x) are in the coset oo(-dC(d. The shift by ,= oa

in line 9 maps these roots into the coset C(a’, by Lemma 3(iii). Hence past line 9, we
have

g2(x)lxq-’/a,-1.
This, together with the recursive calls on line 10, establish (A1) and (A2) for the
recursive call of stage + 1. The division by 5,2 corrects for the shift in line 9. The roots
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of h(x) are returned correctly from stage i, either directly (via lines 2, 4, or 6), or
recursively from line 10.

It should be clear that for q- 1 T. p’, where T is prime, the generalized Moenck
algorithm reduces to Rootsl, and for p=2, Rootsl reduces to Moenck’s original
algorithm. Hence for p 2 and T prime, the new algorithm is the same as that given
by Moenck, and generalizes Moenck’s algorithm for p 2 and/or composite T.

The running time of the algorithm, as given by Theorem 1 in 1, is now established.
Proofof Theorem 1. Suppose that at stage (i.e., recursion depth i), the nonlinear

(shifted) factors of f(x) found so far are hi(x),..., hk(X), of degrees nl,..., nk
respectively. If l, where is the number of not necessarily distinct prime factors of
q- 1 and is the maximum recursion depth, then with q- 1 b-smooth, the roots of each
h(x) are separated by searching through a subgroup of order at most b. The total cost
of this search is O(bn)+...+O(bnk)=O(bn), since k__ n<__n" If i<l, then the

2 log q) stepspolynomial xq-)/d, (mod h(x)) for use in line 8 can be computed in O(nj
using conventional polynomial arithmetic. For each invocation of Roots2 at stage i,
at most b cosets are processed (s <= b in line 7.4), and the cost of each gcd operation
in line 8 is O(n]) steps. The total cost for stage is thus

k k

21ogq)+b Y O(n)=O(nZ(logq+b)).Z O(n
j=l j----1

This leads to a running time for Roots2 of

O(bn + n/(log q + b))

steps, and note that l_-< log2 q.
COROLLARY 5. If b (log q)o), then given a primitive element to, the generalized

Moenck algorithm is a deterministic root finding algorithm with running time polynomial
in n and log q.

Using known reductions for reducing the factoring problem to a root finding
problem (e.g., see [6, 2], [7, 4.2]), this then yields an algorithm for general fac-
torization of any polynomial a(x) GF(q)[x] in time polynomial in deg a(x) and
log q, when q- 1 is b-smooth.

4. A subspace analogue of the generalized Moenck algorithm. In this section we
introduce an analogue of the generalized Moenck algorithm of the previous section,
which can be used for root finding in fields GF(q’) where m > and q is a prime or
prime power. The analogue is based on the affine method of root finding [17, III],
which is itself a generalization of Berlekamp’s trace algorithm [2, 5], and mirrors the
successive refinement of a subgroup of GF(q)* in Moenck’s algorithm by the refinement
of linear subspaces of AG(m, q), the m-dimensional affine geometry over GF(q). As
in the affine method, we will exploit the structure of affine polynomials to allow for
more efficient computations. An affine polynomial over GF(q’) is a polynomial of
the form A(x) a +d=o axq a, a GF(q ). For the necessary background on affine
polynomials, the reader is referred to [7, 3.4] or [17].

Let f(x)= =o hx, hi GF(q ), be a monic polynomial which is the product of
n distinct linear factors over GF(qm), and let F(x)= LAM[f(x)] denote the least
affine multiple of f(x), the monic affine polynomial over GF(qm) of smallest degree
which f(x) divides. Let {al, a, , a,,} be a fixed basis of GF(q") over GF(q), and
let Td(X) LAM[x" id__ (x- ai)], 1 < d < m. The roots of the affine polynomial Td(X)
are precisely the elements of GF(q’) that lie in the linear subspace Vd of dimension
d, generated by {a, ce2,..., ad} over GF(q). For convenience, we let Vo {0} and
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To(x) x. Noting that the elements of GF(q’) can be partitioned as

(4.1) GF(q’)= Era--- [,.J (Vm_lnt-)tOgm),
AGF(q)

we have that

Tin(x) xqm x H Tm-l(X-- )tOlm)"
AGF(q)

Hence the following sequence of greatest common divisors

Ga(x) gcd (F(x), T,,_l(X Aam)),

g,x(x) gcd (Gx(x),f(x)),

with A ranging over GF(q), separates the roots off(x) according to membership in
Vm-1 or its (additive) cosets. This is done in two stages for computational efficiency
(see [17]), taking advantage of the structure of affine polynomials. Generalizing (4.1),
at stage i, for 1 =< =< m, we have

(4.2) V.,-+I (-J gm-i-- Om-i+l),
AGF(q)

and if h(x) is a polynomial all of whose roots lie in Vm-i/l, then the sequence of
greatest common divisors

G,(x) gcd (LAM[h(x)], Tm_i(x-)tOlm_i+l)),

gx(x)=gcd (G,(x), h(x)),

with A ranging over GF(q), separates the roots of h(x) according to membership in
Vm-i or its cosets within Vm-i/l. Now the roots of ga(x) lie in the affine space
V,,_i + Aa,,_i+l, and these can be mapped into the linear subspace Vm- by computing
ga(x + Aa,,_+l). The refinement process may then be continued by separating the roots
of these "shifted" polynomials, from which the original roots are then easily recovered.
This eventually leads to the separation of the roots off(x) in at most m stages.

The complete algorithm is specified below, and is initially invoked as
Roots3(f(x), 1).

Roots3(h(x), i)
1 if deg h(x) 0
2 RETURN ()
3 else if deg h(x) 1 [i.e., h(x) x +)to]
4 RETURN ({-)to})
5 else
6 H(x):=LAM[h(x)]
7 for )t ranging over GF(q) do

{
8 G(x) := gcd (H(x), T,,_i(x )tO.m-i+l))
9 gX(x) := gcd (Gx(x), h(x))
10 ,(x):= ga(x + )tOm_i+l)

}
11 RETURN(UaF(qRoots3(,x(x),i+I)+Aam_+I)
12 endif
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In order to compute the gcd in line 8, it is useful first to compute the affine residues
xqj mod H(x), O<-_j <- m-1. Ga(x) can then be computed as

G,(x) := gcd (H(x), Tm_i(x }iOm-i+l) mod H(x)).

The cost of computing these residues, and also the cost of computing H(x) in line 6
in each invocation of Roots3, can be avoided by not performing the shift in line 10,
but instead separating roots at stage according to membership in Vm-i and all of its
cosets within Vm. Hence at stage i, the polynomial representation of any of the q
cosets of Vm_i may be needed. These are given by Tm_(x-y), where y ranges over
the subspace generated by {am_i+l,am_i+2,’" ",am} over GF(q). Observe that

m--i qkTm_(x- y) is readily obtained from Tm_i(x), since if Tm_(x) k=O tkX tk GF(q),
then

m--i

(4.3) Tm_i(x-’)/)-- Tm_i(x Tin_i(’) Tm_i(x , tkVqk.
k=O

The modified algorithm, which we formally call the affine refinement method (or
informally, Roots4), is given below, and is initially invoked as Roots4(f(x), 1, 0) (here
F(x)= LAM[f(x)]). In Roots3(h(x), i), all roots of h(x) are known to lie in the
subspace Vm-+l, and the cosets of Vm_i in Vm-i+l were exploited; here in
Roots4(h(x), i, y), all roots of h(x) are known to lie in the coset Vm-i+l / y, and the
q cosets of Vm- in Vm that are contained in Vm-+l + y are exploited.

9
10

Roots4(h(x), i, y)
1 if deg h(x)= 0
2 RETURN ()
3 else if deg h(x) 1 [i.e., h(x) x + Ao]
4 RETURN ({-Ao})
5 else
6 for A ranging over GF(q) do

{
7 Gx(x) := gcd (F(x), Tm_,(x y-
8 gx(x) := gcd (Gx(x), h(x))

RETURN
endif

Note that F(x) and the residues X
qi mod F(x) used in the gcd computation in

line 7, can now be precomputed and used in all invocations of Roots4. We remark
that Roots2 can be optimized in the similar manner as Roots4 optimizes Roots3, by
avoiding the shift in line 9 of Roots2. By doing this, the residues x2 modf(x),
0-<j_-<log2 (q-1), can be precomputed and used in each invocation of Roots2 to
reduce xq-1)/d, modulo f(x) before doing the gcd in line 8.

We comment on the method of computing the affine polynomials Td(X), 1 <--d <-

m 1. An obvious method is to first compute l(x) x.d (X ai), and then the least
affine multiple of l(x) using a well-known technique (see 1, p. 245]). A more efficient
scheme noted by Ore in [12] is to calculate iteratively:

Tl(X) xq ogql-lx
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and

T(x) T_l(X)]q -[ T_l(a,)]q-1T_l(x), 2 -< _-< rn 1.

Finally, we note that the Roots3 and Roots4 algorithms partition the elements of
GF(q") at stage according to the coefficient of a,-i+l in their representations as
linear combinations of the basis elements al, a2,-" ", a,. As described above, the
algorithms are deterministic, and examine the coefficients of a,, a,_l, , al, in that
order.

Note that for any fixed ordering of basis elements, there will be polynomials f(x),
of degree as small as 2, containing pairs of roots that are separated only in the stage
corresponding to the last basis element. In other words, there are specific inputs that
force the algorithm into its worst case running time of m stages. To randomize the
algorithm, we might use a random permutation o’eSm, and let Ta(x)=
LAM[x 1--[ d (x for 1 < d < Randomizing in this fashion results in an

i= Oo-(i m.
algorithm whose expected running time, averaged over all inputs, is as before, but
which now does not favour/discriminate against any particular inputs; the worst case
running time remains unchanged. This is a minor point, not to be dwelled on. We say
more about the expected number of stages in the next section.

5. Analysis of the atline refinement method. In this section we establish the running
time of the Roots4 algorithm, as given by Theorem 2 in 1. As a basic step, we count
F-multiplications, where F GF(q").

Proofof Theorem 2. The cost of computing F(x), the least affine multiple off(x),
is O(n3) steps, where n=degf(x); this is done only once. The affine residues
xqj mod F(x), 0_-<j_-< m 1 are computed by successive powerings of x by q, and this
requires at most mn F-multiplications and the same number of F-exponentiations by
q; this is also done only once. Having these residues, the affine polynomial T,_i(x)
can be reduced modulo F(x) in O(mn) steps. The affine polynomial T,_i(x-,-
A,-i+l) in line 7 of the algorithm can now be reduced modulo F(x) in O(m) steps by
the observation made in (4.3), following which Gx(x) is obtained by an affine gcd
operation in O(n) steps. An affine gcd operation is similar to the gcd operation of
ordinary polynomials. Briefly, if A(x) and B(x) are affine polynomials, then the
remainder R(x) of A(x) divided by B(x) is obtained using long division, except that
at each stage of the division, a scalar multiple of the appropriate qth power of B(x)
is subtracted from the current remainder Ri(x), so as to eliminate the leading term of
Ri(x). This leaves the affine structure of Ri(x intact. Finally, gx(x) can then be
computed in O(n) steps, by first reducing the affine polynomial Gx(x)modulof(x)
(using the residues xqj modf(x) that are needed to compute F(x)) and then performing
the gcd operation. For any i, 1 <- _-< m, there are at most n invocations of Roots4 with
second input parameter equal to i. This leads to a running time for the affine refinement
method of O(qln(m + n)), where is the number of stages of the algorithm required
to separate all the roots of f(x). Finally, note that <-m. D

We note that since the affine polynomials Td (x), 1 _--< d -< m 1 can be precomputed
and reused for any root finding problem in a given field, the cost of computing them
is not included in the overall cost.

COROLLARY 6. For q fixed, the affine refinement method is a deterministic root
finding algorithm, with running time polynomial in n and m.

The running time of the affine method [17], for finding all the roots of a degree
n polynomial over GF(q") is O(n3+ ln(m+ qn)), where is the number of stages of
the algorithm required, and l-< m. Both the affine refinement method and the affine
method are useful in practice when q is small. For the case q small, the running time
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of the affine method is O(n3+ln(m/n)), which is better than O(In(m+n2)), the
running time of the affine refinement method. If, furthermore, n2< m, then the
running time of both methods is O(lmn). A comparison of the affine method and
Berlekamp’s trace algorithm can be found in [17, IV]. For q small, the running time
of the trace algorithm is O(mn2+ln(m+ n)), and thus the aftine method is faster for
degf(x) n < m.

We now calculate the expected number E(l) of stages in Roots4 required to
separate all the roots of a polynomial f(x) of degree n over GF(q’), assuming that
the roots off(x) are random and distinct. Let P(i) denote the probability that all roots
are separated in at most stages. Clearly, P(i)= 1 for iN m. For < m, P(i) is then
the probability that n randomly chosen and distinct elements of GF(qm) lie in distinct
cosets of Vm_ within V. Thus,

p(i)=qm(qm-qm-i) (qm--(rl--1)qm-i)
q’(q’-1)... (q’-(n- 1))

So, the probability that the n roots of f(x) are separated in exactly stages is
P(i) P(i 1). Whence,

E(/)= 2 i[P(i)-P(i-1)]
i=1

m--1

m- P(i).
i=1

We note that E(1) is also the expected number of stages required to separate all the
roots off(x) in Berlekamp’s trace algorithm, as well as in the affine method. A bound
for E(1) is E(1)<-21ogqm+O(1). This bound is derived, for example, in [8, p. 106],
where the author is concerned with the expected depth of a qary compressed TRIE
for a set of m elements.

THEOREM 7. The expected number of stages required to separate all the roots of
f(x) in the affine refinement method, the affine method, and Berlekamp’s trace method
is at most 2 logq m + O(1). The expected running times of the affine refinement method,
the affine method, and Berlekamp’s trace method are O(qn logqm(m+ n)), O(n3+
n logqm(m+ qn)), and O(mn2+ n logqm(m+ qn)) steps, respectively.

As in the case of Berlekamp’s trace method and the affine method, the use of
optimal normal bases (see [11]) enhances the performance of the affine refinement
method in GF(p’), for p a prime. The affine refinement method, for fields of charac-
teristic 2, was implemented in the C programming language on a SUN 3/160 computer,
making use of the supporting routines used to implement the trace and affine methods
in [9]. The affine refinement method was found to be slightly slower in practice than
the afline method, and this is due to the overhead of computing the polynomial
T,_(x-y-Am-+) from T,_(x), and also the gcd of aftine polynomials in line 7
of Roots4.
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LEARNING INTEGER LATTICES*

DAVID HELMBOLD?, ROBERT SLOAN$, AND MANFRED K. WARMUTHi

Abstract. The problem of learning an integer lattice of Zk in an on-line fashion is considered.
That is, the learning algorithm is given a sequence of k-tuples of integers and predicts for each tuple in
the sequence whether it lies in a hidden target lattice of Zk. The goal of the algorithm is to minimize
the number of prediction mistakes. An efficient learning algorithm with an absolute mistake bound
of k - [k log(n/)J is given, where u is the maximum component of any tuple seen. It is shown that
this bound is approximately a log log n factor larger than the lower bound on the worst case number
of mistakes given by the VC dimension of lattices that are restricted to (-n,..., 0,..., n} k.

This algorithm is used to learn rational lattices, cosets of lattices, an on-line word problem for
abelian groups, and a subclass of the commutative regular languages. Furthermore, by adapting the
results of [D. Helmbold, R. Sloan, and M. K. Warmuth, Machine Learning, 5(1990), pp. 165-196],
one can efficiently learn nested differences of each of the above classes (e.g., concepts of the form
cl (c2 (c3 (c4 c5))), where each ci is the coset of a lattice).

Key words, lattices, concept learning, mistake bounds
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1. Introduction. Integer lattices are one of the most basic combinatorial struc-
tures. An integer lattice is a nonempty set of k-tuples from Zk that is closed under
addition and subtraction. Let k be the concept class consisting of all integer lattices
in Zk. In this paper we present an algorithm for learning L:k, and prove that its
performance is within a log log factor of optimal in the on-line model of learning,
using the worst case number of mistakes as the performance criterion. Note that any
learning algorithm with a good on-line mistake bound can be used as a subroutine to
construct a PAC learning algorithm [17], [4], but some PAC learning algorithms have
very poor mistake bounds.

Although the learning algorithm is of interest itself, this paper’s major technical
contributions are analyzing the learning performance of that algorithm and comput-
ing the VC dimension for the class of integer lattices (thus giving a lower bound on
the worst case number of mistakes made by any learning algorithm). In particular, we
prove that our learning algorithm has an absolute mistake bound of k(1
where n is an upper bound on the absolute value of any component of any in-
stance seen, and that no learning algorithm can have a mistake bound of less than
(1- e)klnn/lnlnn for any e > 0. Thus we achieve nearly optimal learning perfor-
mance in a very strict model.2
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Throughout, log represents the base two logarithm, and In represents the natural logarithm.
Abe [1] considers learning the harder class of semilinear sets. Using different parameters, he

presents a learning algorithm for semilinear sets when k 2.
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The algorithm we present keeps a basis for the "smallest" lattice containing all
positive examples seen so far and predicts on new instances according to whether they
are in this lattice or not. Although any reasonable basis can be used, our algorithm
keeps a special basis which facilitates prediction and updates while storing only a
small number of derived examples.

Our algorithm is similar to the algorithms of Kannan and Bachem [15] and Chou
and Collins [25] for converting an integer basis into a special integer basis called
a Hermite normal form (HNF). However, in our application we are not given all the
vectors (positive instances) in advance, so we must convert the HNF algorithm into an
on-line algorithm. Significant adaptations of the HNF algorithm and its analysis were
required for our application, since we want to keep a HNF-like basis while efficiently
processing new examples.

We also present several applications of the learning algorithm for k. For exam-
ple, it can be used to learn rational lattices, cosets of lattices, and an on-line word
problem for abelian groups. Furthermore, we can use it to learn the subclass of com-
mutative regular languages accepted by DFAs whose single final state reaches the
start state. This subclass includes the class of "counter languages." The last result
is surprising, because the counter languages are precisely the regular languages used
to prove that the minimum consistent DFA problem for regular languages cannot be
approximated within any polynomial [21] (see 6.5 for details). Finally, adapting the
results from a companion paper [14], our algorithm can be applied to efficiently learn
nested differences of all the above learnable classes.

2. Methods and outline. The setting we will be concerned with is that of on-
line learning. Formally, concepts are subsets of some instance space X from which
instances are drawn and a concept class is a subset of 2X, the power set over X. The
instances are labeled consistently with a fixed target concept c which is in the concept
class C to be learned; i.e., an instance is labeled "+" if it lies in the target concept and
"-" otherwise. Labeled instances are called examples. An on-line learning algorithm
interactively participates in a series of trials. On each trial, the algorithm gets an
instance and predicts what its label is. After predicting, the on-line algorithm is
informed of the instance’s true label. A mistake is a trial where the on-line algorithm
makes an incorrect prediction. Between trials, the algorithm’s hypothesis is the subset
of the instance space where the algorithm predicts "/."

2.1. Example: Learning vector subspaces. Imagine for the time being that
our instance space is an arbitrary vector space ,, and that our concept class is the set
of all vector subspaces of . A natural on-line learning algorithm for this problem,
shown to us by Haussler and inspired by a similar algorithm of Shvaytser [23] is
described in Fig. 1.

2.2. Algorithm V is a closure algorithm. The class of all subspaces of a
vector space is intersection-closed, and Algorithm V is in fact a special case of an al-
gorithm for learning intersection-closed concept classes called the "closure algorithm"
[20], [6], [14].

DEFINITION. A concept class is intersection-closed if for any finite set contained
in some concept, the intersection of all concepts containing the finite set is also a
concept in the class.

DEFINITION. Fix an intersection-closed concept class C on some instance space.
Let S be a set of positive examples of some concept from C. The closure of S with
respect to the concept class C (written CLOSURE(S) when C is understood) is the
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Algorithm V

Predict that the zero vector is positive and all other vectors are negative until a
mistake is made.
Whenever a mistake is made predicting the label of some instance, add that instance
to a hypothesized basis set for the target subspace.
In general, predict that any instance in the span of the hypothesized basis is positive,
and all other instances are negative.

FIG. 1. An algorithm for learning subspaces of a vector space.

intersection of all concepts in C containing the instances of S.
Thus the closure of a set of instances is the smallest concept containing all those

instances. The closure algorithm is a generic on-line learning algorithm whose hypoth-
esis is CLOSURE(POS) where POS is the set of positive examples seen so far. If the
instance space is a vector space, and the concept class is the set of all subspaces, then
the closure of a set of positive examples (vectors) is their span. Thus Algorithm V is
a closure algorithm.

2.3. How good is closure algorithm V for learning subspaces?, This pa-
per uses the mistake-based performance criteria of Littlestone [16] to measure the
performance of on-line learning algorithms. For any learning algorithm Q and target
concept c define MQ(c) to be the maximum number of mistakes that Q makes on any
possible sequence of instances labeled according to c. For any nonempty concept class
C, define MQ(C) maxcec MQ(C). Any bound on MQ(C) is called an (absolute)
mistake bound for algorithm Q applied to class C. The optimal mistake bound for
concept class C, opt(C), is the minimum over all learning algorithms Q of MQ(C).

One lower bound on the mistake bound of any learning algorithm for a concept
class is given by a very useful combinatorial parameter, the Vapnik-Chervonenkis
(VC) dimension [24].

DEFINITION. A set of instances S is shattered (by the concept class C) if for
each subset S c_ S, there is a concept c E C that contains all of S, but none of the
instances in S-S. The Vapnik-Chervonenkis dimension of concept class C, denoted
by VCdim(C), is the cardinality of the largest set shattered by the concept class.

Littlestone [16] has given the following relationship between the VCdim(C) and
the optimal mistake bound.

THEOREM 2.1. For every concept class C, VCdim(C) _< opt(C).
It is fairly easy to see that the closure algorithm V, has an absolute mistake

bound of the vector space dimension of when learning subspaces of vector space,. Each time a mistake is made, a new vector is added to the basis set Algorithm V
maintains, and this can happen at most as many times as the vector space dimension
of 8. The VC dimension of this concept class is also the vector space dimension of 8,
so in this case the closure algorithm is optimal.

2.4. The closure algorithm is not always good. Even if a concept class is
not intersection-closed, it can always be embedded in one that is. Thus the closure
algorithm applies to any concept class. However, there are a number of potential
problems:

1. There might not be an efficient algorithm for computing the closure of a set
of instances.
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2. Given a representation of the closure, it might be difficult to predict whether
a new instance is in the closure.

3. The closure algorithm might not have a good mistake bound.
For example, regular sets are intersection-closed. The closure of a finite set of

words equals the set itself and thus the closure algorithm makes a mistake on each
new positive instance. So here the first two problems do not arise, but the third
problem does. If we restrict the concept class to regular sets representable by DFAs
with at most s states, then the class is no longer intersection-closed.

Theorem 2.1 implies that any. algorithm makes at least as many mistakes as the
VC dimension. However, even when the concept class is intersection-closed and has a
small VC dimension, the closure algorithm can still make a large number of mistakes.
For example, if the instance space is 0,..., n and the concepts are initial segments
(i.e., the intervals [0, i] for 1 <_ _< n), then the mistake bound of the closure algorithm
is n (consider increasing sequences of positive examples) even though the concept class
has VC dimension 1.

2.5. Applying the closure algorithm to integer lattices. As in the case
of vector spaces, the concept class k of integer lattices of Zk is intersection-closed.
For any set S C_ Zk, the closure of S is the set of all k-tuples produced by summing
integer multiples of elements in S. Thus the generic closure algorithm can be used
to learn k. However, lattices are significantly more complicated than vector spaces.
Any implementation of the closure algorithm must take into account the "holes" in
the lattice. For example, consider the lattice generated by the basis (2, 2) and (0, 2).

(2 2)+ 1(0 2), it is not in the lattice, asAlthough the point (1, 2) can be written as
it is not an integer linear combination of the basis vectors. Determining if a point is
in a lattice involves solving a set of linear Diophantine equations rather than inverting
a matrix.

We give a particular implementation of the closure algorithm, called Algorithm A,
which overcomes the three potential problems stated in the previous section.

1. Algorithm A (presented in the Appendix) efficiently computes closures with
respect to k.

2. Algorithm A represents closures so that prediction can be done efficiently.
3. We prove a good mistake bound for the closure algorithm when applied to

lattices.
We show in 3 below that VCdim(k) is infinite. Thus we know by Theorem 2.1

that the mistake bound of any algorithm must be infinite. To overcome this difficulty,
we restrict our attention to k(n), which we define to be the class :k where instances
are restricted to {-n,..., 0,... ,n}k. The concept class ,k(n) is also intersection-
closed, as is the restriction of any intersection-closed class to some subset of its domain.
Theorem 3.3 below shows that VCdim(k(n))is roughly k lnn/lnlnn.

In this paper we prove that the absolute mistake bound of the closure algorithm
when learning k(n), MCLOSURE(,k(n)), is at most k + [k log(nv)J. This bound
is only a factor of roughly log log n larger than the lower bound on the worst case
number of mistakes given by the VC dimension of ,k(n).

Remark. We will not actually limit the size of the input to the closure algorithm;
we will simply be describing its performance as a function of the size of its inputs.

2.6. Our algorithm and its advantages. Algorithm A (fully described in the
Appendix) for learning k(n) is a particular implementation of the closure algorithm
since its hypothesis is always the closure of the positive examples seen so far. Thus
Algorithm A has the same mistake bound as the generic closure algorithm. Our
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algorithm, however, has some space and computational advantages over the obvious
implementations of the closure algorithm.

One obvious implementation of the closure algorithm saves all previous mistakes.
After each mistake it recomputes a lower triangular basis for the smallest lattice
containing the positive examples using the HNF algorithms of [15], [25]. Prediction
is done by back substitution in this lower triangular matrix. Note that the number
of mistakes can be at least as large as the VC dimension. As we shall see in 3, the
VC dimension is bounded below by approximately k ln n/lnlnn, thus this obvious
implementation of the closure algorithm requires storing about k In n/lnln n positive
examples.

In contrast, Algorithm A stores only the lower triangular basis (k derived positive
examples). Rather than recomputing the basis from scratch after each mistake, it is
updated on-line. The analysis of Algorithm A is nontrivial and is included in the
Appendix. One of the more difficult parts is bounding the number of bits required to
represent a derived example. The other contribution of this paper is the application
of Algorithm A to the problems described in 6.

2.7. Outline of the paper. In the following section we compute the VC di-
mension of/:l(n), lattices in one dimension, and bound the VC dimension of .k(n).
In 4 we compute lower bounds on opt(.k(n)), the minimum mistake bound any al-
gorithm can achieve when learning .k(n). The closure algorithm’s mistake bound is
then analyzed in 5. At the end of the section, we show that a modified version of
the halving algorithm [5], [19], [4] has a nearly optimal mistake bound when learning
1(n). Section 6 shows how Algorithm A can be extended to learn rational lattices,
cosets of lattices, and a word problem for abelian groups. We conclude 6 by showing
how Algorithm A can be applied to learning a subclass of commutative regular lan-
guages. In 7 we discuss how Algorithm A can be used in conjunction with a master
algorithm for learning nested differences. Our master algorithm is a modification of
a similar algorithm presented in a companion paper [14]. It leads to efficient learning
algorithms for nested differences of any of the concept classes that we learn using
Algorithm A. A short summary of our results is given in the concluding section.
In the Appendix we formally state Algorithm A and prove bounds on its resource
requirements.

3. VC dimension of integer lattices. This section contains bounds on the
VC dimension of the concept class .k(n). The VC dimension provides a lower bound
on both the number of examples stored by the standard implementation of the closure
algorithm [14], and on the mistake bound of any learning algorithm.

We begin by exactly calculating the VC dimension of 1(n). Note that each
concept in (n) can be represented by an integer between 0 and n. The concept
represented by j contains the subset of-n,..., n whose members are multiples of j.

THEOREM 3.1. For all n >_ 1,

VCdim(L:(n)) max{r 12.3.5""pr _< 2n},

where pi is the th prime.
We start with a definition we will need in our proof.
DEFINITION. Let S be any shattered set; let T C_ S. We call a concept c such

that T c N S a witness for T.
Proof. Let r be maximum such that P 1-Iri= Pi <_ 2n and d VCdim(/:(n)).

Now we show d > r by exhibiting set S with ISI r that is shattered: S is all
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products of all but one of the first r primes. In symbols, S {P/pi 1 < < r}.
Since Pip < n for all primes p, every element of S is in the instance space. For every
x P/pi in S, define 2 p. It is easy to see that S is shattered: The witness for any
nonempty T C_ S is P/YIxET HxT " The witness for S is 1, and the witness for
the empty set is 0.

Hence d > r. Now we show that d < r.
Let S {xl,x2,"" ,Xd} be a largest shattered set. First we argue that we may

assume that there is no s > 1 that divides all elements of S. If there is such an s, we
can work instead with S’= {xl/s, x2/s,... ,Xd/S} and divide each witness by s.

Call any subset of d- 1 elements of S a minor. Set S has d minors, S through
Sd (where & is the minor not containing x). Let t be a witness for &.

Now no t can be 1, since t ]/x. (Note that 0 S, because 0 is a positive example
of every concept and S is shattered.) Furthermore, gcd(t, tj) 1 for all j, since
gcd(ti, tj) Ix for every x E S, and we assumed that 1 is the only number with this
property. Thus it must be that for each there is a prime p such that p t but

Pi )[tj for any j # i.
Pick any odd x E S. Element x is in d- 1 minors of S so d- 1 different ti’s divide

x, and x is a multiple of at least d- 1 different pi’s. Since x <_ n and 2 /x, there are
d distinct primes ("2" plus the d- 1 primes dividing x) whose product is at most 2n,
thus d < r. [:l

In order to obtain numerical bounds on the VC dimension, we recall some facts
from number theory (see, e.g., Hardy and Wright [13, pp. 262-263])"

1. Let f(n) be the maximum number of consecutive primes such that lii=l-[f(n) pi <
n. Then for every e > 0, for all sufficiently large n we have

(1) f(n) > (1 e) lnn
In In n

2. For all e > 0, for all sufficiently large m, we have

(2) log(T(m)) < (1 +e) lnm
In In m

where r(m) is the number of positive divisors of m.
COROLLARY 3.2. For all , for sufficiently large n,

(1 e)lnn < VCdim(/Z(n) < (1 + e)Inn
In Inn In In n

Proof. The left inequality follows directly from Theorem 3.1 together with (1),
once we note that In n/ln In n < In 2n/ln In 2n.

For the right inequality, we need to bound f(2n), where f is the function specified
in (1). Let m be a particular integer of the form m 2.3.5""pr. Note that for such
an m we have 1og(r(m))= f(m), and thus maxm_<n log(r(m)) > f(n). Thus we have
an upper bound on f(n) in terms of the log of the number of divisors of any m 5 n,
and can apply (2) to get the desired result.

Remark. The preceding should make it clear that VCdim((n)) can be made
arbitrarily large by choosing a suitable value for n, and thus that VCdim(/:1) is
infinite.

We now get a lower bound on the VC dimension of the more general concept class
t:(n).



246 D. HELMBOLD, R. SLOAN, AND M. K. WARMUTH

THEOREM 3.3.

k + [k log(nv)] _> VCdim(.k(n))>_ kVCdim(l(n)).

Proof. The first inequality is Corollary 5.3, proven later. The proof of the second
inequality is essentially a particular case of a bound of Dudley’s on the VC dimension
of cross products of those concept classes, among them El(n), that have a certain
property he calls "being bordered" [9, Thm. 9.2.14].

Let S be the exhibited set of numbers shattered in the proof of Theorem 3.1. Let
U be the set of size k SI consisting of all k-tuples of integers containing k- 1 zeros and
one value from S. In this case witnesses are sets of k-tuples. To shatter any T C U,
first write T T [J T2 [J LJ Tk, where all elements of T have nonzero values only
in position i. For each T, let t be the number that is the witness for the set of all
nonzero components of all elements of T (viewed as a concept from/:(n) as in the
proof of Theorem 3.1). The witness for T is then the set of all integer combinations
of the k tuples that have t in the ith position and O’s elsewhere, r

The lower bound in Theorem 3.3 is not tight. For example, VCdim( (2)) 1,
but VCdim(t:2(2)) 3 since (1, 2), (2, 1), and (2, 2) are shattered. Determining tight
bounds on VCdim(k(n)) remains an open problem.

4. Lower bounds on learning .k(n). We know from Theorem 2.1 that
opt(k(n)) >_ VCdim(k(n)), so from Theorem 3.3 together with Corollary 3.2, we
get a first lower bound for opt(k(n)).

COROLLARY 4.1. For all > O, for suJficiently large n,

In n> k (1
lnlnn

For sufficiently large n we can get a slightly better lower bound on opt(.(n))
than VCdim(El(n)) using an adversary argument.3

THEOREM 4.2.

opt(l(n))

_
max Llog(ei-- 1)J
m<n

i--1

iwhere m i= Pi
Proof. Let m 1-Ip be a number less than or equal to n with a maximal

number of divisors. Our adversary begins by first giving m as a positive instance.
The adversary then makes the algorithm perform a search similar to binary search
for the value of each exponent as follows. The next group of instances begin with

el-I>p and continues with various exponents for p (times l-I>p’). The
algorithm’s forced to make Llog(e + 1)] mistakes since there are e / ]-choices for
the exponent of pl. The following group of instances all have the exponent ofp set to
its correct value, the exponents of each p for _> 3 set to e, and force the algorithm
to search for the value of the exponent of P2. Next comes a group of instances forcing
the algorithm to search for the exponent of P3, and so on. D

3 To be precise, the adversary argument gives a stronger bound on opt(,k(n)) for all n >_ 27. 33.
5.7.11... 31 8.9 1013. After this point, maXm<_n =1 Llg(ei + 1)J is strictly greater than

max{r 2.3.5""pr

_
2n}.
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COROLLARY 4.3.

opt(Ek(n)) > k (max [log(ei+ l)J)m_n i--1

where m HzS._l pi.
Proof. The method used by the adversary in the proof of Theorem 4.2 can be easily

extended to the general case. There are k rounds; in the ith round the adversary gives
instances with all components but the ith set to 0. The values of the ith component
are chosen according to the adversary strategy in the proof of Theorem 4.2.

5. Mistake bounds. This subsection calculates MCLOSURE(k(n)), the mistake
bound of the closure algorithm, and considers how close it is to opt(k(n)). We will
bound MA(l.k(n)) MCLOSURE(k(n)) by noticing that every time the algorithm
makes a mistake, its new hypothesis is a strict superset of its old hypothesis. At the
end of the section we analyze a modified halving algorithm for the special case when
k-1.

Before stating the main theorem, we recall some facts about lattices. The stan-
dard definition of lattices in k insists that the lattice be generated by k linearly
independent basis vectors. Our definition allows less than k basis vectors, thus our
lattices need not have full "rank."

DEFINITION. The rank of lattice A C Zk is the minimum of the ranks of all vector
subspaces of k that contain A.

Thus any lattice of rank r can be written as i=1 zixi zi E Z} for some r basis

vectors xi E Zk.
It is easy to see that any integer lattice in Zk with rank r < k can be rotated

into r (i.e., the last k- r coordinates of every point in the rotated lattice are zeros).
For every set of r basis vectors that determine the same lattice, the volume of the
r-dimensional parallelepiped that they generate is the same. Furthermore, rotating
the lattice into r preserves volume. The volume of the parallelepiped is called the
determinant of the lattice [7]. We write det A to denote the determinant of lattice A.
If A C_ Zk, then det A 0 only if A is O, the null lattice containing only the origin.
Otherwise, det A is a positive integer.

THEOREM 5.1. Let 0 A0 C A1 C A2 C C Am be a sequence of distinct
lattices of Zk where each Ai, for 1

_ _
m, is the closure of Ai-1 plus some

(Zk\ Ai-1) and every component of every xi has absolute value at most n. Then

m < k + [k log(nv/)J
Proof. There are at most k values of for which Ai+x can have greater rank than

Consider now the case where Ai and Ai+ have the same rank. Since Ai is a
sublattice of Ai+l, we have t det Ai+l det Ai for some integer t _> 2 [7].4 Thus every
time the rank of the lattice stays the same, we decrease the determinant by at least
a factor of 2.

On the other hand, when the rank of Ai+ is greater than the rank of Ai, then
the determinant can increase. The first lattice, A1, is simply all integer multiples
of some particular x e Zk, so its volume is IlXlll <_ nv/, where Ilxll denotes the

4 In geometry of numbers, is called the index of Ai in Ai+I.
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Euclidean norm of vector x. In general, when Ai has rank r and Ai+l has rank r + 1,
one set of basis vectors for A+I will be X+l together with the basis vectors of A.
The (r + 1)-dimensional volume of the parallelepiped associated with A+I is det Ai
times the distance from x+ to the hyperplane containing A. Hence we have

det Ai+I IlXi+l det Ai
_< nvdet Ai.

Thus det A _< nv, and the determinant is multiplied by no more than nv in
at most k- 1 other steps. In all other steps the determinant is divided by at least 2,
and det Am _> 1. Therefore m

COROLLARY 5.2. MCLOSURE(_,k(n)) k + [k, log(nv)J.
Comparing Corollary 5.2 to Corollary 4.1 we see that the mistake bound achieved

by the closure algorithm is indeed within a log logn factor of optimal (assuming
n >> k).

By giving example sequences for which the closure algorithm makes the maximum
number of mistakes we next show that for infinitely many choices of k and n, the
bounds of Theorem 5.1 and Corollary 5.2 are tight. These sequences are constructed
using Hadamard matrices. A Hadamard matrix is a square matrix where the entries
are +/-1 and the columns are orthogonal to each other. Using n times the columns of
a k k Hadamard matrix, one can force the closure algorithm to make k mistakes
while the volume of the closure algorithm’s hypothesis grows to (k/-)k. Let n be
a power of 2 and k a power of 4, so this volume is a power of 2. Consider now
a k k lower-triangular matrix whose columns form a basis for the hypothesized
lattice. Since the determinant of this matrix is the product of the diagonal elements
and equals the volume of the lattice, each of the diagonal elements is a power of 2.
In particular, the element in the lower-right corner is some +2t. We can reduce this
element by a factor of two (without changing the other diagonal elements) by giving
the closure algorithm the positive example (0, 0,..., 0, 2t-). After the corner element
is reduced to +1, we can start reducing the diagonal element on the second-to-last
row, and so on. The number of additional mistakes made by the closure algorithm is
log(kv/-)k k log(nv). Thus for infinitely many choices of k and n, the bound of
Theorem 5.1 and Corollary 5.2 can be achieved.

Surprisingly, the mistake bound of the closure algorithm (together with Theo-
rem 2.1) gives us our tightest upper bound on the VC dimension of k(n).

COROLLARY 5.3. VCdim(k(n)) <_ k + [k log(nx/)J.
For the case k 1, when instances are integers and concepts are sets of multiples,

instead of using Algorithm A, we can implement a modified version of the halving al-
gorithm [5], [19], [4]. This modified halving algorithm has a basically optimal mistake
bound in this case, but requires more computation than the closure algorithm. The
modified halving algorithm predicts "-" on every instance except 0 until it makes
mistake on some instance m. The target concept is then known to be all multiples of
one of the divisors of m. The modified halving algorithm predicts so that each time it
makes a mistake, the number of possible target concepts is cut by at least half (i.e., it
predicts as the majority of the remaining target concepts do). Note that the modified
halving algorithm factors m, but that is one factorization for the whole run of the
algorithm, rather than one per mistake.

THEOREM 5.4. On instances of absolute value at most n, the modified halving
algorithm achieves a mistake bound of 1 + maxm<n LlogT(m)J where T(m) is the
number of positive divisors of m.



LEARNING INTEGER LATTICES 249

Proof. The algorithm makes one mistake on the first positive example it sees. Call
this example m. Without loss of generality, 0 <_ m _< n. Once m has been seen, the
divisors of m are the only candidates for being the target concept, and the modified
halving algorithm cuts the number of candidates by at least half with every mistake.
Hence the mistake bound is, as claimed, 1 + maXm<n [log T(m)J.

Note that the bound of the theorem can be rewritten as

m<n

8where m =p Thus the mistake bound of the modified halving algorithm is
8just slightly above Theorem 4.2’s lower bound of maXmn= [log(e + 1)J.

6. Generalizations and applications of Algorithm A.

6.1. Arbitrary Euclidean domains. We need not limit ourselves to lattices of
Zk. Algorithm A can in fact learn submodules of a free D-module for any Euclidean
domain D. Careful examination of the algorithm shows that it does not rely on any
properties of Z not possessed by all Euclidean domains. This generalization gives us
learning algorithms for various exotic instance spaces such as k-tuples of Gaussian
integers. Also, if we take D to be a field, then Algorithm A becomes Algorithm V for
learning vector subspaces.

Unfortunately, however, the analysis of the mistake bound given in Theorem 5.1
no longer carries through. The difficulty is that we can no longer find a bound on any
quantity analogous to the determinant of
supermodule of higher rank.

6.2. Rational lattices. A slight modification of Algorithm A learns rational
lattices (where the basis vectors consist of rationals rather than integers). After the
derived examples are written with a common denominator, Algorithm A can be used
whenever a mistake is made. By the argument of Theorem 5.1, the modified Algorithm
A has a mistake bound of k plus the maximum number of times the determinant
(volume) of the hypothesized lattice can be divided by an integer greater than 1.
The determinant of the hypothesis is upper bounded by ()k where n is the
largest component seen by the algorithm and lower bounded by v, the determinant of
the target lattice. Therefore, the algorithm makes at most k + Lk log(n)- log vJ
mistakes. However, finding a common denominator and operating on the consequently
larger numerators makes the modified algorithm computationally more expensive than
Algorithm A applied to integer lattices.

6.3. Cosets of lattices and Algorithm A+. A simple trick allows us to gen-
eralize the class of concepts we can learn from lattices to arbitrary cosets of lattices
(viewing the lattice as an abelian group). The algorithm still responds "Negative"
until it makes a mistake on some positive instance x. We now run the basic Algo-
rithm A given in the Appendix, with the addition that x is subtracted from every
instance. For the remainder of the paper, we use "A+’’ to denote this modification of
Algorithm A. Note that the mistake bound of Algorithm A+ when learning cosets of
k restricted to the domain {-n,..., 0,..., n}k is at most 1 plus the mistake bound
of Algorithm A on k(2n) (the subtraction doubles the bounds on the size of the
components). This leads to a mistake bound of
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for Algorithm A+ which is k + 1 larger than Algorithm A’s mistake bound when
learning k(n).

6.4. Abelian groups. Consider the following on-line word problem for groups
over a set of k generators:

Given a sequence of words using the generators and their inverses
as letters, predict for each word whether it is equal to some fixed
element with respect to a hidden target group over the generators.

The goal is to minimize the number of mistakes.
In the case of abelian groups, words over the generators and their inverses can

be represented as k-tuples. All words that are equal to some particular element
with respect to a hidden abelian group form the coset of an integer lattice of Zk.
Thus Algorithm A+ leads to an efficient solution to this learning problem for abelian
groups with a mistake bound of 1 + 2k + k log(nv)], where n is a bound on the
maximum word length of all instances seen. Since the word problem for general groups
is undecidable, it is unlikely that there is an efficient learning algorithm for nonabelian
groups. (See [10] for related work on permutation groups.)

6.5. Learning some commutative regular languages. We call a language L
over alphabet E commutative if whenever some word w is in L, then all permutations
of w are also in L. When learning such languages we can represent words as k-tuples
of nonnegative integers, where k IEI. Each component of the k-tuple equals the
number of times the corresponding letter occurs. We use r to denote this mapping
from words to tuples. If language L is commutative and (w) (w’), then word
w E L if and only if w E L. Therefore learning a commutative language is similar to
learning a set of tuples that have nonnegative components.

For any subset S of Zk, we call the set of all tuples in S that have only nonnegative
components the nonnegative restriction of S. If we have a class of languages where,
for each language in the class, the image under of the words in the language is
the nonnegative restriction of a coset of a lattice, then Algorithm A+ can be used
to efficiently learn that class of languages. Simply use r to convert each word into a
tuple and learn the tuples. The hypothesis of Algorithm A+ may include tuples with
negative components, however, no mistakes will be made on these tuples as they are
not in the domain. The bulk of this subsection is devoted to showing that the images
under r of a certain subclass of commutative regular languages (defined below) are
the nonnegative restrictions of cosets of lattices, and thus can be efficiently learned
by Algorithm A+with a mistake bound of 1 + 2 IEI + [IEI log(nV)J.5

Note that many commutative nonregular languages can also be learned using
Algorithm A. For example, the language over a, b containing all words with one more
a than b is commutative but not regular, and its image under r is the coset of a
lattice.

We now present several definitions concerning DFAs.
DEFINITION. A DFA is a 5-tuple, (Q, E, 5, qo, F) where qo Q, F c Q, and 5 is

a partial function from Q E to Q.6 The elements of Q are called states; 5 is called
the transition function; qo is called the start state; and the states in F are called

Abe has recently [2] discovered a learning algorithm (using different parameters) for arbitrary
commutative regular languages. The mistake bound of his algorithm grows exponentially in IEI.

6 We extend the transition function to words in the obvious way; if a E E and w aw, then
(q, ) ((q, ), ’).
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final states. The language accepted by this DFA is the set of all words w such that
6(q0, w) e F.

DEFINITION. A DFA M (Q, E, 5, q0, F) is closed if for each final state ql E F
there is some word wI such that 5(qi, wf) qo.

DEFINITION. We say a DFA M (Q, E, 5, q0, F) is canonical if it has the following
properties:

1. Every state can reach a final state.
2. If the language accepted by M is commutative, then we also require that for

all states q and all words w and w’, 5(q, ww’) 5(q,
Given a closed DFA, one can create (by deleting and merging states) a closed

canonical DFA that accepts the same language.
In the remainder of this section denotes the set of useful letters--those on which

the transition function is defined for some state, and k denotes the cardinality of
DEFINITION. A DFA M (Q, F,5, qo, F) is invertible7 if for each letter in

every state in Q has both an incoming and an outgoing transition for that letter.
LEMMA 6.1. Any closed canonical DFA accepting a commutative regular language

is invertible.

Proof. Let M (Q, F, 5, qo, F) be a closed canonical DFA accepting a commuta-
tive language L. It suffices to show that every state in Q has at least one incoming
transition for every letter of F. Since each state has at most one outgoing transition
for every letter of F, this implies by the pigeonhole principle that for each state there
is exactly one incoming and exactly one outgoing transition for every letter.

Let a be an arbitrary letter in F and q be an arbitrary state in Q. Since every state
reaches a final state in F there is a word ulau2 that is accepted, i.e., 5(qo, ulau2)
qf E F. Let v be a word leading from the start state to q, and w be a word leading from
ql to the start state. Now ulau2wv leads to q and since UlU2WVa is a permutation of
the latter word it leads to q as well. Thus for the state q’ 5(qo, uu2wv), we have
5(q’, a) q.

Remark. Note that exactly one incoming and one outgoing transition per letter
property does not hold if we remove the condition that the start state be reachable
from the final states. For instance, the canonical DFA for La {a} has no outgoing
transitions from its final state, even though La is commutative.

With an invertible DFA, one can talk about the inverses of letters. For the
alphabet E {a,..., ak} we define the inverse alphabet E- to be the set of new
symbols {a-l, a- }. The extended alphabet is E U E-1.

DEFINITION. The extension of an invertible DFA M (Q, E, 5, qo, F) is the DFA
M’ (Q, E U E-1, 5’, qo, F), where for each a E and q Q:

5’(q, a) 5(q, a),
5’(q,a r such that 5(r,a) q.

LEMMA 6.2. For any closed canonical DFA M accepting a commutative language
L, the language accepted by the extension ofM is commutative.

7 Invertible DFAs with a single final state are zero-reversible. Angluin [3] presents an algorithm
for learning the languages accepted by zero-reversible DFAs (as well as for the more general class
of r-reversible DFAs). However, those algorithms learn in the limit and no bound was given on the
number of mistakes made.
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FIG. 2. Detail of proof of Lemma 6.2: 5(q, ab) 5(q, ba). Dashed lines indicate the deduced
transitions.

Proof. Let M (Q, E, 5, q0, F) be such a DFA. By Lemma 6.1, each state has
exactly one incoming and one outgoing transition for each letter in E. This means
that M’ is a DFA with transitions defined at each state for every letter in E U E-1.

Now we argue that the language accepted by M’ is commutative. It is sufficient
to show that for all q E Q, 5’(q, ab) 5’(q, ba) for arbitrary a, b E E U E-1. There are
three cases:

1. Both a, b E. In this case, 5’ is the same as 5.
2. Botha, b E-1. Saya- 5-1 and b- -1, where , E. Now 5’(q, ab)

must be some state r such that 5(r, 5) q. Since M is a canonical machine
for a commutative language, 5(r, [) 5(r, &) q. Therefore 5’(q, ba) r
as well.

3. Let the letter a E, and the letter b E E-1. Again, say b -1 where E.
By Lemma 6.1, every state has an entering and exiting transition for each
letter in E, and hence for every letter in E-1 as well. Now let r 5’(q,b),
let s 5’(r,a), and let t 5’(q, a). 5’(q, ba) is obviously s. Now we need to
calculate ’(q, ab) ’ (t, b).
By the commutativity of 5’, 5(r,a) 5(r,a). Now since r 5’(q,b), it
follows that 5(r, ) q. Therefore t 5(r, a) 5(r, a) 5(s, ). Thus, as
desired, s- 5’(t,b). (See Fig. 2.) [:]

Remark. Again, the property that the start state is reachable from the final states
is crucial. Even if each state in a commutative canonical DFA has at most a single
incoming transition, the extension of the DFA may not be commutative. Consider
the two-state extended DFA for the commutative language (a}. The string aa-la is
accepted by that DFA, but the string a-laa is not, because there is no transition out
of the start state for a-1.

When the extended DFA is commutative, it makes sense to talk about its behavior
given simply letter counts from the extended alphabet, rather than specific words. We
extend r as follows"

r(w) ((number of 1 e w) (number of

(number of 0.k e w)- (number of 0; e W)).

If a word w over the extended alphabet contains more occurrences of a letter

0.i-1 than a, then the ith component of r(w) is negative. Note that when learning a
language L, neither the language nor the input include words with characters in E-1.
Although the hypothesis of Algorithm A+ may contain these words, they are not in
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the domain, and thus no mistakes will be made on them. The inverse alphabet is used
only as a tool in the proofs.

We will show that closed canonical DFAs that accept a commutative language
are essentially Cayley graphs [8], [11], [18].

DEFINITION. A directed multigraph (possibly with self-loops) where the edges
are labeled with elements from an alphabet 5] is a Cayley graph if it has the following
properties:

1. For each letter in 5], every vertex has exactly one incoming and one outgoing
edge labeled with that letter. This means that for each vertex, each word
over the extended alphabet 5] U 5]-1 describes an undirected path starting
at that vertex (if the next letter in the word is some a E 5] then follow the
edge labeled with a leaving the current vertex and if the next letter is some
a-1 E 5]-1 go to the tail of the edge labeled with a entering the current
vertex).

2. If a word over the extended alphabet describes a closed path starting at some
vertex, then that word describes a closed path starting at every vertex in the
graph.

DFAs naturally define a directed graph: The states are the vertices and the
transitions correspond to directed edges.

LEMMA 6.3. The directed graph defined by a closed canonical DFA accepting a
commutative regular language is a Cayley graph.

Proof. Let M (Q, 5], 6, q0, F) be such a DFA and M’ (Q, 5] u 5]-i, 6’, q0, F)
be the extension of M. The first property follows from the fact that M is invertible
(Lemma 6.1). For the proof of the second property, let state q 6 Q and word w
over the extended alphabet be such that 5’(q, w) q. We need to show that for all
states r 6 Q, 5’(r, w) r holds. By the definition of closed canonical DFAs there is
a string x 6 5]*, such that 5’(q, x) r. By Lemma 6.2, M’ is commutative and thus
r 5’(q, x) 5’(q, wx) 5’(q, xw). We conclude that w also leads from r to r. [:]

Cayley graphs over the alphabet 5] correspond to groups over the generator set
5] as follows [18]: The vertices are the elements of the group and after fixing a start
state (which becomes the neutral element) the words leading from the start state to
a particular vertex are the words over the generators and their inverses that equal
the group element corresponding to that vertex. Also, for each group generated by 5]

there is a Cayley graph based on the above correspondence [18].
This implies that any closed canonical DFA (with alphabet 5]) accepting a com-

mutative language corresponds to an abelian group generated by 5]. The language
accepted by the DFA consists of all words over 5] that are equal to one of the group
elements whose corresponding state is a final state. The abelian group defines a lat-
tice and the language is the union of positive restrictions of cosets of that lattice, one
coset for each final state. This proves the main theorem of this section.

THEOREM 6.4. Let M be a DFA accepting a commutative language that is closed
and has a single final state. Then the image under of the language accepted by M
is the positive restriction of a coset of a lattice.

COROLLARY 6.5. The class of commutative regular languages accepted by closed
DFAs with one final state can be learned with a mistake bound of

1 + 2 + [1 1 log(nIX)]
where E is the alphabet and n is the length of the longest word seen.
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Remark. A set of tuples in Zk is the coset of a lattice if and only if whenever x, y,
and z are in the set, then the tuple x-y + z is also in the set. Unfortunately, it is not
true that a subset of Nk is the nonnegative restriction of a lattice coset if and only if
whenever x, y, and z are in the subset, then x y + z is either in the subset or has
a negative component. Consider the set {(1, 1, 1), (3, 0, 0), (0, 3, 0)}. Every x y + z
combination of these three vectors either has a negative component or is already in the
set, but any lattice coset containing these three vectors also contains (0, 0, 3). This is
the simplest counterexample since for k <_ 2 the above characterization of nonnegative
restrictions of cosets of lattices does hold.s

Corollary 6.5 is somewhat surprising in light of the results of Pitt and Warmuth
[21]. They identify a small subclass Ck of the closed commutative regular languages
over k letters, called counter languages, and show that for any k _> 2 and any poly-
nomial Q, the problem: "given a set of examples (from some L E Ck accepted by a
DFA of s states), find a DFA or NFA with fewer than Q(s) states consistent with the
examples" is NP-hard [21].9 Algorithm A+ bypasses that hardness result by repre-
senting its hypothesis as a coset of a submodule rather than as a DFA. The resulting
algorithm for learning/:k makes at most 1 + 2k + [k log(nx/)J mistakes, where n is
the length of the longest word seen.

We now define a number of subclasses of regular languages and give lower bounds
on their VC dimensions (and hence the number of mistakes made on them by.any
learning algorithm). By this method we will show that the mistake bound of Corol-
lary 6.5 is within a log log n factor of optimal.

DEFINITION. Let CCSk,n be the class of commutative regular languages over
alphabets of size k accepted by closed DFAs having a single final state and restricted
words of length at most n (CCSk, is the class of Corollary 6.5). Let REG,n and
CREGk, be the class of all regular languages and all commutative regular languages,
respectively, over alphabets of size k restricted to words of length at most n.

LEMMA 6.6.
1. VCdim(CCSk,n) <_ 1 + k + [klog(nv/)J and for every > 0 and for all

sufficiently large n, VCdim(CCSk,) >_ k(1- e) lnn/lnlnn.
kn+l-1 if k > l and n + l if k l.2. VCdim(REGk,)= k-1

3. VCdim(CREGk,,) +

Proof. The upper bound of part 1 of Lemma 6.6 follows from the mistake bound
of the algorithm for learning CCSk,n given in Corollary 6.5. For the lower bound
first observe that the commutative languages over the single letter a accepted by
closed DFAs with a single final state are all languages of the form a(aJ)*. Thus the
letter counts of these languages are the positive restrictions of shifted one-dimensional
lattices. By Corollary 3.2, one-dimensional lattices (ignoring possible shifts) restricted
to {-n, , 0,. , n} have VC dimension larger than (l-e) In n/ln In n, for every e > 0
and for all sufficiently large n. The shattered set used to prove the lower bound for
one-dimensional lattices (proof of Theorem 3.1) consisted only of positive numbers.
Thus the same lower bound applies for CCS,n.

Positive restrictions of one-dimensional lattices correspond to languages of the

s This example corresponds to the language L containing aaa, bbb, and all permutations of abc.
Language L is commutative and zero-reversible [3] and thus Algorithm A+ is unable to learn all of
the commutative zero-reversible languages over three or more letters.

9 If k is an input to the problem then it is even NP-hard to produce a consistent NFA of super-
polynomial size: for any 0 < e < 1 it is NP-hard to find a consistent NFA of size s(l-e) log log

[22].
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form (aJ)*, i.e., the canonicalDFAs accepting these languages have a single final
state that equals the start state. Let C denote the subclass of these languages over
one letter. To complete the proof of part 1 it suffices to show that VCdim(CCSk,n) >_
kVCdim(C). The proof of this is similar to the proof of Theorem 3.3.

Let $1 be a set of words over the same letter shattered by C. Let S LJk__l S,
where S is a copy of S using a as the single letter. Clearly, ISI- k ISI. To show
that S is shattered by CCSk,n, let T be an arbitrary subset of S and Ti T F ai*.
Now for each Ti there is a DFA Mi over the letter ai accepting Ti. Using a standard
cross product construction it is easy to build from M1,’.., Mk a commutative DFA
over the alphabet a,-.., ak accepting T. Since for each Mi the start state equals the
single final state, the same holds for the new DFA. Thus this DFA witnesses the fact
that T is in CCSk,,.

For the proof of part 2 of Lemma 6.6, observe that the class REGk,n shatters its
entire domain of all words of length at most n, since all subsets of the domain are in
the class. The size of the domain is ]i0 ki"

In the commutative case (part 3), the class CREGk,n also shatters its entire
domain, which can be characterized by the set of all k-tuples of nonnegative integers
whose components sum to at most n. The size of this domain is (+k o

6.6. Discussion. Part 1 of Lemma 6.6 shows that the mistake bound of Algo-
rithm A+when used to learn CCSk,n is within a log log n factor of optimal and parts
2 and 3 indicate that it is much harder to learn arbitrary regular languages or even
arbitrary commutative regular languages.

7. Nested differences. Using the results obtained in a companion paper [14],
we can apply Algorithm A in the construction of a number of master algorithms that
learn nested differences of lattices. Let DIFF(:k) be the class of concepts of the form
A (A2 -(A3 (Ap_l Ap))...), where each Aie L:k. Thus each concept in
DIFF(/:k) is a nested difference of lattices. We call p the depth of the concept. The
master algorithms learn the class DIFF(L:k) with a mistake bound that is p times
the bound for single lattices. The master algorithms can be used to learn nested
differences of any intersection-closed class.

In this section we sketch only a single master algorithm for learning DIFF(C),
where C is any intersection-closed class, and discuss how it can be adapted to learn
nested differences of those concept classes where Algorithm A (or its coset modifica-
tion) was applied. Thus this modified master algorithm can be used to learn nested
differences of cosets of lattices, nonhomogeneous vector spaces, commutative regular
languages accepted by DFAs whose single final state reaches the start state, etc. The
mistake bound, the efficiency, and (generally) the VC dimension grow linearly with
the depth of the nested difference. Thus the master algorithm efficiently learns these
classes with good mistake bounds.

The master algorithm for DIFF(C) keeps track of a finite sequence of closures.
The depth of the master algorithms hypothesis is the number of closures in the se-
quence. In [14], each closure is represented by a minimal set of instances that defines
the closure. When given a new instance x, the master predicts on x by the following
rule. Let the /th closure be the first one that does not contain x. (If x is in all of

10 In [14] we also give master algorithms for the case when each concept Ai is in the union of
several concept classes, each of which is intersection-closed, and for the case where the innermost
concept Ap is from a concept class that is not necessarily intersection-closed.

11 This is the "space efficient master algorithm" of [14] for learning DIFF(C).
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the closures, then let be 1 + the depth of the hypothesis.) If is even, then predict
"+" and if is odd, predict "-." When a mistake is made, x is added to the /th
closure. If is one larger than the depth of the current hypothesis, then the depth of
the hypothesis is increased by initializing the/th closure to the closure of {x}.

The above algorithm applies to learning nested differences of lattices, since they
are intersection-closed. A different copy of Algorithm A can be used to efficiently
compute each closure of the sequence. It is shown in [14] that the mistake bound .of
the master algorithm for learning concepts in DIFF(C) of depth p is at most p times
the mistake bound of the closure algorithm applied to C.

In 6.3 we gave a simple trick for learning cosets of lattices. A slight modification
of the master algorithm lets this trick be used at each position in the sequence. Let x
be the first mistake made at each position in the sequence of closures. Example x
is not directly used to form the ith closure, but rather is remembered as the shift at
position i. When predicting on a new instance x, is now the first closure that does
not contain x xt, the appropriately shifted example. (If x x is in the ith closure
for all between 1 and the depth of the hypothesis, then set to 1 + the depth of the
hypothesis.) When a mistake is made, the/th closure is adjusted to include x- xt.
If is one larger than the depth of the hypothesis, then xt is set to x, i.e., x becomes
the shift of the new/th level and the depth of the hypothesis is increased.

This modified master algorithm learns nested differences of cosets of lattices,
abelian groups, and commutative regular languages accepted by DFAs whose single
final state reaches the start state. Its mistake bound is at most p times the mistake
bound for cosets of lattices (which is 1 + k larger than the bound for lattices), where
p is the depth of the target.

8. Conclusions. This paper contains a nontrivial algorithm that efficiently learns
the basic combinatorial class of integer lattices. The algorithm leads to efficient learn-
ing algorithms for a large number of other classes. The mistake bounds of this algo-
rithm, and most of its applications presented, are provably within roughly a log log n
factor of general lower bounds derived from the VC dimension.

9. Appendix: An implementation of the closure algorithm. This ap-
pendix gives a precise description of Algorithm A for on-line learning of the concept
class k of integer lattices, and analyzes its running time. This algorithm is an imple-
mentation of the closure algorithm and was derived from the algorithm of Kannan and
Bachem [15] for putting a matrix in Hermite normal form (HNF). Basically, we keep
track of a basis for the smallest lattice containing all of the positive instances seen so
far. Whenever a mistake is made, a new basis for the smallest lattice containing both
the old lattice and the example on which the mistake was made must be found. Since
Algorithm A is an implementation of the closure algorithm, it never makes mistakes
on negative examples.

We first present the on-line Algorithm A and show that it computes the appro-
priate basis. In order to bound the size of the entries stored by Algorithm A, we
present a batch algorithm A, which gets all of the examples at once. By an analysis
similar to that used for HNF algorithms [25], [15], we bound the size of entries stored
by A. Finally, we argue that the values stored by Algorithm A after it has made its
ith mistake are a subset of the values stored by Algorithm A. Therefore the bound
on the entries stored by Algorithm A carries over to Algorithm A.

Algorithm A keeps a k by k lower triangular matrix M whose column span rep-
resents the current hypothesis. Matrix M is initially all 0, and gradually has nonzero
columns added to it as positive examples are seen. Algorithm A will occasionally
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exchange rows in M. This operation corresponds to changing the order of the com-
ponents in examples. At any point, the permutation r reflects the row exchanges
made by A, and the necessary adjustment to the components of new examples. The
algorithm’s current hypothesis is all (permuted) examples in CLOSURE(M), the (in-
teger) column space of M. Algorithm A makes a mistake only when it gets a new
positive example x where r(x) is not in the column space of M. When this happens,
Algorithm A updates M (and possibly r) so that the column space contains r(x) in
addition to the (possibly permuted) column space of the original matrix.

ALGORITHM A. Matrix M is initially the k x k matrix of O’s. Permutation r is initialized to the
identity permutation on k elements. The variable z is initialized to 1 and contains the index of the
leftmost all-zero column in M. Throughout, mij denotes the entry in the ith row and jth column of
M. The following procedure is executed for each instance x.

1. Permutation:
x := r(x). The component ordering of x now agrees with the row ordering in M.

2. Prediction:
Determine whether x can be written as an integer combination of the columns in the
matrix. (Since M is lower triangular, this can be done by back-substitution with O(k2)
arithmetic operations.) If so, predict "Positive," since it is certain that x is in the target
lattice. Otherwise, predict "Negative." (If M is the zero matrix, then a positive prediction
is made only on the zero vector.)

3. Update:
If a mistake is made, then x replaces the all-zero column z in M. 12

To return M to normal form, perform the following operation, rather similar to Gaussian
elimination:

(a) For := 1 to z 1 do: if miz is not already 0, force it to 0 by the following:
i. Use the extended GCD algorithm to find a, b, and g such that amii + bmiz

g gcd(mii, miz).
ii. Simultaneously update columns and z of M. Replace column with a times

column plus b times column z (and thus mii becomes g) and replace column z
of M with mii/g times column z minus miz/g times the old value of column i.
This "zeros out" the entry miz.

(b) If column z now contains a nonzero entry then x is not linearly dependent on the
previous examples. Let j be the first row containing a nonzero entry in column z. If
this nonzero entry is negative, multiply column z by -1. Swap rows j and z in M,
and swap the zth and jth elements in r. Finally, set z to z + 1, as the number of
nonzero columns in M has increased.

(c) Call REDUCE(z- 1, M) to ensure that each element to the left of a nonzero diagonal
element is less than that diagonal element.

4. Get a new example and go to step 1.

Procedure REDUCE(i, M) [25]. This procedure performs elementary column operations to
ensure that each below-diagonal element in both the first columns and the first rows is nonnegative
and smaller than the (positive) diagonal element on the same row. The off-diagonal elements are
examined from column 1 down to column 1, and from row c + 1 to row within each column c.

for c := i- 1 down to 1 do
for r := c + 1 to do

if (rove < 0) or (rove >_ mrr) then
subtract [mrc/mrrJ times column r from column c

making 0

_
mrc < mrr

end if;
end for r;

end for c;
end REDUCE

12 If M already contains k nonzero columns, then a temporary column z k + 1 is created to hold
x. The temporary column is deleted after it is "zeroed out" by the following operations.
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FIG. 3. Pseudo-Hermite normal form.

Throughout, M is kept in a pseudo-Hermite normal form (pseudo-HNF). 13

DEFINITION. A matrix M1 is a pseudo-Hermite normal form (see Fig. 3) of matrix
M2 if both:

MI PM2U where P is a permutation matrix and U is unimodular. Thus
M can be derived from M2 by a series of row permutations and elementary
column operations [15].
M1 is a lower-triangular matrix where in every column with any nonzero entry,
the diagonal element is positive and each element to its left is nonnegative
and less than that diagonal element.

Although these properties are not needed until we prove that the entries of M
remain small, they are the motivation behind several of the operations in Algorithm A.

The strange order used in the REDUCE procedure (see Fig. 4) ensures that only
previously reduced elements are added to (or subtracted from) the element which
have not yet been reduced (see [25]).

LEMMA 9.1. Algorithm A correctly implements the closure algorithm.
Proof. The row exchange in step 3(b) is reflected by an update to permutation

r, which is applied to all future examples. Thus it suffices to show that whenever a
prediction mistake is made, matrix M is updated so that its column span (ignoring
the row permutation) includes x and no points not in the column span of M t3 {x}.
This occurs when x is inserted into M at the beginning of the update step. It remains
to show that the other operations on M do not change its (permuted) column span.

The operations in procedure REDUCE consist of adding a multiple of one column
to another, and thus do not change the column span of M. Similarly, the multipli-
cation of a column by -1 in step 3(b) does not change the column span. Finally, we

13 The notion of pseudo-Hermite normal form is a generalization of Hermite normal form defined
for nonsingular (integer) matrices.
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4

25,

1

FIG. 4. Illustration of the REDUCE procedure.

show that the simultaneous update in step 3(a)ii does not change the column span of
M.

It is easy to see that the new columns are in the lattice generated by the old
columns. Furthermore, the old column z is a times the new column z plus mrz/g
times the new column r, and the old column r is -b times the new column z plus
mrr/g times the new column r. Therefore, the lattice generated by M is not changed
by the simultaneous updates.

Although we now know that Algorithm A is correct, we have yet to show that it
is efficient. The time taken by the GCD computations performed by Algorithm A, as
well as the amount of space used by Algorithm A, depends on the size of the numbers
stored in the k k matrix M. To bound these entries we study a slightly different
algorithm, A. Algorithm A uses unimodular column operations and row swaps to
convert a t t nonsingular matrix of padded examples, M, into pseudo-Hermite
normal form. Using the techniques in [25], [15], we bound the entries of this matrix
after each column is processed. We will also show that every nonzero entry stored in
matrix M by Algorithm A is stored in M

To create the matrix M, fix the sequence of examples on which the closure
algorithm makes t prediction mistakes and let ei be the example on which the closure
algorithm makes its ith mistake. (Thus el will be the first nonzero example.) We
assume that t >_ k and that the e’s have full row rank, 14 and pad the examples out
to length t as follows. First, for 1 <_ <_ t, define r(i) to be the row rank of the k
matrix with columns e,..., ei. Note that i-r(i) is the number of linearly dependent
columns in this matrix and is a nondecreasing function of i. We now extend each
column e to an e of length t as follows. If 1 or r(i)

is ei followed by i- 1- r(i)is ei followed by t- k "0"s. If r(i) r(i- 1), then
"0" s, a single "1," and another t- k- + r(i) "0" s. The ith column in matrix M is

tSei, for 1 _< _< t. Since the e are linearly independent and of length t, matrix M,
consisting of e,..., e, is square and nonsingular. The last t- k rows of M are the
padding rows, and any column with a nonzero entry in a padding row is a padded
column (see Fig. 5).

14 Additional examples where the closure algorithm would make mistakes can be appended to
(el,..., et, making the assumptions true.
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FIG. 5. Initial structure of M.

padding
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Like the Hermite normal form (HNF) algorithm of Kannan and Bachem [15], our
algorithm iteratively processes the columns from left to right, placing the principal
minors of M into (pseudo-) Hermite normal form.

That algorithm first preconditions the matrix using column permutations so that
all of the principle minors in the resulting matrix are nonsingular. In our application
we are given one example (column) at a time, so we replace the preconditioning step
by on-the-fly row swaps. These row swaps will ensure that after processing column
i, the principal minor is nonsingular. Furthermore, we segregate the padding
rows and padded columns from the normal rows and columns. Whenever a c c
principal minor has been placed into pseudo-HNF, there will be some number, say d,
of processed nonpadded columns. These nonpadded columns will be in columns one
through d, and the processed padded columns will be in columns c / 1 through c.
Similarly, rows one through c will be nonpadding rows and rows c / 1 through c will
be padding rows (see Fig. 6).

To maintain this organization, at each iteration the new column is moved left to
between columns c and c / 1. Similarly, some row below row c- 1 will be moved up
between rows c and c + 1.

ALGORITHM A. This algorithm modifies matrix M, placing it into pseudo-HNF.
Initialize c to 0. Variable c counts the number of nonpadded columns which have been
processed.
For c :-- 1 to put the c c minor into pseudo-HNF as follows:

is not already 0, force it to 0 by the following:1. For := 1 to c do: if mic
(a) Use the extended GCD algorithm to find a, b, and g such that ami + bmc

g gcd(mi,
(b) Make mic zero: Simultaneously update columns and c ofM. Replace column

becomes g) andwith a times column plus b times column c (and thus mii
replace column c of M to mic/gmii/g times column c minus times the old
value of column i. This "zeros out" the entry mic.

be the topmost nonzero2. If mcc --0 then permute rows to make it nonzero. Let mrc
entry in column c below row c. Move row r to row c, shifting each row from row
c through row r- 1 down one position. The column c is a padded column exactly
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Fic. 6. Structure of M after c iterations.

whenr>k+c-c.
3. If rncc < 0 then multiply column c by -1.
4. Permute the rows and columns to segregate the padding rows and padded column.

(See Fig. 7.)
(a) Move column c to column c + 1, shifting columns c + 1 through c- 1 one column

to the right.
(b) Move row c to row c + 1 shifting rows c + 1 through c- 1 one row down.

5. If column c was a nonpadded column then c’ := c’ + 1.
6. Call REDUCE(c, M) to ensure that the cx c principal minor ofM is in pseudo-HNF.

Note that Algorithm A uses only columns 1 through c while processing the first c
columns and placing the c x c principal minor into pseudo-HNF. Although the simul-
taneous transformations made in step l(b) can affect the values of padding rows, we
adopt the convention that this step never changes the padded/nonpadded status of a
column. Also, the padded/nonpadded status of columns and the padding/nonpadding
status of rows is carried along with them when rows and columns are permuted.

The simultaneous transformations of Step l(b) are unimodular since the matrix

a --rnrc/g
/gb mrr

has determinant am./g + bmc/g 1. Note also that this transformation is identical
to the one used in Algorithm A.

In some sense, the padded columns are used in only one iteration of the "for c"
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FIG. 7. Illustration of step 4.

loop of Algorithm A’. A padded column is created from an example that is a linear
conbination of the previous examples. Therefore, immediately after a padded column
has been processed its only nonzero entries will be in padding rows.

It is not obvious that a processed padded column will always have zero entries in
nonpadding rows. The padded column might be spoiled during step i while processing
a future column, or during the REDUCE procedure if a nonpadded column is used
to reduce one of its entries.

LEMMA 9.2. A processed padded column always has a 0 in every nonpadding row.

Proof. The proof is by induction on the number of processed padded columns.
Let column c be the first padded column in the initial matrix M’. The lemma holds
trivially until iteration c, when this padded column is processed. Column c was
created from example ec, which can be expressed as a linear combination of the
previous examples. Columns 1 through c- 1 represent a basis for the vector space
generated by the previous examples, so all entries in column c on normal rows will be
"zeroed out" during step 1. Thereafter, the row and column permutations guarantee
that column c remains the last column in the pseudo-HNF principal minor. The only
further references to column c are shifting it right a column, permuting its entries in
steps 2 and 4(b), and in the procedure REDUCE where it is subtracted from other
columns. None of these operations can create a nonzero entry in a nonpadding row.

Let there be c-c’ > 0 processed padded columns before iteration c where column
c is a padded column. The nonpadding rows of the first c’ columns represent a basis for
the vector space generated by the first c examples. During step 1, all entries in column
c representing components of ec will be zeroed out. The only other (nonpermutation)
modifications to the column occur during the REDUCE procedure, where multiples
of other padded columns may be subtracted from it. However, by the inductive
hypothesis, the nonzero entries of these other columns occur only in padded rows.
Therefore, the column’s entries on nonpadding rows remain 0. [:l

COROLLARY 9.3. Entries in a nonpadding row are not affected by adding multiples
of padded columns during the REDUCE procedure.

LEMMA 9.4. At the end of iteration c, the first c columns of M are converted to
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pseudo-HNF form.
Proof. Since the algorithm performs only row permutations and unimodular col-

umn operations, the first condition for a pseudo-HNF form is met. The algorithm
ensures that the diagonal elements are positive (step 3), and the REDUCE proce-
dure ensures that the entries to the left of the diagonal have the proper values. The
remainder follows by induction on c.

If the newly processed column is a nonpadded column then, after step one, the
first c- 1 entries of c are 0. Each padding row is either in its original position or is
above row c, so the first nonzero entry in column c is in a nonpadding row. Thus after
step 2, row c will be a nonpadding row. By Lemma 9.2 that row contains a 0 in each
processed padded column. Therefore, if the first c- 1 columns were lower-triangular
before step 4, then the first c columns are lower-triangular after that step.

If the newly processed column is a padded column, then at step 2 the only nonzero
element in column c below row c is some multiple15 of the original "1" in the padded
example for that column. Before iteration c, this column was the only column con-
taining a nonzero entry on that padding row, which becomes row c after step 2. Thus,
the previously processed padded columns still have zero entries in the (new) row c,
and if the first c- 1 columns were lower-triangular before step 4, then the first c
columns are lower-triangular after that step. [:]

LEMMA 9.5. Let M be the modified matrix M after iterations of the main loop
of Algorithm A’. The entries ofM are no larger than tnk+ikk/2 for 1 <_ <_ t.

Proof. Algorithm A ensures that, at the end of iteration i, the principal
minor of M is a nonsingular, lower-triangular matrix with each entry between 0
and the value of the diagonal element to its right. Furthermore, each M is formed
from M by a series of row permutations and unimodular column operations, thus
M PMU. Since the column operations involve only the first columns,

where U[ is an unimodular matrix. Let M[ and M[ denote the principal
minors of M and PM, respectively. Thus, M[ M[U and16

v, M: M[ adj
det M- M.

Let adjmax(M[) be the largest absolute value of any entry in adj M[. Now when Ujk
and rn}k are the entries in row j and column k of Ui and M[, respectively,

adjmax(M)
]ujk] <_ E mk det M[l--1

The sum of the entries in any column contains at most one diagonal element.
Since M is in Hermite normal form, every entry is nonnegative and each nondiagonal
entry is less than the diagonal entry to its right. Therefore,

1)+ (m22 1)+... + (rn- 1) + 1

/g times column c plus a multiple of some15 In step 1 column c is repeatedly replaced by mii
already processed column.

16 adj M represents the adjoint of M.
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-< H rnt det M det(MU) det M[I,
/--1

and so for each Ujk

<

Every element of adj M[ is the determinant of an (i- 1) (i- 1) minor of M.
Recall that the last t- k rows of M each contain a single 1 and t- 1 O’s. Therefore,
by cofactor expansion, the determinant of any large submatrix of M is at most the
determinant of a k k matrix whose columns are in {el,.",et}. Note that each
entry in this smaller matrix is at most n, so its determinant contains k! terms each
at most nk. Applying Hadamard’s inequality (see, for example, [12]) shows that the
determinant of any k k matrix with entries bounded by n, and thus each Ujk, has
absolute value at most kk/2nk.

As M PiMU, each entry of M has absolute value at most n, and each entry
of U has absolute value at most kk/2nk; the absolute value of each entry of M is at
most tnk/2n.

In particular, t _< k + k log(nx/), the mistake bound of the closure algorithm.
This gives us the following corollary.

COROLLARY 9.6. After each iteration of the "for c" loop of Algorithm A’, the
largest entry in Mc is at most kk/2n+(k + k log(nx/)), which can be written in
o

Using the above, we bound the size of numbers during iterations of Algorithm A.
LEMMA 9.7. During the computation of Algorithm A, each entry ofM requires

at most 0 (k log2(nk)) bits.

Proof. The sizes of entries are changed only in the REDUCE procedure and
step 1. Let m kk/2nk+(k + k log(nv/)) be a bound on the largest absolute value
of an entry in M at the beginning of step 1. Each iteration of this step increases the
entries in column c by a factor of at most 2rn, as both a and b found in Step l(a) are
at most rn [15]. Since there are at most k iterations, the largest entry in column c at
the end of step 1 is at most rn(2rn). The entries in the other columns are bounded
by the same expression.

The REDUCE procedure can also produce large intermediate results. Consider
what happens as we reduce some column. The entries in the previously reduced
columns are bounded by rn. Each time an entry in the column is reduced, the tare-

duced entries in that column are increased by at most rn times the value of the entry
being reduced (reduced entries are never greater than rn). Since there are t entries in
each column that are originally bounded by rn(2rn)k, the entries of the column never
get larger than m(2m)k(1 + m)t.

The maximum number of bits needed to represent an entry is roughly t log(m +
1)+ k + (k + 1)log rn. Plugging in the bounds on rn and t gives us that O (k2 log2(nk))
bits suffice to represent each entry (note that the hidden constants are small).

Note that one of the key contributions of [25] is the clever order used by the
REDUCE procedure. This lets them show that the maximum entry size during an
iteration of their HNF algorithm is within a constant factor of the between-iteration
bound. It appears likely that their techniques could achieve better bounds on the
maximum entry size for Algorithm A than the simple ideas used in the proof of
Lemma 9.7.

We now formally state the relationship between Algorithm A and Algorithm A.
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LEMMA 9.8. After Algorithm A has processed the cth mistake and Algorithm A
has processed the first c columns ofM, each nonzero entry in M also appears in M.

Proof. It is easy to show by induction on c that the first c columns of M are
identical to the nonzero columns in M after the padded columns and padding rows
are deleted. [:]

This allows us to apply Corollary 9.6 and Lemma 9.7 to Algorithm A.
THEOREM 9.9. Using the uniform17 cost measure, Algorithm A requires time

O (k2) to make a prediction, and time 0 (k3 + k log(nk)) to perform an update, where
n is the largest absolute value of any component of any instance seen.

Proof. Prediction time" The prediction time is just the time for back substitution,
o

Update time: In step 3(a), updating matrix M can in general require k extended
GCD operations to be performed, and the running time for extended GCD is propor-
tional to the logarithm of the smaller of the two numbers. In our case, one of the two
numbers will always be a diagonal element stored between iterations. By Lemma 9.5,
the saved diagonal elements are at most (k + k log(nx/))kk/2nk+ and each extended
GCD computation can be done in O (k log(kn)) time.

Finally, each iteration of the nested for loop of procedure REDUCE requires O(k)
subtractions, so this step takes time O(k3) altogether.
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EFFICIENT POINT LOCATION IN A CONVEX
SPATIAL CELL-COMPLEX*

FRANCO P. PREPARATAt AND ROBERTO TAMASSIA*

Abstract. In this paper a new approach is proposed to point-location in a three-dimensional cell-
complex 7, which may be viewed as a nontrivial generalization of a corresponding two-dimensional
technique due to Sarnak and Tarjan. Specifically, in a space-sweep of 7), the intersections of the
sweep-plane with P occurring in a given slab, i.e., between two consecutive vertices, are topologically
conformal planar subdivisions. If the sweep direction is viewed as time, the descriptions of the
various slabs are distinct "versions" of a two-dimensional point-location data structure, dynamically
updated each time a vertex is swept. Combining the persistence-addition technique of Driscoll,
Sarnak, Sleator, and Tarjan [J. Comput. System. Sci., 38 (1989), pp. 86-124] with the recently
discovered dynamic structure for planar point-location in monotone subdivisions, a method with
query time O(log N) and space O(N log N) for point-location in a convex cell-complex with N
facets is obtained.

Key words, point location, convex cell complex, computational geometry, analysis of algorithms

AMS(MOS) subject classifications. 68U05, 68Q25, 68P05, 68P10

1. Introduction. Point-location in three-dimensional space, called spatial point-
location, is a natural generalization of the well-known planar point location (see,
e.g., [6], [11], [12]). The space is partitioned into polyhedral regions, called cells,
and the resulting subdivision is frequently referred to as a cell-complex. The problem is
so stated: Given a cell-complex 7 and a query point q, determine the cell of P contain-
ing q.

Unlike its two-dimensional counterpart, spatial point-location has not yet received
extensive attention. In all reported research, the cell-complex satisfies some restric-
tive condition. Cole’s Similar Lists method [4] has been applied to the cell complex
determined by an arrangement of n planes, and yields query time O(log n) but uses
space O(n4/logn). The space bound has been recently improved by Chazelle and
Friedman [2] to O(n3), by a modification of the random sampling technique of Clark-
son [3]. Chazelle’s earlier Canal Tree technique [1] trades space for query time, and
achieves space O(n3) and query time O(log2 n). The same technique can be applied to
a convex cell-complex with N facets, yielding query time O(log2 N) and space O(N);
the cell-complex, however, is subject to the restrictive condition that the vertical
dominance relation on the cells be acyclic.

Two recent results can be profitably combined to provide a new attractive ap-
proach to spatial point-location: the persistence-addition technique of Driscoll, Sar-
nak, Sleator, and Tarjan [5] and the dynamic planar point-location technique of
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Preparata and Tamassia [13]. Our result is a new method with query time O(log2 N)
and space O(N log2 N) for a convex spatial cell-complex with N facets.

The general methodology of [5] is designed to add persistence to a dynamic linked
data structure (referred to as ephemeral). In an abstract setting, the ephemeral data
structure supports accesses and updates, and each update produces a new version of
the structure. Thus the history of the data structure is the sequence of its versions,
terminating in the current version. Persistence is the ability to access past versions,
and it is full or partial depending upon whether updates are also permitted in past
versions or not. In [5] a systematic and efficient technique is presented to transform
an ephemeral linked data structure into a persistent one, provided that the ephemeral
structure satisfies the weak condition that its nodes have bounded in-degree. This
methodology was applied in a companion paper [14] to planar point-location, by
viewing one dimension (e.g., the y-direction) as "time," so that the planar subdivision
is swept over in time by a horizontal line. The dictionary of the sequence of intersected
edges is the ephemeral data structure, a new version of which is created each time
a vertex of the subdivision is reached in the sweep. The persistent version of the
dictionary becomes therefore the data structure for planar point location; in other
words, static two-dimensional point-location is modeled by a partially persistent one-
dimensional dictionary process.

The last observation is the clue to higher-dimensional generalizations. Until re-
cently, however, the obstacle to a three-dimensional generalization was the lack of
a suitable (ephemeral) dynamic planar point-location structure. The recent discov-
ery [13] of an efficient such structure for monotone planar subdivisions provides the
missing component that, combined with the technique for the addition of persistence,
yields the method for point location in a spatial convex cell complex discussed in this
paper.

This paper is organized as follows. In 2 we review the separator-tree structure
that is the basis of the two-dimensional point-location primitive, as well as the es-
sentials of the persistence-addition technique. Section 3 illustrates the modifications
required to adapt the ephemeral data structure to the projected spatial point-location
method, described in its most general version in 4. Finally, in 5 we describe the sim-
plifications obtainable when exploiting the specific nature of particular cell-complexes
such as Voronoi diagrams and those determined by arrangements of planes.

2. Preliminaries.

2.1. Planar point location. Let 7) be a three-dimensional cell complex, i.e.,
a partition of the three-dimensional space into polyhedra. We say that ’ is convex
if either each of its cells is a convex polyhedron, or at most one is nonconvex (in
this case, the nonconvex cell is the complement of a convex polyhedron). Any planar
section of ’ is a planar convex subdivision (with the analogous exception of at most
one nonconvex region), which is a special case of a monotone subdivision [9]. We
shall now review the essentials of the dynamic point-location method of Preparata
and Tamassia [13] for planar monotone subdivisions, in order to bring into sharper
focus the requirements for the addition of persistence.

An edge is either a segment or a half-line in the plane (for simplicity, no edge is

horizontal). A (polygonal) chain is a sequence of edges, so that two consecutive edges
share a terminus; it is monotone if each horizontal line intersects it in at most a single
point. A polygon is monotone if its boundary is partitionable into two monotone
chains. A subdivision T is monotone if each of its regions is a monotone polygon.
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(a) (b)

FIG. 1. Dynamic point location technique: (a) monotone subdivision T (the dashed circle
represents the line at infinity); (b) planar st-graph G associated with T.

A separating chain (or, more succinctly, a separator) a of a monotone subdivision
T is a monotone chain consisting of edges of T, whose extreme points are at infinity.
Given two separators al and (72, (71 is to the left of (72 if any horizontal line intersects

al not to the right of (72. A complete family of separators E of T is a sequence of
separators (a,a2,... ,at) such that ai is to the left of ai+ (i 1,... ,t- 1), and
every edge of belongs to at least one separator a E E. For a given E, each a E E
is associated with a node (briefly referred to as "node a") of a balanced binary tree
:T (called separator tree). An edge e of 7 belongs, in general, to a nonempty interval
(a,a+l,... ,aj) of separators. However, it is assigned to the least common ancestor
ak of (a,..., aj) in :T, and is called a proper edge of ak. Correspondingly, proper
denotes the set of proper edges of (Tk, which are stored in a secondary component (a
dictionary) appended to node ak of /-. Since each edge of 7 is stored exactly once,
the above data structure has size O(n), where n is the number of vertices of T. It
is well known [9] that point location in 7 corresponds to traversing a path from the
root of :T, and performing at each node a point/chain discrimination by means of the
secondary component. Thus point-location can be done in O(log2 n) time.

The underlying topological structure of a monotone subdivision is a planar st-
graph, i.e., a planar acyclic digraph with exactly one source (vertex without incoming
edges), s, and exactly one sink (vertex without outgoing edges), t, embedded in the
plane with vertices s and t on the boundary of the external face. Namely, we associate
a monotone subdivision 7 with the planar st-graph G defined as follows (see Fig. 1):

1. The vertices of G are the vertices of 7, including vertices at infinity deter-
mined by edges that are rays, plus vertices s and t corresponding to the points
at negative and positive infinity on the vertical axis, respectively.

2. The edges of G are the edges of 7, oriented from the lower to the upper
endpoint, plus two chains from s to t that connect the vertices at infinity.

There are two main obstacles to the dynamization of :T for an arbitrary family of
separators E:

1. It may be difficult to rebuild the secondary components of the nodes partic-
ipating in a rotation of the primary component. Indeed, in the worst case
rotation takes time (n).

2. The deletion of an edge may break many separators of E, with t(n) time
used for restructuring the complete family E.
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(r2,r3) (r7,r8) rlO

FIG. 2. Dynamic point location technique: (a) monotone subdivision T; (b) subdivision T*
and its chains of proper edges; (c) separator tree of T*.

It has been shown in [13], however, that a modification (consisting of virtually du-
plicating a subset of edges) transforms IR into a new subdivision 7* that admits a
unique complete family of separators E* such that, for any (r E E*, proper (a) consists
of a single chain. This permits an O(log n)-time execution of a rotation in the corre-
sponding separator tree T* by standard operations on concatenable queues. Also, the
restructuring of E* after a deletion can be done with O(log n) split/splice operations
on the chains of proper edges. The family E* enjoying these properties is associated
with the following total order "-" on the regions of 7 (see Fig. 2):

1. rl is below r2 (rl r2) if there is a monotone chain in 7 from the highest
vertex of rl to the lowest vertex of r2 (such chain corresponds to a directed
path in digraph G);

2. r is to the left of I"2 (rl -- r2) if there is sequence of regions r r, r,...,
is to the left of it (iand share an edge and rrs r2 such that ri r+

1,.-., s 1). Partial orders "" and "4" are shown to be complementary, so
that their union is the desired total order "-";

3. The members of any maximal sequence of regions r - r2 - - rs, con-
secutive in "-C and such that ri 1" ri+l (i 1,-.., s- 1) are merged into a
generalized region called cluster by duplicating the vertices and, when they
exist, the edges of the (unique) monotone chain connecting the highest vertex
of ri to the lowest vertex of ri+l, for 1,..., s 1. This gives the subdivi-
sion T4*. E* is the unique complete family of separators for T*, each member
of which separates contiguous clusters.

By using the correspondence between monotone subdivisions and planar st-graphs,
the topological underpinning of the total order - on the regions of 7 can be found in
the theory of planar st-graphs and planar lattices [8], [10], [15].

We shall use, where appropriate, a string notation to illustrate the order -, so
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that AB denotes that the partial subdivision described by the string A precedes in -the one described by B.
The repertory of updates considered in [13] consists of: insertion/deletion of a

vertex internal to a segment, and insertion/deletion of a chain of edges between two
vertices, under the condition that monotonicity be preserved. For these specifications
the following performance is achieved.

THEOREM 2.1 [13]. Let be a monotone subdivision with n vertices. There ex-
ists a dynamic point-location data structure with space O(n) and query time O(log2 n),
which allows for insertion/deletion of a vertex in time O(log n) and insertion/deletion
of a k-edge chain in time O(log2 n + k).

2.2. The technique for the addition Of persistence. We now review the es-
sentials of the technique of Driscoll, Sarnak, Sleator, and Tarjan [5] to add persistence
to a dynamic linked data structure, which supports access and update operations. (A
conventional dynamic data structure is called ephemeral if its instantiation preceding
an update is not recoverable after the execution of the update.) The m updates are
chronologically numbered from 1 to m, and the ith update generates version of the
ephemeral data structure. A fully persistent structure supports both accesses and
updates to any of its versions; a partially persistent structure supports accesses to any
of its versions, but updates only to its most recent (current) version. In this paper
we are concerned exclusively with partial persistence.

The persistent structure embeds all versions of the ephemeral structure, so that
access to any of them can be effectively simulated. Specifically, an access is the traver-
Hal of a path in an ephemeral version; the simulation of this access is possible if the
persistent structure contains an image of this path. This is effectively accomplished
by replacing each outgoing pointer of the ephemeral structure with a bundle of instan-
tiations of that pointer in the persistent structure, each one time-stamped with the
index of the update that established it, and ordered accordingly. Thus simulation of
an access to version j is effectively accomplised by following at each step the appro-
priate pointer with maximum time-stamp not exceeding j. Arbitrarily large bundle
size, however, negatively affects access time and storage. To avoid this shortcoming,
Driscoll, Sarnak, Sleator, and Tarjan enforce a bound K on the number of pointers
issuing from any given node and introduce the device of limited node copying, to be
briefly outlined below.

A new copy v of a node v is to be created at update j either when an information
field of v is modified or a pointer field of v is modified, and, in either case, the
corresponding update would cause the number of pointers issuing from v to exceed
the bound K. In both cases, node v is declared dead, while the live node v is time-
stamped j; in addition, node v must be correctly linked within the structure. This is
facilitated if each pointer from live node to live node is paired with a reverse pointer
(which need not be time-stamped). Specifically, we have the following actions, which
implement copying of node v following an update of field f at time j:

1. All fields of v, but f (which receives the updated value), are copied into v.
Among these, for each pointer field to a live node w, the corresponding reverse

pointer in w is switched from v to v.
2. Each reverse pointer from v to some (live) w is suppressed, and (if the time-

stamp of the direct pointer from w to v is less than j) a new pointer time-
stamped j is established from w to v (along with the corresponding reverse
pointer).

The actions of step 2 deserve further discussion. First, to ensure that copying of
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FIG. 3. (a) Operations Insert and Delete. (b) Operations Expand and Contract.

a node be accomplished in O(1) time, it is sufficient to require that the in-degree of
a node in the ephemeral structure be bounded by a constant. (Under this condition,
only a bounded number of reverse pointers must ever be suppressed.) Second, step 2
introduces additional pointers outgoing from an existing node w and may cause the
total number of outgoing pointers of w to exceed bound K. Consequently, node copy-
ing may "bubble up" the linked data structure. However, amortized over a sequence
of updates, Driscoll, Sarnak, Sleator, and Tarjan [5] show that there are only O(1)
nodes copied per update.

This is summarized as follows.
THEOREM 2.2 [5]. If an ephemeral data structure has nodes of constant bounded

in-degree, then the structure can be made partially persistent at an amortized space
cost of 0(1) per update step and a constant factor in the amortized time per operation.

Considerable simplifications arise when the ephemeral data structure is a red-
black tree [7]. In this case the node in-degree is at most 1, and rebalancing after an

insertion/deletion requires O(1) rotations.

3. The ephemeral planar point location structure. In this section we de-
scribe algorithms and data structures designed to support the following repertory of
update operations on a monotone subdivision R (see Fig. 3).
Insert(e,r, vl, v2;rl,r2): Insert edge e between vertices v and v2 inside region r,

which is decomposed into regions rl and r2 to the left and right of e, respec-
tively.

Delete(e, v, v2, r, r2; r): Remove edge e between vertices v and v2 and merge into
region r the two regions r and r2 formerly to the left and right of e, respec-
tively.

Expand(e, v, r, r2; v, v2): Expand vertex v into vertices v and v2 connected by edge
e, which has regions r and/’2 to its left and right, respectively.

Contract(e, rl, r2, v, v2; v): Contract edge e between vertices v and v2 into vertex
v. Regions r and r2 are those formerly to the left and right of e, respectively.

The present techniques represent modifications of those described in [13], where
only operations Insert and Delete are supported, and nodes of the data structures do
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not have the now required bounded in-degree. Note that, in terms of the underlying
topological structure of a monotone subdivision discussed in 2.1, operations (Insert,
Expand) and (Delete, Contract) form dual pairs, the first term acting on the primal
graph (coincident with the subdivision), the second term acting on its dual graph..The
data structure, however, will not explicitly reflect this duality; indeed, the vertices of
T play a central role, since the geometry of T is determined by the coordinates of its
vertices.

In the original data structure [13], a vertex was pointed to by all of its inci-
dent edges and by all regions having it as the lowest/highest point. Since a vertex
can receive (n) such pointers, the original representation both prevents an efficient
implementation of operations Expand/Contract and violates the bounded in-degree
requirement. Therefore, we propose the following modified structure, which com-
prises a main constituent, called the "augmented separator tree," and an auxiliary
constituent, called the "dictionary."

The dictionary has a record for each vertex, edge, and region of T, as follows:
1. The record of vertex v stores the coordinates of v and pointers to two balanced

binary search trees, denoted in(v) and out(v), and called the incidence trees
of vertex v. The leaves of tree in(v) represent the incoming edges of v (i.e.,
the edges (u, v) with y(u) < y(v)), and the internal nodes of in(v) represent
the regions of whose highest vertex is v, where the in-order sequence of the
nodes of in(v) corresponds to the counterclockwise order of the corresponding
edges and regions around v. Each node of in(v) has a pointer to the record
of the corresponding edge or region. Tree out(v) is similarly defined with
respect to the outgoing edges of v. Also, the record of vertex v contains a
pointer to the representative node of v in the (secondary component of the)
augmented separator tree, to be described below.

2. The record of edge e (u, v) stores pointers to the representative nodes of
e in the trees in(v) and out(u). Also, the record of e stores pointers to the
two representative nodes of e in the (secondary component of the) augmented
separator tree, to be described below.

3. The record of region r stores pointers to the representative nodes of r in the
trees in(v) and out(u), where u and v are the lowest and highest vertex of r,
respectively. Also, the record of region r stores a pointer to the representative
node of r in the (secondary component of the) augmented separator tree, to
be described below.

The dictionary allows us to find the endpoints of an edge and the lowest and
highest vertices of a region in O(log n) time. The dynamic maintenance of the dic-
tionary can be performed in O(logn) time per update, and will not be explicitly
discussed. Note that an Expand or a Contract operation corresponds to performing
O(1) split/splice operations in the incidence trees.

The augmented separator tree, denoted :r*, has a primary and secondary com-
ponent. The primary component is a balanced separator tree for *, i.e., each of
its leaves is associated with a region of T* (a cluster of ), and each of its internal
nodes is associated with a separator of T*. The left-to-right order of the leaves of
the primary component of r* corresponds to the order - on the regions of *. The
secondary component is a collection of balanced search trees, each associated with a
node of

1. Each internal node a of :T* points to a balanced search tree proper(a) rep-
resenting the chain proper(a), and to a balanced search tree double(a) asso-
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ciated with the proper edges of a that do not form a channel (called double
edges). Whereas in [13] the detailed organization of the concatenable queues
describing a separator was left unspecified, here the bounded in-degree re-
quirement can be achieved as follows, without affecting the efficiency of point-
location queries. Tree proper(a) is organized so that each leaf represents an
edge, and each internal node represents a vertex, where the in-order sequence
of the nodes corresponds to traversing the chain of proper edges of a from
bottom to top. Each node of proper(a) points to the record of the correspond-
ing vertex or edge in the dictionary. Tree double(a) is organized so that each
node represents an edge, and the in-order sequence of nodes corresponds to
the bottom-to-top subsequence of the double edges of proper(a). Note that
each edge e of 7 has exactly two representative nodes in the secondary com-
ponents of the augmented separator tree 7"*.

2. Each leaf X of T* (i.e., the leaf representing cluster X) points to a balanced
search tree regions(x) associated with the sequence of regions that form clus-
ter X, in bottom-to-top order.

The following theorem summarizes the properties of the ephemeral structure.
THEOREM 3.1. Let T be a monotone planar subdivision with n vertices. There

exists a dynamic point-location data structure for T that (i) has bounded record in-
degree, (ii) uses O(n) space, and (iii) supports queries and update operations Insert,
Expand, Delete, and Contract, each in O(log2 n) time.

Proof. (i) It is straightforward to verify that the above data structure has records
with bounded in-degree. (ii) The space used is O(1) per vertex, edge, and region.
Hence, by Euler’s formula, the total space requirement is O(n). (iii) The algorithms
for queries and operations Insert and Delete are essentially as described in [13], with
the following minor modifications to take into account the variations of the data struc-
ture. In the query algorithm, tree proper(a) is used to discriminate the query point
with respect to separator a. Once the cluster X containing the query point has been
determined, finding the region of X containing the query point takes time O(log2 n),
since the lowest and highest vertices of each region in regions(x) are retrieved in
O(logn) time through the dictionary. As shown in [13], the Insert and Delete al-
gorithms determine a partition of the subdivision into O(1) partial subdivisions,
called canonical components, each represented by an augmented separator-tree. The
augmented separator-trees of the canonical components are obtained by splitting the
augmented separator tree of T. The canonical components are subsequently reassem-
bled, to yield the updated subdivision, and their augmented separator-trees are appro-
priately spliced to yield the updated augmented separator-tree of T. Each split/splice
operation of the augmented separator-tree is achieved with O(log n) rotations of the
primary separator-tree, for a total time complexity O(log2 n).

Now, we discuss operation Expand(e, v, rl, r2; Vl, v2). (Operation Contract is sym-
metric.) We consider two cases, depending on the relative order of r and r2 in -prior to the execution of Expand:

Case 1. r2 rl (see Fig. 4(a)). Note that in this case we must also have r2 T r.
The sequence of regions before the expansion, sorted according to the order 4, can
be written as a string of the form:

As r2B /Cr 5D.
Here, Greek letters denote clusters or portions of clusters, capital letters denote sub-
sequences of regions that contain complete clusters, "--" denotes a channel, and
denotes a potential channel. (Some of the letters may denote empty subsequences.)
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(a)
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FIG. 4. Four cases for operation Expand(e,v, rl,r2;vl,v2): (a) r2 T rl; (b) rl T r2; (c) rl r2
and same lowest vertex for rl and r2 (d) rl r2 and same highest vertex for rl and

After the expansion, the new sequence of regions is:

A 3’CrrB 5D.
Case 2. rl -4 r2 (see Figs. 4(b)-(d)). The sequence of regions before the expansion

is now of the form:
As rl /B C’ r2 5D,

where some of the letters may denote empty subsequences. The expansion leaves the
sequence of regions unaltered.

Hence, operation Expand(e, v, rl,r2; v, v2) can also be performed by decompos-
ing the subdivision 7 into its canonical components A, B, C, D, c,/, y, 5, r, and
r2, which are subsequently reassembled in the new order to yield the updated 7.
We conclude that operation Expand and its symmetric Contract take O(log2 n)
time. D

It is important to observe that the dynamic point-location data structure of Theo-
rem 3.1 depends on the topology, and not on the specific geometry, of the subdivision.
This is formally expressed by the following straightforward lemma.

LEMMA 3.2. Let Tt and T2 be monotone subdivisions whose associated planar
st-graphs G and G2 are isomorphic. A dynamic point-location data structure for

(as discussed in Theorem 3.1) can be used for dynamic point-location in T2 after
implementing the appropriate modifications of values of the vertex coordinates.
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Note, however, that for a given monotone subdivision T, there are several versions
of the dynamic point-location data structure, corresponding to equivalent versions of
the primary separator-tree and of the secondary trees.

4. Spatial point-location. Let P be a convex cell-complex with n vertices and
N facets. Note that both n and the number of edges of P are O(N). The z-coordinates
of the vertices are denoted zl,..., zn, from bottom to top. Let P(z) be the intersection
of P with the plane r(z) parallel to the x and y axes and at height z. It is easy to
verify that P(z) is a convex subdivision. Also, we define G(z) as the planar st-graph
associated with P(z).

By viewing z as a measure of "time" we consider the process of making plane
r(z) sweep the cell complex :P. While the geometry of P(z) continuously evolves in
time, its topology changes only when plane r(z) goes through a vertex v of :P. This
is formalized as follows.

LEMMA 4.1. For z’, z" such that zi < z’, z" < zi+ the digraphs G(z’) and G(z")
are isomorphic.

Proof. The vertices and edges of P(z) are the intersections of the edges
and facets of :P with (z), respectively. Let f(z) be the edge of P(z) generated
by the intersection of facet f with r(z). The slope of f(z) in the plane r(z) is the
same for all z such that r(z) intersects f. Since there are no vertices of :P in the
region of space z’ < z < z", we conclude that the digraphs G(z’) and G(z") are iso-
morphic.

By Lemmas 3.2 and 4.1 the same point-location data structure can be used for
all query points whose z-coordinate is in the open range (z, z+), provided the x and
y coordinates of the vertices are expressed as (linear) functions of z.

An event occurs when plane r(z) goes through a vertex v of T’, and results in
updating the subdivision :P(z) (see Fig. 5). Let z_ and z+ be "instants" immediately
preceding and following z. The transformation from :P(z_) to :P(z) consists of con-
tracting a subgraph G_ into vertex v. The vertices (respectively, the edges) of G_ are
those associated with the edges (respectively, the facets) of :P whose highest vertex is
v. Conversely, the transformation from :P(z) to :P(z+) consists of expanding vertex v
into a subgraph G+. The vertices (respectively, the edges) of G+ are those associated
with the edges (respectively, the facets) of :P whose lowest vertex is v.

The following lemma shows that the above contractions/expansions of sub-
graphs into/from vertices can be performed by a sequence of elementary contrac-
tions/expansions of edges into/from vertices.

A subgraph S of a planar st-graph G is said to be contractible if S is vertex-
induced and the graph Gs obtained from G by contracting S into a single vertex is
itself a planar st-graph.

LEMMA 4.2. Let G be a planar st-graph, and S a contractible subgraph of G
with rn edges. There exists a sequence of m elementary updates, each a deletion or a
contraction, that transforms G into Gs.

Proof. Consider in turn each edge e of S, and recall that any edge of a planar
st-graph is either removable or contractible [15]. If e is contractible, then contract
it, otherwise remove it. We claim that this process will correctly produce graph
Indeed, the process would fail if the current edge e (vp, v") is a bridge (separation
edge) of the graph to which S has currently transformed, but is not contractible
(see Fig. 6). This implies that the graph to which G has currently transformed
has a directed path from v to v that contains at least one vertex w not in S.
Hence, Gs has a directed cycle containing vertex w. This contradiction establishes the
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FIG. 5. (a) Cell complex. (b) Graph G(z_). (c) Graph G(z). (d) Graph G(z+).

FIG. 6. Example o] contraction o] a subgraph S of a planar st-graph by means of elementary
deletions and contractions of edges. A contradiction is achieved if edge e is a bridge of the current
S but is not contractible.

claim.
The proof of the above lemma shows that the contraction is executable in total

time m (update time). The symmetric pair (Insertion, Deletion) and their dual pair
(Expansion, Contraction) readily establish the following complementary result.

LEMMA 4.3. Let G be a planar st-graph, and S a contractible subgraph of G with
m edges. There exists a sequence of m elementary updates, each an insertion or an
expansion, that transforms Gs into G.

THEOREM 4.4. Space-sweep of a convex cell complex with N facets can be per-
formed in O(N log2 N) time so that at any time point-location queries can be answered
in O(log2 N) time and the space requirement is O(N).

Proof. By Lemmas 3.2 and 4.1 the space-sweep process goes through the 2n + 1
topologically different subdivisions {P(zj): j 1,... ,n} and {P(z): j 0,-..,n;
zj < z < zj+l; zo -oo; Zn+ +oo}. By Lemmas 4.2-4.3 the updates of the
ephemeral point-location data structure are no more than 2N. By Theorem 3.1 each
such update can be processed in time O(log2 N).

The (ephemeral) dynamic point-location data structure of Theorem 3.1 verifies the
conditions for the applicability of the technique of [5], and can therefore be converted
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into a partially persistent one that supports queries in past versions. Therefore, we
obtain the central result of this paper in the following theorem.

THEOREM 4.5. Let be a convex spatial cell-complex with N facets. Point-
location in can be performed in time O(log2 N) using an O(Nlog2 N)-space data
structure that can be constructed in time O(N log2 N).

The result of Theorem 4.5 can be easily extended to a nonconvex spatial cell-
complex :P such that each subdivision P(z) (-c < z < +) is connected and
monotone.

5. Adding persistence to special cell-complexes. In this section we illus-
trate the simplifications of the general technique which occur when exploiting special
properties of the cell-complex and the prior knowledge of the problem instance before
executing the space-sweep. (Note that the latter feature is, in general, a potential
source of simplification in persistence-addition techniques.) Specifically, we shall con-
sider Voronoi diagrams and the cell-complexes determined by arrangements of planes.
We shall show that the update of the order on the set of regions of subdivision
(which defines the ephemeral point-location data structure) requires only insertions
and deletions, but no substantial restructurings (corresponding to the swaps of sub-
strings occurring in the general case). We begin with Voronoi diagrams.

THEOREM 5.1. Let P be the cell-complex induced by the Voronoi diagram of n
sites in three-dimensional space. Processing an event in the space-sweep of 7) takes
O(log n) time.

Proof. Excluding degeneracies, every vertex of P has degree four. Hence process-
ing an event consists of expanding a vertex v into a triangle r, or of contracting r into
v. Instead of simulating such transformation by means of elementary updates, we
consider directly its effect of the ordering of the regions of P(z). We use the extension
of the order - to the set of vertices, edges, and regions of a monotone subdivision
introduced in [15], and the local characterization of such ordering given in [16]. First,
consider the expansion of vertex v into a triangle r. The update of the extended order
is performed by simply replacing v with r and its vertices and edges. Hence, the se-
quence of the regions is modified by the insertion of r. Symmetrically, the contraction
of r into v causes the deletion of r from the sequence of regions.

Since the primary separator-tree is modified only by insertions and deletions, we
implement it as a red-black tree [7], so that rebalancing after an insertion or deletion
is done with O(1) rotations. The time bound follows from the fact that a rotation of
the primary separator-tree takes O(log n) time, due to the split/splice operations on
the trees of proper edges attached to the nodes involved in the rotation.

The technique for arrangements of planes uses a simpler ephemeral planar point-
location structure, especially designed for space-sweep of arrangements.

THEOREM 5.2. Let 7) be the cell-complex induced by an arrangement of n planes
in three-dimensional space. Processing an event in the space-sweep ofP takes O(log n)
time and involves O(1) changes of pointers.

Proof. For an arbitrary z, let/1,/2,"" ,ln be the intersections of the planes of the
arrangement with the sweep-plane r(z). On this plane we establish Cartesian axes x
and y, which are projections according to z of the homologous axes of the space. Let
x0 be an abscissa such that, for j 1,..., n, xo <_ xj, where xj is the abscissa of the
intersection of lj with the x-axis. We denote by j the half-plane determined by lj and
not containing point (x0, 0). With each region r of the planar arrangement P(z) we
associate an integer weight w(r) E {0, 1,..., n}, denoting the number of half-planes in
{1,’", n} containing r. A complete family of n edge-disjoint separators for 7)(z) is
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(Yj+I

FIG. 7. Update of the secondary components for the cell-complex induced by an arrangement
of planes.

obtained by defining separator ai (i 1,..., n) as the monotone chain leaving to its
left the regions of weight less than or equal to (i- 1) and to its right the regions of
weight greater than or equal to i. (Note that this family of separators is, in general,
not associated with the order - defined in 2.1.)

When processing an event, the primary component of the separator tree undergoes
no modification. Updates occur only in the secondary components. Specifically, an
event point z of the space-sweep corresponds to a point in space where three planes
meet. Let li, lh, and lk be their intersections with P(z) and let aj-1, aj, and a+l be
the three separators sharing their common intersection. Suppose that, prior to the
update, a-i does not contain any portion of lh; then, the update consists of deleting
a segment of lh from aj+l, inserting one such segment into aj_, and exchanging the
order of segments of li and lk in aj (see Fig. 7). (A symmetric action takes place when
aj+ contains no portion of lh.) Assuming that the triplet (/i, lh, lk) corresponding to
z has been precomputed, the update of the secondary components, globally involving
a bounded number of pointer changes, is executed in time O(log n). D

Theorems 5.1 and 5.2 lead to the following corollary.
COROLLARY 5.3. Let 7) be the cell-complex in three-dimensional space induced

either by the Voronoi diagram of n sites or by an arrangement of n planes. Point-
location in P can be performed in time O(log2 N) using an O(N)-space data structure
that can be constructed in time O(N log N), where N is the number of facets of P (N
is O(n2) for the Voronoi diagram and O(n3) for the arrangement of planes.)
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A HEURISTIC OF SCHEDULING PARALLEL TASKS AND ITS ANALYSIS*

QINGZHOU WANGt AND KAM HOI CHENGt

Abstract. This paper investigates the problem of nonreconfigurable, nonpreemptive scheduling of paral-
lel tasks in a homogeneous system of processors. Given a task precedence graph where each task T may be
executed on up to 6(T) processors, the problem is to find a schedule such that the makespan is minimized.
A scheduling policy is nonreconfigurable if when more processors become available after a task T has been
scheduled on p processors, p < 6(T), they cannotjoin the execution of task T. It is nonpreemptive if each task
is executed without interruption until completion once the task has started execution. The problem of schedul-
ing parallel tasks is NP-hard. The performance ratio of the makespan produced by the original list scheduling
algorithm proposed by Graham [S/AM J. Appl. Math., 17 (1969), pp. 416-429] to the optimal makespan is
A+ [Inform. Process. Lett., 37 (1991), pp. 291-297], where m and A are the number ofprocessors in the
system and the maximum degree of parallelism in any task, respectively. To provide a performance improve-
ment, the Earliest Completion Time (ECT) algorithm is proposed; it is also shown that its performance ratio is
bounded by 3 _.2. In addition, an example is presented to demonstrate that the bound is at least 2.5.

Key words, heuristic, NP-hard, parallel task, scheduling, task precedence graph
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1. Introduction. Let 79 {Pi i 1,..., m} be m identical processors, and let
7" {T j 1,..., n} be n tasks. For two tasks T, T, T, T -< T, means that the
task T, cannot be started until the task T has been completed. For each task T T,
it may be scheduled to run on p processors where 1 < p < , and is T’s maximum
degree of parallelism. If a task T is scheduled to run onp processors, then p is called
the scheduledparallelism of T. For each task T, 73 defines the size of the task and if its
scheduled parallelism is p, the execution time required will be r/p.

In this paper, we are concerned with nonreconfigurable and nonpreemptive schedul-
ing policies. This is based on the postulation that altering the degree of parallelism of
a task during its execution or task preemption requires substantial overhead. For a task
Tj in any schedule S, we denote its scheduled start time bs(Tj), completion time cs(T),
and scheduled parallelism ps(Tj). A schedule isfeasible if the scheduled parallelism of
each task is no greater than its maximum degree of parallelism, it requires no more than
m processors at any moment, and it preserves the precedence relationships among tasks,
i.e.,

1 _< ps(Tj) _< 6j VTj "T;

EPs(TJ)<-m Vt[0,
l<j<n

bs(Tj)<t<cs(T)

< VT ,, e r.

In a feasible schedule S, the ready time of a task T, rs(T), is defined to be the latest
completion time of all T’s predecessors, i.e., rs(Tj) maxT,-T cs(T,). If a task T
does not have any predecessor in T, then rs(T) 0. The performance of a feasible
schedule S is measured by its makespan, Ms(T, 7) maxTe7-cs(T). The objective

*Received by the editors July 23, 1990; accepted for publication (in revised form) May 10, 1991. This
research is based in part upon work supported by the Texas Advanced Research Program under grant 1028-
ARE

Computer Science Department, University of Houston, Houston, Texas 77204-3475.
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of the scheduling problem is to find a feasible schedule such that the makespan is mini-
mized. Let MOpT(’-I’, 79) be the makespan of an optimal schedule.

The problem oftask scheduling has been studied extensively and has manyvariations
[8]. For sequential tasks, i.e., tasks which can be executed on only one processor at a
time, Graham [7] has studied the scheduling problem of identical processors, while Cho
and Sahni [4] and Gonzales, Ibarra, and Sahni [6] have studied the scheduling problem of
uniform (not identical) processors. The introduction ofparallel tasks into the scheduling
problem can be found in [1]-[3], [5], and [9], and a recent survey on the multiprocessor
scheduling problem may be found in [10]. Blazwicz, Drabowski, and Weglarz [2] have
proposed polynomial time optimal algorithms for two special cases of the independent
parallel task scheduling problem. Chen and Lai [3] have studied the scheduling problem
of independent parallel tasks on a hypercube system that require the size of each task
to be a power of two, and use the linear speedup assumption. At about the same time,
Krishnamurti and Ma [9] were investigating the problem of independent parallel tasks
using the less than linear speedup assumption. Du and Leung [5] have proved that except
in some special cases, both the preemptive and nonpreemptive parallel task scheduling
problems are strongly NP-hard. Recently, Belkhale and Banerjee [1] have studied the
problem using a speedup function which is no greater than linear. In this paper we are
concerned with the problem where precedence relations exist among parallel tasks, and
we use the linear speedup assumption.

The justification of defining the maximum degree of parallelism for each task is that
in many operations, complete parallelism is difficult to achieve, but limited parallelism
may be accomplished easily. At the same time, a linear reduction in execution time
is a reasonable assumption if only simple parallelizations were attempted on tasks. Our
problem is NP-hard since the NP-hard problem of nonpreemptive scheduling of sequen-
tial tasks [7] is a special case of our problem when the degree of parallelism is limited
to 1 for every task. Since polynomial time optimal solution is unlikely for any NP-hard
problem, we are interested in polynomial time approximation algorithms. A heuristic
scheduling algorithm H has a performance bound a if for all problem instances, it can
guarantee that

(1.2) Mov:v(T, T’) <- a,

where MoP:V(T, 7:’) and M(T, 7:’) are the optimal and the heuristic makespans, re-
spectively. When the bound is tight, algorithm H is said to have the performance ratio
a. Recently, we have proved in [11] that a list scheduling algorithm which uses the ear-
liest completion time heuristic achieves a performance bound of In A + 2. In this paper
we improve the performance bound of that algorithm to 3 and give an example to show
that the bound is at least 2.5.

The rest of the paper is organized as follows. In 2 the original list scheduling algo-
rithm [7] is presented together with its performance. The earliest completion time algo-
rithm and its analysis are presented in 3-5. In 6 an example is presented to demon-
strate that the bound is at least 2.5. Concluding remarks are given in 7.

2. The original list scheduling algorithm. The list scheduling algorithm LS pro-
posed by Graham [7] for sequential tasks is formally preseated in Algorithm 1. In the
algorithm, tex is basically the earliest time at which there is at least one free proces-
sor. Initially t,x 0. At time tx, the algorithm selects the first ready task from the
given task list for execution. If there is no ready task at time tex, tex is then assigned
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the earliest time at which at least one more running task completes its execution. The
algorithm repeats these simple steps until the task list becomes empty.

(t)

input(task list 7")

/:next -- 0

repeat

tnext +--- max{tnext, time when at least one processor is free}
if (there exists a ready task in the list 7" at tnext) then

remove the first ready task T from the list 7"

execute T on processor Pi where Pi is free at tnext
else

tnext time with at least one more task completes

endif

until 7" 0

ALGORITHM 1. The odginal list scheduling algorithm.

Applying algorithm LS to a list of parallel tasks 7" is essentially giving each task a
scheduled parallelism of 1, and it may cause underutilization ofthe processor system. Let
[t2i-1, t2i), 1,..., k be the time intervals of the LS schedule having idle processors.
Graham [7] has shown that there must be a chain of tasks in T,

such that U= [t2i-1, t2i) C_ Ui=lh [bzs(Tj,), czs(Tj,)). Based on this observation, Wang
Mz,s(7",79) (and Cheng [11] have shown that the performance ratio ofalgorithm LS is (7,7,)MOPT

Zl + m- where A is the maximum degree of parallelism in any task. Note that when
A 1, the bound is reduced to that obtained in [7] for scheduling sequential tasks.

3. The ECT scheduling algorithm. The ECT algorithm is basically a list scheduling
algorithm, except that the (’f) statement in Algorithm 1 is replaced by an algorithm to
determine the execution time and the scheduled parallelism of a ready task. The idea of
the algorithm is to complete the ready task as soon as possible, and it is called the Earliest
Completion Time (ECT) algorithm (Algorithm 2). For each parallel task scheduled, the
time at which the task T was submitted to the ECT algorithm is called its preparation
time, denoted as aECT(Tj). In the rest of the paper, the subscript ECT will be omitted.
Obviously,

(3.1) r(Tj <_ a(Ty <_ b(Tj <_ c(T VT. e 7".

We say that the task T is beingprepared from time a(T) to b(Tj).
To visualize processor allocation, for each processor P e T’ we present its activi-

ties by using a half-open strip starting from time t 0. The activities of all processors
in P may be expressed by m stacked-up strips, Pi, 1,..., m. Initially, all strips are
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procedure Earliest_Completion (tnext, Tj

ff 1; tp, next; tearliest <---" ;next -- Tj

for p 2 to 6 do

find the earliest time tp > tnext with p free processors

+ /p

if [p < tearliest then tearliest <"- ’p; pt p;

enfor

schedule Tg on p’ free processors at time tp,; tnext <’--

ALGORITHM 2. The Earliest Completion Time algorithm.

white (not colored), indicating that there is no activity. Since all processors are identical,
we may assume without loss of generality that at time tp, the available processors are
P1,’", Pp where p {1,..., 6j }. Figure l(a) illustrates the fitting process by the ECT
algorithm for a task with 6j 5 and p’ 3. For the strip (processor) Pp, 1 < p < p’,
we color it grey from the time tp to the task’s start time b(T). For the p’ strips on which
the task was scheduled, they are colored black from the time b(T)
The coloring of the task in Fig. l(a) is a black rectangle with a staircase-shaped grey
area to its left (Fig. l(b)). Note that it is impossible to recolor any area that is already
black or grey. It is easy to see that a necessary and sufficient condition for a section of
a strip to remain white is when the corresponding processor is free but no ready task
is available. An interval It’, t") with t" <_ MECT(q/’, 79) is incompletely colored if for
all t, t e [t’, t"), there is at least one strip whose color is white at time t; otherwise, it
is completely colored. We further assume that each such interval is of maximal length,
i.e., it is not contained in another incompletely colored interval. Let k be the number of
incompletely colored intervals in the ECT schedule. These intervals may be represented
by

(3.2)

{L-Ji= [t2i-LEMMA 1. In the ECT schedule, [r(Tj b(Tj fq k t2i } 0 for any
task Tj.

Proof. The case where r(Tj) b(Tj) is obvious since [a, a) for any number a.
Hence, we may assume without loss of generality that r(Tj) < b(Tj). It is sufficient to

a(Tj) b(Tj) c(Tj)
(b)

FIO. 1. Fitting and coloring in earliest completion time algorithm.
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show that the interval [r(Tj), b(Tj)) is completely colored. Since the task Tj was ready
but was not prepared before a(Tj), each strip must be completely colored (black or grey)
in the interval [r(Tj), a(Tj)). From a(Tj) to b(Tj), each strip is either colored black by
other scheduled tasks or colored grey by the preparation of Tj. By definition, completely
and incompletely colored intervals cannot overlap one another. Therefore, the lemma
is true.

Let [t2i-1, t2i), 1,..., k be the incompletely colored intervals of the ECT sched-
ule. Similar to the proof of the LS schedule, the next lemma establishes the fact that the
incompletely colored intervals in any ECT schedule must be covered by a chain of tasks.

LEMMA 2 (Covering lemma). There must be a chain oftasks in T,

such that k [t2- t2) C_ hUi= 1, Ui=x[b(Tj,),c(Tj,)).
Proof. We first choose the task Tjl that finishes last in the schedule, i.e., c(T)

maxTj eT- c(Ty). If r(Tjx) 0, the execution interval of Tj, [b(Tj), c(Tj)) covers all
incompletely colored intervals. This is because by Lemma 1, the interval [r(Ty ), b(Ty))
overlaps no incompletely colored interval. IfT is not ready at time t 0, we can find
its predecessor task Tj. such that c(Ty.) r(T ). In general, if the task T, is not ready
at time t 0, we can find its predecessor Ty,+ such that c(Tj,+ r(T,). After a finite
number of steps, we will eventually find a task Tyh ready at t 0. The selected sequence
of tasks forms the chain of (3.3). By Lemma 1, no incompletely colored interval can
overlap [c(T,+), b(T,)), i 1,..., h 1, nor can any incompletely colored interval
overlap the interval [0, b(Tjh)). Therefore, the incompletely colored intervals must be
completely covered by the tasks in the chain of (3.3).

4. The sequences of wide tasks. To analyze the size of the black areas, we examine
closely how tasks were prepared and scheduled. A task is called a wide task if its max-
imum degree of parallelism is at least [m/2; otherwise, it is called a narrow task. In
other words, 7" is divided into the subsets of wide and narrow tasks, 7- Tw U TN. First
we will prove that in the intervals covered by the preparation and the execution of wide
tasks, the black area is at least half the total area. Then for all the remaining intervals
not covered by the wide tasks, they are further divided into two groups of subintervals, H
and I. We will show that at least half of the area in H is colored black, and I is covered
by the shortest possible execution time of a subchain from the task chain of (3.3). Using

2 performance bound of the ECT algorithm.these results, we establish the 3
Let T be a wide task. Awide task Th is an immediatefollower of task T if it satisfies

(4.1) c(Th) max c(T,) and c(T) < c(Th).
a(Tj )<a(Tj, )<_c(Tj ), Tj,7"w

Similarly, a wide task Ti is a distantfollower of task Ty if it satisfies

(4.2) c(Ti) max c(Tj,), where t min a(Tj,).
a(Tj, )=t, Tj, q/’w c(Tj )<a(Tj, ), Tj, q/’w

To construct sequences of wide tasks, the first wide task T(1,1) is selected to satisfy

(4.3) c(T(1,1)) max c(Tj,), where t min a(Tj,).
a(Tj, )=t, Tj, eT"w O<_a(Tj, ), Tj, eq-w



286 QINGZHOU WANG AND KAM HOI CHENG

In general, suppose we have already found the wide task T(,). If T(i,) has an imme-
diate follower, we will designate that follower as T(,+I). If it does not have an immedi-
ate follower, but has a distant follower, we will designate the distant follower as T(+,).
The selection is repeated until we can find neither an immediate follower nor a distant
follower. The wide tasks selected in this process are shown as follows:

(4.4)
T(1,)

LEMMA 3. There is no wide task that is either prepared or executed in the following
intervals: [0, a(T(,) )), [c(T(i&)), a(T(i+l,1))),..., [c(Tq,/,)), MECT(T, Iv)).

Proof. If the lemma is not true, we can assume that there is a wide task T with

(4.5) c(T(i,j,))

_
a(T’) K a(T(i+l,1)) or a(T’)

_
c(T(i,d,) K c(T’).

Without loss of generality, we can further assume that T’ has the latest completion time
c(T’) among all tasks satisfying the conditions in (4.5).

If c(T(&)) < a(T’) < a(T(i+,)), the inclusion of T(i+x,) in (4.4) contradicts the
rule of selecting T(&)’s distant follower because T’ or some wide task before it should
be selected.

If a(T’) < c(T(&)) < c(T’), then there are two cases:
(a) a(T(&)) < a(T’). The task T(&) should not be the last task in the sequence

because T’ is its immediate follower.
(b) a(T(i&)) > a(T’). By the definition of an immediate follower, the task T’ should

be chosen instead of the task T(i&) because the task T’ has a later task completion time.
The contradictions in all possible cases have proved the lemma.
Next we divide the interval covered by a single row of wide tasks

(4.6) T(i,1), T(i,j,)

into subintervals: [th-1, th), h 1,... ,ji, where to a(T(i,1)), and th c(T(i,h)). Sup-
pose we remove the black areas associated with the tasks of (4.6) in the ECT schedule,
and rearrange the remaining black strips in each individual subintervals into staircase-
shaped regions in such a way that the size of the remaining black-colored regions is un-
changed (Fig. 2). Within the subinterval [th-, th), we now try to fit into the area at the
lower right-hand corner a black rectangle which is the largest possible in area and with
height not exceeding 6(,h). Figure 3 shows such a fitting for some subintervals.

LEMMA 4. For each subinterval [th-1, th), 1 < h < ji, the area of the largest black
rectangle fitted will not exceed -(,).

Proof. If this is not true, we can schedule the task T(,h) differently and achieve a
completion time earlier than th c(T(i,h)). This is in contradiction with the scheduling
criterion used in the ECT algorithm. F1

Now we estimate the total size of all black areas in each subinterval [th-1, th). Let
Rh and Qh be the size of the rectangle at the lower right-hand corner and the staircase-
shaped region at the upper left-hand corner, respectively. Furthermore, let L be the
length of the interval, i.e., L th th-1, and 6 the maximum number of strips (proces-
sors) that task T(,h) can possibly use, i.e., 6(,h) 6(T(,h)).

LEMMA 5. For anypositive integer > m/2q, Rh + Qh > m.L
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m

c(Z( i,h+

FIG. 2. Black-colored regions after rearrangement.

Proof. To make the mathematical analysis simpler, we analyze the mirror reflection
of the region (Fig. 4(a)). To estimate Qh, we compute Q (Fig. 4(b)), which is the area
of the convex region bounded by zy Rh, z L, y m, and z v where (v, 6) is
the intersection point of the curve zy Rh with the horizontal line y 6. It is not
difficult to see that the region with area Q is completely inside the region with area Qh;
otherwise a rectangle with area larger than Rh is possible. Hence Q < Qh. Since the
curve in Fig. 4(b) represents the equation zy Rh, the area of the black regions in Fig.
4(b) is exactly the same as those in Fig. 5.

:lllllllllllllllllllllllllllllllllllllllllllllll,

|||||||||||||||||||||||||||||||||||||||||||||||T|||||||||||||||||||||||||||||||||||||||||||||||

c(T(/,h_l)) c( i,h) c(Z( i,h+ ))

FIG. 3. Fitting oflargest rectangles.

IIIIlllllllllllllllllllllll’l
I., L

()

’i<ll =m

(o,o)
(b)

FIG. 4. Estimating the black-colored areas.

Let (L, u) be the intersection point ofthe curve xy Rh with the vertical line z L.
Then

(4.7) Rh 6. v u. L.
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i:111111111111111111111111111 iiii1.

FIG. 5. Analysis ofthe black-colored areas.

Now

(4.8)

Hence

(4.9)

Qi
Q
Q,

(m- 6)(L- v),

L’
Qh + Qh mL muL/5 uL In + uL In u.

Rh + Qh > Rh + Qh uL + mL muLl6 uL In 6 + uL In u.

Let f(u, 6) Rh + Q’h where m/2 < 6 < m and 1 <_ u < 5. By simple calculus,

Since

Of/Ou 2L mL/6 L In 6 + L In u,

Of/Ou 0 In u m/6 + In 6 2 u 6. em/6-2.

02f L=->o Vu[,],Ou2 u

for any fixed 6, f(u, 6) reaches its minimum at u 6em/6-2. Let g(6) f(6em/6-2, 6),
then

g(6) mL 6e/6-2L,
g’(6) (me’q6-2/6 e’q6-2)L 0 m/6 1 0 , rn 6.

It is not difficult to check that g(6) reaches a maximum at 6 m, so for m/2 <_ 6 <_
m, g has a minimum value of roLl2 at 6 m/2, and so does the function f, i.e.,

(4.10) f(u, 6) _> m2 L Vu e [1, 6] and V6 e -,m
Combining with the inequality (4.9), the inequality in the lemma must be true. 1

By Lemmas 4 and 5, we can conclude that the total black area occurring between
to and tj, is at least m(tj, t0)/2. Let Wi and W be the available and the utilized
processing power in the ith wide task sequence in (4.4), respectively. It is obvious that
Lemma 6 follows by applying the result to all wide task sequences.

LEMMA 6.
1

(4.11) E wib >_ - E Wi ]

i=1 i=1
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5. Overall analysis ofthe performance bound. Nowwe investigate the intervals that
were not covered by the preparation and the execution ofwide tasks’ sequences in (4.4).
For W, i 1,..., l, let [t(-), t(i)) be its corresponding interval on the z-axis. We

It(2-1) t(20). Ex-further use W to denote the union of all such intervals, i.e., W t_J=
eluding the intervals in W, we have + 1 intervals that are not covered by the sequences
of wide tasks:

(5.1) it(0), t()), it(2), ,()),..., [(20, t(2+)),..., it(20, (2+)),

where t() 0 and t(2+1) MECT(:T, 79). If the first wide task sequence starts at t(),
or the last wide task sequence terminates at MECT(T, P), we can simply have t() t(1)

or t(2z) t(2t+l).
LEMMA 7. In an ECT schedule, we cannot have grey and white strips coexist at any

time t [0, MECT((T, 2)).
Proof. From the ECT algorithm, we know that the grey color is used during the

preparation but before the execution of a task Tj. If at least one processor (strip) is
colored grey at time t, all other free processors must also be colored grey because the
earliest completion time scheduling policy colors all white strips grey during the prepa-
ration of any ready task. Therefore, grey and white colors cannot coexist at any time in
the schedule. [1

We further subdivide the intervals in (5.1) into more than half-colored and at most

half-colored categories. An interval is more than half colored if at all time in the interval,
the number ofwhite strips is less than m/2. On the other hand, in an at most half-colored
interval, the number ofwhite strips is greater than or equal to m/2 at all time t. For each
time interval [t(20, t(2+)), 0,..., l, let

[/(2i) /(2i) [/(2i) /(2i)[t2i) t(22i))’ "’’’ t2j--l’2j )’’’’’[2ki-l’2ki)
be its more than half-colored intervals. We use H to denote the union of all such subin-

ki [/(2i) /(2i)tcrvals, i.e., H =0 t2j= t2j-, 2j )"
(2i) /(2i)LEMMA 8. For any more than half-colored interval [t2j_l, o2j ), the rectangle m

o2_) has more than halfof its area colored black.
Proof. Based on Lemma 7, we can consider the following two cases.

/(2i) /(201. All strips in t2j-, 2j are colored black and white: the statement in the lemma
is true based directly on the definition of the more than half-colored interval.

r/(2i) /(202. All strips in o2j-1, 2j arc colored black and grey: we can conclude from Lemma
(2i) /(2i)3 that the grey area in [t2_1, 2 must be introduced during the preparation of a nar-

row task. At any moment of preparing a narrow task in the ECT algorithm, less than
km/2J strips arc colored grey. Therefore, more than half of the total rectangular area is
colored black.

LEMMA 9. Ifa task Tj is scheduled to start execution in an incompletely colored interval
[t’, t"), the task Tj must be scheduled to mn at its maximum degree ofparallelism, i.e.,

b(Tj e It’, t") = p(Tj .
Proof. Although we are only interested in the narrow tasks, this lemma is true for

all tasks, narrow or wide. If a task Ty is scheduled to start execution in an incompletely
colored interval, we must have more processors than are really needed at time b(Ty).
From the way tasks were scheduled by the ECT algorithm, the task Tj must have been
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scheduled to its maximum degree of parallelism; otherwise, we can further shorten the
execution time of Tj, which contradicts the scheduling criterion used in the ECT algo-
rithm. [3

/(2) /()LEMMA 10. For an at most half-colored interval t2j 2j+1) and a narrow task Tk,

(5.3) /(2Q Tke _<

Proof. If the task under investigationT has alreadybeen executed with its maximum
degree of parallelism, the statement (5.3) is obviously true.

Let b(T) be the scheduled time for T, and let/5 be the number of processors
for T’s execution. There is also a tk

_> t which is the earliest time task Tk can be
/(20 /(20parallclizcd to the maximum extent. Wc must also have tk < 2 because at time 2j

there arc at least m/2 frcc processors, which arc more than enough to fully parallclizc
the narrow task T. From the way the execution time of a task is determined in the ECT
algorithm, we have c(T) < t + T/6. Therefore,

/(20 Tk(T) o < (T) < -.
Let I be the union of all at most half-colored intervals that are not yet covered by

the wide tasks, i.e.,

(5.4) 1 [0, MECT(T, 79)) W- H.

From the task chain Tj,, 1,..., h, constructed in Lemma 2, there is a subchain of
narrow tasks

which not only covers the intervals in I, it also provides an upper bound on the total
length of these intervals. Lemma 11 shows that the total length of the intervals in I does
not exceed the execution time of the narrow task chain (5.5) even when it is executed
with maximum parallelism.

LEMMA 11. i=1Tj/6j 1I I, where [I is the total length ofintervals in I.
Proof. The intervals in I is a subset of all incompletely colored intervals, so we must

have a subchain from (3.3) to cover them. From Lemma 3, the intervals that are not
covered by (5.1) must be covered by narrow tasks. Hence, we have a subchain of narrow
tasks that covers I. Now for each task T: in the, subchain, there are two cases.

(1) If p(Tj) 6,,-- then the section() of T,- overlapping I sum in length to at most

(2) If p(Tj,) < 5jl, then by Lemma 9, b(TjI) < t for any interval It’, t") of I that
overlaps Tjl. In particular, let [t, t") be the earliest interval of I that overlaps TI. By
Lemma 10, c(TjI) t’ <_ vjI/5, from which we also conclude that the section(s) of
overlapping I sum in length to at most TjI

Combining these two cases yields the lemma.
Let us use H(ij) to denote the rectangle of size m x (ti) 2j-1), and whose bottom

/(2i) /(20edge is the interval t2j-1, 2j ). According to Lemma 8, at least one-half of the area in

H(,j) is black. In other words, if H denotes the black area in H(,j) we must have(j)

ki 1
(5.6) ,b(i,j) _> - - ’.(,).

i=0 j=l i=0 j=
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THEOREM 1. The overallperformance bound ofthe ECT schedule is 3 2/rn, i.e.,

(5.7) MECT("J/"’ 79) 2

MOPT (,.I. ,j)

_
3

Proof. We first show that

-: _> Irl.(5.8) MORT(T, 79) > j---i----1

The task subchain (5.5) satisfies the precedence relationship, so the optimal makespan
cannot be shorter than the total execution time of the tasks in (5.5) even if each task is
executed with maximum parallelism, i.e.,

g

MORT(T, "]9) > i
Tj

-.= :"
Combining with the inequality in Lemma 11, we have (5.8).

Let IHI and IwI denote the total length of more than half-colored intervals in (5.2)
and intervals covered by wide tasks in (4.4), respectively. We next show that

(5.9) Moe(T, P) > 1
Ill + (, +.W --I11 + (IHI + IWI)

i=0 j=l i=1

The black area in either H(,I or W represents the utilized processing power during
the execution of the tasks in T, and in the intervals of I, there is at least one utilized
processor. Therefore, we must have

)+
i=0 j= i=

Combining with the two inequalities in Lemma 6 and (5.6), we have (5.9).
From (5.8) and (5.9), we have

MOPT(T, T’).

6. Tightness ofthe bound. In this section we will construct an example to show that

(6.1) 2.5 < sup
MOPT(’T, P)

<_ 3- --’m
There are n m [m/e + 2 tasks in 7", where m 1791 and e is the base of the
natural logarithmic function. The size and the maximum degree of parallelism are given
as follows:

(6.2)

T L- L/e, 61 1,

T L + e (m/e)n/(m + 1 j), 6 1,

Tn-1 =tuLle, 6n-1 =m,

Tn 2L/3, 1,

j 2,...,n-2,
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where L is a constant, and e is an arbitrarily small number such that e < L/(e(m 1)).
We also assume that the precedence relationship is empty among all tasks. It is easy to
see that the ECT schedule ofT may be graphically represented in Fig. 6(a). The use of e
is to ensure that the task T,_ is scheduled to fully utilize all processors in the system by
the ECT algorithm. Otherwise, if e is absent, the task Tn-1 will use [m/eJ + 1 processors
and still finish at time L. The makespan of the ECT schedule is

5
(6.3) MF.c:r(T, P) -L. lllllilil’llWllllllllll’lWllllllllllliillllllll’ll

ltllllllllllllllltlt Illltlltlfltlllltltlt
lllllllllllllllllllllllllllllllllllllllllllllll

al2fmlel
tlllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllll iiiiiiiiiiiiiiiiiiii1
iililllllllllllililll llillllllllllllllllll

FIG. 6. An example with performance ratio 2.5.

To derive the optimal schedule of T, let n’ rn 2[mle] 1, and the first n 2
tasks in 7" may be separated into two groups,

’T(1) {TI,’",Tn,},
(6.4)

’Z(21 {Tn’+1, Tn-2 }.

In the second group 7-(2) the tasks are put into pairs in the following way:

(6.5) Tp() {Te, Te, ), +i-1, =m- -i+2,

with i 1,. ., (1/2) [m/e] + 1. Assume without loss of generality that there are an even
number of tasks in 7"(21, so all of them can be successfully paired.

In the optimal schedule of T, we execute all tasks in 7"(11 at time t 0. For every
pair of tasks in T(21, we execute Te at time t 0, and Te, immediately after Te. The task
T, should also be executed at t 0. Since each of these tasks uses only one processor,
the only remaining task T,_I will have (3/2) [m/e] 1 processors left for its execution at
time t 0. The graphic representation of the optimal schedule is approximated in Fig.
6(b). We now show that all these tasks can be completed no later than MOPT(T, 79)
2L/3 + o(1) where o(1) is a quantity that can be made arbitrarily small.

Since the size of the task T, is 2LI3, it can be completed in time 2LI3. To prove
that all tasks in T(11 are completed no later than 2LI3 + o(1), we observe the following
inequality:

( )(6.6) -j< 1-
1

L+o(1)< +o(1)7
For the task T,_1, since we execute it with (3/2)[m/e] i processors starting from time
t 0, its completion time is

--LTn--1 2
(6"7/

1
< a 1 3

L + (1)"
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Finally, we show that any pair of tasks in T(2) will be completed no later than 2L/3+o(1).
For any such pair of tasks in T(), since they are executed on a single processor one after
the other, it is sufficient to prove the following equivalent statement:

(6.8)
2

Ti, +Ti,, _< =L +o(1).

We have

(6.9) L-()L/(m+l-i’)+L-()L/(m+l-i")+2e
2L- ()L/(2[] i + 2) ()L/([ +i- 1) + 2e,

with i 1,...,(1 + 1. To estimate the upper bound of (6.9), we define the
following function:

* with z 6 0,(6.10) h(z) 2L 2 z --g + z

It is quite obvious that

(6.11) T, + Te’ _< sup {h(z)} + o(1) Vi’, i".

We now calculate the first derivative of h(z),

mL --L
(6.12) hi(z) (2 m + z)2- z)2 e

We then have the following:

(6.13) h,(z)=O=(2m )2 (m )2 m
--z ---+-z :: z--
e e 2e

Comparing functional values of h(z) at zero and m/2e, we can conclude that

m) 4L 2L
(6.14) sup{h(z)}=h e -2L---= 3

Hence the performance ratio of the ECT schedule with respect to the optimal sched-
ule is

MET(T,T’) L
2L + o(1),(6.15) MOPT(T, 7:’) -which approaches 2.5 asymptotically. Therefore, the worst-case performance ratio of

the ECT algorithm falls between 2.5 and 3 2/m as given in (6.1).
7. Conclusion. In this paperwe have investigated the ECT algorithm for scheduling

parallel tasks, and showed that the worst case ratio of the ECT schedule to the optimal
schedule falls between 2.5 and 3 2/m. Further research on this problem may concen-
trate on closing the gap between these two values.
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HEURISTIC SAMPLING: A METHOD FOR PREDICTING
THE PERFORMANCE OF TREE SEARCHING PROGRAMS*

PANG C. CHENt

Abstract. Determining the feasibility of a particular search program is important in practical situations,
especiallywhen the computation involved can easily require days, or even years. To help make such predictions,
a simple procedure based on a stratified sampling approach is presented. This new method, which is called
heuristic sampling, is a generalization of Knuth’s original algorithm for estimating the efficiency of backtrack
programs. With the aid ofsimple heuristics, this method can produce significantly more accurate cost estimates
for commonly used tree search algorithms such as depth-first, breadth-first, best-first, and iterative-deepening.

Key words, heuristics, stratified sampling, search tree, feasibility testing, cost estimation, Monte Carlo
method, analysis of algorithms

AMS(MOS) subject classifications. 68Q25, 65C05

1. Introduction. Tree searching [8] is a general, easily implemented problem-solving
technique. Unfortunately, the efficiency of tree searching programs is usually difficult
to analyze, even at a rudimentary level. Without analytic cost information, the typical
course is to let the computer run until it either finishes the job or exhausts our patience.
Switching to a more computational sampling approach provides a less haphazard alter-
native: We gain accuracy in understanding particular search programs and thus design
better ones.

The sampling method that we will discuss generalizes an algorithm of Knuth [5]
for estimating properties of a backtrack tree. Starting at the root, Knuth’s algorithm
extends a partial path by expanding the end node and picking a child according to a
uniform distribution. It then forms an unbiased estimate of the tree property using the
branching degrees along the randomly selected path. According to Knuth, this simple
estimation procedure worked consistently well in his experiments. But as a refinement,
Knuth also suggested the technique of importance sampling [2] in which the child is
selected according to a weighted distribution, with the weight of each child being an
estimate of the property of the corresponding subtree.

Unsatisfied with the results ofKnuth’s algorithm in his own experiments, Purdom [9]
later modified the algorithm in an attempt to reduce variance. The modified algorithm
allows more than one child to be considered for further exploration, and it is therefore
called partial backtracking. If only one child per parent is explored, then Purdom’s al-
gorithm reduces to Knuth’s algorithm; but if every child is explored, then the estimate
becomes exact due to a complete backtrack search. The algorithm offers a varying de-
gree of efficiency that depends on the extent of exploration. However, it is difficult to
reduce variance significantly without incurring high experimental cost.

Heuristic sampling generalizes Knuth’s algorithm in a different direction. Instead
of taking the importance sampling approach, the method adopts another statistical tech-
nique known as stratified sampling [2], based on a "heuristic function" to be supplied by
the algorithm designer. This heuristic function, which we call a stratifier, should in prin-
ciple reflect the broad characteristics of the nodes in the search tree. If two nodes have
similar features, then they should be classified into the same stratum. By exploiting the
tree structure as reflected through the stratifier, stratified sampling on the search tree

Received by the editors April 16, 1990; accepted for publication May 4, 1991. The work was performed
at Stanford University, where it was supported by a Hertz Fellowship, and at Sandia National Laboratories,
where it was supported by U.S. Department of Energy contract DE-AC04-76DP00789.

Sandia National Laboratories, Albuquerque, New Mexico 87185.
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reduces variance relative to Knuth’s algorithm, and limits the cost of prediction to the
number of strata.

To present heuristic sampling, we first introduce the concept of a stratifier, and then
discuss a sampling scheme that employs stratifiers to estimate tree properties. We ex-
amine the accuracy and cost of the sampling scheme both analytically and empirically.
In particular, we demonstrate the effectiveness of heuristic sampling analytically with a
random graph problem, and empirically with a chessboard recreation.

2. Problem formulation. Let T be a tree with nodes (or states) ,S’, and let f be an
arbitrary function on ,S’. Then, abstractly, the goal of heuristic sampling is to produce
estimates of the sum

def(1) f(s)

without traversing the entire tree. The value of is a property of T, as captured by the
definition of f. For instance, if f(s) is the cost of processing node s, then becomes
the total cost of traversing T; if f(s) is the number of children of s, then becomes the
total number of edges in T; and if f is an indicator function for some property A’, then
becomes the number of nodes satisfying A’.

The performance of some alternative heuristic search algorithms can be studied by
estimating , using an appropriate choice of f. For example, suppose that F is a mono-
tone heuristic cost function [8], and that A" represents the property F(s)

_
F0. Then

estimating (F0) predicts the number of nodes that a best-first search will have to ex-
amine before it can process any other node with cost ) F0. Likewise, estimating the
sum _<o (F) predicts the respective complexity for iterative deepening [6].

3. Heuristic sampling. Our sampling technique requires a stratifier: a heuristic
function h
with h strictly decreasing along each edge of T. (Notice that we can always construct a
stratifier by concatenating the depth of the node along with any other state information
into a vector representing the stratum, and using a lexicographic ordering to compare
these strata.) Given that T is stratified under h, our idea is to sample each stratum a for
a representative node s and simultaneously to obtain an estimate zc(s) for the
number of nodes in that stratum. From the sample set of nodes, an unbiased estimate
of can then be obtained by computing

def(2)

Figure 1 gives an algorithm (HS) for finding the sample nodes and weights needed to
compute . The algorithm explores at most one node for each stratum and pretends that
all other nodes in the stratum have the same subtree structure. It initializes the weight of
the root to 1, and inserts the node-weight pair into a queue for further exploration. The
queue is maintained with at most one representative from each stratum. The procedure
is to remove and expand the node in the front ofthe queue (the one in a maximal stratum)
until the queue becomes empty. To prevent multiple representatives, each child is given
a chance to replace the current representative in the queue. The random replacement
is implemented in such a way that a child will be expanded with probability proportional
to the weight of its parent.

Both the accuracy and the time complexity of the sampling scheme depend on the
stratifier. The variance of the estimator depends on the homogeneity of each stratum,
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Algorithm HS
input: root of a tree and a stratifier h;
output: set of sample nodes S and corresponding weights W;
data structure: a queue Q with elements (s, w) indexed by h(s);
begin
Q {(root, 1)};
while (Q not empty) do

output an element (s, w) of Q with maximal h(s);
for each child of s do

h(t);
if Q contains an element (sa, wa) in stratum cz then do

wc wc + w;
with probability w/wa do

an t;
else

insert a new element (t, w) into ;
end.

FIG. 1. Heuristic sampling.

which we will discuss in the analysis section. As for the sampling time, notice that we can
guarantee an output of at most one representative node per stratum because we choose
to process from the higher stratum down. As a result, the number of nodes that need to
be expanded by the sampling scheme is bounded by the number of strata.

3.1. An example. Consider the simple problem of determining the number of paths
from (m, n) to (0, 0) on the Cartesian plane, where the only legal moves are to the left
or downward in steps of unit length. This problem is well known and the exact answer
is (+n). Nevertheless, suppose that we do not know how to solve the problem analyti-
cally. Then a naive approach is to enumerate a tree with each node corresponding to a
partial legal path starting (m, n), and each edge corresponding to a legal move. In this
tree, the number of leaves is the desired answer. To estimate, apply heuristic-sampling
with f being 1 on each leaf, and zero everywhere else. If we stratify according to

(3) ho(s) -depth(s),

then the sampling procedure becomes Knuth’s algorithm. Observe that in the absence
of additional knowledge, we can always try this depth stratification. In fact, we can also
try

(4) go(s) (-depth(s), children(s)),

which can perhaps give us a better stratification. Still, for our problem, there is a much
better stratifier that exploits additional knowledge; we can stratify according to

(5) h(s) (i,j)

with (i, j) being the end point of the partial path corresponding to s. Under this stratifi-
cation, the estimator is exact (unbiased with zero variance), because for each stratum
the number of leaves in each subtree is the same. Therefore, the tree size (’+’ is

\ m

estimated exactly by expanding only (m+ 1)(n+ 1) nodes, even though (+’) is expo-
nentially large.
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3.2. Adding importance sampling. We will show that remains unbiased when we
alter the child selection probability by replacing the clause

with probability W/Wo, do

in heuristic sampling (HS) with

w, w/(1-p);

with probability p do

s -- t;

Wo w/p;

using an arbitrary importance probability 0 < p < 1 in each iteration. We call the
resulting generic sampling algorithm GS. As with Knuth’s algorithm [5], there exists a
sequence of p’s that will force to be exactly equal to qa, provided that f is nonnegative.
In practice, however, this sequence may be difficult to find.

4. Analysis. We will now examine the behavior of HS, GS (which incorporates im-
portance sampling), and simple sampling (SS) of Knuth [5] that uses depth as the strat-
ifier Because GS is a generalization of HS, which is in turn a generalization of SS,
anything we prove for GS also holds for HS, and anything that is true for HS is also true
for SS.

4.1. Preliminaries. Let s0 h(root) be the maximum stratum and denote the par-
ent of s by g. From the definition of a stratifier, we know that the set of expanded nodes S
in the output can have at most one node per stratum; hence we can write

(6) S U {s}

with s being the unique representative node for stratum a, if it exists. Let W be the
set of weights produced along with S, and let w(s,) Wo,. To prevent any ambiguity in
selecting a maximal element of Q, we assume that the strata are processed according to
a total ordering -, consistent with 79. Later we show that the output ofHS is statistically
invariant under any particular total ordering of 79. Thus, define

(7) S, de=f U {8/}

to be the intermediate output before processing stratum a, and denote the substratum
of a (the one immediately below) by _a.

4.2. Sample trees. According to GS, every intermediate outputS must form a sub-
tree T because for any nonroot node to be inserted into Q, its parent must have already
been expanded. In particular, the final output S must also form a subtree T, which we
call a sample tree.

From the sampling procedure, we know that a sample tree T must contain the parent
of every nonroot node ofT and a stratum representative for every child of every nonleaf
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node of T. Conversely, any subtree T ofT satisfying the condition above must also have
a positive probability of being generated by GS. The output probability P(T) associated
with each instance of T is related directly to the weights of the nodes produced.

THEOREM 1. Theprobability that GS generates sample tree T with weights W is

(8) P(T)- H
(s,t)T

Under HS, these weights satisfy the recurrence

(9) w.o 1; w E wc.(s) for a -< ao,

where ca (s) denotes the number ofchildren of s in stratum a.

Proof. Given T, the probability of leaving stratum c with s t is equal to p I-Ii qi,

where p is the probability of choosing t to replace the current queue element, and qi is
the probability of not making the ith replacement of t with t being in the queue. These
probabilities are just ratios of weights by construction, and their product telescopes to
w()/w(t). On the other hand, if s does not exist, then T_ T and P(s T) 1
vacuously. Hence, unfolding the recurrence

(10) P(T_) P(T)P(s

yields the desired product for P(T).
Under HS, the weightw for c -< a0 is simply equal to the sum of w() for all t with

h(t) a and in T, a sum which is clearly equivalent to the desired formula. [3

COROLLARY 2. The output probability of a sample tree of HS is independent of the
total ordering imposed on 79 Consequently, which maximal element we choose to expand
at each stage has no effect on the distribution of.

Proof. The recurrence governing the weights is invariant under different total or-
derings of 7. t3

For the SS case, every sample tree is just a (sample) path p(s) from the root to a
leaf s.

COROLLARY 3. Under SS, the probability ofproducing a sample path T p(s) with
length k is

(11) P(p(s)) 1/w(s)= 1/ H c(sJ)’
O<j<_k

where c(s) denotes the number of children of s, and sJ denotes the jth ancestor of s, with
81--.

4.3. Unbiasedness of. The unbiasedness of as produced from GS can be proved
quite easily with concepts from martingale theory [4]. During the expansion of s, de-
fine Q,k to be the set of representatives in the queue before considering the kth child
of s, and define C’,k to be those children of s yet to be considered. Also define T(s)
to be the induced subtree of s in T, and define

(12) (I)(s) de_e E f(s).
teT(s)
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THEOREM 4. The estimator under GS is unbiased in that

(13) E (root) o.

Proof. The appropriate statistic to study at each iteration of GS is the successive
approximation

(14) (,k) def W(Zt)t(U)__ Wtt(t) q.. wf(s),

which is completely determined when given the data

(15) Za,k de S U Qa,k U Ca,k.

If k c(s) and the kth child t of s is supposed to replace the current node u in the
queue with probabilip l-q, then the eectedvalue ofthe successive appromation
remains the same after the random replacement, for we have

(16) E((’k+l)-(’k) Z,k) pW (t)+q (u)--w(t)--w(u)(u) O.
P q

On the other hand, if k > c(s) and node u in the queue is supposed to be removed
and expanded next, then the successive appromation also remains the same after the
expansion of u, for we have

(17) E((’1) (,k) Z,k) w(u)f(u) + w(u) (t) w(u)(u) O.
(,t)eT

Consequently, the expected value of our successive appromation at the end of the sam-
pling () is equal to its initial value ((root) ).

4.4. Conditions for minimum variance. If f is nonnegative, then in the preceding
proofwe can choose to replace the current node uwith the kth child t of s with probabili

(18) p +
to ensure (,k+l) (,k). The resulting sequence of p’s is exactly the one we need
to reduce variance of to zero. Of course, computing this perfect sequence is not fea-
sible in practice. But if we model our heuristic stratifier by assuming that the subtrees
corresponding to each stratum are drawn from the same distribution of trees, then we
can show that the probabili p w(s)/(w(s) + w(u)) used in HS is indeed the one that
minimizes the average variance of .

EOREM 5. Suppose that f is nonnegative, and that we are running GS on a random
tree T in which the subtrees coesponding to each stratum are drawnom the same dis-
tdbution. Then, EV( T), the average vadance of , is minimized if at eve random
replacement stage, we choose to replace the cuent node u with a child of s with probabil-
iff p w(s)/(w(s) + w(u)).

Proof. Consider the effect ofvaing p for one particular random replacement stage
and leaving evehing else ed. We have

f Aw(s)/p + B with probabili p,(19) Aw(u)/(1 -p) + B with probabili 1- p,
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where A _> 0 and B are independent of p. Hence, the variance of can be written as

(20) A’(w2(s)/p + w2(u)/(1 p)) + B’,

with A _> 0 and B independent of p. Taking the average over all random trees and
differentiating with respect to p yields the formula

(21) A,(w2(s)/p2 w2(u)/(1 p)2)

with A" > 0. Setting this derivative to zero, we find that p has to be proportional to w(s),
implying that p w(s)/(w(s) +w(u)). The nonnegativity of the second derivative shows
that this condition does indeed minimize the average variance. ]

4.5. Variance of . To derive a formula for V, we use the superscript (a) on an
operator to denote the conditional operator given S. We also use OS, to denote the
children of S in stratum

___
a, and use R R(S) to denote the nodes of OS in

stratum a. Notice that R, contains precisely the candidates for s, and depending on
which t E R is selected as s, the weight w is equal to w(/) divided by P()(t), the
probability of choosing t.

For a -< Co, consider the successive approximation

(22) () d E wf(s)+ E w(a)(s),
>- sEOS

which depends only on S. At the initial stage when c corresponds to c0, we have S
{root} and () ; at the final stage when c corresponds to the lowest stratum, we
have S S and q() . Because of this link, we can characterize the behavior of
by studying the changes in () as c moves through 79.

LEMMA 6.

(23) E()() q().

Proof. The set OS is obtained from OS by removing R and adding the children
of s; hence

(24) qa(-) q() wf(s) E w(i)(t) + E w(s)(v)

(es)
tR

But we also know that

(26) EwI,(s) E P()(t)p()(t
tERn

Therefore, we have E() (o() o()) 0.
LEMMA 7.

(27) V(-) V() + EV()wO(s).
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Proof Conditioning on S, we have

(28) V() VE(’)(-) + EV(’)qo(-)

(29) V() + EV()(-)

according to the previous lemma. The desired result then follows since

(30) V()q(-) V()(q(-) ())
(31) V()wI,(s,).

THEOREM 8. Under GS,

(32) V= E EV()wff(s)"

Proof. Simply unfold the recurrence of the lemma above, and identify q(-) with
assuming that a is the lowest stratum in 7:’.

For HS, the weight w teR w() is independent of the choice made on s,, so
we can move w out of V() and obtain the following theorem.

THEOREM 9. Under HS,

(33) V= E Ew2V()ff(s)"
a-<so

For SS, the weight w(s) is simply the product of branching degrees of the ancestors
ofs.

THEOREM 10. Under SS,

(34) V= cg(s)w(s)V(s),

where V s denotes the mean-square deviation ofthe value ofits childrenfrom the average
value ofits children.
Proof. IfT p(s), then P(T) 1/w(s), and w w(s)c(s), implying that

w2(8)c2(8)V(8).(35) V )-e,.q
4.6. Homogeneity of strata. The intuitive qualification of a good stratifier h is that

it should provide some degree of homogeneity among nodes in the same stratum. We
formalize this concept of homogeneity by introducing a measure on its counterpart. For
each stratum a, define the parameter

def V(Ct) tI) (sa)(36) v, max
so

and call the parameters collectively as the degree ofvariation with respect to under h.
Notice that the sequence Y is always nonnegative, with the zero sequence indicating total
homogeneity within each stratum.

The following theorem demonstrates a relationship between the degree of homo-
geneity and the accuracy of .
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THEOREM 11. Suppose that f is nonnegative and that the tree T under stratifier h has
degree ofvariation with respect to . Then

(37) V< (1-o(1 + )- 1)qo2

under HS.
Proof. From the proof of Lemma 7, we know that

(38) V()qo(-) wV()(I)(s),
which is by definition less than or equal to ",w2 (E()(I)(s))2. On the other hand, we
also know that

(39) E(")w(I)(s")- E w((t) <_ q(),

because R c_ OS. Hence, we have

(E()q(_))2 + V()(_)
_< +

(1 +

since E()q() q(’). Consequently, we have the inequality

(40) E(q(-))2 < (1 + )E(q())2.

Unfolding this inequality and identifying o(-o) with o then yields the theorem. U
An immediate consequence of this theorem is that if the parameters are all fairly

small, say, less than some quantity e, with e h()II o(1), then the normalized variance
V/99 can be at most

(41) Ilh( )ll / o( IIh( )ll)

However, if e is not small enough, then the bound can grow exponentially in the number
of strata. Fortunately, with more careful bookkeeping, we can obtain a sharper bound
in which the growth is only exponential in the depth of the tree, rather than in the total
number of strata.

To derive this bound, we introduce the concept of layered poset partitioning. A
poset partition P I,J A is said to be layered if the A’s are disjoint antichains with
A - A for all j < i. In other words, every pair of strata in A should be incomparable
(in the sense that no member of one stratum is a descendent of another in the other
stratum) and no stratum in A should be higher than any stratum in A for j < i. Think
of Ai as the set of strata with depth j. With respect to our previous enforcement of a
total ordering on 79, each Ai is simply a stratum, and each stratum are processed in the
corresponding order. Under the more general layered partitioning of 79, each antichain
is also processed in order. But because every pair of strata in an antichain is incompa-
rable, the corresponding strata are processed independently. Exploiting this property
yields the following generalization.
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THEOREM 12. Suppose that f is nonnegative and that the state space l under the
stratifier has degree of variation with respect to . Then the variance of under HS is
bounded above by

(42)

where U0<<, Ai is an arbitrary layeredpartition of 79.
Proof. We take the same approach as in the previous theorem. However, instead of

working with random variables conditioning on S, we now condition them on

(43) S = U U {s,},
j<iA

and use the superscript (i) on an operator to denote the conditional operator given S.
Thus, consider the conditional random variable

(44) def E(i)
sES sEOS

where OSi, analogous to OS, is defined to be the children of Si in strata lower than those
in S. Notice that as we extend the conditional information from S to S+1, the only part
of that varies is the sum Y]ea, w{(s). This result follows because for each a in Ai,
the parents of the prospective nodes for s are all in S. Incidentally, this fact tells us
that the weight w(s) depends solely on Si, and not on S+1 \ S. Hence, we have

(45)

since each so is selected independently. Applying the definition of, we obtain the upper
bound

(46) E -uw2(E() (s))2

c6A

But

(47) W(E(i),I(s))2 w()O(t)

withR(Si) being those children in OSi in stratum a. Again, because the strata in Ai are
incomparable, the sets R(Si) are disjoint between different c’s. This conclusion yields
the bound

(48) _<
cA

where R is the union ofR(S) over a. Finally, we also have

(49) o >_ E w(O(t),
tER
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because R c_ OS. Combining all these facts, we get

(50) v(i)qOi+l _< max,
which implies that

(51) E() ? ( )i+-< l+maxo, qo2,
cEAi

and consequently that

(52) ,)Eqa.Eqa+ _< (1 + max

The desired bound is now obtained by unfolding this inequality and identifying 1
with qo.

The preceding technique can also be applied to analyze the average variance of
when the input tree T is random. Let the superscripts (i) and {i} on an operator
denote, respectively, the conditional operator given Si, and the conditional operator
given Si and T. Suppose that (s) for each s in stratum a shares (but not necessarily
independently) the same distribution . Then instead of , we can express a bound
on EV( T) in terms of the average variation , whose component corresponding
stratum a is defined as

def(53 v V/E2.

LEMMA 13.

(54) E(i)V(q(I)(s) _< V(I).

Proof. The conditional variable V{i}(s) can be put in the form

(55)

where pj is the probability that we choose sj to be s. Taking the conditional expectation
E() of the first sum, we get Y]pE E. Let X be the second term. By the

nonnegativity of the variance, we have E(i)X2 > (E(i)X). But E(i)X pE
E. Combining all of the facts, we have

(56) E(0V(’}(I)(s,) _< E(I) -(E(I)),
which implies the lemma. I-1

THEOREM 14. Suppose that f is nonnegative and that the random tree T under the
stratifier has average degree of variation with respect to . Then, under HS, the average
variance of over the random input trees is bounded above by

(57)
0<i_<r cAi
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where Uo<<,- Ai is an arbitrary layeredpartition of 79.

Proof. Again, consider the conditional variable

(58)

We have

(59)

(60)

(61)

(62)

where the second step follows from the preceding lemma, and the third step follows from
the definition of p. To relate this inner sum with E(), notice that

(63) Z (E()w)2

(64)

(65)
(66)

<_

_< (E(I)

Consequently, we have

(67) Eqi+ < l+max Eq2.
oAi

Unfolding this inequality then yields

(68)
/ \

EE(2 IT)_< 1-I [l+maxa}E2’
O< <_r oEAi\/

which implies the theorem, since

(69)
(70)
(71)

EV( T) EE(2 T)-EE2

_< EE(9 T) E
_< EE(ZlT)-Ee.

Thus, we can deduce the performance ofHS from the "goodness" of h, as quantified
by the parameters Y and p.
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4.7. A random graph problem. We illustrate the previous theorem with the follow-
ing example. Consider the maximum independent set problem in which the object is to
find the maximum number of independent vertices with each pair not connected by an
edge. Suppose that we take the obvious approach of solving this problem by exhaustively
enumerating every independent set in the graph [10]. Then it is useful to estimate the
size (the number of nodes) of the search tree before running the actual brute-force algo-
rithm. Thus, imagine applying HS with f I on the backtrack tree induced by the input
graph G (V, E) to the maximum independent set problem. In the backtrack tree, each
node s corresponds to an independent set I as well as to the subgraph G’ (V’, E’) of
G with I and its neighborhood removed. Since our objective is to estimate the size of
the tree, it is both natural and simple to use the cardinality of V’ as a stratifier.

Now suppose that the input graph G is random in that every edge is independently
likely to occur with probabilityp 1/2. We can proceed to examine the average variance
of the estimator produced by HS by obtaining some bound on o. Thus, we need to study
the distribution of ,, with , being the size of the random tree induced by a random
graph G, of order n. Since , is equal to the number of independent sets in Gn, we can
use standard techniques in random graph theory to deduce that

(72) ( lg4 n) E2n0
\

where lg n denotes the binary logarithm of n. (A proof is provided in the appendix.)
Therefore, we can immediately conclude the following.

THEOREM 15. Suppose, as described in the beginning ofthis section, that we apply HS
with the stratifier that uses the cardinality V’, on the backtrack tree induced by a random
graph of order n, with edge probability p 1/2. Then the variance of the estimator ,
averaged over thepossible random trees, is only on the order ofthe square ofthe average size

ofthe tree. That is, we have

(73) E(V T) O(E2qo).

Proof. Combining Theorem 14 with (72), we have for some positive constant c that

E(VIT) < (H (1+ lgak) )c
k2

1 E299
l<_k<n

< ((1+ lg4k) ) Ez
k=

C
k2

1 99,

where the infinite product is convergent. [3

Thus, we have demonstrated one situation in which the average performance of HS
using a natural stratifier is quite satisfactory, at least in a theoretical sense.

5. Computational experience. The practicality of HS has been tested in a variety
of situations [3], so we will describe only one experiment here. Consider the chess-
board recreation whose goal is to find the longest uncrossed knight’s tour possible on
the board (Fig. 2). Obviously, we can try to solve this problem by means of backtrack-
ing; however, it is not clear whether an exhaustive approach is feasible. In the original
paper [5] where this example appears, Knuth answers the feasibility question by applying
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FIG. 2. A (longest) uncrossed knight’s tour

SS on the backtrack tree; using just the depth stratifier, he is able to pinpoint the number
of nodes in the tree with surprising accuracy.

Although Knuth’s experiment is successful in estimating the size of the tree, the
estimation results can still be improved significantly by incorporating problem-specific
heuristics into the random search algorithm. To illustrate this point, we identify each
node in the backtrack tree with a corresponding uncrossed knight’s tour, and consider
the knight’s tour problem as a directed-graph problem in which each vertex corresponds
to a square on the chessboard, and each edge corresponds to a legal knight’s move. Each
edge of course precludes a number of other edges because we are only interested in tours
that do not cross themselves. Now, among the knight’s tours, we expect those tours that
corner themselves to have less "mobility," and hence less possibility for larger subtrees
than those that do not. We can gauge the mobility of a tour by counting the number
of edges that have not yet been precluded by the tour and can still be reached with the
edge preclusion condition relaxed. The resulting function, denoted by mobility(s) with s

being the node corresponding to the tour, is in fact a stratifier, as can be verified. With h0
being the simple depth stratifier, and h being the mobility function just defined, we can
construct yet another stratifier h by simply concatenating the values of the two former
ones.

The respective performance of HS using these three stratifiers is shown empirically
in Table 1. First, we repeated Knuth’s experiment [5] by recording the mean number
of nodes predicted for each level after running the h0 algorithm 1000 times. (The data
obtained do not coincide with the original ones because our pseudo-random number
generators were different.) Next, we ran the h algorithm 40 times, the h algorithm 5
times, and recorded the corresponding estimates. For simplicity, we measured the total
cost of each algorithm by the number of nodes examined. This accounting explains the
numbers 40 and 5; for that was when the latter two algorithms had examined roughly the
same number of nodes as the first one. To serve as a reference, the true profile of the
tree is reproduced here. Incidentally, for a fairer comparison, we should really take into
account the cost of evaluating mobility(s). Because the h0 algorithm need not compute
this function, we could probably run it 6000 times to equal one trial of sampling with h2.
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Level
0

10
2 43
3 257
4 1005
5 4267
6 15684
7 57443
8 184017
9 583197
10 1608183
11 4371678
12 9920481
13 22507886
14 47054083
15 95846027
16 156085563
17 256650972
18 344261889
19 451703678
20 324806815
21 253992102
22 237855139
23 106973568
24 80018150
25 28304640
26 0
27 0
28 0
29 0
30 0
31 0
32 0
33 0
34 0
35 0
36 0

total 2422806779
std dev 10672087188

cost 11503
trials 1000

TABLE 1
Estimated tree profiles.

ho hi h2 Actual

10
42
196
918

3734
14026
46873
126007
445188
1613621
4679457
16793389
37750158
31161416
64365367
106268997
205655280
306859328
382647057
372852597
426672714
239446386
352833124
195532658
57001796
72444273
19732265

151248453
0
0
0
0
0
0
0
0

3046195329
2331712470

10875
40

10
34

204
864
3604
13724
51326
174680
611950
1832792
5106228
11767976
25507044
47574616
83428348
130208416
192462996
252526926
280613374
277536920
272541294
288235830
226878632
138579650
87525874
40045814
16732876
9984256
2985372
787150
138532
13210
588
588
0
0

2393871699
878149488

11345
5

1
10
42

251
968

4215
15646
56435
182520
574555
1606422
4376153
10396422
23978392
47667686
91377173
150084206
235901901
315123658
399772215
427209856
429189112
358868304
278831518
177916192
103894319
49302574
21049968
7153880
2129212
522186
109254
18862
2710
346
50
8

3137317290

However, this comparison would depend more on the actual implementation.
It is apparent that the estimation power of HS increases upon the application of

more sophisticated stratifiers. True, the three estimates for the actual size of the tree are
all accurate enough to give us the right order of magnitude, but the estimates produced
by HS using h or h2 are much more stable and hence give us more confidence than
those produced by the algorithm using h0. This stability is indicated by the decreasing
order of magnitude of the observed deviation as we go from h0 to h2.

Besides estimating the size of the tree, we can also use HS to estimate the entire
profile of the tree. By computing the product of the branching degrees ofpath associated
with one of the eight 35-move solution, we reckon that it would take about a billion trial
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runs for SS to come up with a nonzero estimate for the number of nodes at the bottom
level. Fortunately, as Table 1 clearly shows, the sampling technique can probe deeper
into the tree with the aid of simple heuristics. Take, for example, the stratifier h2; in just
five trial runs, it has enabled HS to find a 33-move knight’s tour.

In addition to estimating the cost of brute-force backtracking, we can also predict
the performance of other heuristic search algorithms by profiling the backtrack tree ac-
cording to the heuristic used. For example, consider the heuristic F(s), which when
given a state s with a partial uncrossed knight’s tour, computes the total number of
vertices whose set includes those already on the tour and those still reachable with the
edge-preclusion condition relaxed. Because F is monotonically nonincreasing, we can
invoke a best-first search strategy and be certain of an optimum solution when a leaf
node is reached. However, a best-first strategy may require too much space; in this case,
an iterative-deepening approach may be more appropriate. Using HS, we can predict
whether these heuristic search algorithms are indeed better than simple backtracking by
first estimating

(74) q (Fo) ’ IF(s) Fo],

where .J denotes the indicator function: 1 if the predicate is satisfied, and zero other-
wise. Then, by calculating

(75) qo2(Fo)= Z (F),
FI >_Fo

we can predict the number of nodes that a best-first search has to expand before it can
process any s with F(s) < Fo. Likewise, by further summing

(76) q3(Fo)= Z q2(F),
Fl >_Fo

we can predict the number of nodes that an iterative-deepening search (with as the
initial bound) has to expand before it can process any s with F(s) < Fo.

Shown in Table 2 is the result of applying HS 10 times using stratifier h2. For sim-
plicity, we list only the average of the estimates for F0 _> 30, and compare only those
with F0 > 36 with the actual values that were computed later. The estimates are all
quite accurate in determining the order of magnitude of the actual values, even though
the total number of nodes examined by HS (22750) is only about 1/10000 of that re-
quired by an exhaustive search. In our implementation, the sampling procedure took
about 10 minutes on a Sun, while the exact computation took about 3 days of work dis-
tributed among 4 Suns.

Incidentally, if we know that an optimum tour has length around 35, then with the
estimates we would be able to predict the infeasibility of a best-first search and the inferi-
ority of an iterative-deepening approach with respect to simple backtracking. Abest-first
search would require us to maintain a queue of about 108 nodes, even though it needs
only to examine about 1/15 of the nodes in the entire backtrack tree. On the other hand,
an iterative-deepening approach with as the initial bound would require an examina-
tion of about 1/3 of the backtrack tree, a factor which is not small enough to offset the
cost of evaluating F. However, if we know that the optimum length is definitely equal
to 35, then an iterative-deepening approach with 36 as the initial bound on F might now
be better than simple backtracking, since it needs to examine only about 1/15 of the tree.
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TABLE 2
Treeprofile under a monotone heuristic.

64 39815
63 111703
62 144451
61 226524
60 433814
59 427256
58 530568
57 845676
56 825869
55 1329818
54 1228600
53 991948
52 2659514
51 2669262
50 2499762
49 4332987
48 3465842
47 5277864
46 5980861
45 7613390
44 9427006
43 10839121
42 15375928
41 13808601
40 15494192
39 24607447
38 21976276
37 29037331
36 31250938
35 29411721
34 35719965
33 37585184
32 40970294
31 34998800
30 49462557

7(0) (0) 72(0) 2(0) 73(0) 3(0)
39379
86641
151599
228636
309611
403924
512112
614624
756939
923511
1139180
1439727
1793783
2211864
2741692
3379471
4178690
5144058
6322974
7753753
9486538
11483764
13812502
16432504
19418400
22642483
26231844
29968602
33920456

39815
151518
295969
522493
956307
1383563
1914131
2759807
3585676
4915494
6144094
7136042
9795556
12464818
14964580
19297567
22763409
28041273
34022134
41635524
51062530
61901651
77277579
91086180
106580372
131187819
153164095
182201426
213452364
242864085
278584050
316169234
357139528
392138328
441600885

39379
126020
277619
506255
815866
1219790
1731902
2346526
3103465
4026976
5166156
6605883
8399666
10611530
13353222
16732693
20911383
26055441
32378415
40132168
49618706
61102470
74914972
91347476
110765876
133408359
159640203
189608805
223529261

39815
191333
487302
1009795
1966102
3349665
5263796
8023603
11609279
16524773
22668867
29804909
39600465
52065283
67029863
86327430
109090839
137132112
171154246
212789770
263852300
325753951
403031530
494117710
600698082
731885901
885049996
1067251422
1280703786
1523567871
1802151921
2118321155
2475460683
2867599011
3309199896

39379
165399
443018
949273
1765139
2984929
4716831
7063357
10166822
14193798
19359954
25965837
34365503
44977033
58330255
75062948
95974331
122029772
154408187
194540355
244159061
305261531
380176503
471523979
582289855
715698214
875338417
1064947222
1288476483

6. Conclusions. Heuristic sampling is a simple, easy to apply, and easy to imple-
ment technique designed to predict the performance of other tree searching programs.
The flexibility and practicality of this technique stem from our accessibility to the in-
put stratifier, through which natural heuristics can be introduced to guide and control
the estimation process. In evaluating its effectiveness, we have .shown the unbiasedness
of the estimator and investigated the conditions for minimum variance. We have also
demonstrated a relationship between the quality of the stratifier and the accuracy of the
estimator by formalizing the concept of stratum homogeneity. In supporting our gen-
eral results, we have also conducted some specific case analysis, one involving theoretical
computation, and the other, experimental simulation. The results obtained are all very
encouraging. Overall, we expect heuristic sampling to be an invaluable asset in aiding
the design of tree searching programs as we use the technique to compare the merits of
various search algorithms.

Appendix. Let G, be a random graph with n vertices and independent edge prob-
ability p, and let , be the number of independent sets in G,. To study the expectation
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and the variance of ,, we use related techniques and results derived in 4 of [10], XI.1
of [1], and 5.3 of [7]. Thus, imagine an enumeration of all 2’ subgraphs H of G,. Let
Xi be the 0-1 random variable indicating the independence of Hi; we have , Y’i Xi.
The probability that Xi 1, or the probability that the subgraph Hi is independent, is

equal to q(), where k is the order of this subgraph and q 1 p. Since there are ()
subgraphs of order k, we have

(77)

and according to Will, for p q 1/2, this sum has most of its contributions coming
from terms with k around lg n.

To compute V,, let us first consider

(78) E(I)2 y EXiXj.
i,j

Suppose that the subgraphs Hi and Hj are of orders k and l, respectively. Then the
probability that XiXj 1, or the probability that both Hi and H are independent, is

equal to q()+()-(), where r is the number ofvertices Hi and H have in common. On
the other hand, (k-r,’-r,r) is the number of such pairs of subgraphs having r vertices in
common, with the first of order k and the second of order I. Hence, we have

(79)
n ) q()+()_()

k,l,r

and under the same interpretation, we have

(80)
k,l,r

k-r, l-r, r

which gives us

(81) V(I,. ’ q()+()
k,l 2<r<min (k,/)

n ) (q-(;) 1).
k-r,l-r,r

Thus, we define b 1/q and analyze the quantity

n )b()(82) Ak,t d q()+() y
k-r, l-r, r

2<r<k

for different regions of k and to bound V(I),.
LEMMA 16. If k s and > 1 + 4 logb n, then

(83) Ak,t <_ 1.

Proof

(84) q() Z k-r, l-r, r
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(85)

(86) <
b(-l/

(87) < lt= 1.

LEMMA 17. Let

(88) Br de=f ( n ) b()
k-r,l-r,r

Ill < 5 logb n and 3 < r < k < l, then

(89) B < B3 + B

for sufficiently large n.

Proof. Suppose that r _< logb n. Then consider the ratio

def(90) a B/B3.

It is equal to

3! (n- + 3)!(91) () ((k-3). (/ 3)! k-,) (-,) (- +)-,
which is bounded above by

(92) (n- k + 3) ]

Hence, for sufficiently large n, we have

(93) ar O(klbr/2/n)
(94) O(kln3/4/n)
(95) o(1).

Now suppose that r > logb n. Then consider the ratio

(96) b de_f B/Bk.

After expansion, it becomes

( o, )(,)(,_,)( _, )_,(97) (k r)! . (1- r)! (n l- (k r))!

which can be bounded above by

(98) kn)k-r/b()-(’)
But notice that k > r implies that

(99) r(k- 1) r(r- 1) r(k- r)
2 2 2
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Hence, for sufficiently large n, we have

(100) b, O(kn/b"/2)k-r
(101) <_ O(kn/n3/2)k-r

(102) o(1).
LEMMA 18. If k _< < 5 logb n, then for sufficiently large n, we have

( bl4 bal7 )(103) Ak,j <_ - + EkEt + It+Et,

where

(104) Ekde= () q().

(105)

Proof. According to the previous lemma, we can bound Ak,j by

q()+() (B2 + (k- 2)(B3 + Bk)).

Next, observe that

(106)

and

( n )(107)
k r, r, r

( o8)

<
r! (n r)

The lemma then follows immediately by substituting these bounds into the definition
of B,,.

LEMMA 19. For sufficiently large n, and p q 1/2, we have

(109)

Proofi From Lemma 16 comes the bound

(110) VO < El+ E A,,.
k,l k,l<5 lg n

Next, we apply Lemma 18 to bound Ak,l. By setting p q 1/2, we have

(111) VO,

_
t2 -4- 0

n2 J E EkE, + nO(lglgn) E Ek,
k,l k

which implies the result since

(112) Er Er E(I)n -(n 1/2 lg n-lg lg n).
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COUNTING CLASSES ARE AT LEAST AS HARD AS THE POLYNOMIAL-TIME
HIERARCHY*

SEINOSUKE TODAt AND MITSUNOI:tI OGIWAPAt

Abstract. In this paper, it is shown that many natural counting classes, such as PP, C=P, and MODkP, arc
at least as computationally hard as PH (the polynomial-time hierarchy) in the following sense: for each K of
the counting classes above, every set in K(PH) is polynomial-time randomized many-one reducible to a set in
K with two-sided exponentially small error probability. As a consequence of the result, it is seen that all the
counting classes above arc computationally harder than PH unless PH collapses to a finite level. Some other
consequences arc also shown.

Key words, counting complexity classes, polynomial-time hierarchy, randomized reducibility, computa-
tional complexity theory

AMS(MOS) subject classifications. 68Q15, 03D15

1. Introduction. In the theory of computational complexity, researchers have given
much attention to several questions about the computational power of counting com-
plexity classes such as PP defined by Gill [10], C=P defined by Wagner [26], 3P de-
fined by Papadimitriou and Zachos [15], and MODkP defined independently by Cai and
Hemachandra [7] and by Beigel, Gill, and Hertrampf [4]. In those investigations, it is of
particular interest to compare the computational power of the counting classes with that
of classes within PH (the polynomial-time hierarchy), and the researchers have consid-
ered two different types of questions, containment questions and reducibility questions.
By a containment question, we mean to ask whether a class in PH is included in a count-
ing class, and by a reducibility question, we mean to ask whether all sets in a class in PH
are polynomial-time reducible to sets in a counting class under a suitable reducibility.

For the containment question on PP, the best result at the present time is one by
Beigel, Hemachandra, and Wechsung [3] that pNP[log] is included in PP. For other count-
ing classes, it was shown in [4], [7], and [13] that Few c_ (R)P, Few c_ C=P, and for each
prime k, Few c_ MODkP, where Few was defined by Cai and Hemachandra [7] (see their
paper for the detail) and is known to be below pNP[log]. These are the best results for the
containment questions on all the known counting classes other than PP. Very recently,
Fenner, Fortnow, and Kurtz [8] have unified and improved the results on Few versus
counting classes questions. The reader may refer to [8] for the current status of these
results.

For some reducibility questions, it was shown by Toda [21] that all sets in PH is
polynomial-time Turing reducible to sets in PP and are polynomial-time randomized
reducible to sets in @P (here and throughout the paper all randomized reductions are of
two-sided exponentially small error probability). It was recently shown by Ogiwara [14]
that all sets in II are polynomial-time randomized many-one reducible to sets in C=P.
Combining these results with a result by Sch/Sning [17], we can conclude that PP and (R)P
are computationally harder than PH unless PH collapses to a finite level, and conclude
that C=P are computationally harder than E unless PH collapses to a finite level.
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Barbara, California 93106, and it was supported in part by National Science Foundation grant CCR89-13584.
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While several relationships between the counting classes and classes in PH have
been established, many relationships are currently unknown. In fact, we do not know
at present whether PP includes AP and whether the other counting classes include NP.
Nor did we know whether all sets in PH are polynomial-time reducible to sets in the
counting classes other than PP and @P. Recently some oracle sets refuting the expected
containments have been found. Toran [22] found oracle sets A and B such that NP(A)

C=P(A) and NP(B) P(B), Beigel [2] found an oracle set C such that AP(C)
PP(C), and he showed in [1] that for all k > 2 and some oracle set D, NP(D)

MODkP(D). These relativization results tell us at least that all the techniques known
currently do not work for settling the containment questions above, and/or that it is too
difficult to solve the questions. Hence the important question at present is whether all
sets in PH are polynomial-time reducible to sets in those counting classes under a suitable
reducibility.

In this paper we investigate the reducibility question above more deeply. We will be
concerned with the polynomial-time randomized many-one reducibility with two-sided
exponentially small error probability (this notion will be formalized as the BP-operator
in 2). We will conclude that all sets in PH are polynomial-time randomized many-one
reducible to sets in a wide range of counting classes. To show this, we will first introduce
a family of counting classes that is a restricted range of the gap-definable classes recently
developed by Fenner, Fortnow, and Kurtz [8] but is still so wide as to include PP, C=P,
and MODkP, and we will show that all counting classes in the family are at least as hard
as PH. Thus, in particular, we establish the following new relationships as immediate
consequences of the general result (we also summarize some relationships known earlier
for the sake of comparison of our results with them):

(1) PP(PH) c_ P(PP) and 3P(PH) c_ BP. (R)P [21].
(2) II’ c_ B". C=P [14]. Here we note that the inclusion EP tO IIP c_ B’.PP imme-

diately follows from this result.
(3) C=P(PH) c_ BP. C=P and PP(PH) c_ BP.PP. These improve the relationships

in (2) above.
(4) For all integers k > 2, MODP(PH) c_ BP.MODP. This extends the second

result in (1) above.
As an immediate consequence, we know that PH is included in BP.K for each K E { PP,
C=P, MODP }.

Remark. After seeing an earlier version of the present paper, Richard Beigel told
us as a private communication that the result (4) could be obtained by using the result
in [4, Thm. 27] that MODP(MODkP) MODP if k is a prime, the characterization
of MODP in [4, Cor. 33] (every MOD-class is a finite union of some MOD-classes
with prime modulo), and the modulo amplification technique in [21]. It is important
to remark that Tarui [19] has independently developed the same techniques as those in
this paper, and in fact he observed somewhat stronger relationships than ours. Roughly
speaking, he has strengthened the relationships in (3) and (4) above via the polynomial-
time randomized reducibility with zero errorprobability.

This paper will proceed as follows. In 2, we first state our main result without giving
the main part of the technical proof, and show its immediate consequences. The main
part of the proof will be given in 3. In the rest of this section, we give some elementary
notions and notations used throughout the paper.

Our sets in this paper are over E {0, 1, 4/:} unless otherwise specified. The symbol
# is usually used as a delimiter among strings of {0, 1}*. A pairing function (respectively,
a k-tuple function) over {0, 1 }* is represented by separating two strings (respectively, k
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strings) by this symbol. For a string w E E*, [w[ denotes the length of w. For a set
L c_ E*, L denotes the complement of L. For a class K of sets, co-K denotes the class
of sets whose complement is in K. Let ’ (respectively, E-<’ and E<n) denote the set
of strings with length
*, IlXll denotes the number of strings in X. Let N and Z, respectively, denote the set
of natural numbers and the set of integers. We assume that all integers are expressed in
binary notation (for negative integers, we assume a suitable representation system, such
as 2’s-complement system).

For an oracle set X, P(X) denotes the class of sets accepted by polynomial-time
bounded deterministic oracle Turing machines (DOTM) with oracle X, and NP(X) de-
notes the class of sets accepted by polynomial-time bounded nondeterministic oracle
Turing machines (NOTM) with oracle set X. Classes in the polynomial-time hierarchy
[18] are denoted in the usual way" E0P II" A0P P, E NP(E_I), IIP co-Ed,
A P(E_I) and PH I,Jk>0

We are concerned with the following counting classes. #P(X) [24] denotes the class
of functions that give the number of accepting computation paths of polynomial-time
bounded NOTM’s with oracle X. PP(X) [10] (respectively, C=P(X) [26]) denotes the
class of sets L for which there exist two functions F1, F2 E #P(X) such that for all strings
x, x L if and only if F1 (x) > F2(x) (respectively, x L if and only if F1 (x) F2(x)).
For an integer k _> 2, we define MODkP(X) [4] as the class of sets L for which there exists
a function F #P(X) such that for all strings x, x L if and only if F(x) 0 (mod k). In
particular, MODeP is usually denoted by @P [15]. The unrelativized classes are defined
by setting the oracle set to the empty set, and the specification of the oracle is omitted
in this case.

2. Randomized reductions from PI-I to counting classes. In this section we show
that all sets in PH are polynomial-time randomized many-one reducible to sets in a wide
range of counting classes, including PP, C=P, and MODkP. What we will show is much
stronger than this observation. For example, all sets in PP(PH) are polynomial-time
randomized many-one reducible to sets in PP. More precisely, we first define a stronger
variation of Sch6ning’s BP-operator [17], which formalizes the notion of polynomial-
time randomized many-one reducibility with two-sided exponentially small error proba-
bility, and next define a family of counting classes to which our technique can be applied.
Below, given a finite set X of strings and a predicate R over strings, we denote by Pr{w
X R(w) } the probability that R(w) is true for randomly chosen w from X under

uniform distribution.
DEFINITION 2.1. Let K be any class of sets. A set L is in BP.K iffor every polynomial

e, there exist a set A

Pr{w e {0, 1}P(Ixl)’x L iff x#w e A} _> 1- 2-(Ixl).

The essence of the following definition comes from the gap-definability notion of
Fenner, Fortnow, and Kurtz [8], and our notion below covers a wide range of counting
classes while it defines a smaller family of their gap-definable classes.

DEFINITION 2.2. For an oracle set X, GapP(X) [8] is defined to be the class of
functions F for which there exist two functions F1, F E #P(X) such that for all strings
x, F(x) F1 (x) F2(x), and GapP is defined as GapP(O). Let Q be a subset of Z and
let " be a class of functions from strings to integers. Then we define C[Q, .T] to be the
class of sets L for which there exists a function F .T" such that for all z, z L if and
only if F(x) Q.
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Example. All the well-known counting classes can be defined as in Definition 2.2.
For instance, PP and PP(X), for any oracle set X, can be defined as C[Z+, GapP] and
g[Z+, GapP(X)], respectively, where Z+ denotes the set of positive integers.

Our main result essentially follows from the following technical lemma, whose proof
will be given in the next section.

LEMMA 2.3. Let F be any function in GapP(PH) and let e be anypolynomial Then
there exist a function H E GapP and a polynomial s such thatfor every string x,

Pr{w E {0, 1}(11) H(z#w) F(x)} >_ 1 2-(11).

Our main theorem below subsumes disparate observations that several counting
classes are at least as computationally hard as PH.

THEOREM 2.4. Let Q be a subset of Z. Then, tT[Q, GapP(PH)] c_ BP. tT[Q, GapP].
Proof. Let Fbe a function in GapP(PH) witnessing that a set L is in C[Q, GapP(PH)].

From Lemma 2.3, there exists a function H GapP that satisfies the condition in the
lemma. Define A { c#w H(x#w) Q }. Obviously, A is in C[Q, GapP], and L and
A satisfy the condition in Definition 2.1. Thus we have L BP. C[Q, GapP]. [3

In the rest of this section, we apply the theorem to some well-known counting classes
and obtain some new relationships between those counting classes and PH. Also, we will
show some other interesting consequences of the theorem and the corollary below.

COROLLARY 2.5. (1) PP(PH) C_ BP. PP.
(2) C=P(PH) c_ BP. C=P and co-C=P(PH) c_ BP. co-C=P.
(3) Forall integers k > 2, MODkP(PH) c_ BP. MODkPand co-MODkP(PH) c_ BP.

co-MODE
(4) Thus, for each K ofPP, C=P, co-C=P, MODP, and co-MODP, we have PH c_

BP.K.
Proof. As in the previous example, we can easily see that all the counting classes

above can be defined as in Definition 2.2. We omit the detail here; the interested reader
may refer to [8] for some technical points. [3

Remark. For a class K of sets that is closed downward under the polynomial-time
majority reducibility, it follows from the probability amplification lemma ofSch6ning [17]
that BP.K BP.K, where, for two sets A and B, A ispolynornial-tirne majority reducible
to/3 if there exists a polynomial-time computable function t such that, for all z, t(x)
/14/:’" #/,, (m > 1) and z E A if and only if the majority of /i’s are in/3. However, ifK
is not closed under the reducibility, then the two classes might be different. It is currently
known that PP (respectively, C=P and MODP with k prime) are closed downward un-
der the polynomial-time majority reducibility [4], [6], [11] (see [9] also). Thus, for such
classes, we may replace the BP-operators in the above corollary by the BP-operators,
without weakening the results. Nonetheless Theorem 2.4 and the result (3) above for
the unrestricted case might be weakened when the BP-operators are replaced by the
BP-operators.

Combining Corollary 2.5(4) with the following result due to Sch6ning [17], we can
observe that C=P and MODkP, as wellas PP and P, are computationally harder than
PH unless PH collapses to a finite level.

pTHEOREM 2.6 [17]. For every k > 1, ifII c_ BP. 2, then PH E+I.
COROLLARY 2.7. Let Q be a subset of Z such that Q and Q Z. Then, if PH

c_ C [Q, GapP], then PH collapses to a finite level. Thus, for each KofC=P and MODkP,
K PH unless PH collapses to a finite level
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Proof. We first show that C[Q, GapP] has a polynomial-time many-one complete set.
Let #SAT be the function that, given a Boolean formula, gives the number of satisfying
assignments of the formula. It was observed by Valiant [24] (see also [16]) that #SAT
#P and for all functions F in #P, there exists a polynomial-time computable function

f such that for all strings z, F(z) #SAT(f(z)). Now define DifSATQ {
#SAT(bl)-#SAT(b2) E Q }. Then we easily see that DifSATQ is polynomial-time

many-one complete for C[Q, GapP] via the function f. Since Q and Q Z, it is
obvious that PH C_ tT[Q, GapP(PH)]. The first statement of this corollary follows imme-
diately from these facts and Theorems 2.4 and 2.6. The second statement is immediate
from the first.

Below we show some other consequences of Theorem 2.4 and Corollary 2.5. First
we show that for each K ofPP, C=P, and MODkP, K(PH) and K itself are interreducible
to each other under the polynomial-time randomized reducibility. Next we observe that,
when we consider a nonuniform version of the classes in the sense of Karp and Lip-
ton [12] and random analogues of those classes in the sense of Bennett and Gill [5], the
inclusions in Corollary 2.5 become equalities. To show these results, we first prove some
technical lemmas.

LEMMA 2.8. Let K be any class ofsets that is closed downward under thepolynomial-
time many-one reducibility. Then, BP BP.K BP.I,L

Proof. Since the inclusion BP.K c_ BP. BP.K is obvious, we show the converse. Let
L E BP.BP.K. Then, for any polynomial el, there exist a set A BP.K and a polynomial
p such that for each z,

Pr{w {0, 1}P(Izl)’x#w A iff x L} > 1 2-el(Izl).

Furthermore, for any polynomial e2, there exist a set B E K and a polynomial q such
that for each g,

Pr{u (0, 1}q(lul) "y#u B iff y A} _> 1 2-e(ll).

We now define a set C as follows:

c {x#wu lwl- p(Ixl),

lul q(Ix#wl) q(Ixl + 1 + p(Ixl)), and x#w#u e B}.

Since K is closed under the polynomial-time many-one reducibility and C is polynomial-
time many-one reducible to/3, we see that C is in K. For any string x, if x L, then

Pr(wu" x#wu C}

(Pr{w "x#w 6 A} Pr({u "x#w#u B}lx:/:/:w A))

+( Pr(w x#w f A} Pr({u x#w#u C B}lx#w f[ A))

> (1 2-1(11)) (1 2-2(11)) > 1 2-(11) 2--(Izl),

where w and u are randomly chosen from {0, 1}p(ll) and {0, 1}q(ll+l+p(ll)), respec-
tively, under uniform distribution, and Pr(XIY) denotes the conditional probability of
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the event X under the condition Y. Conversely, if z L, then

Pr{wu" x#wu e C}

(Pr{w "x#w e A} Pr({u’x#w#u e B}lx#w e A))

+( Pr{w x#w A} x Pr({u x#w#u e B}lx#w A))

_< 2-(11) 1 + 1.2-e-(Izl) 2-:*x(Izl) + 2-e.(Izl).

Thus, for every x,

Pr{v E {0, 1)p(lxl)+q(lzl/l/p(Ixl)) x#v C iff x L} > 1 2-el(Ixl) 2-e-(la:l).

Given any polynomial e, we may take the polynomials e and ee so that for all natural
numbers n, 2-e(’) > 2-1 (’*) + 2-(). is implies L .K.

Given a class K of sets, we denote by .K the class of sets that are polomial-
time many-one reducible to sets in K. Note that for any class K, <P-m -K

.K, i.e., .K is closed downward under the polomial-time many-one reducibil-
i, because of the transitivi of the reducibili.

COROLY 2.9. Let Q be a subset ofZ. Then, B. .C[Q, GapP(PH)]
C[Q, Gape].

Proof. We can easily see that .n. C[Q, Gape] n. .C[Q, Gape]. Thus,
we have, from Theorem 2.4 and mma 2.8, that Be. <P .C[Q, GapP(PH)]

P .C[Q, Gape] The converseBe. C[Q, Gape] c Be. Be. <P .C[Q, Gape] Be. <
inclusion is obvious.

The following corolla iimmediate from the one above.
COROLRY 2.10. (1) BP. PP(PH)= BP. PP.
(2) BP. C=(PH) BP. C=P and BP. co-C=P(PH) BP. co-C=P.
(3) For all k, BP. MODkP(PH) BP. MODkP and BP. co-MODkP(PH) BP.

co-MODkP.
DNmON 2.11 [5], [12]. t K be any class of sets. A set L is in K/poly if there

est a set A e K, an advicenction f from natural numbers to strings, and a polynomial
p such that If(n)l p(n) for all n, and L { x" x#Y(Ixl) A }. tK be a relativizable
comple class. A set L is in almost-K if for almost all oracle sets X, L is in K(X).

Recently it has become own that for any class K of sets, if the class is closed
downward under the polynomial-time majori reducibili, then BP.K K/poly and
BP. K almost-K; for the latter inclusion, we need some more assumptions on the class
K, e.g., it is a relativizable class and contains at most countably infinite sets. We can apply
this understanding to the BP-comple classes, because in the previous works such as
[17] the closure proper of the class under the polynomial-time majori reducibili has
been used only for ampliing the success probabili in the BP-opertor; on the other
hand, we have alrea@ had the amplified success probabili in the BP-operator.
LEM 2.12. For any class BP.K K/poly.
Proof. t L be a set in BP.K. Then we can easily see the following: there est a

set A K and a polynomial p such that for eve natural number n,

Pr{w e {0, 1}P() (Vz, Izl n) z L iff z#w A} > O.

From this fact, for eve natural number n, we can pick up a ed string w
such that for eve string x of length n, x L if and only if x#w A. Hence, when
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defining a function f by f(n) w,, we see that the function and the set A witness L
K/poly. [3

For characterizing the BP-complexity classes by means ofrandom tally oracles, Tang
and Watanabe [20] showed the following result. (Note that we mention their results by
using our BP-operator, though they showed it with the BP-operator.)

THEOREM 2.13 [20]. Ifany given class K ofsets contains at most countably many sets

and is closed under thepolynomial-time majority reducibility, then a set L is in BP.K ifand
only iffor almost all tally sets T, L Ko PF(T), where KoPF(T) is the class ofsets A such
thatfor some B K and a function f PF(T), A { z" f(z) B }. q

In the proof of the "only if" part of this theorem, we do not need to deal only with
tally sets; we may consider any oracle sets. (In the "if" part, we have to be concerned only
with tally sets when following their proof technique; but we are not interested in the "if"
part here.) Thus Tang and Watanabe could in fact prove the following lemma by their
own technique (we omit the details here).

LEMMA 2.14. Let K be any class that contains at most Countably many sets. Let L be
any set. Then, ifL BP.K, for almost all sets X, L KoPF(X).

It is easy to see that for every oracle set X and every subset Q of z, C[Q, GapP] o

PF(X) c_ C[Q, GapP(X)]. Thus, from Lemmas 2.12 and 2.14 and Corollary 2.5, we
obtain the following.

COROLLARY 2.15. For all subsets Q of Z, C[Q, GapP(PH)] c_ C[Q, GapP]/poly, and
for almost all sets X, C[Q, GapP(PH)] c_ C[Q, GapP(X)]. Thus, for each K of PP, C=P,
co-C=P, MODP, and co-MODP,

(1) K(PH) c_ K/poly almost-K, and
(2) K(PH/poly) K(PH)/poly K/poly.
We close this section by defining a natural extension of MODP and by observing a

result for the class similar to Corollary 2.5(4).
DEFINITION 2.16. Let be a function from strings to natural numbers. We define

MODP to be the class of sets L for which there exists a function F #P such that for
all z, L if and only if F() 0 (mod 9()).

COROLLARY 2.17. For allpolynomial-time computablefunctions 9from strings to nat-
ural numbers such thatfor all z, 9(z) >_ 2, PH c_ BP. MODP.

Proof. For all sets L PH, there exists a function F GapP(PH) such that for all, if z L, then F() 1; otherwise, F() 0. From this fact and Lemma 2.3, we have
the corollary. [3

We note that MODP cannot in general be defined as in Definition 2.2. Thus, at

present we do not know whether for all #, MODP(PH) c_ BP.MODP, though we feel
that it may be the case. In the final section, we will discuss why our proof technique
cannot be applied to the class.

3. Proof of Lemma 2.3. Lemma 2.3 is obtained from the following lemma.
LEMMA 3.1. Let X be an oracle set, let F be a function in #P(NP(X)), and let e be a

polynomial. Then there exist a function H GapP(X) and apolynomial s such thatfor all
strings x, Pr{w e {0, 1}s(ll): H(x#w) F(x)} _> 1 2-(11).

By applying this lemma inductively to each class in PH, we immediately obtain
Lemma 2.3. The details are left to the reader. We now concentrate on proving Lemma
3.1.

Proof ofLemma 3.1. In this proof we will use some more technical lemmas. For
clarity, the proofs of Lemmas 3.2-3.4 will be given after the proof of Lemma 3.1.



COUNTING CLASSES ARE AS HARD AS PH 323

We first mention the following result on #P(NP(X)) that allows us to change the
definition of the class.

LEMMA 3.2. For everyfunction F #P(NP(X)), there exist a set A co-NP(X) and
a polynomial p such thatfor all x, F(x) II{y p(,l): x#y c A}II.

In the remainder of this proof, when we write x#y, we assume lyl p(Ixl), to
simplify the argument. From the well-known characterization of co-NP(X) in [18] and
[27], we have, for the set A above, a set/3 c P(X) and a polynomial q such that for all
x#y, x#y A if and only if there is no string z E {0, 1}q(Im#yl) such that x#y#z B.
By using the set B, we will later construct a function Hx in GapP(X) and a polynomial
s such that for all positive integers n,

(A) Pr{w e {0, 1}s(n)
for all x#y A of length n, H1(x#y#w) 1, and

for all x#y q A of length n, HI (x#y=#=w) 0} >_ 1 2-e(n)

By using H1, we define the required function H as follows:

H(x#w) E Hl(X#y#w).
y{0,1)q(Izl)

Then we easily see that H is in GapP(X) (provided H GapP(X)) and that H and the
polynomial s above satisfy the condition of Lemma 3.1.

Now we show how to define the function H and the polynomial s above. To show
this, we use a consequence ofValiant and Vazirani’s result [25]. Following their paper, we
shall view a string w {0, 1}’ as a vector in GF[2]". We denote by u.w the inner product
of the vectors u and w in GF[2]". For a string x#y of length n and a finite number of
strings w,..., Wk {0, l}q(n), we define a finite set B#u and B#u(w,..., wk) by

B#y {z e {0, 1}q(’) x#y#z e B},

Bx#y(Wl,’",wk) {z e {0, 1}q(n) x#y#z e B

andwx z wk" z 0}.

Furthermore, we use the following notation. Let l, m be any positive integers. We denote
by Mat[l, m] the set of all m matrices whose components are strings in {0, 1}’. For
any matrix W Mat[l, m], we denote by Wj,k the (j, k)-component of W. Below, we
will view a matrix W Mat[l, m] as the string

W1,lW1,2"" W1,mW2,1W2,2 W2,m Wl,lWl,2 Wl,m,

which is in {0, 1}t’m Then we have the following lemma (from Valiant and Vazirani’s
result [25]).

LEMMA 3.3. Let e be a polynomial Then there exists a polynomial r such thatfor all
strings x#y oflength n,

(1) ifx#y A, then

Pr{W IIB # II 0 and

(gk, j, 1 <_ k <_ r(n), 1 <_ j <_ q(n)

Wk,j)ll 03} 1, and
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(2) ifx#y

_
A, then

Pr{W" ]]B#yll 1 or

(k, j, 1 <_ k <_ r(n), 1 <_ j <_ q(n))

[IIB#u(Wk,1,’", Wk,j)ll 1]} _> 1- 2-(’0,

where W is randomly chosenfrom Mat[r(n), q(n)] under uniform distribution.
Sincewe can take an arbitrary polynomial e in the above lemma, we obtain a stronger

observation than the one above: For all positive integers n,

(B) Pr{ W for all strings x#y of length n,

z#y A IIB#II- 0 and

(Vk, j, 1 < k < r(n), 1 < j <_ q(n))

[llB#v(Wk,,..., Wk,)ll 0], and

x#y A = IlB#ull- 1 or

(3k, j, 1 < k < r(n), 1 < j < q(n))

[llB#(Wk,x,’", Wk,y)ll---- X] }
_> 1 2-e(n),

where W is randomly chosen from Mat[r(n), q(n)] under uniform distribution.
Nowwe define the function H1 as follows: For all strings x#y of length n and all W

e Mat[r(n), q(n)],

Hl(x#y#W) {(G(x#y#A)- 1). II
<k<r(n),l <_j <_q(n)

(v(#v#w, w,) 1)}

(for other strings W, we define the value of H1 to be zero), where G is defined as follows
(which gives IlB#v(Wl,..., wk)ll): for all strings u,

[IB#yll

IlB#u(Wl,’",Wk)[[

if lyl r(lxl) and u A,

if lyl p(Ixl) and for some binary

strings w,...,w with Iwxl Iwkl
q(n), u WlW2"’’Wk,

otherwise.

Furthermore, we define the required polynomial s by s(n) r(n) q2(n). Then we
show that H and s satisfy (A) mentioned previously. (In what follows, recall that we
are viewing a matrix W Mat[r(n), q(n)] as a string in {0, 1}().) Let x#y be a string
of length n and let W E Mat[r(n), q(n)]. If x#y A, then IIB#yll 0 and for all
1 < k < r(n) and all 1 < j < q(n), IIB#u(W,x,..., W,)ll 0. Hence, in this case,
we have n(x#y#W) 1. Otherwise, IIB#II i or IIB#(Wk,x,’", Wk,y)ll 1 for
some k, j. Hence, in this case, we have HI(x#y#W) 0. From these observations,
we see that the condition in (B) implies the condition in (A), and hence see that the



COUNTING CLASSES ARE AS HARD AS PH 325

probability in (A) is greater than or equal to the probability in (B). Thus H1 and s satisfy
(A).

Obviously, (7 is in #P(X). Then, the following lemma tells us the membership of
/-/ in GapP(X). The lemma draws out an essential idea developed independently by
Gundcrmann, Nasscr, and Wechsung [11] and by Ogiwara [14]. Below, we shall view a
finite multiset of strings as a list of strings in the multiset and consider a list of strings as
an element of the set *(#*)*. Hence we shall view *(#*)* as the class of all finite
multisets. We also use the ordinary set-theoretical notations for multisets.

LEMMA 3.4 [11], [14]. Let F, G befunctions in #P(X) and let f: E* E* (#*)* be
a polynomial-time computablefunction. Then, thefunction

II
()

is in GapP(X).
This completes the proof of Lemma 3.1.
It remains to prove Lemmas 3.2-3.4. In those proofs, we will use the notations de-

fined in the proof of Lemma 3.1.
ProofofLemma 3.2. Let M and C be a polynomial-time bounded NOTM and an

oracle set from NP(X), respectively, that witness a function F being in #P(NP(X)).
Let N be a polynomial-time bounded NOTM that accepts C relative to X. We below
assume, without loss of generality, that all possible computation paths of M together
with possible oracle answers and those paths of Nx are encoded into binary strings in
a usual manner. Let w be a computation path of M on a given input x, which includes
possible oracle answers. Thenwe denote by YESM(Z, w) (respectively, NOM(z, w)) the
set of query strings that are made by M along path w and whose corresponding oracle
answer in w is "yes" (respectively, "no"). Now we define a set A as follows:

A {x#w#yl#... #y, w is a computation path of M on input x, m > O,

YESM(X, w) contains m strings zl,..., z,,

each yi is the lexicographically smallest accepting

computation path of NX on input z, and

NOM(X, W) C_ C}.

Furthermore, by a standard padding argument, we can so easily adjust the definition of
A (without changing its complexity) that for some polynomial p and any strings x and u,
if x#u A, then lul p(Ixl). Then, we see that A is in co-NP(X) and for every string x,

ProofofLemma 3.3. Let A and B be the same sets as in Lemma 3.1. In their pa-
per [25] Valiant and Vazirani showed the following claim. (Note that in the claim, we
modify their original result by using our present notations.)

CLAIM 1 [25]. For all strings x#y oflength n,
(1) ifx#y A, then

Pr{w,..., Wq(n) (Vk 0 <_ k <_ q(n))[llB#u(w,..., 0]} 1, and

(2) ifx#y

_
A, then

pr(wx,..., ZOq(,). (, 0 <_ <_ q())[llB#u(zox,..., w)ll- 1]) _> ,
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where each wi is randomly chosenfrom {0, 1 }q(’) under uniform distribution. (Recall that
q is the polynomial mentioned in Lemma 3.1.)

Repeating the random process in Claim 1 above and taking the disjunction of the
outcomes, we can amplify the probability in (2) without changing the probability in (1).
To state this more precisely, if we repeat the random process r(n) times where r is an
arbitrary polynomial, then we have the following:

(1’) if x#y E A, then

Pr{W llB#ull 0 and

(Vk, j, 1 <_ k <_ r(n), 1 <_ j <_ q(n))[l[B#u(Wk,, Wk, )ll 0]} 1,

and
(2’) if x#y q A, then

Pr{W’llB=#yll- 1 or

(qk, j, 1 < k <_ r(n), 1 < j <_ q(n))[llB=#y(Wk,1, Wk,y)ll 1]}

_> 1

where W is randomly chosen from Mat[r(n), q(n)] under uniform distribution. Thus,
when we take the polynomial r such that ()r(,) _< 2-(n) for all n > 0, we have this
lemma. [3

ProofofLemma 3.4. Taking the expansion of H(x), we can express H(x) by

H(x)=
SCf(x)

where we define 1-Iueo F(y) I-Iueo G(y) 1. For each additive term of the above
expression, if [If(x) SI[ is odd, then the term is negative; otherwise, it is positive. So,
by separating both cases from each other, we can express H(x) by

H(x) -sc_y(x),ll/(x)-SIl:even(Ylyes F(Y))(Yiy.f(x)-s G(y))

Esc’(,),ll;’()-sll:odd(i-ius F(Y))(i-iue,(,)_s G(y)).

It is easy to see that each summation in the last expression is realized as a #P(X) func-
tion. Thus H is in Gape(X). [3

4. Concluding remarks. We showed that all the known counting classes are at least
as hard as the polynomial-time hierarchy; that is, all sets in the polynomial-time hier-
archy are randomly reducible to sets in the counting classes with exponentially small
error probability. A crucial point in showing these results is that every counting class
of concern in this paper can be characterized in terms of a simple predicate over #P
functions (alternatively, Gape functions). In fact, we showed, as a more general result,
that the same relationship as above holds for all counting classes that can be defined as
in Definition 2.2 by using Gape functions.

Nonetheless we can obtain a broader family of counting classes, as Fenner, Fortnow,
and Kurtz have defined the gap-definable classes in [8]. As an immediate question re-
lated to this work, it may be asked whether our main result remains true for all of the
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gap-definable classes. Unfortunately we have not been able to settle the question. But,
by intuition, it seems unlikely to be the case. As an example more concrete than our
intuition,, we here consider SPP [8], that is, the class of sets L for which there exists a
function F in GapP such that for every z, z E L if and only if F(z) 1 and z E L if and
only if F(z) 0. In the definition of SPP, there exists a promise, as in the case ofUP [23]
and Few [7], that the GapP function never takes the value other than zero or 1. Because
of the existence of such a promise, we conjecture that SPP is not as computationally hard
as the polynomial-time hierarchy (at least in the sense of the present work). In [8] SPP
has been shown to be a gap-definable class. Thus we think that our main result cannot
be extended to the gap-definable classes.

As mentioned at the end of 2, MODgP is out of our family and is a typical example
to which our proof t._.echnique could not be applied. In order to establish the relationship
MODP(PH) c_ BP.MODP, we must probably show, for all L in MODP(PH), the
existence of H1 in GapP and a polynomial s such that for all z, z L if and only if
for (intuitively) almost all w of {0, 1}(11), nl (x#w) 0 (mod g(x#w)). By using our
argument, we can find a function H2 GapP such that for all x, x E L if and only if for
almost all w of {0, 1}(11), H2(x://:w) 0 (mod g(x)), but in general, we cannot know
how g(x) is related to g(x#w) nor how to construct the function H from H2. This is
why we could not establish the relationship, although we conjecture it is the case.

We think it is still important to find much closer relationships between counting
classes and classes in PH. As mentioned in 1, it seems very hard to show a new inclusion
relationship. Thus we mainly concentrate on some reducibility questions. In particular,
it is more important to know whether all sets in PH (or a class in PH) are polynomial-
time reducible to sets in C=P or MODP under deterministic reducibilities such as Turing
or truth-table ones. Considering the current status on this question, we think it still nice
to show that all sets in E2P are polynomial-time Turing reducible to sets in C=P (or in
MODP), if it holds, or to find oracles separating those classes.
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Abstract. The family of decision problems of the threshold languages Lg is considered. A threshold
language Lg is the set of n bit vectors having at least g(n) "l"s. Using a new technique for controllin the size
and structure of a hypergraph by a potential function, lower bounds are proven for these decision problems
on a PRIORITY PRAM with m shared memory cells and any polynomial number of processors. The lower
bounds are almost tight for the admissible range (m < ne). By combining these results with the results of
Vishkin and Wigderson and the results of Li and Yesha, this paper is able to show a complexity gap between
an m cell PRIORITY PRAM having an exponential (or unlimited) number of processors and one having only
a polynomial number. A consequence of these results is that PRIORITY PRAM and ARBITRARY PRAM
with m shared memory cells and any given polynomial number of processors have the same power (up to a
small factor) for computing symmetric functions.

Key words, threshold, PRAM, lower bounds, symmetric functions, parallel computation
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1. Introduction. This paper considers the PRAM model with limited shared mem-
ory. A PRAM consists of processors P(i), 1,...,p, and shared memory cells
C(i), i 1,..., m, through which the processors communicate. Since we assume that
the number of shared memory cells (m) is smaller than the input size (n), there are
also n read-only input cells (ROM) X(1),... ,X(n). There is a hierarchy among the
different PRAM models in accordance with the way they resolve write conflicts. The
strongest model is the PRIORITY model, where the minimal index processor (among
those attempting to write to the same cell) succeeds. We prove lower bounds for the
PRIORITY model with m shared memory cells, denoted by PRIORITY(m). In order
to get more powerful lower bounds, we assume that each cell in the shared memory can
accommodate strings of arbitrary length.

For a given function g g(n), the threshold language Lg (see [LY2]) is defined by

Lg (Xl,...,x)[x e {0,1} (1 < < n) and x > g(n)
i--1

By symmetry we can always assume that g(n) <_ n/2. The language La, where g(n)
n/2, is called the MAJORITY language. The complexity of the family of threshold lan-
guages has immediate implications on the complexity of symmetric functions.

1.1. Background and previous work The first to consider this model were Vishkin
and Wigderson [VW]. They proved an f(v/n/m) lower bound for computing MAJOR-
ITY (g n/2) on PRIORITY(m). Their lower bound does not depend on the number
of processors and is tight for all m <_ n log2 n. The upper bound can be easily obtained
using nx/ff processors. For general g(n) their method produces an f(v/g(n)/m) lower
bound. They argue that the case of a single shared memory cell (m 1), or of a con-
stant number, is not only interesting from the theoretical point of view, but is also well
founded in practice. For example, the "Ethernet" can be considered as a PRAM with a
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single shared memory cell. Vishkin and Wigderson also point out that in [GGKMRS],
[K], and [V] it is implied that the size of the shared memory may determine the hard-
ware feasibility of the parallel machine. More lower bounds for PRAMwith small shared
memory appear in [B], [FMW], [FRW], and others.

Li and Yesha made more progress on analyzing the complexity of threshold lan-
guages in this model. In [LY2] they considered the threshold languages Lg for g o(n).
They noticed that the f(x/-) lower bound (m 1) can be matched using (go.5) proces-
sors. Since this number is exponential in n, they suggested that it is of interest to find
more accurate bounds for smaller number of processors. They present a better lower
bound only for the special case where the number ofprocessors is linear and g o(r1/4).
Specifically, they showed that for o(nl/4), a PRIORITY(m) with O(n) processors
requires depth f(/m) to recognize La. For m 1, a matching upper bound can be
easily obtained.

However, the general problem remained open, i.e., to find the complexity of the
family of the threshold languages for any polynomial number of processors. Moreover,
the lower bound in [LY2] holds only for the subfamily where o(nl/4). Thus, it is
desirable to determine the complexity over the entire range of . From the fact that the
threshold can be found for any t in O(x/-) steps, even for m I and using only
processors (see [VW]), it follows that the lower bound of f(9) cannot be obtained for
every g o(n). Hence, it is of interest to know for which range the f(9) lower bound
holds and how it changes for bigger .

1.2. Our results. We address all these problems and prove a lower bound for the
general case. We assume without loss of generality that < n/2, since the complexity of
and n-g is the same because of symmetry. We prove that 2(t/m) rounds are necessary

for solving the L decision problem for any polynomial number ofprocessors and for the
admissible range of g. More precisely, we show that for any e > 0, and for any constant

c > 0, a PRIORITY(m) with O(nc) processors requires depth f(min(-a- ,1/2-, )) This
bound is tight for m 1 and < n/2-, since it can easily be obtained by using
processors. It is almost tight (up to a factor of nz’) for the remaining range of t and for
all m < r". This follows from the existence of a simple algorithm that runs using one
shared memory cell in O(n/9) rounds and n/ processors, and due to the fact that the
lower bound is reduced by a factor of at most m for m cell PRAMs, compared to a single
shared memory cell.

Our results thus determine the complexity of the family of the threshold problems
when a polynomial number of processors is available. Moreover, we conclude that the
running time of an algorithm that uses a polynomial number of processors will not be
better than the running time of one that uses only a linear number of processors. Our
results also show that the complexity of the problem with a polynomial number ofproces-
sors is different from the complexity in the exponential case. Thus, there is a quadratic
gap between the cases. For example, for m 1 and exponential number of processors
the complexity is O(x/-); however, for the polynomial range, we prove that it behaves in
the following curious way. It is t for < n/, and it becomes n/ for the remaining
domain up to a factor of less than n".

By combining our results with those of [LY2], we show that for any polynomial num-
ber of processors and m < n", PRIORITY(m) and ARBITRARY(m) require the same
time complexity (up to a factor of at most n’) for computing any symmetric function.
For m 1 we prove that the two models are equivalent for a large family of symmetric
functions. These results are based on the strong connection between computing sym-
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metric functions and threshold decision problems (see [LY2]).
Let us briefly elaborate on the techniques that are used to prove our main lower

bound. The main new tool is the use of a potential function on a dynamic hypergraph
that changes at every step according to the actions of the processors. The set of vertices
of the hypergraph corresponds to the ROM cells. The hyperedges reflect, at each step,
the main set of constraints defining the legal inputs at that step. We perform several
types of transformations on the hypergraph so as to maintain the following invariant:
all the legal inputs have the same history. The construction also guarantees that the set
of legal inputs contains at least one input in Lg and at least one input that is not in Lg.
Interestingly, the structure and size of the hypergraph are controlled by the potential
function. These structures also serve to control the information that each processor can
deduce from the ROM and the shared memory.

2. The main lower bound. Each step of the PRAM computation consists of four
phases: each processor P(i) reads from some shared memory cell C(j), reads from some
ROM cell X(k), performs a computation, and may try to write into some shared memory
cell C(1). The actions and the next state of each processor depend on the current state,
the values read from the ROM, and the shared memory. See [VW] and [LY] for formal
definitions.

The strongest model, the PRIORITY model, is considered. Thus, the minimal index
processor succeeds in writing when write conflicts occur. Recall that PRIORITY(m)
denotes the model with m shared memory cells. Since each round of PRIORITY(m)
can be simulated by 2m rounds of PRIORITY(I), all the lower bounds of m 1 hold
for PRIORITY(m) when divided by 2m. Thus, we can concentrate in the case where
m=l.

We state our main theorem.
MMNTHEOREM. Let k be anypositive integer. PRIORITY(I) requires f(g/k) rounds

to recognize Lo using pprocessors when thefollowing inequality holds:

(2.1) p[2k+ag] 2k+1 < nk+l.

COROLLARY 1. Let e > 0 and d o(log n). Then f(g/d) rounds are needed in order
to recognize L using p O(na) processors for g < n/2-’.

Proof. For g < n1/2-" we can choose k Cd, where C is large enough constant
such that (2.1) holds for large enough n. [q

An important special case of Corollary 1 is when d is constant.
COROLLARY 2. For anypolynomial number ofprocessors f(g) rounds are needed to

recognize L for g < n/2-.
A matching upper bound can be easily obtained using a linear number of processors

as follows. Associate a processor with each ROM cell. At each step each processor
whose input bit is 1 tries to write its identity into the shared memory cell. Then it reads
from this cell and checks if it succeeded in writing. If it did succeed, then it halts. An
input is in L if and only if the algorithm is alive for at least g steps.

Thus, we cannot improve the asymptotic running time using any polynomial number
of processors compared to the case of using only a linear number of them. The results
also separate, as we already mentioned, between the power of a polynomial number of
processors and the power of an exponential number, since the complexity in the latter
case is O(x/-).

Note that the complexity is monotonic (up to a constant factor) in g for g < n/2,
since we can pad the input vector by l’s. We conclude a lower bound for the remaining
range of g.
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COROLLARY 3. Foranypolynomialnumberofprocessors f(n11- rounds are needed
to recognize Lo for 9 >_ n/-.

This bound is almost tight as it is easy to find the exact threshold (to sum up the bits)
in O(n1/2) rounds using n1/ processors as follows. Partition the input into n1/ blocks,
each of size n1/, and associate a processor with each block. In the first n1/ rounds each
processor sums up the bits in its block. In the next n1/ rounds each processor in turn
adds its result to the shared memory cell. This results in the bit sum.

In fact, we can further decrease the n gap between the upper and lower bound
for g >_ n1/2-. By choosing k O(v’logn) we can obtain from our main theorem

an fl(g/k) lower bound for g n112/2(x/Tn). This yields a gap of O(v/logn) for

n/2- <_ g < n/2/2(V’) and for g > nl/2/2(V’) the gap is reduced to at most

Corollary I combined with the result of [VW] yields the following lower bound.
COROLLARY 4. For <_ 1/- and d o(log n), 9(g/d + x/) rounds are needed to

recognize La using 0() processors.
This result matches up to a constant factor the [LY2] upper bound of O(g/d +

using () O(na) processors.
Recall that PRIORITY(l) can simulate each step of PRIORITY(m) in at most 2m

steps. This yields the following corollary.
COROLLARY 5. All ofthe above lower bounds dMded by 2m apply to PRIORITY(m).

Thus, for m <_ n the bounds are tight up to a factor of at most n (in fact, up to at most
ne for any 6 > e).

3, The proof of the Main Theorem. In this section we prove the main theorem. In
the first part the main inductive hypothesis is presented and proved. In the second part
the proof of the main theorem is completed using the main inductive hypothesis and
some of the transformations defined in the first part.

First let us assume that p >_ n1/2, as for the easy case p <_ n112 the complexity for
every g is clearly O(n/p), which is more than what the theorem claims in this case. Let
k be an arbitrary positive integer.

We start with some definitions. Define the history of a computation through t steps
as a vector H1,..., H, where H is the contents of the shared memory at step i. For
t 0, 1,... the adversary defines collection of inputs I on which M has the same history
through step t (It c_ It-1 for t >_ 1). Whenever t < g/k, then I contains one input in
Lg and one not in Lg. Thus the algorithm cannot recognize Lg in depth t.

Let I0 {0, 1}’. We will define sets Bt c_ {1,..., r}, Bt-1 C_ Bt. The hypergraph
is defined on the vertices {1,..., n}. At stage t the edges of the hypergraph will be

iik+l ]ti where Ft is a set of subsets (hyperedges), each of size i, of the vertices.Ft ’-’i=1 t,

Let B0 4 and F0 4.
Intuitively Bt is the set of indices of cells whose input bits are fixed to be I at the end

of step t. A hyperedge (sometimes referred to as an edge) in the hypergraph corresponds
to a constraint on the input. The cells, whose indices are the vertices of the hyperedge,
cannot all contain 1. In particular, Ft is the set of indices (edges of size 1) of the cells
whose bits are fixed to be zero. Furthermore, we do not let any processor see more than
k l’s from the input cells (in addition to the l’s in the set Bt, which are themselves known
to all the processors). This is done by constructing the hypergraph edges (constraints).
Let

q
92k+4
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Define a potential function W on the hypergraph F,

k+l

W(F) q-(’-l)lF’
i--1

3.1. The main inductive hypothesis. The main inductive hypothesis for the end of
step t I is the following:

(I1) All the inputs in It_ have the same history through step t 1.
(12) On all the inputs in It_ and for any processor P(j) the set {i[i Bt- and

P(j) read a value 1 from X(i) during steps 1 to t 1} has a cardinality of at
most k.

(13) IBt_ll < k(t- 1).
(I4) W(Ft_) <_ q-k(t- 1)k+ -+- 2kq(t- 1) + (t- 1)2.
(I5) For any s < r _< k + 1 and all ji, 1 _< i _< r, if [{j,... ,j} Ft_l and for

1 < i < sji e Bt-] then {js+,"’,jr}
(I6) /t- {(x,... ,x,) I0l xj 1 for all j in Bt_, and xjxj....xj, 0 for

any 1 < i _< k / 1 and all {j,..., ji} 6 Ft_}.
Clearly the main inductive hypothesis holds for t 1 0. We have to prove it for

t assuming it is true for t 1. We start step t by a constraint-adding stage. The goal of
this stage is to satisfy (I2) for the end of step t. For that we add to Ftk a set At of
hyperedges, each of size k + 1. Let At {{j,... ,jk+l}[ for i 1,... ,k + 1, ji is not in
Bt_ and on some input in It_ some processor read 1 from all the X(ji) during steps 1
through t}.

We would like to estimate the size of At in order to evaluate the change in W. Let
Rt(1) be all the sets {j,... ,jk+} such that the ji’s are not in Bt_, and on some input
in It- processor P(1) read a value 1 from X(ji) for all 1 <_ i _< k / 1 during steps 1 to t.

For 1 < t < t2 < < tk _< t- 1 let I_(t,...,tk)be all the inputs x It-1
such that on input x processor P(l) read at step ti, for all 1 < i < k, a value 1 from some
ROM location X(ji), ji is not in Bt-x and all the ji’s are different.

CLAIM 1. All the inputs in I_ (t, tk) contribute at most one set to Rt(1).
Proof. The basic idea of the proof is to prove by induction on j, j _< t, that during

steps 1 to j on all the inputs in I_ (t,..., tk), the sequence of ROM locations read by
P(1) is the same, and unless j t their values are also the same. The claim follows easily
from this assertion and from (I2).

The assertion is clearly true for j 0. Assume that the assertion holds up to step
j- 1. Thus, all the inputs in I_ (tl,..., tk) have the same history and on all these inputs
the same sequence of values was read by P(1) from the ROM. Thus, at step j on these
inputs, P(1) will read from the same location (denoted by j*) from the ROM. It is left
to show that P(1) will also read the same value when j < t.

We consider four cases. If j ti for some 1,--., k, then by definition the value
is always 1. If j* Bt-, then by (I6) the value is also necessarily 1. If j* t’ for some
i 1,..., k, where t’ is the common (by induction) location in the ROM from which
P(1) read at step ti on all the inputs I_(t,... ,tk), then clearly the value is 1 for all
these inputs. Otherwise, the value has to be zero: a value 1 would contradict (I2), since
t,..., t, j* would be a sequence of k + 1 different places not in Bt- from which P(1)
read a value 1.

Since At c_ [.J=Rt(1), Claim 1 implies that

t-l) < p(t_l)kIAtl <P k
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Let G be the hypergraph after this stage. Hence

W(G) < W(Ft 1) + q-k P (t 1) k

We need to remark that at almost any point in the proof the hypergraph might have
redundant edges, i.e., edges that correspond to redundant constraints. Specifically, if
for some hyperedges X and Y, X c Y, then we may omit Y. This neither changes the
legal inputs nor increases the potential function. However, assumption (15) should be
interpreted in the following way. The subset {js+l,’", jr} (in (15)) is not required to
be an edge in the hypergraph, but rather some subset of it is required to be an edge.

We define on the hypergraph F the weighted sunflower transformation as follows. For
a current hypergraph denote by d{jl,’’’, j} the number of hyperedges of size r that
contain {jl,’’’, js} as a subset (s < r). If for some s, some set {jl,’’’, j} which is not
an edge in the current F satisfies

k+l

q-(r-1)d{jl,...,j} > q-(s-x)
r--s-I-1

then we add a new edge {jl,’’’, j8 } to the current F and omit all the edges that contain
this set as a subset. In this way we create a current F. We repeat the above transfor-
mation on the current hypergraph as much as possible in any arbitrary order. Clearly,
the number of hyperedges decreases at each transformation and therefore the process is
final. The potential function W on F does not increase during this process, since the po-
tential of a new edge is at most the sum of the potentials of the edges that it has replaced.
Let Gt denote the hypergraph at the end of this process. Thus,

w(a,) < w(ai) < + p
(t x)

Let/ {(xl,... ,Xn) e IoI Xj 1 for all j in Bt-1, and xjlxj2...xj, 0 for any
1 < < k and all {jl,’",ji} G}.

Clearly 1 c_ lt-1, since the constraint-adding stage as well as the weighted sunflower
transformations could just restrict the legal inputs. Now there are two possible cases.
The first is that no processor writes at step t on any input in I. In this easy case we let
Bt Bt-1. The general case is when there exists a processor that writes at step t on
some input in I. Consider the set of processors which write at step t for some input in

I. Let P(1) be the minimum index processor in this set. Suppose that P(1) writes at step
t on x 1. Let Ut, Vt, respectively, be the set of ROM locations from which P(1) has
read a value 0, 1, respectively, on input x by step t. Clearly lUll <_ t, In order to force
P(1) to write on all legal inputs (and by that (I1) will hold at the end of step t) we need
to fix the bits of Vt to be 1 and of Ut to be zero. We let Bt Bt- t2 Vt; later in the proof
(after the spreading transformation) we will force the bits of Ut to be zero by adding each
bit as an edge to the hypergraph. By the definition of Bt and I and by (I2), (15)(both
for t 1), we can easily conclude that

IBt Bt-xl < k,

and thus (13) will hold at the end of step t.
Now the edges (constraints) in G should be changed in accordance with the new

information in order to satisfy (15). This is called the spreading transformation. For any
s let Z {jl, , j8 } be a set of any s elements in Bt Bt- 1. If it is a subset of any edge
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in G (r > s), then we must create a new edge of the r s remaining elements, and add
it to the hypergraph. Moreover, since

k+l

" (--1)q-(r-1)ds{31,"" ,is} <_ q--
r=s+l

(otherwise, it would contradict the weighted sunflower transformations), then

k-f-1

Y q-((r-s)-l)drs{Jl,"" ,js} < q-(S-1)qS q
r=s+l

Hence, the total potential of the edges that were created by the set Z is at most q. We
perform the spreading transformation simultaneously for all the subsets of Bt Bt-1
(at most 2 subsets) and conclude that the potential function is increased by at most 2q.
Define Ft to be the hypergraph after the spreading transformation union with lUll _< t
sets, each of size 1, of all the individual elements of Ut. Clearly Ft satisfies (15). More-
over, each of these one-element sets adds at most 1 to the potential function and thus

W(Ft) < W(Gt-1) + 2kq + t

Therefore

W(Ft) _< W(Ft_I) + q-k P (t 1) k + 2kq + t

which yields (14) for the end of step t. Finally, we define It according to (16) with t
instead of t 1.

This completes step t. We can easily verify that the main inductive hypothesis holds
for t, since each assumption was satisfied at some point in the proof and remained satis-
fied henceforth.

3.2. Proving the lower bound using the main inductive hypothesis. We will prove
that the algorithm cannot stop in t steps for t < g/k. Fix some T < g/k. We first look at

0 otherwise. Clearly this input belongs1 for i BT and xthe following input: xi
to IT. By (I3), IBTI < g and therefore it is not in Lg. Constructing an input in IT which

" 0 for F" 1 for i IT, xis also in L is more complicated. We start with x
We need to find g ]BT] <_ g other locations with value 1 that will be consistent with
all the constraints of FT. More precisely, we have to find an independent set of size g in
the hypergraph, which is a set of vertices of size g such that each edge of the hypergraph
contains at least one vertex not in this set. If such an independent set exists, we will set
the input bits that correspond to those vertices to be 1 (in addition to the input bits of
the set B), and the remaining vertices to zero. This will define an input in IT which is
in L and will complete the proof.

First we can easily check that inequality (2.1) yields (as p >_ n/2) that

g <_ nl/2/32
and by definition of q (q g2/cn+, and inequality (2.1),

q-k P _k+ < nil6-.Y
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Hence, easy computation shows that for t < g,

W(F,) < n/a.

Constructing an independent set consists of g steps. These steps are independent of the
actions of the processors after step T. However, for simplicity of notation these pseu-
dosteps are referred to as steps t T+1,. , T+g. At each such step t T+1,. , T+g
we perform the following operations. First the weighted sunflower transformations are
performed on the current hypergraph Ft-1 and this results in a hypergraph Gt. Then a
vertexj (not in Bt- or Gt1) is chosen, as will be described later. Let Bt Bt-1LI {j} and
set the corresponding input bit to 1. Finally, we perform the spreading transformation
for this vertex, i.e., the vertex is omitted from each hyperedge containing it, and thus the
size of each such hyperedge is decreased by 1.

It is left to show that at every pseudostep t it is possible to choose a new vertex {j}
to add to Bt-1. That means that for any T + 1 < t < T + g we need to show that there
is a vertex whose bit can be set to 1 consistently. Note that (15) holds for the hypergraph
Gt also for these pseudosteps and therefore the constraints (edges) that contain vertices
in Bt-1 are redundant. Moreover, the edges in Ui>1G that contain vertices from Gt are
redundant as well. Thus, each vertex j which is not in Bt-1 t_J Gt can be added to Bt-1
to continue the process, since the input {xi 1, E Bt-1 LJ {j} and xi 0 otherwise}
is legal in the current hypergraph. Nevertheless, we still have to show that such a vertex
j always exists, i.e, IBt_l] + IGtl < n. To this end, we first observe that

IBt_ll IBT[ + (t 1 T) < g + g < 2nl/2/32 < nil6.
Moreover, the potential function increases by at most q at each of these g pseudosteps
due to the spreading transformation. Since gq < nil6 and the potential function was
at most n/4 at the end of step T, we conclude that during the g pseudosteps W(Ft) <
n/4 + nil6. However, the potential of each edge in Ft c_ Ft is 1, and each edge in Ft
has a nonnegative potential. Hence,

for the current hypergraph. Therefore

IBt_ll + IGt < n/16 + n/4 + n/16 < n

and such a j exists. Hence, for any T < g/k we found two inputs with the same
history through the T steps, one ofwhich is in L and the other ofwhich is not. Thus, we
cannot recognize Lg in fewer than g/k steps. This completes the proof of the main
theorem.

4. The complexity ofcomputing symmetric functions. Comparing the relative power
of models is known to be an important question. It is known that PRIORITY is strictly
stronger than ARBITRARY (see [FMW] and [FRW] for models without a ROM and
[LY], [LY1], and [FLRY] for models with a ROM).

The question is whether this is true for symmetric functions. Note that there is a
strong connection between the threshold decision problem and computing symmetric
functions. In [LY1] it is shown that PRIORITY(l) and ARBITRARY(I), both without
ROM, are equivalent for computing symmetric functions of boolean inputs.

Using the results from the previous section with results from [LY2], we extend the
results of Li and Yesha and prove that for any polynomial number of processors (in fact,
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up tO r(lg n)), PRIORITY(m) and ARBITRARY(m), where m < n", both with ROM
and the same number of processors, have the same power, up to a factor of at most
nz’, for computing any symmetric function. For m 1 we show that the two models
are equivalent, up to a constant factor, for a large family of the symmetric functions. In
[LY2] it is proved only for a linear number ofprocessors and a smaller class of symmetric
functions or for a large enough number of processors.

For any symmetric function f on n bits we associate a function f such that f(i) j
whenever f(3) j for 131 i (131 -1 z). The threshold of f was defined in [LY2]
by

Ill min{h +llf is a constant on the closed interval [h, n -/]}.

They showed that a lower bound for Lg is also a lower bound for computing a symmetric
function f with threshold fl 9. Thus using the result from the previous section we
conclude the following theorem.

THEOREM 4.1. Let f be any symmetcfunction. For any e > 0 PRIORITY(m) with
ROM and a polynomial number ofprocessors requires f(min( Ill n1/- )) to compute f

It is quite easy to design (see [LY2]) an algorithm in ARBITRARY(I) that matches
the bound up to a constant factor form 1 and Ifl -< n/2-’. Thus for any f andm < n"
the bounds are tight up to at most n" (in fact, up to n for any 6 > e). Moreover, we
conclude the following theorem.

THEOREM 4.2. Let > 0 be any number and m < n. For anypolynomial number of
processors, PRIORITY(m) andARBITRARY(m), both with ROMand the same number
ofprocessors, have the same powerfor computing all symmetric functions on n bits, up to
a factor of at most n for any 6 > . For m 1 and Ifl -< the two models are
equivalent up to a constantfactor.

Theorems 4.1 and 4.2 can be extended in the obvious way to the range of super-
polynomial number of processors, i.e., when the number of processors is O(na), where
d o(log n).
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CONVEX DECOMPOSITION OF POLYHEDRAAND ROBUSTNESS*
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Abstract. This paper presents a simple algorithm to compute a convex decomposition of a nonconvex
polyhedron of arbitrary genus (handles) and shells (internal voids). For such a polyhedron S with n edges and
r notches (features causing nonconvexity in polyhedra), the algorithm produces a worst-case optimal O(r2)
number of convex polyhedra S, with t_J=1S S, in O(n0 + r7/9) time and O(nr+ .5/) space. Recently,
Chazelle and Palios have given a fast O((n + r) log r) time and O(n + r2) space algorithm to tetrahedralize
a nonconvex polyhedron. Their algorithm, however, works for a simple polyhedron of genus zero and with
no shells (internal voids). The algorithm, presented here, is based on the simple cut and split paradigm of
Chazelle. With the help of zone theorems on arrangements, it is shown that this cut and split methodis quite
efficient. The algorithm is extended to work for a certain class of nonmanifold polyhedra. Also presented is
an algorithm for the same problem that uses clever heuristics to overcome the numerical inaccuracies under
finite precision arithmetic.

Key words, computational geometry, robust computations, geometric modeling, finite element analysis,
computational complexity

AMS(MOS) subject classifications. 68U05, 65Y25, 68Q25

1. Introduction. The main purpose behind decomposition operations is to simplify
a problem for complex objects into a number ofsubproblems dealing with simple objects.
In most cases, a decomposition in terms of a finite union of disjoint convex pieces is use-
ful, and this is always possible for polyhedral models [5], [12]. Convex decompositions
lead to efficient algorithms, for example, in geometric point location and intersection
detection; see [12]. Our motivation stems from the use of geometric models in SHILP,
a solid model creation, editing, and display system developed at Purdue [1]. Specifically,
a disjoint convex decomposition of simple polyhedra allows for more efficient algorithms
in motion planning, in the computation of volumetric properties, and in the finite ele-
ment solution of partial differential equations.

The surface S of a polyhedron S is called a 2-manifold if each point on S has
an e-neighborhood that is homeomorphic to an open 2D ball or half-ball [2]. Polyhe-
dra, having 2-manifold surfaces are called manifold polyhedra. Nonmanifold polyhedra
may have incidences as illustrated in Fig. 1. Manifold polyhedra with holes are homeo-
morphic to torii with one or more handles. Manifold polyhedra with internal voids are
homeomorphic to three-dimensional annuli, that is, spheres with internal voids.

We represent polyhedra with their boundaries, which consist of zero-dimensional
faces, called vertices; one-dimensional faces, called edges; and two-dimensional faces,
called facets. A reflex edge of a polyhedron is an edge where the inner dihedral angle
subtended by two incident facets is greater than 180. Manifold polyhedra can be non-
convex only due to reflex edges. Notches in manifold polyhedra refer to reflex edges
only. In nonmanifold polyhedra, however, notches refer to other types of incidences as
well; see Fig. 1.

The problem of partitioning a nonconvex polyhedron S into a minimum number of
convex parts is known to be NP-hard [22], [24]. Rupert and Seidel [25] also show that
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1SHILP stems from the Sanskrit word SHILP-SHAsTRA, the science of sculpture.
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roups
of features

TyI 3 notch

FIG. 1. Nonmanifold incidences or special notches.

the problem of determining whether a nonconvex polyhedron can be partitioned into
tetrahedra without introducing Steiner points is NP-hard. For a given polyhedron S with
n edges ofwhich r are reflex, Chazelle [5], [6] established a worst-case O(rz) lower bound
on the number ofconvex polyhedra needed for complete convex decomposition of S. He
gave an algorithm that produces a worst-case optimal number O(r) convex polyhedra
in O(nra) time and in O(nr) space. Recently, Chazelle and Palios [7] have given an
O((n + r) log r) time and O(n + r) space algorithm to tetrahedralize a subclass of
nonconvex polyhedra. The allowed polyhedra for their algorithm are all homeomorphic
to a 2-sphere, i.e., have no holes (genus 0) and shells (internal voids).

Results. In 3, we present an algorithm to compute a disjoint convex decomposition
of a manifold polyhedron S that may have an arbitrary number of holes and shells. Given
such a polyhedron S with n edges of which r are reflex, the algorithm produces a worst-
case optimal O(r) number of convex polyhedra Si with kt_Ji=S S in O(nr + r7/)
time and in O(nr + r5/2) space. We extend this algorithm to work for nonmanifold
polyhedra that do not have abutting edges or facets but may have incidences as illus-
trated in Fig. 1 The algorithm presented in this paper is based on the repeated cutting
and splitting of polyhedra with planes that resolve notches. Chazelle, in [5], first used
this method. We improve this method to obtain better time and space bounds based
on a refined complexity analysis and the use of efficient algorithms for certain subprob-
lems. In 4, we give an algorithm for the same convex decomposition problem that uses
sophisticated heuristics based on geometric reasoning to overcome the inaccuracies in-
volved with finite precision arithmetic computations. This algorithm runs in approxi-
mately O(nr2 + nr log n + r4) time and O(nr + r5/2) space.

2. Preliminaries.

2.1. Notches. Our algorithm applies to polyhedra that are nonconvex due to the
presence of the following four features, called notches.

1. Type 1 notches: These notches are caused by isolated vertices and edges on a
facet. An isolated vertex or edge on a facet is not adjacent to any other edge of
the facet. See Fig. l(a).

2. Type 2 notches: These notches are caused by the edges along which more than
two facets meet, as illustrated in the Fig. l(b). If there are 2k (k > 1) facets
incident on e, we assume that they form k notches.

3. Type 3 notches: These notches are caused by vertices where two or more groups
of features (facets, edges) touch each other, as illustrated in the Fig. l(c). The
features within a group are reachable from one another while remaining only
on the surface of S and not crossing the vertex. Actually, type 1 notches are a
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subclass of these notches. For convenience in the description, we exclude type
1 notches from type 3 notches. The number of groups attached to the vertex
determines the number of type 3 notches associated with that vertex.

4. Type 4 notches: These notches are caused by reflex edges. A manifold polyhe-
dron can have only this type of notches.

The notches of type 1, type 2, and type 3 are called special notches, as they are present
only in nonmanifold polyhedra. In our algorithm, we first remove all special notches
from S, creating only manifold polyhedra. Subsequently, type 4 notches of the manifold
polyhedra are removed by repeatedly cutting and splitting the polyhedra with planes
resolving the notches. Let an edge g with fl, f2 as its incident facets be a notch in a
manifold polyhedron. A plane Pg that passes through g is called a notch plane if both
angles (fl, Pg) and (Pg, f2), as measured from the inner side of fl and f2, are not reflex.
In other words, a notch plane resolves the reflex angle of a notch. Clearly, for each notch, there exist infinite choices for Pa. Note that P may intersect other notches, thereby
producing subnotches as well. See Fig. 2.

pi-
g,,--

notch

FIG. 2. A notch and its notch plane, the cross-sectional map, and a cut.

2.2. Data structure. Let S be a polyhedron, possibly with holes and shells, and hav-
ing s vertices: {v, v,..., vs}, r edges: {e, e,..., e,}, and q facets: {f, f,..., fq}.
These lists of vertices, edges, and facets of S are stored similarly to the star-edge repre-
sentation of polyhedra [19].

Vertices" Each vertex is a record with two fields.
1. vertex.coordinates: contains the three-dimensional coordinates of the vertex.
2. vertex.adjacencies: contains pointers to the edges incident on the vertex.

Edges: Each edge is a record with two fields.
1. edge.vertices: contains pointers to the incident vertices.
2. edge.orientededges: contains pointers to the record called orientededges, which

represent different orientations of an edge on each facet incident on it. The
orientation of an edge on a facet f is such that a traversal of the oriented edge
has the facet f to its right.

Orientededges: each orientededge is a record with four fields.
1. orientededge.edge: contains pointers to the defining edge.
2. orientededge.facet: contains pointers to the facet on which the orientededge is

incident.
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3. orientededge.orientation: contains information about the orientation of the edge
on the facet.

4. odentededge.nextorientededge: contains pointers (possibly more than one) to the
next orientededges on the odented edge cycle on a facet. Seefacet cycles below.

Facets: each facet is a record with two fields.
1. facet.equation: contains the equation of the plane supporting the facet.
2. facet.cycles: contains pointers to a collection of oriented edge cycles bounding

the facet. The traversal of each oriented edge cycle always has the facet to the
right. Each oriented edge cycle is represented with a linked list of orientededges
on the cycle. If there is an isolated vertex on the facet (Fig. l(a)) a pointer to
the vertex is included in facet.cycles as a degenerate oriented edge cycle. An
isolated edge is represented with the oriented edge cycle of two orientededges.
For a nonmanifold polyhedron, a facet may have configurations as shown in Fig.
3 where a vertex or an edge is considered more than once in the oriented edge
cycles, though an oriented edge is included only once.

2.3. Useful lemmas. Let thepolygonal boundary refer to an oriented edge cycle em-
bedded on a plane with no edge intersecting the other except at their endpoints. The
traversal of a polygonal boundary may pass through an edge or a vertex more than once.
In the rest of the paper, we use the term polygon to mean a connected region on a plane
that is bounded by one or more polygonal boundaries. For example, such a polygon cor-
responding to the facet f is shown in Fig. 3. Let G be a polygon with vertices vl, v2, , vk
in clockwise order. A vertex vi is a reflex vertex of G if the outer angle between the ori-
ented edges di_l (V-l, vi) and d (v, vi+) is less than or equal to 180. The outer
angle between two consecutive oriented edges d_ and d is measured in the anticlock-
wise direction from d to d_x. Note that with this definition, v4, v5 of the nonsimple
facet in Fig. 3 are reflex vertices, though va is not. The vertices that are not reflex ver-
tices are called normal vertices of (7. The boundary of a polygon G can be partitioned
into z-monotone (or//-monotone) maximal pieces called monotone chains, i.e., vertices
of a monotone chain have x-coordinates (or//-coordinates) in either strictly increasing
or decreasing order. See Fig. 4.

In subsequent sections, we use the following lemmas.
LEMMA 2.1. Let G be a polygon with r reflex vertices. The number ofmonotone chains

c in G is bounded as c < 6(1 + r).
Proof. The proof follows from Theorem 3, [5, p. 22].
LEMMA 2.2. Let G be a polygon with s normal vertices. There are at most O(s) mono-

tone chains in G.

two orAented edges
the same faet

FIG. 3. A nonsimplefacet.
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1
v
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is smno:one ha:n.

v? 1
is a mono.one Chain.

FIG. 4. Monotone chains in a polygon.

Proof. Let v be the vertex ofG with the minimum v-abscissa, and let B be the bound-
ary obtained by removing the vertex v and an e-ball around v from the boundary of G.
Add six more edges to/3, as shown in Fig. 5, to construct a new polygon G’. The polygon
G’ is oppositely oriented with respect to G. Note that each reflex vertex of G’ corre-
sponds to a normal vertex of G. Thus G’ has no more than s reflex vertices, and accord-
ing to Lemma 2.1, its boundary is partitioned into O(8) monotone chains. The polygon
G cannot have more monotone chains than G’, which implies that G has O(s) monotone
chains. [3

FIG. 5. Constructing a polygon ofopposite orientation.

In the following lemma, the line segments of a line that are interior to a polygon are
called chords.

LEMMA 2.3. Let G be a polygon (possibly with holes) with r reflex vertices. No line can
intersect G in more than " + 1 chords.

Proof. The proof proceeds inductively. The case for r 0 is trivial. In the general
step, consider a polygon G with - k > I reflex vertices. Take an arbitrary reflex vertex,
and resolve it by a cut through it. The cut may separate G into two polygons G1 and Gz
of r and r2 reflex vertices, respectively, such that rl + rz < k 1. Furthermore, the
number of chords of a line L in G cannot exceed the sum of the number of chords in
G1 and Gz. Therefore, using the induction hypothesis, one can conclude that the line L
intersects G in no more than rl + 1 + rz + 1 < k + 1 chords. If, however, the cut does
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not split G, one ends up with a polygon G’ of at most k i reflex vertices. Since the line
L may intersect the cut, just performed, the number of chords in G is less than or equal
to that in G’, which again implies that the former is less than or equal to k 1 + 1 <
k+l.

LEMMA 2.4. Let p be a set of k polygons with r reflex vertices. No line can intersect p
in more than r + k chords.

Proof. The proof follows immediately from Lemma 2.3.

2.4. Nesting ofpolygons. The followingpolygon nesting problem arises as a subprob-
lem in our polyhedral decomposition. Let p be a set of k polygons Gi, 1,..., k,
none of which intersects others along its boundary. Corresponding to each polygon
Gi, we define ancestor(G) as the set of polygons containing G. The polygon Gk in
ancestor(Gi) is called the parent of Gi if ancestor(Gk)=ancestor(Gi) G. Note that
there may not exist any such G, since ancestor(Gi) may be empty. In that case, we
say that the parent of Gi is null. Any polygon with parent G is called the child of G.
In Fig. 6, ancestor(G) {G, G}, parent(G4) (G), children(G) {G, G4},
ancestor(G) =null=children(G). The nestingstructure of p is an acyclic directed graph
(a forest of trees) in which there is a node n corresponding to each polygon Gi in p, and
a directed edge from a node n to n if and only if Gi is the parent of G. The polygon
nesting problem is to compute the nesting structure of a set of nonintersecting polygons.

FIG. 6. Nestedpolygons.

LEMMA 2.5. Theproblem ofpolygon nestingfor a set ofnonintersectingpolygons can
be solved in O(s + t log t) time assuming exact numerical computations where s is the to-
tal number of vertices, and t is the total number of monotone chains present in all input
polygons.

Proof. See [4]. Though the algorithm given in [4] uses a slightly different type of
monotone chains, called subchains, it also works for the monotone chains as defined in
this paper. Further, the algorithm of [4] can be straightforwardly adapted to the input
set of polygons as defined in this paper.
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3. Convex decomposition.

3.1. Sketch ofthe algorithm. Given a polyhedron S, it is first split along the vertices
and edges of special notches to produce manifold polyhedra. Reflex edges of a manifold
polyhedron are removed by slicing it with notch planes. Notch planes may possibly in-
tersect other notches to create subnotches. In general, the notch elimination process
produces a number of subpolyhedra. At a generic step of the algorithm, all subnotches
of a notch, present in possibly different subpolyhedra, are eliminated with a single notch
plane. Slicing a manifold polyhedron with a plane may produce nonmanifold subpoly-
hedra with special notches. See Fig. 7. As before, these nonmanifold subpolyhedra are
split along the special notches to produce only manifold polyhedra. If the notch plane,
however, does not pass through a vertex of the polyhedron being cut, manifold property
is preserved in the resulting subpolyhedra.

plane

nonman4fold
polyhedron

FIG. 7. An example where the manifoldproperty is notpreserved after a cut.

Algorithm ConvDecomp(S)
Step 1" Remove all special notches from S. This produces manifold polyhedra.
Step 2: Assign a notch plane for each notch in the manifold polyhedra produced in Step 1.
Step 3" repeat

Let gl, g2,’’’, gk be the subnotches of a notch g
present in the polyhedra $1, $2,..., Sk. Let P9 be
the notch plane assigned to g. Remove g, g,..., g
from S, Sz,..., Sk by the notch plane Pg.
Remove special notches produced by this slicing operation.

until all notches are eliminated.
end.

Step 1 of the algorithm is described in 3.3. Step 2 can be performed trivially in O(r)
time. The slicing step of the algorithm (Step 3) needs to be performed carefully and is
detailed below in 3.2.

3.2. Intersecting a manifold polyhedron with a notch plane. Let S be a manifold
polyhedron with r notches and p edges. By S, we denote any polyhedron S, $2,...,
that is encountered in Step 3 of the above algorithm ConvDecomp. The notch plane
az + bl + cz + d O defines two closed half-spaces Pe9 az + lnd + cz + d > O and

P az + bl + cz + d < O. To cut a polyhedron S with the plane Pg, it is essential to



346 C.L. BAJAJ AND T. K. DEY

compute

Se cl(int(P9e) f’l int(S)),

Sr cl(int(Pff)fl int(S)),

where cl(O) and int(O) denote the closure and interior of the geometric object O. Since
polyhedra are represented with their boundaries, we need to compute the boundaries
6S and 6Sr of S* and Sr, respectively. To compute 6Se and 6S, it is essential to com-
pute the features of 6Se and 6S lying on Pg, which are given by

We refer to GPe9 andGP as cross-sectional maps. Note that for a polyhedron S and a

plane Pg, the cross-sectional maps GPeg andGP maybe different. See, for example, Fig.
2. In general, GPeg and GP consist of a set of isolated points, segments, and polygons,
possibly with holes. The unique polygons Qe

9
and Q on GPeg and GP, respectively,

containing the notch g on their boundary, are called cuts. Note that to remove a notch
g, it is sufficient to slice S along only the cut instead of the entire cross-sectional map.

Instead of computing Qeg and Q separately, we first compute the cut Qg Qeg t_j Q
and then refine it to obtain Qeg and Q. This calls for computing the cross-sectional map
GPg GPeg t_J GP. The polygon corresponding to the cut Qg may have a vertex or an
edge appearing more than once while traversing its boundary. If an edge appears more
than once in traversing the boundary of Qeg or Q, the edge must make the corresponding
subpolyhedron nonmanifold. See Fig. 7. It is interesting to observe that there can be at
most four facets incident upon that edge since the original polyhedron being sliced was
a manifold.

An additional fact is that a single slicing along the cut may not separate the polyhe-
dron S into two different pieces; see Fig. 2. In this case, two facets corresponding to Qe9
and Q are created that may overlap geometrically and be considered distinct, so that
the polyhedron is treated as manifold polyhedron.

The algorithm to cut a polyhedron S with a notch plane Pg consists of two basic
steps.

Step I: Computing the cut Qg: This calls for computing inner (holes) and outer
boundaries of the polygon Qg.
Step II: Splitting the polyhedron S.

Step I is detailed below in 3.2.1 and Step II in 3.2.2.
3.2.1. Computation of the cut Qg. Step A. First, all boundaries present in the cross-

sectional map GP9 are computed. To do this, all the facets of S are visited in turn. If the
notch plane intersects a facet f, all intersection points are computed. Note that f must
be a simple facet (no vertex or edge is traversed twice along its boundaries) since S is
a manifold polyhedron. Let al, a2,..., ak be the sorted sequence of intersection points
along the line of intersection P9 fl f. We call an intersection point a new intersection vertex
if it does not coincide with any vertex of the facet f and we call it an old intersection vertex
otherwise. It is essential to decide consistently whether there should be an edge between
two consecutive intersection vertices ai and ai+ of this sorted sequence. This is done by
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scanning the vertices in sorted order and deciding whether we are "inside" or "outside"
the facet as we leave a vertex to go to the next one. If ai is a new intersection vertex,
there can be an edge between ai and ai+l only if there is no edge between a-i and a
and vice versa. On the other hand, if a is an old intersection vertex, there can be an
edge between ai and a+l irrespective of the presence of an edge between a_1, a.

a a

FIG. 8. Generating new and old edges.

Switching between "inside" and "outside" of the facet is carried out properly, even
with degeneracies, using a multiplicity code at each intersection vertex. During the scan
of the sorted sequence of intersection vertices, a counter is maintained. The counter is
initialized to zero and is incremented by the multiplicity code at each vertex. Our status
toggles between "inside" and "outside" of the facet as the counter toggles between the
"odd" and "even" count. A new intersection vertex is assigned a multiplicity code of
1. An old intersection vertex has a multiplicity code of 1 if both of its incident oriented
edges on the facet f do not lie in the same half-space of Pg and a multiplicity code
of 2 otherwise. If there is an old edge (edge of f) between two vertices a and ai+l,
multiplicity codes are assigned to them as follows. If another two incident oriented edges
on a, a+l on the facet f lie in the same open half-space of the notch plane, assign a
multiplicity code of 1 to both of them. Otherwise, assign multiplicity codes of 1 and 2 to
a and ai+l in any order. In Fig. 8, there is an old edge between aa and a4. The status
("outside") with which one enters the vertex aa is same as the one with which one leaves
the vertex a4. This is enforced by assigning a multiplicity code of i on the two vertices
that increments the counter by an "even" amount and prevents it from toggling. In the
same example, there is another old edge between a5 and a6. The status ("outside") with
which one enters the vertex a5 is different from the one with which one leaves the vertex
a6. This is enforced by assigning multiplicity codes of 1 and 2 on the two vertices in
any order which increment the counter by an "odd" amount and make it toggle. A new
edge from the vertex a to ai+l is created if the count is "odd" on leaving the vertex
a. In case there is an old edge between a and a+l, no new edge is created between
them. This process is repeated for all facets intersected by Po resulting eventually in
creating the 1-skeleton or the underlying graph of GPg. This underlying graph becomes
a directed graph if the oriented edges associated with the edges in GPa are considered.
Orientation of each such edge is determined in constant time since the orientations of
the facets intersecting the notch plane are known. A traversal in a depth-first manner in
this directed graph traces the boundaries of GPa.
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Timing analysis. According to Lemma 2.3, the notch plane P9 intersects a facet f of
S in at most 2ri + 2 points where ri is the number of reflex vertices in f. Thus, sorting of
the intersection points on a facet takes at most O(u log r) time where u is the number
of intersection points on the facet. Considering all such facets, we obtain the sorted
sequence ofintersection vertices on the facets computed in O(p+u log r) time, where u is
the number ofvertices in GPg. Generating the edges between these intersection vertices
takes no more than O(p) time altogether. The time taken for tracing the boundaries of

GP is linear in the number of edges in GP. Overall, the computation of GP takes
O(p + u log r) time.

Step B. Next, the inner and outer boundaries of Q are determined from GPg. It is
trivial to determine the boundaryB containing the notch 9. One can determine whether

B is an inner or outer boundary ofQ by checking the orientations of the edges on the
boundary.

Case(i). B is an outer boundary of Qg. Let li be the polygon corresponding to
an inner boundary (hole) of Qv. The polygon Ii has at least one vertex that is normal.
Since the boundary of 1 constitutes an inner boundary of Q, the normal vertices of 1
are refiexvertices of Qa. Definitely, reflex vertices of Q9 lie on notches of S. This implies
that all inner boundaries of Q9 will have a vertex where Pa intersects a notch of S. The
set W ofboundaries having at least one such vertex is determined. The boundaries in the
set W tO Bg are called interesting boundaries. The polygon nesting algorithm applied on
the polygons constituted by the interesting boundaries detects the children of B. The
boundaries of these children constitute the inner boundaries of Q.

Timing analysis. The set W can be created in O(u) time where u is the number of
vertices present in the cross-sectional map. Certainly, the number of interesting bound-
aries is O(t) where t is the number of notches intersected by the notch plane Pg. The
interesting boundaries that are outer boundaries of some polygon in the cross-sectional
map have O(t) reflex vertices, since these vertices are generated by the intersection of a
notch of S with the notch plane. On the other hand, the interesting boundaries that are
inner boundaries of some polygon in the cross-sectional map have O(t) normal vertices.
Thus, according to Lemmas 2.1 and 2.2, there are at most O(t) monotone chains in the
interesting boundaries. If there are u vertices in the interesting boundaries, the chil-
dren ofB can be determined in O(u’ + t log t) time using the polygon nesting algorithm
(Lemma 2.5). Thus, in this case, the inner and outer boundaries ofQ can be detected
in O(u + u’ + t log t) O(p + t log t) time, since u’ O(u) O(p).

Case(ii). Ba is an inner boundary of Q. The boundaries that completely contain the
boundary Bg inside are determined. This can be done by checking the containment of
any point on B9 with respect to all boundaries in the cross-sectional map. These bound-
aries, together with Bo, are the interesting boundaries. The polygon nesting algorithm,
applied on these interesting boundaries, detects the boundaries of the parent polygon
of Bg. This boundary is the outer boundary of Qg. Note that Qg may have other inner
boundaries different from Bg. Once the outer boundary of Qg is computed, all of its
inner boundaries can be obtained applying the technique used in Case (i).

Timing analysis. Detection of all boundaries containing B9 takes O(u) time. The set
of interesting boundaries can be partitioned into two classes according to whether they
are inner or outer boundaries of some polygon. It is not hard to see that there can be at
most one more outer boundary than inner boundaries in this set. Hence, the number of
interesting boundaries is of the order of inner boundaries present in the cross-sectional
map. As discussed in Case (i), the number ofinner boundaries must be bounded above by
the number of notches intersected by the notch plane. Thus, there are O(t) interesting



CONVEX DECOMPOSITION OF POLYHEDRAAND ROBUSTNESS 349

boundaries. Further, as explained before, the number of monotone chains present in
these interesting boundaries can be at most O(t). Hence, the outer boundary of Qg
can be determined in O(p + t log t) time. Detection of other inner boundaries that are
different from Bg takes another O(p + t log t) time. Thus, in this case also all outer and
inner boundaries of Qg can be detected in O(p + t log t) time.

Combining all these costs together, we see that the "cut computation" takes O(p /
t log t + u log r) time.

3.2.2. Splitting S. Separation of S along the cut Qa is carried out by splitting facets
that are intersected by Q. Suppose f is such a facet, which is to be split at a, a, , a.
The splitting of f consists of splitting the edges on which a new intersection vertex lies
and the old intersection vertices. For this splitting operation, the intersection vertices
on each facet f are visited and for each such intersection vertex, constant time is spent
for setting relevant pointers. The facet f may be split into several subfacets. The inner
boundaries of f that are not intersected by P remain as inner boundaries of some of
these subfacets. The polygon nesting algorithm determines the inclusions of these inner
boundaries into proper subfacets. The cut Q9 is refined to yield Qe and Q. It is observed
that the differences between Qe and Q are caused by the edges of S that lie completely
on Pg. Hence, to refine Qv, one needs to determine which of the edges of S are to be
transferred to Qea (Q, respectively). This can be done using the following simple rule.
An old edge e must be transferred to Qe ( Q, respectively) if any facet (or a part of it)
that is adjacent to e and not coplanar with P lies in pe ( p, respectively). A copy of Qa
is created and one of the two Qa’s is designated for Qe and another for Q. From a copy,
all those edges that are not to be transferred to it are deleted. Note that the transfer of
edges lying on Qg takes care of the facets lying on Q. Two oppositely oriented facets
at the same geometric location corresponding to the cuts Qea and Q are created. All
modified incidences are adjusted properly. A depth-first traversal in the modified vertex
list either completes the separation of S by collecting all the pertinent features of each
piece or reveals the fact that S is not separated into two different pieces by the cut. In
the latter case, either the number of holes or the number of shells in S is reduced by one.

Timing analysis. Adjustment of all incidences in the internal structure of S cannot
take more than O(p) time since each edge is visited only O(1) times. The polygon nesting
takes O(p+ r log r) time since there can be at most O(r) holes in the facets of S contain-
ing O(r) monotone chains. Further, creation ofQ and Q from Qa and the depth-first
traversal in the modified vertex list cannot exceed O(p) time. Hence, the "splitting op-
eration" takes O(p + r log r) time.

3.3. Elimination of special notches and its analysis. For a nonmanifold polyhedron
S, nonconvexity results from four types of notches, as discussed in 2.1. Let S have n
edges and r notches. The counting of special notches is described in 2.1. A preprocess-
ing is carried out as follows to remove the notches of the first three types, called special
notches.

Removal oftype 1 notches. As can be observed from Fig. l(a), the vertex or the edge
causing the nonconvexity is detached from the facet on which it is incident as an isolated
vertex or an isolated edge. Identifying these vertices and edges and detaching them from
the corresponding facets take at most O(n) time.

Removal of type 2 notches. Here, more than two facets are incident on an edge e.
Let these facets be fl, f2,’’ ", fr,. Let C be a cross-section obtained as the intersection
of the facets incident on e with the plane P that is normal to the edge e. C consists of
edges ej (fj fq P). The facets around e are sorted circularly by a simple circular sort
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ofthe edges ej’s around eiNP. The adjacent facets that enclose a volume ofS are paired.
Let this pairing be (fl, f2), (f3, f4), , (fro-l, fr). An edge between each pair of facets
is created and the edge ei is deleted. All these edges are at the same geometric location
of e. All incidences are adjusted properly. Sorting of facets around the edge ei takes
O(ri log ri) time. Further, for all type 2 notches, the adjustment time of all incidences
in the internal representation of S cannot exceed O(n). Thus, the removal of all type 2
notches takes at most (n + r log r) time.

Removal oftype 3 notches. Let v be a vertex that corresponds to a type 3 notch. In
this case, we group together all features (edges and facets) that are incident on v and
are reachable from one another while remaining always on the surface of S and never
crossing v. This gives a partition of the features incident on v into smaller groups. For
each such group, a vertex at the same geometric location of v is created and all incidences
are adjusted properly. This, in effect, removes the nonconvexity caused by v. All such
vertices causing type 3 notches in S can be identified in O(n) time by edge-facet-edge
traversal on the internal data structure of S. Removal of all such notches takes at most
O(n) time. This is due to the fact that each edge can be adjacent to at most two type 3
notches and thus is visited only O(1) times. Thus, all type 3 notches can be removed in
O(n) time.

Finally, a mixture of cases may occur where an isolated vertex is also a type 3 notch
or an isolated edge is also a type 2 notch. All these cases are handled by first eliminating
all type 1 notches and then eliminating type 3 notches followed by type 2 notches.

Removal of all the above notches generates at most O(n) new edges and produces
at most k manifold polyhedra where k is the number of special notches in H.

3.4. Worst-case complexity analysis. Combining the costs of the "cut computation"
of 3.2.1 and the "splitting operation" of 3.2.2 yields the following lemma.

LEMMA 3.1. A manifoldpolyhedron S having p edges can be partitioned with a notch
plane Pg ofa notch g in O(p + t log t + (u + r) log r) time and in O(p) space where t is the
number ofnotches intersected by Pg, and u is the number ofvertices in GP.

The following two-dimensional subproblem is essential for the analysis of ConvDe-
comp. Let L be a set of r lines in two-dimensions that form a line arrangement A[12].
Let E be a set of edges removed from A such that all cells in A E are convex. Let
us denote the new arrangement A E as A-. Let C be a set of cells in A- intersected
by a line 1. The total number of edges in the cells in C determines the zone complexity
z(1, A-, r) of in A-. Of course, the contribution of a line in any single cell is counted
only once, although it may have several consecutive segments on it in that cell. Let
q(r) max{z(/, A-, r)ll is any line in any such arrangement A-}. In Lemma 3.2 below,
we derive a nontrivial upper bound for q(r). Now suppose that a polyhedron S with n
edges and r notches has been sliced with y < r notch planes so far. Let S, $2,..., S
be the polyhedra in the current decomposition, where each S contains a subnotch i of
a notch g in S. Let z be the number of edges on Q,.

LEMMA 3.2. x k r3/2
i=l Xi O(n- ).

Proof. Consider the cut Q produced by the intersection of S with P. The region in
Qg is divided into smaller cells by the segments ofnotch lines producedby the intersection
of other notch planes with P. It is important to notethat consecutive segments of a
notch line may have gaps in them. We focus on the cells QI, Q. ,’",Q adjacent to
the subnotches gl, g2,"-’, gk of the notch g.

Consider separately the set of notch line segments that divides Q. These line seg-
ments and the line L corresponding to the notch g produce an arrangement T of line
segments on the notch plane Pg. Notice that the arrangement T can be thought of as
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an arrangement A- for some arrangement A of y lines. The cells adjacent to the line
Lg in this arrangement form the zone Zg of L. Let the set of vertices and edges of Zo
be denoted as Vo and E, respectively. Note that in each single cell of Zo, consecutive
segments of a line form a single edge. Actually one can verify that this notion of edges is
consistent with our notion of cuts. Overlaying Q on T produces QI, Qg., , Q. See
Fig. 9. These are the cells in Tt_JQ that are adjacent to the line Lo. Let V andE denote
the sets of vertices and edges, respectively, in QI, Qg2 ,’", Qo. The vertices in V can
be partitioned into three disjoint sets, namely, T1, T2, Ta. The set T1 consists of vertices
formed by the intersections of two notch line segments; T2 consists ofvertices of Qg, and
Ta consists of vertices formed by the intersections of the notch line segments with the
edges of Qg. Certainly, ITI O(IEvl) O(q(y)). If Q9 has u’ vertices, IT21 < u’.

To count the number of vertices in T3, we first assume that Qg does not have any
holes. Consider an edge e in Eg that contributes one or more edge segments to E as a
result of intersections with Qg. There must be at least one reflex vertex of Qg present
between two such successive edge segments of e. Charge one unit cost to the reflex vertex
that lies to the left (or right) of each segment, and charge one unit cost to e itself for the
leftmost (or rightmost) segment. We claim that each reflex vertex of Qg is charged at
most once by this method. Suppose, on the contrary, a reflex vertex is charged twice by
this procedure. That reflex vertex must appear between two segments of two edges in
Eg, as shown in Fig. 9(b). As can be easily observed, all four edge segments cannot be
adjacent to the regions incident on the edge g of Qg. This contradicts our assumption
that all these four edge segments are present in E. Hence the total charge incurred
upon the reflex vertices of Q9 and the edges of Eg can be at most O(vg + q(y)), where Vg
is the number of reflexvertices present in Qg. This implies that as a result of intersections
with Qg, at most O(vg + q(y)) segments of edges in E9 contribute to E. Hence ITal
O(r + q(y)).

Consider next the case where Qg has holes. We refer to the polygon corresponding
to a hole in Qa as a hole-polygon. From Qa create a polygon Q that does not have any
hole, by merging all polygons into a single polygon as follows. Let H1 and H: be two
hole-polygons that have at least two visible vertices v, v, i.e., the line segment joining
v, v: does not intersect any other edge. Split v and vz and join them with the line
segments, as shown in Fig. 10 to merge H, H2. Repeat this process successively for all
hole-polygons until they are merged into a single polygon. Finally, connect the boundary
of this new polygon to the outer boundary of Qa to create Q. Consider superimposing

(a) (b)

FIG. 9. Superimposing a cut on an arrangement ofnotch line segments.
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FIG. 10. Mergingpolygons to create Qfrom Qg.

Q on zg. Let T denote the set of vertices formed by the intersection of edges of
and those of Q. The distance between split vertices ofQ can be kept arbitrarily small
to preserve all intersections between the edges ofQ and those of Z. This ensures that
IT31 < ITI. The polygonQ has at most O(u’) vertices since the original polygonQ had
u’ vertices, and at most O(u’) extra vertices are added to formQ from Q. Furthermore,
the polygon Q can have at most O(u’) reflex vertices. Applying the previous argument
on the superimposition ofQ on Zg, we get }T3I < ITI O(u’ / q(y)).

Putting all these together, we have IVI ITll + IT2I + IT31 O(r +q(y) +u’). Cer-
tainly, r < r, y < r, and u’ < n. This gives lEVI O(n + q(r)). Since QI, Qg2,"’,
form a planar graph, we have x lEVI O(IV l) O(n + q(r)). Now we show that
q(r) O(r3/2), which completes the proof.

Let C be the set of cells intersected by a line in an arrangement A- formed out of
an arrangement A of r lines. Form a bipartite graph G (V1 t2 V2, E), where each node
in V1 corresponds to a cell in C and each node in V2 corresponds to a line in A. An edge
e E connects two vertices Vl V1, v2 V2 if the line corresponding to v2 contributes
an edge to the cell corresponding to Vl. Observe that any four lines in A can contribute
simultaneously to at most two cells in C since they are convex [12]. This means that G
cannot have K2,52 as a subgraph. Then using results from forbidden graph theory [20],
G can have at most O(cr1/2 + r) edges, where [C[ c. Since [C[ < r + 1, we have
q(r) O(IEI) O(r3/2).

LEMMA 3.3. The total number of edges in the final decomposition ofa polyhedron S
with r notches and n edges is O(nr + rS/).

Proof. Edges in the final decomposition consist of newly generated edges by the
cuts, and the edges of S that are not intersected by any notch plane. By Lemma 3.2, the
total number of edges present in all cuts corresponding to the subnotches of a notch is
O(n + ra/). This implies that each notch plane generates O(n+ ra/) new edges. Thus,
r notch planes generate O(nr + r/) new edges. Hence, the total number of edges in
the final decomposition is O(n + nr + r/) O(nr + r/2).

LEMMA 3.4. Let $1, $2,..., Sk be the polyhedra in the current decomposition, where

2It is a complete bipartite graph G (V1 t_J V2, E)where IVxl 2 and IV21- 5.
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Proof. Consider the cross-sectional map GPg. The lines of intersection between Pg
and other notch planes, called the notch lines, divide this map into smaller facets. These
facets are present in the cross-sectional maps in S, S,... ,S, i.e., in tOk=GPo,. The
vertices in t_J=lkGPa, can be partitioned into three sets, viz., T1, T2, and T3. The set T1
consists ofvertices that are created by intersections oftwo notch lines. The setT consists
of vertices of GPo, and the set T3 consists of vertices that are created by intersections
of edges of GP and notch lines. Since there are at most r notch lines, I11
Certainly, I=1 O(n). By Lemma 2.4, each notch line can intersect GPa in at most
O(r) chords, since GPg can have at most r polygons containing no more than r reflex
vertices altogether. This gives ITal Thus,

k

u- u- ITII/ IT21 / IT31
i=1

O(n + r).
As discussed in [6], one can always produce a worst-case optimal number (O(r2)) of

convex polyhedra by carefully choosing the notch planes.
LEMMA 3.5. A manifoldpolyhedron S with r notches can be decomposed into -+ +1

convex pieces if all subnotches of a notch are eliminated by a single notch plane. Further,
this convex decomposition is worst-case optimal since there exists a class ofpolyhedra that
cannot be decomposed into fewer than O(r2) convexpieces.

Proof. See [6] for the proof.
THEOREM 3.1. A manifoldpolyhedron S, possibly with holes and shells and having r

notches and n edges, can be decomposed into O(r) convex polyhedra in O(nr / r7/)
time and O(nr + r5/) space.

Proof. Decomposition of a polyhedron consists of a sequence of cuts through the
notches of S, as illustrated in the algorithm ConvDecomp. Step 1 assigns a notch plane
for each notch in S in O(r) time. According to Lemma 3.5, ConvDecomp produces
worst-case optimal O(r9) convex pieces at the end since all subnotches of a notch are re-
moved by a single notch plane. Note that all holes and shells are removed automatically
by the notch elimination process.

At a generic instance of the algorithm let $1, $2,..-, Sk be k distinct (nonconvex)
polyhedra in the current decomposition, where each S contains a subnotch g of a notch
g that is going to be removed. Let S have m edges of which ri are notches. Let t be
the number of notches intersected by P9 in Si and t ]i ti and ui be the number of

kvertices in GPg of S and u ]= u.
Applying Lemma 3.1, removal of a notch g can be carried out in O(]=(mi +

k r/ kti logti + (ui + ri)log ri)) time. Since m i=1 mi O(Tzr -+- ), i=1 ri O(r2),
u O(n+ra), and since a notch plane can intersect at most r- 1 notches giving t O(r),
we have O(-ik=(mi + ti logti + (ui + ri) log ri)) O(nr + r5/2).

As described before, elimination of a notch may produce nonmanifold polyhedra
having special notches. To remove them, the same method is used for eliminating special
notches as used for the original polyhedron. Note that the type 2 notches in these non-
manifold polyhedra can be adjacent to at most four facets. Hence, no logarithmic factor
appears in the time complexity of removing such notches. This implies that the elimina-
tion of special notches from the nonmanifold polyhedra produced as a result of cutting
each Si contains a subnotch gi of a notch 9. Let ui be the total number of vertices in the

O(n + rcross-sectional map in S. Then we have u =u where u is the total
number ofvertices in the cross-sectional maps in $1, $2,..., Sk.
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manifold polyhedra with notch planes can be carried out in totally O(m) O(nr+ r5/2)
time.

Thus, each notch elimination step takes O(nr + r/) time, and Step 3 of
ConvDecomp, which eliminates r notches, takes O(nr2 + r7/) time. Combining the
complexities of Step 2 and Step 3, we obtain an O(nr + r7/) time complexity for con-
vex decomposition of a manifold polyhedron. The space complexity of O(nr + r5/)
follows from Lemma 3.3. U

THEOREM 3.2. A nonmanifoldpolyhedron S, possibly with holes and shells and having
r notches and n edges, can be decomposed into O(r2) convexpolyhedra in O(nr2 +r log r)
time and O(nr + r5/2) space.

Proof. Removal of all special notches from S is carried out in O(n + r log r) time
and in O(n) space, as discussed before. Let S1, S2,..., St be the manifold polyhedra
created by this process. Let S have n edges of which r are reflex. Using Theorem 3.1
on each of them, we conclude that S can be decomposed into O(r) convex polyhedra in

O( _7/ _5/2 r5/2-]i= nri + ’-i O(nr2 + r7/2) time and in O(y]Ji= niri + ’-i O(nr +
space. ]

4. Convex decomposition under finite precision arithmetic. When implementing
geometric operations stemming from practical applications, one cannot ignore the de-
generate geometric configurations that often arise, as well as the need to make specific
topological decisions based on imprecise finite precision numerical computations [19],
[27]. We model the inexact arithmetic computations by e-arithmetic [15], [17] where the
arithmetic operations /,-, /, are performed with relative error of at most e. Under
this model, the absolute error in the distance computations of one polyhedral feature
from another is bounded by a certain quantity 6 keB, where B is the maximum value
of any coordinate and k is a constant; see, e.g., [23]. When making decisions about the
incidences of these polyhedral features (vertices, edges, facets) on the basis of the com-
puted distances (with signs), one can rely on the sign of the computations only if the
distances are greater than 6. On the other hand, if the computed distances are less than
6, one also needs to consider the topological constraints ofthe geometric configuration to
decide on a reliable choice. In particular, in regions of uncertainty, i.e., within the 6-ball,
the choices are all equally likely that the computed quantity is negative, zero, or positive.
Such decision points of uncertainitywhere several choices exist are either "independent"
or "dependent." At the independent decision points, any choice may be made from the
finite set of local topological possibilities while the choices at the dependent decision
points should ensure that they do not contradict any previous topological decisions. The
algorithm that follows this paradigm would never fail, though it may not always compute
a valid output. Such algorithms have been termedparsimonious by Fortune [15].

An algorithm under e-arithmetic is called robust if it computes an output which is
exact for some perturbed input. It is called stable if the perturbation required is small.
Recently, in [15], [16], [21], authors have given robust and stable algorithms for some
important geometric problems in two dimensions. Except [18], there is no known ro-
bust algorithm for any problem in three dimensions. The difficulty arises due to the fact
that the perturbations in the positions of the polyhedral features may not render a valid
polyhedron embedded in JU. In [18], Hopcroft and Kahn discuss the existence of a valid
polyhedron that admits the positions of the perturbed vertices of a convex polyhedron.
The case of nonconvex polyhedra is perceived to be hard and requires understanding the
deep interactions between topology and perturbations of polyhedral features of noncon-
vex polyhedra.

Karasick [19] gives an algorithm for the problem of polyhedral intersection where
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he uses geometric reasoning to avoid conflicting decisions about polyhedral features.
In this paper, we extend the results in [19] and provide an algorithm for the problem
of polyhedral decomposition that also uses geometric reasoning to avoid conflicting de-
cisions. As yet we are unable to prove our algorithm to be parsimonious. We report
various heuristics we have implemented in our effort to make the decomposition al-
gorithm more reliable in the presence of numerical errors in arithmetic computations.
These heuristics are useful in the sense that they give better results in practice than the
other algorithms, which assume exact arithmetic. We give an estimate of the worst-case
running time bound for the algorithm under the e-arithmetic model.

Related work. The issue of robustness in geometric algorithms has recently taken on
added importance because ofthe increasing use ofgeometric manipulations in computer-
aided design and solid modeling [3]. Edelsbrunner and Mucke [14] and Yap [29] suggest
using expensive symbolic perturbation techniques for handling geometric degeneracies.
Sugihara and Iri [28] and Dobkin and Silver [11] describe an approach to achieve con-
sistent computations in solid modeling by ensuring that computations are carried out
with sufficiently higher precision than used for representing the numerical data. There
are drawbacks, however, as high precision routines are needed for all primitive numer-
ical computations, making algorithms highly machine-dependent. Furthermore, the re-
quired precision for calculations is difficult to estimate a priori for complex problems.
Segal and Sequin [26] estimate various numerical tolerances, tuned to each computa-
tion, to maintain consistency. Milenkovic [23] presents techniques for computing the
arrangements of a set of lines in two dimensions robustly. He introduces the concept
ofpseudolines that preserves some basic topological properties of lines and computes
the arrangements in terms of these pseudolines. Karasick [19] proposes using geomet-
ric reasoning and applies it to the problem of polyhedral intersections. Sugihara [27]
uses geometric reasoning to avoid redundant decisions and thereby eliminate topologi-
cal inconsistencies in the construction of planar Voronoi diagrams. Guibas, Salesin, and
Stolfi [17] propose a framework of computations, called e-geometry, in which they com-
pute an exact solution for a perturbed version of the input. So does Fortune [15], who
applies it to the problem of triangulating two-dimensional point sets. For more details
on robustness, see [8].

4.1. Intersection and incidence tests. In what follows, we assume the input polyhe-
dra to be manifold. Nonmanifold polyhedra can be handled as discussed in the earlier
sections. It is clear from the discussions of our algorithm in 3 that numerical compu-
tations arise in various intersections and incidence tests. We assume minimum feature
criteria for the input polyhedra wherein the distance between two distinct vertices or
between a vertex and an edge is at least 6. To decide whether an edge is intersected by a
plane, one must decide the classification of its terminal vertices with respect to the same
plane. The same classification of a vertex is used to decide the classification of all the
features incident on that vertex. This, in effect, avoids conflicting decisions about the
polyhedral features. The decisions about different types of intersections and incidence
tests are carried out using three basic tools, namely, (i) vertex-plane classifications, (ii)
facet-plane classifications, and (iii) edge-plane classifications. The order of classifica-
tions is (i) followed by (ii) followed by (iii). In what follows, we assume that the equation

2 2 2 i.of any plane P ax + by / cz + d is normalized, i.e., a -4- b / c
Vertex-plane classification. To classify the incidence of a vertex v (x, y, z) with

respect to the plane P az + by + cz + d O, the normalized algebraic distance of v
from P is computed, which is given by ax + by + cz + d. The sign of this computation,
viz., zero, negative, or positive, classifies v as "on" P (zero), "below" P (negative), or
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"above" P (positive) where "above" is the open half-space containing the plane normal
(a, b, c). The sign of the computations is accepted as correct if the above distance of v
from P is larger than . Otherwise, geometric reasoning is applied as detailed below to
classify the vertex v with respect to the plane P. In the following algorithmic version
of the vertex-plane classification, the intersection between an edge ej incident on v and
the plane P is computed as follows. Let ej be incident on planes/91, P2, where P
az + by + cz + d 0. The intersection point r of e and the plane P is determined
by solving the linear system Ar d where

a b c

A al bl cl and

a2 b2 c2

d I-d, -dl, -d2, IT.

The linear system is solved using Gaussian elimination with scaled partial pivoting and
iterative refinement to reduce the numerical errors.

Verte-Plane-Classif (v,P)
begin

Let v (x, y, z) be a vertex incident on edges el (vi, Wl), e2 (Vi, W2), ek

Let P ax + by + cz + d O.
Compute axi + byi + czi + d.

if Ill > then (*Comment: unambiguously decide via the sign of distance compu-
tation*)

if > 0 then
classify vi as "above"

else
classify vi as "below"

endif
else

loop
(*Comment: if the distance computation does not yield an unambiguous
classification for the vertex with respect to the plane, ensure that
the "above," "below" classification is consistent with all edges
incident on that vertex. If such consistency cannot be ensured then
the vertex is classified as "maybeon" and left for the future facet-plane
classifications to decide its classification consistently.*)

Search for an edge e incident on v such that r e N P is at a distance
greater than 6 from v and w (zj, y, z).
Get the classification ofw if it is already computed.
Otherwise, compute az + byj + cz.
if I/’] > 6 then classify w accordingly.

if the classification ofw is "below" or "above" then
if r is in between v and w then

classify v oppositely to that ofw
else

classify v same as that of wj
endif
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endif
endif

endloop
if no such edge ej is found then

classify vi as "maybeon"
(*Comment: To be classified later in the facet-plane classifications*)

endif
endif

end.

Facet-plane classification. If a facet f does not lie on a plane P, the points of in-
tersection between them should necessarily be (i) collinear with the line of intersection
fi N P, and (ii) all vertices of fi on one side of the intersection line should have the same
classification with respect to the plane P. Vertices that have been temporarily classified
as "maybeon" are classified in such away that they satisfy the above two properties (i) and
(ii) as closely as possible. Note that this heuristic forces the classification of "maybeon"
vertices to be more consistent than the one obtained by classifying them arbitrarily. An
algorithmic version of the facet-plane classification is given below.

Facet-Plane-Classif (f P)
begin

case
(i) All vertices of f have been classified as "maybeon":
Classify f as "on" the plane and change the classification of all incident vertices

to "on."

(ii) At least one vertex v, of f has been classified as "above," or "below," but no
edge off has its two vertices classified with opposite signs ("below" and "above"):
if there is only one "maybeon" vertex vi then

classify as "on" and consider as f f3 P
else

take two "maybeon" vertices vi,vj and
classify vi and v as "on."
Let L be the line joining vi, vj.
Consider L as P.
loop

for each "maybeon" vertex v on fi do
if is at a distance greater than 6 from L then

if and v lie on opposite sides of L then
classify v with the opposite classification of

else
classify v with the classification of

endif
endif

endloop
endif
The vertices which are still not classified
classify them as "on"
(*Comment." these vertices are within a distance of 6
from L and hence will be collinear with L by a perturbation of
at most 6. See Fig. 11.*)
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(iii) There is an edge e whose two vertices have opposite sign classifications:
if there is no other such edge then

let L be the line joining the intersection point of e and
P to any "maybeon" vertex vi.
classify v as "on."
consider L as fi n P.
apply methods of case (ii) to classify other "maybeon" vertices.

else
let L be the line which fits in least square sense all the points
of intersections and apply the methods of case (ii) to classify
remaining "maybeon" vertices.

endif
endcase

end.

P2 P5 and 7 12
are llmybeon vertices.

P7 Plogets the classification of .
FIG. 11. Case (ii) ofthefacet-plane classification.

Edge-plane classification. An edge can receive any of the three classifications which
are "not-intersected," "intersected," and "on". The classifications of the vertices inci-
dent on an edge e are used to classify it. An algorithmic version of the edge-plane
classification is given below.

Edge-Plane-Classif (e, P)
begin

Let e (v, v ).
case

(i) v and vj are both classified as "on":
classify e as "on."

(ii) Only one of v, v, say, vi is classified as "on":
classify e as "intersected" and consider v as ei A P.
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(iii) vi and v are classified with one as "above" and another as "below":
classify e as "intersected."
compute r e N P if it has not been computed yet.
if r does not lie within e then

choose a point at a distance of at least 6 from the vertex
which is nearest to the computed point and consider it as the intersection point

of e and P.
endif

(iv) vi and v are of same classifications and they are not "on":
classify ei as "not-intersected."

endcase
end.

Nesting ofpolygons with finite precision arithmetic. The polygon nesting problem as
discussed in 2.4 can be solved with finite precision arithmetic if the polygons are re-
stricted to a class of polygons calledfleshypolygons. A polygon P is called fleshy if there
is a point inside P such that a square with the center (intersection of square’s diagonals)
at that point and with the sides of length 64eB lies inside P. B and e have been defined
earlier.

LEMMA 4.1. Theproblem ofpolygon nestingfor kfleshypolygons with s vertices and t
monotone chains can be solved in 0 k2+s t+log s time underfiniteprecision arithmetic.

Proof. See [4]. Since any vertical line (orthogonal to the x direction) can intersect
at most t edges of a set of polygons having t monotone chains, the above time bound
is obvious from the time analysis of the algorithm under finite precision arithmetic, as
given in [4]. [q

4.2. Description ofthe algorithm. The same paradigm of cutting and splitting poly-
hedra along the cuts is followed to produce the convex decomposition of a nonconvex,
manifold polyhedron. One of the two planes supporting the facets incident on a notch
is chosen as a notch plane. This ensures that no new plane other than facet-planes is
introduced by the algorithm. As we have seen earlier, computations of intersection ver-
tices involve plane equations incident on those vertices. Thus, using the original plane
equations for such computations reduces the error propagation. Furthermore, this also
guarantees that all input assumptions about the supporting planes of the facets remain
valid throughout the iterative process of cutting and splitting the polyhedron. We ap-
ply heuristics at each numerical computation through geometric reasoning to make our
algorithm as parsimonious as possible.

In the construction of GPg, first all boundaries are computed. For this, one needs
to compute the intersection vertices on the facets of S. This is carried out by the vertex-
plane, edge-plane, and facet-plane classifications, as described before. Note that these
classifications use heuristics that make the numerical computations more reliable. After
computing all intersection vertices lying on a facet f, we sort them along the line of
intersection f fq Pg. Since the computed coordinates of these vertices are not exact,
sorting them on the basis of their coordinates is prone to error. We use the minimum
feature criteria and the orientations of the edges on a facet to obtain a topologically
correct sort.

Two intersection vertices can be closer than 6 if they lie on the edges meeting at a
vertex. Other possibilities do not occur because of the minimum feature assumptions.



360 C.L. BAJAJ AND T. K. DEY

Using the orientations of these two edges on the facet f containing them, the exact or-
dering of the two new intersection vertices on f P can be determined. Generation of
edges between intersection vertices can be carried out exactly since it does not involve
any numerical computation.

The cut Q is selected from GP using the method of 3. The polygon nesting al-
gorithm, used for this purpose, is adapted to cope with the inexact numerical compu-
tations, as stated in Lemma 4.1. The polygon nesting algorithm with inexact arithmetic
computations requires all input polygons to be fleshy. Though in most of the cases this
is true, we do not know how to guarantee this property throughout the decomposition
process. Refinement of Qz needs proper transferring of the edges of S that are decided
to be coplanar with P. This is done using the following simple heuristic. For an edge
e computed to be "on" the plane Pa, we check all its oriented edges incident on facets
computed to be "off" the notch plane P. Suppose f is such a facet. Classify any vertex
v of f with respect to the oriented edge of e on f. If it is on the same side of e in which f
lies, e is transferred to GPev (GP, respectively)if has been classified to lie in pe (p,
respectively). It is trivial to decide the side of e in which f lies.

Splitting S about the cuts Q andQ completes the cutting of S with the notch plane
P. This step again does not involve any numerical computations.

Note that we assume the minimum feature property to be valid throughout the iter-
ative process of cutting and splitting of polyhedra. Though for the original polyhedron
it is valid, it may not be preserved throughout the entire cutting process. The method
described in [26] can be used to eliminate this problem.

Complexity analysis. We use Lemmas 2.3 and 3.4 in our analysis, which is valid only
under the exact arithmetic model. Nonetheless, the analysis presented here gives a good
estimate of the complexity of the algorithm.

Consistent vertex-plane, edge-plane, and facet-plane classification take overall O(p)
time where p is the total number of edges of the polyhedron S. The above bound follows
from the fact that each edge of S is visited only O(1) times to determine the intersec-
tion points of S with the notch plane P. The sorting of intersection vertices on the
facets adds O(u log r) time where u is the total number of vertices in GPg. Once the
map GP9 is constructed, it is trivial to recognize the boundary Bg containing the notch
g. The methods as described in 3 can be used to determine the interesting boundaries.
As discussed earlier, there are O(t) interesting boundaries containing O(t) monotone
chains where t is the number of notches intersected by Pg. Let u’ be the number of ver-
tices on the interesting boundaries. According to Lemma 4.1, the children and parent
of By can be determined exactly in O(t + u’(t + log u’)) time if the polygons corre-
sponding to the interesting boundaries are fleshy. Detection of children and parent of
the polygon containing the notch g, in effect, determines the inner and outer boundaries
of Qg. Obviously u’ O(u). Combining the complexities of computing GPg and de-
tecting the inner and outer boundaries of Qg, we conclude that Q9 can be computed in
O(p + t + u(t + log u) + u log r) time.

At a generic instance of the algorithm, let Sx, $2,..., Sk be the k distinct (noncon-
vex) polyhedra in the current decomposition that contain the subnotches of a notch g
which is to be removed. Let pi be the number of edges in S ofwhich r are reflex, u be
the number of vertices in the cross-sectional map in S, and t be the number of notches
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given by

0 (p + t + u(ti + log ui) + ui log ri)

O(p + r3 + ur + u log u + u log r).

By Lemma 3.4, u O(n + rg). This gives

o(p + + + + + n)

O(nr + n log n + r2 log n + ra)
O(nr + n log n + r3).

To eliminate r notches, we need O(nr2 + nr log n + r4) time. Obviously, the space
complexity is O(p) O(nr+ r/2). If S is a nonmanifold polyhedron, all special notches
are removed from S to produce manifold polyhedra, each of which is decomposed into
convex pieces by the method as discussed before. The complexity remains the same for
this case. [:]

5. Conclusion. We have implemented our polyhedral decomposition algorithm un-
der floating point arithmetic in Common Lisp on UNIX workstations. The numerical
computations are all in C, callable from Lisp using interprocess communications. We
used 6 2-17 in the 32 bit machine with precision 2-24. Simple examples are shown
in Figs. 12 and 13.

The experimental results have been very satisfying. Test polyhedra are created, and
results are displayed in the X-11 window-based SHILP solid modeling and display system
[1]. The convex pieces generated can be easily triangulated to generate a triangulation
of the input nonconvex polyhedra. Of course, the facet triangulations between convex
pieces have to be kept consistent. To achieve this, the slicing along a notch has to be
carried out through all subpolyhedra intersecting the notch plane. The time complexity
does not increase for decompositions with this type of slicing, though space complexity
increases to O(nr + r3). Details can be found in [9].

In finite element methods with triangular elements, nicely shaped tetrahedra are
preferred to reduce ill-conditioning as well as discretization error. In [10], we have given
a method to produce guaranteed quality triangulations of convex polyhedra. In Fig. 14,
an example of this triangulation is shown. For clarity, we show only the triangulations
on the facets. The convex decomposition method, coupled with this guaranteed quality
triangulation, gives a method for guaranteed quality triangulations of nonconvex poly-
hedra. However, this method has the limitation that the convex polyhedra produced
by the convex decomposition algorithm may be very bad in shape. An algorithm that
achieves guaranteed quality triangulations of nonconvex polyhedra directly is more prac-
tical. Currently, research is going on to find such an algorithm.
intersected by the notch plane in S. Let p ki=1 P’ U -.= U, and t Ei=I t.
Certainly, k O(r) and t O(r), since a notch can have at most r 1 subnotches and
a notch plane can intersect at most r I notches. The time to remove the notch g is
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FIG. 12. An example ofconvex decomposition.
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FIG. 13. Another example ofconvex decomposition.
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SHILP Top Level

FIG. 14. An example ofa triangulation ofa convexpolyhedron.
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FAST GOSSIPING FOR THE HYPERCUBE*

DAVID W. KRUMMEt

Abstract. The gossip problem involves communicating a unique item from every node in a
graph to every other node. The minimum time required to do this for the binary hypercube under
two models of communication is studied. In the first model, all communication links may be used
concurrently but each may only carry information in one direction at a time. In the second, weaker
model each node may be involved in only one communication at a time either as sender or receiver.
In both cases, simple algorithms exist that are close to optimal. This paper shows that neither of
these algorithms is optimal by exhibiting faster algorithms. In the first case, an optimal algorithm
is obtained.

Key words, gossiping, broadcasting, hypercube
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1. Introduction. Gossiping generally refers to the process of distributed infor-
mation dissemination and can easily be described in graph-theoretic terms. Each
node in a graph initially contains a unique piece of information to be communicated
to all other nodes. At each time step, a node can only communicate with those nodes
that share an edge with it. Information can be combined between communications.
Variants of the gossip problem involve the minimal total number of communications
and the minimal total time required. Different models of communication have been
proposed. Known results about gossiping are summarized in a 1988 survey paper by
Hedetniemi, Hedetniemi, and Liestman [2].

In this paper, we study the minimum time required to gossip under two models of
parallel communication for the binary hypercube graph. Our interest in this problem
is motivated by the commercially successful hypercube multiprocessors and by the
fact that gossiping commonly arises in parallel algorithms for these machines. In
another paper [3] we give a more lengthy introduction to our work on this problem
and derive lower bounds and upper bounds for the time to gossip in complete graphs,
regular and toroidal grids, and rings. This paper is restricted to the question of upper
bounds for the hypercube.

We use two models of communication. In the simultaneous model of communica-
tion, each node can participate in an unlimited number of communication activities
at each time step. In the pairwise model of communication, each node can participate
in just one communication event at each time step. In both models, communication is
uni-directional: a communication event between two nodes consists of taking (a copy
of) the tokens existing at the sending node and combining them with those already
present at the receiving node. Thus the sender is unaffected while the receiver’s new
token set is the union of its and the sender’s previous token sets.

A trivial lower bound for the time required to gossip is the diameter of the graph,
which is d in the case of a hypercube of dimension d. Under the simultaneous model,
it is not difficult to find (d / 1)-step solutions and it is difficult to do better. However,
this paper shows that for all d _> 3 there are d-step solutions, and that for all d _> 4,
optimal solutions exist that are time-invariant. Time-invariant optimal solutions have
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and National Science Foundation grant DCR-8619103.
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the interesting graph-theoretic property of assigning a direction to each edge so that
the maximum directed distance between any two points is the same as the maximum
distance between any two points in the undirected graph (i.e., the diameter).

Under the pairwise model, it is amazingly easy to find 2d-step solutions and
amazingly hard to do better. For example, if one uses only "parallel" transmissions,
or those that move in the same direction through the same dimension at each step,
then any sequence of 2d distinct such steps will solve the problem and no shorter
sequence of such steps will solve it. Bagchi, Hakimi, Mitchem, and Schmeichel have
conjectured that 2d steps are required [1]. However, this paper shows that the problem
can be solved in 1.88d steps with very complicated algorithms for the 9-cube and
the 17-cube. This leaves a gap between the best known lower bound of 1.44 lg N [3]
and 1.85 lg N which is the best performance that is potentially obtainable using the
approach in this paper.

Section 2 establishes notational conventions. Section 3 develops optimal solutions
under the half-duplex simultaneous model. Section 4 presents a solution that is faster
than 2d steps under the half-duplex pairwise model. Section 5 contains a concluding
discussion.

2. Notation. The hypercube is bipartite and hence can be two-colored; in order
to take advantage of that property, we define the parity P(n) of a node n as (-1)q,
where q is the number of l’s in the binary representation of n. (The use of +1 for
even parity and -1 for odd parity turns out to be convenient.)

We can view the (D + d)-dimensional hypercube as the Cartesian product of
a D-cube and a d-cube. We refer to the node with coordinates (x, n) as location
Lx,,,, where 0 _< x < 219 and 0 _< n < 2d, and we refer to the token originating at
that node as Tx,n. By holding the first coordinate fixed we define subcubes c
{Lx,n 10 _< n < 2d}, and by holding the second coordinate fixed we define subcubes

n {Lx,n I0 _< x < 2D}.
By a strategy we mean a rule that at some or all time steps specifies a set of

hypercube edges and a direction for each of them. Note that we are limiting ourselves
at the outset to half-duplex communication. We will generally avoid using elaborate
notations for strategies since they are easy to describe directly. A strategy describes
where transmissions occur and what direction each transmission takes, and its effect
can be described in this way: let S0 be the set of tokens present at a location L at
time t, and let $1, $2,’", $8 be the sets of tokens present at neighboring nodes whose
edges to L have been assigned a direction oriented toward L; then at time t + 1 the set
of tokens present at L is J=0 Si. We are interested only in finite sequences of steps
starting at t 0. Under the simultaneous communication model a strategy may use
all edges at each step; under the pairwise model it may not assign directions to any
two edges that are incident to the same node on the same step.

We shall call a strategy constant if it is the same at each time step and alter-
nating if its transmissions all reverse at each step. If some transmissions are the
same at each step while others reverse, we will call it partially alternating. In the
illustrations, alternating transmissions will be depicted by arrows with hollow circles
at the tails.

We will use the following notation in 3.1. Given some cube or subcube that
includes a location L and some strategy Z, let Fz(L, t) be the set of all locations that
under strategy Z receive at time t + k, or sooner, the tokens that are present at node
L at time t. Fkz(L, t) is the set of nodes for which L finishes in k steps starting at t.
Similarly, let Ekz(L, t) be the set of all nodes that under strategy Z receive at time
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t + k, but not sooner, the tokens that are present at node L at time t. Ekz(L, t) is the
set of nodes for which L exactly finishes in k steps starting at t.

To describe strategies in 3.2 we shall use the following notation. If A and B
describe strategies on d-cubes, define strategies A @ B, A (R) B, and A O B on the
(d + 1)-cube formed by renumbering the vertices of B as 2d, 2d + 1,.. -, 2d+l 1, using
the given transmission patterns within A and B, and using the following transmissions
between pairs of neighboring vertices in A and B" (1) for A (R) B, use transmissions
that go from vertices in A to their neighbors in B at each time step; (2) for A B, use
transmissions that go from all even-parity vertices in A to their neighbors in B and
transmissions from B to A for all other vertices in A; (3) for A O B, use transmissions
as in A (R) B for the first time step, but then reverse their direction at each time step
after that. Given a strategy A, we can obtain a strategy A by reversing the directions
of all transmissions at all times, A by reversing all directions at the second, fourth,
etc. time step, and A by making all transmissions occur one step sooner (and deleting
the first step). Now define A A (R) A A+ A @ A, and A- A A.

In working with the binary representations of numbers in 4, we number the bits
from 0 starting at the right so that bit has value 2. The notation b(n)_selects bit
of n and is 0 or 1. For convenience, we define b_ (n) as 1. The notation b(n) (i >_ O)
represents the value resulting from clearing bit of n. Thus (n) n- 2b(n). We
extend the notation so that ,,..., (n) ( (-.. ( (n))...)) represents clearing
bits i,i2,...,ip. Observe that n and rn differ only in bit if b(n) b(rn) and

(n) (m). We define a k-neighborhood of n by Nk(n) {rn 0,,2,...,k_l(m)
0,,2,...,k-(n)}. Nk(n) is the k-dimensional set of points that do not differ from n in
any bits j _> k.

3. Simultaneous communication. We will construct a family of solutions to
the token exchange problem that are optimal under the assumptions of the half-
duplex simultaneous model of communication. No solution can take fewer steps than
the diameter of the cube, and for diameters greater than 2 we will find solutions that
take exactly that many steps. Before proceeding the reader may find it amusing to
attempt to discover a three-step solution for the 3-cube.

It is not difficult to find near-optimal solutions to this problem that take just
one step more than the diameter. Our construction of optimal solutions uses such
(d / 1)-step solutions on subcubes a and (D / 1)-step solutions on subcubes/,. It
is immediate that such an approach can solve the full problem in D + d + 2 steps, but
with care the combined strategy can be made to solve the problem in D / d steps,
which is optimal.

3.1. A general construction. In this section we give a general method for
constructing (D / d)-step solutions to the token exchange problem for the hypercube
under the half-duplex simultaneous communication model. The method is based on
the fact that there are several paths between any pair of nodes, and if a strategy
is slow along one path, we will arrange that there is some other path along which
the strategy is faster. The method uses two pairs of strategies: A1 and A2 on the
d-dimensional subcubes ax and B1, and B2 on the D-dimensional subcubes ,. We
will require that the strategies satisfy certain properties and that they be combined so
as to satisfy certain constraints, and then we prove that the resultant overall strategy
gives a (D / d)-step solution to the problem. Then we review a list of possible choices
for the two pairs of strategies. Although the general construction has very generally
stated time dependencies, all of our actual strategies are either the same at every time
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step or alternate with some direction-reversals at every step.
All four strategies must be near-optimal at all times: A1 and A2 must solve the

d-cube in d + 1 steps when started at any time t, and B1 and B2 must solve the
D-cube in D + 1 steps when started at any t. A and A2 must satisfy the following

Ed+(L,t) C F(L,t+D). Roughly,property for all L, t > 0, and {i, j } {1, 2}: (1) A
this says that if L’s token goes to M maximally slowly in one of the strategies, then
it is one step faster in the other if started after a delay of D. Strategies B and B2
must satisfy the following property for all L, t _> 0, t2 >_ 0, and {i, j} {1, 2}:
(2) E.+(n,t) C FDB.-I(L, t2). Property (2) says that nodes whose tokens finish
maximally slowly in one strategy are two steps faster in the other. Note that property
(2) implies property (1), so that any strategies suitable for B and B2 are also suitable
for A and A2.

Now in the combined strategy we must have two properties, (3) and (4). (3) If
for some n, x, y, and t Ly,n E ED (Lx t) then A is used on ax if and only if A2Bi n,
is used on ay. This condition says that subcube pairs on which both B1 and B2 are
one step short of maximally slow use opposite strategies. (4) Let x be arbitrary and
suppose n nx,n and M Lx,m are such that for some t we have M

Fd-(L, t2); then we must have that B1 is used on ifand for some t2 we have M A2
and only if B2 is used on/m. This condition says that node pairs for which both A
and A2 can be slow must use opposite strategies. (Note that since the property uses

A and A2 identically, it is independent of x; x appears only because the notation
requires its presence.)

THEOREM 3.1. Any combined strategy, as described above, satisfying properties
(1), (2), (3), and (4) solves the (D +d)-dimensional token exchange problem in D +d
steps.

Proof. Let Lx,, be an arbitrary location; we will follow the strategies starting at
t 0 and show that token T,n reaches all other locations by time t D + d. Let
y refer to any other subcube. We distinguish three cases according to whether Tx,
reaches Ly,n in fewer than D, exactly D, or D + 1 steps. (I) If the strategy (B or B2)
used on/n carries Lx, to Ly,n in D- 1 or fewer steps, then since either A or A2 will
carry the tokens from Ly,n to all other sites on ay in d+ 1 or fewer steps, all sites on ay
are reached in D + d steps at most. See Fig. 1. (II) If the strategy used on/ carries

FIG. 1. Case (I).

Lx,n to Ly,n in D steps, let Aj be the strategy used on ay and let {i,j} {1, 2}.
See Fig. 2. All locations Ly,m Fj (Ly,n,D) are completed in D + d steps, so we

Ed+only need to be concerned about those for which Ly,m Aj (Ly,n,D). In this case

we reason as follows. Property (3) ensures that Ai is used on cx. We claim that
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d+ steps

(Aj)

steps D steps

_< d steps

(A{)

FIG. 2. Case (II).

Lx,m c=_ FdA,(Lx,n, 0); this is because otherwise we would have Lz,m E Ed+lA (Lx,n, 0),
which according to property (1) would mean that Ly,m F (Ly,n, D), whereas we

Ed+I(Ly,n,D). Now we simply observe that Tz,n reacheshave assumed that Ly,m At
Lx,m in d or fewer steps and we can guarantee that it then reaches Ly,m in D more
steps: if the same strategy is used on tim as on fin, then this is true by the assumption
under (II); otherwise if the opposite strategy is used, it must also take D or fewer
steps, because if it took D / 1 steps then property (2) would be violated. (III) If the
strategy Bpused on fin carries Lx,, to Ly,n in D / 1 steps, let Aj be the strategy used
on ay. Now if Ly,m e F.l(Ly,n,D + 1), it will receive the token by time D + d.
Otherwise we check which strategy is used on tim. If it is Bq with q #- p, then by
property (2) it carries tokens from Lx,m to Ly,m in D- 1 or fewer steps, and since
going from Lx,n to Lx,m initially can take at most d / 1 steps, the combined total
would be no greater than D + d. See Fig. 3. This leaves us with the case where Bp

[--
_

d steps --(Aj)

k.__ __1

+ steps D-- steps

_< d+l steps

Lz,= Lz,m az

FIG. 3. Case (III), Bq used on m.

is used on/3, with the result that it takes D / 1 steps to go from Lx,m to Ly,m. Let
z be such that a token at Lz,m at time D / d- 1 is carried to Ly,m at time D / d.
(There must be one such z, since by assumption Bp takes D + 1 steps at any t.) See
Fig. 4. Since Lz,m e EDBp (Lx,m,d- 1), we can invoke property (3) and say that Ai
is used on az and Ah is used on az where {i, h} {1, 2}. Now we claim that either
(a) Lz,m e F, (Lz,n,O) or (b) Lz,m if: F(Lz,n,D). This claim follows directly
from property (4) since we have already assumed that Bp is used on both/= and ,.
Now in case (a) it can be seen that T,n reaches Lz,m under Ai at time d- 1 and
from there proceeds via Bp to Lz,m in D more steps. In case (b) we observe that Tz,n
reaches Lz,n at time D using Bp, and then proceeds to Lz,m via Ah in d- 1 more
steps. Thus in either case Tz,, reaches Lz,m in D + d- 1 steps, and then in one final
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Ly,, Ly,m

step

<_ d- steps?

Lz,
(Ah)I

D steps

(Bp)

Lz,m az

st--Jeps
<_ d- steps?

Lz, z
(A)

FIG. 4. Case (III), Bp used on m.

step reaches Ly,m at time D-4-d.
The following section gives a variety of choices for the Ai and By, yielding a large

number of different optimal strategies, for cubes as small as dimension 3.

3.2. Optimal strategies. This section presents individual strategies that can
be used in the general construction to produce combined strategies that are optimal
under the simultaneous model.

Define two basic constant strategies F and R on the 1-cube" for F ("forward"),
node 0 transmits to node 1 at each time step; for R ("reverse"), node 1 transmits
to node 0 at each time step. Figure 5 shows some important basic strategies we

can define using the notation introduced in 2. R+ is a 4-node circular pattern. F,
F+, F++, etc. are alternating strategies on the 1-cube, 2-cube, 3-cube, etc. that
can be described in this way" two-color the cube red and black and first have all
red nodes transmit to all their neighbors, then have all black nodes transmit to all
their neighbors, then repeat. The last pattern in the illustration is an important one

whose structure is best shown in the formula F+++ but that can be represented
more succinctly by the equivalent formula R+++.

Now we are in a position to describe strategies usable for (A1, A2) and (B1, B2) in
the above construction. For (B, B2), (R+, R+) is the only pair known to be usable,
because they are the only pair known for which properties (3) and (4) can be satisfied.
Although other strategies have been found that satisfy property (2) such as R++/
and larger analogues, considerable effort has been expended without success to find
such strategies that can also be arranged as specified in (3) and (4). The major
problem is (3)" it requires that if either B or B2 takes D steps to go from L to M,
then opposite A strategies must be used at L and M. The way to look at this is that
the construction induces a two-coloring so that if B or B2 takes D steps between L
and M, then L and M have opposite colors; this turns out to be a hard condition to
satisfy. For the R/ and R/ strategies, the node pairs that take D 2 steps in either
strategy are at distance 2 apart in the 2-cube, so the coloring is achieved by dividing
the 2-cube in half and using one color throughout each half.

Strategies for A and A2 are relatively easy to find. For example, one can use any
example from Fig. 5 as A1 and its reverse A1 as A2. Given constant, alternating,or
partially alternating (Ax, A2), then (A-, A2-) is also usable. An illustration of F-
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F++

R+++

FIG. 5. Basic strategies. Arrows with circles on them alternate directions at each time step.

R(R)R+

0

FIG. 6. Some optimal strategies. There is no notation for the one at the lower left.

is shown in Fig. 5.
Let ($1, S) be constant strategies for a dl-cube satisfying (1) and let ($2, S) be

constant strategies for a d2-cube satisfying (2), such as (R+, R+) or (R+++, R+++).
Form the Cartesian product of a d2-cube and a dl-cube and create strategies A1 (A2)
for it as follows. On each subcube defined by holding the second coordinate fixed, use
$2 (S); on each subcube defined by holding the first coordinate fixed, use $1 (S) if
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the first coordinate has even parity and use S ($1) if it has odd parity. R+++ and
its reverse can be obtained in this way by using R/ as $1, and $2 and R-t- as S and

S. In general, (A,A2) obtained in this way satisfy not only (1) but also (2), and
thus they can be reused as ($2, S) in a repeated application of this construction.

Optimal solutions for the hypercube token exchange problem under the simulta-
neous model are now obtained by using any of the above methods to generate A and
A2 strategies for a d-cube and using R/ and R/ for B and B2 with D 2. A is
used on subcubes co and al and A2 is used on O2 and a3. The choices of whether to
use B or B2 on each/n is generally determined by property (4). The smallest case

where this works uses F and R with d 1, yielding a solution for the 3-cube. For all
larger values of d, several different optimal strategies are obtained. Figure 6 shows
the solution for the 3-cube, the constant solution for the 4-cube obtained by using
R+ and R+ for A and A2, and the constant optimal strategy for the 5-cube that is
described in the next section.

3.3. Constant optimal strategies. Constant strategies have desirable local
properties: at each node a constant strategy can be controlled with small table with-
out retaining any state information, and without regard to the states of neighbors.
Constant optimal strategies have the following graph-theoretic interpretation. Define
the directed diameter of a directed graph as the maximum length, over all (v, v2), of
a shortest path from Vl to v2. Now, given an undirected graph, consider the problem
of choosing a direction for each edge so that the resulting directed graph has directed
diameter equal to the diameter of the original graph. This is the problem of finding
constant optimal strategies.

Constant optimal strategies for the hypercube can be based on Theorem 3.1 by
using (R+,R+) for (B1, B2) and various constant strategies for (A,A2). For even
values of d there are many choices for (A, A2) beginning with (R+, R+), which yields
a constant optimal strategy for the 4-cube.

For odd values of d, the strategies are harder to find. However, constant optimal
strategies for all odd d _> 5 can be based on either R/ ++ (see Fig. 6) or R ++/,
which are both constant optimal strategies for the 5-cube. Since an optimal strategy
automatically satisfies property (1), either of these is usable as A1 and A2 in the
construction for the 7-cube, and similar constructions can be carried forward to all
higher odd values of d.

It is not difficult to show by exhaustive search that there are no constant strategies
satisfying property (1) for d 3, which means that there are no constant optimal
strategies for the 3-cube and furthermore that such strategies for the 5-cube cannot
be based on Theorem 3.1. In contrast to R+++ and R +++, which complete
in five steps on the 5-cube, the related constant strategies R++ + and R++ ++
require seven steps on the 5-cube and hence are not even usable as A and A2 in a
solution for the 7-cube.

3.4. Summary. Optimal solutions to the token exchange problem under the
half-duplex simultaneous model of communication are possible for all hypercubes of
dimension 3 or higher. For dimension 4 and higher, optimal strategies that are time-
invariant exist. As the size of the hypercube increases, strategies are easier to find
and an increasing variety is available.

Added in proof: See also [4] for constant optimal strategies for all d _> 4 obtained by repeated
applications of to the pattern shown in the lower left of Fig. 6.
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On some hardware, such as the NCUBE, it may be more efficient for a node to
broadcast its tokens to its neighbors than to send to some a.._nd receive from others
at one step. Thus the nonoptimal alternating strategy F+...+ might be the best
choice since it is close to optimal and can be done using local broadcasts exclusively.
(One cannot do better using only local broadcasts, since a node that does not send its
token initially cannot transmit it to the node at distance d in fewer than d additional
steps.)

Optimal strategies can be extended to larger cubes in several ways. Given optimal
strategies for dl- and d2-cubes, an optimal strategy for the Cartesian product of the
two cubes is obtained by using the two strategies in succession on the appropriate
subcubes. Not only does this produce an optimal strategy for the (dl / d2)-cube,
but it uses each edge no more than half the time on average. Another approach can
be based on the fact that S- is optimal if S is an optimal constant, alternating, or
partially alternating strategy.

4. Pairwise communication. Under the half-duplex pairwise model of commu-
nication, an appealing but false conjecture is that 2d steps are necessary and sufficient
[1]. If at each time step the transmissions go uniformly in the same direction through
the same dimension, then any distinct sequence of 2d such steps solves the problem
and no shorter sequence does. Furthermore, in an arbitrary graph, if one uses an
approach based on compression to a single node followed by expansion to all nodes,
then 2r is a lower bound where r is the radius of the graph: the minimum over all
points p of the maximum distance from p to any other point in the graph; the radius
of the d-cube is d.

This section shows that the conjecture is false by presenting a 17-step algorithm
for the 9-cube and a 32-step algorithm for the 17-cube. The algorithm uses the
Cartesian product of a D-cube and a (D + 1)-cube, or in other words, it requires that
d=D+l.

4.1. Definitions.
DEFINITION 4.1. A subcube x is type Ak, where 0 <_ k <_ d and 0 _< s _< D, if

and only if for all n such that P(n) (-1)k, Lx,, has tokens Tz,, for all z E Ns(x)
and all m Nk(n).

DEFINITION 4.2. A subcube is type Bsk, where 1 _< k _< d and 0 _< s _< D, if and
only if it is both type Ask and type Ak-.

Remark. Half the locations on a subcube are relevant to property A, while

Bk depends on all locations. Ak and Ak- are independent properties because they
depend on different locations. Although it is true that if a subcube is type Ak (Bk),
then it is also type Ak-2 (Bk-), we will only be interested in the maximal values of
k for which one can say that a subcube is of type Ak (B).

DEFINITION 4.3. Ck for 1 <_ k < d is a two-step transformation on a subcube
x defined as follows. In the first step each location Lx,n such that P(n) (-1)k

transmits to L,, where m and n differ only in bit k- 1. In the second step the same
locations transmit to locations Lx,m where m and n differ only in bit k.

Remark. We could use any bit less than or equal to k- 1 in the first step
and still achieve our results below; k- 1 was chosen arbitrarily. Figure 7 shows an
instance of Ck for the 3-cube. Observe that Ck is legal under the pairwise model of
communication.

LEMMA 4.1. Ck applied to a subcube of type Aks produces a subcube of type Bsk+l.



374 DAVID W. KRUMME

L0,4

L0,o-

Lo,7
"Lo,5

Lo,1

FIG. 7. C1 on so. Dashed arrows represent the first step and solid arrows the second.

Proof. The locations relevant to the definition of Ak all transmit in both steps
of Ck and therefore are unchanged, so that after Ck the subcube is still of type Ak.
We must show that it is also A+1. Let P(n) (-1)k+l and let p differ from n only
in bit k- 1 and q differ from n only in bit k. Then Lx,p transmits to Lx,n in step 1
and Lx,q transmits to Lx,n in step 2. Now for all m E Nk+(n), either m Nk(p) or
m Nk(q). Let z Ns(x). If m Nk(p), since P(p) (-1)k, L,p has token Tz,m
(because of the A hypothesis) and transmits it to L, in the first step. Similarly, if
m N(q), L:,q has Tz,m and transmits it to L, in the second step.

DEFINITION 4.4. El,1 and El,-1 are one-step transformations defined on pairs of
subcubes x and y where x and y differ only in bit i. In El,l, location Lx,n transmits
to Ly,n if P(n) (-1)b(x), and otherwise Ly,n transmits to Lx,n. E,_ is the reverse
(all directions reversed) of Ei,. The definitions can be summarized by saying that
for u =i:l, under Ei,u, Lz,n transmits if and only if P(n) u(-1)bi(z).

Remark. Note that since x and y differ in bit i, the definition applied to x is
consistent with its application to y, and thus Ei, and Ei,- are well defined. Figure
8 shows Eo, for two 2-cubes.

L1,2

1,0

L

Lo,o

L1,3

Lo,1

FIG. 8. Eo,I for (o and (d-2).

LEMMA 4.2. Suppose Ei,u is applied to two subcubes that are both of type B and
k-1 bi U, and itthat x is one of the subcubes. Then x becomes type Ai+ if (-1) (x)+k

k b(x)-t-kbecomes type Ai+ if (-1) ---u.

Proof. Let y differ from x only in bit so that Ei,u involves x and y. Note
that x and y initially are both type Ak and Ak-. (I) Suppose (-1)bi(x)+k u,
or equivalently, (-1)k-1 u(-1)b(x)+ u(-1)b(y). Let n be such that P(n)
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(--1)k-1 and let m 6 Nk-i(n) and z 6 N+l(x). If b(z) b(x), then z 6 N(x)
and since x initially is type A/k-i, Lx,n already contains Tz,,. If b(z) # b(x),
then z 6 N(y) and since y initially is type A/k-i, Ly,n initially contains Tz,m. Now
we observe that by assumption, P(n) (-1)k-1 u(-1)b(y) so that according to
the definition of E,u, Ly,n transmits to Lx,n. Thus in either case, L, ends up

k-1 (II) Suppose (1)b(x)+kwith T,m and thus x is type A+ after E,u. -u, or

equivalently, (-1)k -u(-1)b(x) u(-1)b(y). Let n be such that P(n) (-1)k
and let m 6 Nk(n) and z 6 N+l(x). If b(z) b(x), then z 6 N(x) and since x
initially is type A/k, nx, already contains T,,. If b(z) b(x), then z E N(y) and
since y initially is type Aki, Ly,n initially contains T,,. As before, we observe that
by ssumption, P(n) (-1)k -u(-1)b(y) so that ny,, transmits to nx,n. Thus in

keither case Lx,n ends up with Tz,m and thus x is type A+ after E,.
DEFINITION 4.5. Define a(x) for 0 _< <_ D in this way.

co(x)
+

+ + (1 fori > 1.

We defined b-l(X) to be 1, so that ai(x) is one plus the number of times bj(x) is
the saine as bj_l(X) as one proceeds through j 0, 1,..-, i- 1. Observe that ai(x)
does not depend on any bits greater than or equal to i.

DEFINITION 4.6. Ei is a one-step transformation defined in this way: for every
pair of subcubes x and y that differ only in bit i, apply Ei,, where u (-1)a()+b-l()

(_l)a(y)+b- (Y).
Remark. Observe that E is well-defined and legal under the pairwise model for

0 _< < D. Figure 9 illustrates E1 for a 2-cube of 2-cubes.

FIG. 9. E1 (D=d=2).

4.2. Overview of the algorithm. We are now ready to present the algorithm
for solving the token exchange problem on the (D + d)-cube in fewer than 2(D + d)
steps. Before addressing the details, let us preview it in general terms. Initially
all subcubes are type A and we work to make them A) from which they can be
completed in one more step. At our disposal are the special moves Ck and Es,, as
well as ordinary "copying" moves whereby locations that have acquired complete sets
of tokens simply send them to their neighbors. Ck can change two Ak subcubes into
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ak+l and one A+I If we were to--sBk+ subcubes from which Es,u can produce one "8+
AkTlfollow a pattern that ignored the "lesser" result Ak+ and proceeded with the

combining it with other similar ones, we could fairly easily produce an overall solution
in exactly 2(D -t- d) steps, by eventually building up a few A subcubes and copying
them to all subcube sites. The key to the faster solution lies in using also some of
the "lesser" results to produce ultimately some additional A subcubes, so that fewer
steps are required in the final copying.

A natural pattern to use is to apply C then EO,ul then Ck: then E, and so
on, where the values k, Ul,k2, u2,.., depend on the subcubes’ locations. There are
two difficulties. First, if Es,u is to be usefully applied, both subcubes involved must
be of type B for some k, and thus the pattern must ensure that this always occurs.
Second, when A subcubes are finally generated, they must occur in locations from
which they can be propagated everywhere by copying without mutual interference;
because of the way that they are generated, they tend to arise as neighbors or near-
neighbors and not in good positions for efficient propagation, so care must be taken
to ensure that they emerge in reasonable positions. The only difference between Ei,1
and E,_ is which resultant subcube is the lesser one, and by choosing u in Ei,u one
can influence the locations where the various types of subcubes arise. The actual
algorithm uses the function aj of the previous section to define u in Es,u so that both
of the difficulties are taken care o5

The algorithm consists of an initial step, a phase called P, a phase called Q, and
a final step. The initial step creates A subcubes everywhere. P is the heart of the
algorithm, consisting of D three-step sequences Po, P,"" ,PD-, where each three-
step sequence consists of Ck followed by Es,u. P produces one A and a number of
lesser subcubes. Q involves using Ck to complete the lesser subcubes A-, A-2,
and concurrently propagating A subcubes by copying. The final step finishes the

A subcubes so that all locations have all tokens. The reader may find it useful to
refer to Fig. 10 while going through the following description of the algorithm.

4.3. The algorithm.
Initial step. For all x and all n such that P(n) 1, let m differ from n only in

bit 0 and transmit from Lx,n to Lx,m.
FACT 4.1. After the initial step all subcubes are of type A.
Phase P. For 0 <_ < D apply Pi, defined as follows, in sequence. First, for each

subcube z apply the two-step sequence Ca(z). Then apply Ei.
Aai+l(z)THEOREM 4.1 After Pi each subcube z is of type +

Proof. Before Po each subcube z is of type A A(z). Assume then that before

Pi each subcube is of type A(z) and we shall show that after Pi it is aa+ (z).
Lemma 4.1 says that after the two steps of Ca(z) each cube becomes type B(z)+l.
Now Ei involves pairs x and y where x and y differ only in bit i. This means that

a(x) a(y) so that both x and y are type B’(x)+ and Lemma 4.2 applies. Now
let z be either x or y and distinguish two cases according to whether bi(z) bi_(z).
(I) If bi(z) bi_l(Z), first note that ai+(z) hi(Z)+ 1. By Definition 4.6, Ei
Ei,u where u (-1)a(z)+b-l(z), so since z is type B’(z)+ we find in applying
Lemma 4.2 that (-1)b’(z)+a’(z)+l (-1)b’-l(z)+a’(z)+ -u, so that z becomes type
A(z)+ a+(z) (II) If b,(z) bi_(z) we proceed similarly, first noting that"i+1

ai+(z) hi(Z). By Definition 4.6, Ei Ei,u where u (-1)a(z)+b-(z) and in
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(a) After initial step and C1.

A’.A2 A’.A21
A1

AI’.A A,.A21
A1AI’,. A2

(b) After Po. Arrows describe Eo.

A A22
A22 A2

A - : AA : A
A : A

A3 A32

A A

A A : A23A :

(c) After P1. Arrows describe El. (d) After P2. Arrows describe E2.

AI A3

A3 A
A4aI A4aI A41 A4I

A2 - AA A
A ,. AA

A3’AS,

(e) After P3. Arrows describe E3. (f) The last step of Q.

FIG. 10. Subcube states in the token exchange for the 9-cube.

applying Lemma 4.2 we find that (-1)b’(z)+a’(z)+l (-1)b’-l(z)+a*(z) u, so that z

becomes aa(z) aa+l (z) [j
"’i+1 "’i+1

Phase Q begins with every subcube z of type A)D(*) and it proceeds to make
them all A)+1 AdD (Recall that d D + 1.) Q uses both Ck and copying steps
and is ad hoc in nature, having been defined only in specific cases given below.
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Final step. After Q, each subcube is type AD and can be finished in one step
by having all Lx,n with P(n) (-1)d transmit along some dimension. It can now be
seen that the total number of steps is 3D / 2+ the number of steps in Phase Q. We
now proceed to examine Q.

Prior to Q we have one subcube AD0+1, namely, x 2O+1 1. This is the only x
for which aD(x) D + 1. We now use binary notation: x 111... 111 1D, where
we will always have D bits. There are D subcubes ADD because there are D values
x for which aD(X) D; they are 01D-l, 021D-2, ,. 0D. In general, there are (Dk)
values x for which aD(X) D + 1 k. To see this, observe that aD(X) is D + 1 minus
the number of values for which bi(x) differs from bi-1 (x); for each x consider the set
S {i b(x b_l(x)}; then whenever IS_I= k, we will have Co(X) D + 1 k;
and finally it is easy to see that there are () such sets S.

Phase Q generally proceeds this way. Copy subcubes of type A+1 to neighboring
subcubes at each step. Apply Ck to subcubes of type AkD with k _< D, except when
the subcube is the target of a copying of a subcube of type ADD+. Q terminates
when all subcubes are of type A+. We must choose which neighbors to use during
each copying operation so as to minimize the total number of steps of Q, by avoiding
neighbors that are able to become type A+ soon enough on their own using the Ck
transformations, and We do this only for three specific cases.

First, for D < 4, one cannot do better than simply copy the one original ADD+
subcube to all subcube sites in D steps, for a total of 4D + 2 2(D / d) steps.

Second, for D 4 we have a type A subcube at 1111; copy it to 1100, 1101,
and 1110 in two steps. And we have type A44 subcubes at 0111, 0011, 0001, and 0000;
apply C4 to them in two steps. Then we have altogether eight A subcubes arranged
so that it is possible to copy them to the remaining eight sites in one step. Thus Q
takes three steps and the complete algorithm takes 17 (D + d) steps.

Figure 10 shows the states of the subcubes at several intermediate stages of the
operation of this algorithm for D 4.

Third, for D 8, we start with one As9 cube, 8 Ass cubes, and 28 As7 cubes.
Particular choices can be made which we will only summarize here so that in 6 steps
we copy 64 images of the A, we apply Cs to the 8 A subcubes followed by 4 copying
steps to produce 128 more A9s subcubes, and we apply C7 and then Cs to 16 of the

As7 subcubes followed by 2 copying steps to produce 64 more A subcubes. (The
A at 11111111 is copied to all locations of the form 1.**1.** in 6 steps, where
can be either 0 or 1; the Ass subcubes are at 01111111,-..,00000000, and after

converting them to As9 we copy them to all locations of the form 0.****** in four
steps; we use As subcubes at locations lO000xyz, llO00xyz, lllOOxyz, and llllOxyz
where xyz {000,001,011,111}, and after converting them to A9s we copy them,
respectively, to all sites of the form 100.0.**, 110.0.**, 1.100.**, and 1.110.**
in 2 steps, which puts them at all locations of the form 1.**0.**.) This gives us 256

As9 subcubes in all, one at each site. Thus for D 8, Q can be done in 6 steps and
32 (D + d) steps.the complete algorithm takes 32

We summarize these results in the following theorem.

THEOREM 4.2. The token exchange problem under the half-duplex pairwise model
can be solved on an n-dimensional hypercube in fewer than 2n steps if n >_ 9.

Proof. To solve the problem in 2n- 1 steps, choose a nine-dimensional subcube,
in n- 9 steps send all tokens to that subcube, perform the exchange on the subcube
in 17 steps, and then in n- 9 final steps send all tokens to all sites. D
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4.4. Asymptotic behavior. It is likely that as D --+ oc it is possible to obtain
better and better solutions, although we have no general method for making good
choices in Q. However, the result below shows that D 4 is already close to the best
possible.

THEOREM 4.3. The complete solution of the (D+d)-dimensional hypercube token
(6-1g5)(D+d) 1.85(D+d) steps.exchange problem using P and Q takes at least

Proof. We estimate the number p ofA+ subcubes that Q is able to generate in
2k steps. In 2k steps it can generate 22k from the one ADD+I, 2k-2 from each of the

(D subcubes, and so on. Thus weADD subcubes, 22k-4 from each of the (D
have

p=22k+2k-( D
+’’’+ (D)k

<4 +-
4k-D5D.

Since Q must yield 2D subcubes of type A)+1, we must have 4k-D5D >_ 2D so that

2k > (3- lg 5)D.

The number of steps in the complete solution is then at least

3D +2+ (3-lg5)D (6-lg5" 2D +2
2 ]

(-)6 lg5
2D +>

2 2

(6-1g5)(D+d)2

1.850(D + d).

If we seek the minimal value of K for which we can find a solution in K(D + d)
steps, we see that for D < 4 we have K- 2, for D 4 we have K 1.889, for

32 and as D --+ oc we can expect K to become smaller.D-8wehaveK=1.882,
However, K is bounded below by 1.850, so D 4 already gives close to the best
rate of solution possible using this approach. We summarize our best known K as
follows.

THEOREM 4.4. The token exchange problem under the half-duplex pairwise model
can be solved on a (17s + t)-dimensional hypercube in 32s + 2t steps, or in other words
in ,, 1.88n steps on an n-dimensional cube.

Proof. First send all tokens to a 17s-dimensional subcube in t steps, solve the
problem in 32s steps on the subcube, and finally send the tokens back to all sites
in t steps. For the 17s-dimensional subcube, treat it as the Cartesian product of
a 17(s- 1)-cube and a 17-cube, solve the problem on all 17-cubes in 32 steps, and
recursively solve the problem on the 17(s- 1)-cubes in 32(s- 1) steps. [:1

5. Discussion. For the d-dimensional hypercube under the half-duplex pairwise
model, there remains a gap between the lower bound of 1.44d that applies to any
topology [3] and the upper bound of 1.88d. Narrowing this gap seems to be a hard
problem. The algorithm of 4 relies on moves that either double the number of tokens
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present at a site or that copy token sets from one site to a new site that may as well
not have contained any tokens at all before the copying. Using the same methods that
were used to establish the lower bound of 1.44d, one can show that if only these kinds
of moves are used, then the lower bound is (lg 3)d 1.58d, and that if half the moves
are doubling ones and half are copying ones, then the lower bound is (4/lg 5)d .. 1.72d.
Thus the fact that the Ck sequences use copying and doubling moves increases the
lower bound from 1.44d to 1.58d, the fact that they use equal measures of each raises
it further to 1.72d, and the presence of the Ei moves raises it to 1.85d. The use of
copying and doubling and of the Ei all solve problems created by the geometry of the
hypercube, so it will not be easy to make improvements on this algorithm. Attempts to
emulate the Fibonacci algorithm that solves the token exchange problem in 1.44 lg N
steps on a complete graph of N nodes have been thwarted by the interconnect pattern
of the hypercube.
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knowledged.
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Abstract. A graph G is P4-sparse if no set of five vertices in G induces more than one chordless path of
length three. P4-sparse graphs generalize both the class of cographs and the class of P4-reducible graphs. One
remarkable feature of P4-sparse graphs is that they admit a tree representation unique up to isomorphism.
It has been shown that this tree representation can be obtained in polynomial time. This paper gives a linear
time algorithm to recognize P4-sparse graphs and shows how the data structures returned by the recognition
algorithm can be used to construct the corresponding tree representation in linear time.
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1. Introduction. Due to their wide applications in communications, transportation,
VLSI design, program optimization, database design, and other areas of computer sci-
ence and engineering, graph problems often require fast solutions. It is well known,
however, that many interesting problems in graph theory are NP-complete on general
graphs. Fortunately, in practical applications one rarely has to contend with general
graphs: typically, a careful analysis of the problem at hand reveals sufficient structure to
limit the graphs under investigation to a restricted class.

Quite often, real-life applications suggest the study of graphs that feature some "lo-
cal density" properties. In particular, graphs that are unlikely to have more than a few
chordless paths of length three (also referred to as P4’s) appear in a number of contexts.
Examples include examination scheduling and semantic clustering of index terms (see
[4]).

In examination scheduling, for example, a conflict graph is readily constructed: the
vertices represent different courses offered, while courses z and y are linked by an edge if
and only if some student takes both of them. (In the weighted version, the weight of edge
zy stands for the number of students taking both z and y.) Clearly, in any coloring of
the conflict graph, vertices that are assigned the same color correspond to courses whose
examinations can be held concurrently. It is usually anticipated that very few paths of
length three will occur in the conflict graph.

In the second application, we construct a graph whose vertices are the index terms;
an edge occurs between two index terms to denote self-referencing or semantic proxim-
ity. Again, very few P4’s are expected to occur. These applications have motivated both
the theoretical and algorithmic study of the classes of cographs [2]-[4], [9], [10], which
contain no induced Pa’s, and P4-reducible graphs [6], defined as those graphs in which
no vertex belongs to more than one P4.

The study of cographs and P4-reducible graphs led naturally to constructive charac-
terizations that implied tree representations unique up to isomorphism (the interested
reader is referred to [4], [6], [7] for details). The constructions were such that the tree
representation could be obtained in polynomial time. Further studyyielded a linear-time
recognition algorithm that also enabled the construction of the tree in linear time.
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The class of P4-sparse graphs was first introduced by Hoing [5] in his doctoral dis-
sertation: these are the graphs for which every set of five vertices induces at most one
P4. It is easy to see that the P4-sparse graphs generalize both the cographs and the
P4-reducible graphs. In [8], Jamison and Olariu gave several structural theorems for
P4-sparse graphs, including a constructive characterization asserting that the P4-sparse
graphs are exactly the graphs constructible from single-vertex graphs by three graph op-
erations. This result implies that P4-sparse graphs have a unique tree representation up
to isomorphism.

The purpose of this paper is to provide a linear-time recognition algorithm for P4-
sparse graphs. This algorithm is incremental in nature: the vertices are processed one at
a time, with a determination made at each iteration aS to whether the subgraph induced
by the vertices processed so far is P4-sparse.

The algorithm returns a maximum size induced P4-free subgraph and a structure
containing the remaining vertices. These two structures can be used to construct the
tree representation in linear time.

The paper is organized as follows: 2 provides the background information on the
structure of P4-sparse graphs and the main theorem on which the linear-time recognition
is based; 3 presents the data structures and procedures used in the accept or reject
decision; 4 gives the details of the update of the data structures that occurs whenever
the new graph is P4-sparse; 5 presents the construction of the tree representation of P4-
sparse graphs; finally, 6 summarizes the results and poses a number of open problems.

2. Background and terminology. All the graphs in this work are finite, with neither
loops nor multiple edges. In addition to standard graph-theoretical terminology com-
patible with Bondy and Murty [1], we use some new terms that we are about to define.

Let G (V, E) be an arbitrary graph. For a vertex of G, we let Na(z) denote the
set of all the vertices ofG that are adjacent to : we assume adjacency to be nonreflexive,
and so z does not belong to Na(z); we let da(z) stand for INa(z)l. For a subset S of
the vertex-set of G, we let Gs stand for the subgraph of G induced by S. If a vertex z is
nonadjacent to a vertex y, we shall say that z misses . (Similarly, y misses z.) A vertex
z is said to distinguish between vertices u and v, whenever z misses precisely one of u, v.

To simplify the notation, a P4 with vertices a, b, c, d and edges ab, bc, cd will be de-
noted by abcd. In this context, the vertices a and d are referred to as endpoints while b
and c are termed midpoints of the P4. Consider a P4 in G induced by A {a, b, c, d}.
A vertex z outside A is said to have a partner in A if z together with three vertices in
A induces a P4 in G. Given an induced subgraph H of G and a vertex z outside H, we
say that z is neutral with respect to H if z has a partner in no P4 in H. In the remaining
part of this work we shall often associate, in some way, rooted trees with graphs. In this
context, we shall refer to the vertices of trees as nodes. For a node w in a tree T, we let
p(w) stand for the parent of w in T.

To make this paper self-contained, we shall review some ofthe properties ofcographs
and P4-sparse graphs.

To begin, Lerchs [9] showed how to associate with every cograph G a unique tree
T(G) called the cotree of G, defined as follows:

Every internal node, except possibly for the root, has at least two children.
The internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes) in such a way
that the root is always a 1-node, and such that 1-nodes and 0-nodes alternate
along every path in T(G) starting at the root.
The leaves of T(G) are precisely the vertices of G, such that vertices z and /are
adjacent in G if and only if the lowest common ancestor of z and in T(G) is a
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1-node.
In our characterization of P4-sparse graphs, we make use of the properties of a spe-

cial graph that we are about to define. A graph G is termed a spider if the vertex-set V
of G admits a partition into disjoint sets S, K, R such that:
(sl) IS[ [K[ _> 2, S is stable, K is a clique;
(s2) Every vertex in R is adjacent to all the vertices in K and misses all the vertices in S;
(s3) There exists a bijection f S K such that either

N(s) K {f(s) } for all vertices s in S,
or

NG(s) fq K K {f(s) } for all vertices s in S.
It is easy to see that the complement of a spider is also a spider. For further reference

we make the following observation about the P4’s in a spider.
OBSERVATION 1. Let G be a spider. Every P4 in G has vertices in K tA S or in R

only. Furthermore, if a P4 has vertices in K t_J S, then it is induced by a set of the form
{x, V, f(x), f(V) } with distinct x, V in S.
(Follows directly from (sl)-(s3).)

In [8], Jamison and Olariu prove the following characterization of Pa-.sparse graphs.
PROPOSITION 2.1 (Theorem 1 in [8]). For a graph G, the following conditions are

equivalent:
(i) G is a Pa-sparse graph;
(ii) for every induced subgraph H of G, exactly one ofthe following statements is satis-

fied:
(1) H is disconnected;
(2) H is disconnected;
(3) H is isomorphic to a spider.
Lerchs [10] proved that the cographs are precisely the graphs obtained from single-

vertex graphs by a finite sequence of ) and (C) operations defined as follows. Given
disjoint graphs G1 (V1, El) and G2 (V2, E2), define:

G ) G (V V, E E);
G O) G2 (V t..J V2, E t2 E2 U {xylx V, y V2 )).

It is easy to see that the operations ) and reflect (1) and (2), respectively, in
condition (ii) of Proposition 2.1. For the purpose of constructing the P4-sparse graphs,
we need to introduce a third graph operation to reflect (3).

Consider disjoint graphs G1 (V, ) and G2 (V2, E2) with V2 {v} t_J K tAR
such that

(jl) [g[- IV1[-]-- 1 _> 2;
(j2) K is a clique;
(j3) Every vertex in R is adjacent to all the vertices in K and nonadjacent to v;
(j4) There exists a vertex v’ in K such thatN(v) {v’} or Nc. (v) K {v’}.

Choose a bijection f" V K {v’} and define

(1)

with

GI@ G2 (V t2 V2, E212 E’)

l"

E’ {xf(x)lx e

{XZ[X e VI,Z e g- {f(x)}}

whenever No2 (v) {v’},
whenever NG2 (v) K- {v’}.

PROPOSITION 2.2 (Theorem 2 in [8]). G is a P4-sparsegraph ifandonly ifG is obtained
from single-vertex graphs by a finite sequence ofoperations ,) ,(R).
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The following natural observation follows directly from Proposition 2.2.
OBSERVATION 2. Let G be a P4-sparse graph. If G (respectively, G) is disconnected

with components G, Gz,..., G, (p > 2), then we can write G G ((R)) Gz ((R))
((R))

(Observation 2 follows from Proposition 2.2 by a trivial inductive argument.)
Propositions 2.1 and 2.2 and Observation 2 combined suggest a natural way of asso-

ciating with every P4-spars graph G a tree T(G) (called the ps-tree of G), as described
by the following recursive procedure.

Procedure Build_tree(G);
{Input: a P4-sparse graph G (V, E);
Output: the ps-tree 7’(G) corresponding to G.}
begin

if IV then
return the tree T(G) consisting of the unique vertex of G;

if G (respectively, G) is disconnected then begin
let G, G,..., G, (respectively, G, G,..., G) (p >_ 2) be the components
of G (respectively, G);
let T, T2,..., T, be the corresponding ps-trees rooted at r, r2," ,
return the tree T(G) obtained by adding r, r,..., r as children of a node
labeled O (1);
end

else begin {now both G and G are connected
write G G1 @ G2 as in (1);
let T, T be the corresponding ps-trees rooted at r and r;
return the tree T(G) obtained by adding r, rz as children of a node
labeled 2
end

end; {Build_tree}

As it turns out (see [8]) the ps-tree of a P4-sparse graph G is unique up to isomor-
phism. In the remainder of this section, we introduce two theorems which lay the foun-
dation for our recognition algorithm: Theorem 2.3 characterizes the P4-sparse graphs
in terms of their Pa’s; Theorem 2.5 gives the requirements for maintaining the P4-sparse
property when introducing a new vertex into a P4-sparse graph.

Let G be an arbitrary graph. We shall say that G has aspecialpartition if there exists a
family I2 {$1, $2,..., Sq} (q > 1) of disjoint stable sets of G with I&l >- 2 (1 < i < q)
and an injection

q q

i=1 i=1

such that the following two conditions are satisfied:
(spl) K=f(S) is a clique for all i 1, 2,..., q;
(sp2) A set A of vertices induces a P4 in G if and only if there exists a subscript i (1 <
i < q) and distinct vertices z, V in Si such that A={z, V, f(z), f(y)}.

We are now in a position to state our first result which provides a new characteriza-
tion of P4-sparse graphs.

THEOREM 2.3. For a graph G thefollowing statements are equivalent:
(i) G is P4-sparse;
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(ii) G is a cograph or G has a specialpartition.
Proof. The implication (ii)(i) is easy: if G is a cograph, then there is nothing to

prove; otherwise, we only need observe that no set of five vertices in G can contain the
union oftwo distinct sets ofthe form {z, y, f(z), f(y)}. To prove the implication (i)(ii),
we proceed by induction. Assuming the implication true for all P4-sparse graphs with
fewer vertices than G, we only need prove that G itself satisfies (ii) whenever G is P4-
sparse. We first observe that if V can be partitioned into disjoint sets V, V such that
Gv and Gv satisfy (ii) and no P4 in G has vertices from both Gv and Gv, then G is
either a cograph or it has a special partition.

If G or G is disconnected, then each component satisfies (ii) by the induction hy-
pothesis. Otherwise, by Proposition 2.1, G is a spider. Now S u K and R each induce
P4-sparse graphs with fewer vertices than G. Further, no P4 in G has vertices from both
graphs. Thus, we are done by the induction hypothesis.

It is easy to see that conditions (spl) and (sp2) above guarantee that if a graph G
has a special partition, then the sets S and K are unique. The following observation
shows how the sets S, K (1 < i < q) in a special partition of a P4-sparse graph G can
be used to verify the neutrality of a vertex with respect to G.

OBSERVATION 3. A vertex z G is neutral with respect to G if and only if for every
subscript i (1 < i < q) the following two conditions hold:

(i) if z is adjacent to a vertex in Si, then z is adjacent to all the vertices in Si tA Ki;
(ii) if a vertex z is adjacent to a vertex in Ki, then z is adjacent to all the vertices in

(Observation 3 follows trivially from the definition of neutrality together with Theorem
2.3.)

We will now define a special subgraph of a P4-sparse graph that is central to our
incremental recognition algorithm for P4-sparse graphs. Let G (V, E) be a P4-sparse
graph. The canonical cograph C(G) associated with G is the induced subgraph of G ob-
tained by the following procedure.

Procedure Greedy(G);
{Input: a P4-sparse graph G;
Output: the canonical cograph C(G) }
begin

C() ;
while there exist Pa’s in C(G) do begin

pick a P uvxy in C(G);
pick z arbitrarily in {u, y};
c(c) c(c)-

end;
return(C(G))

end; {Greedy}

An easy inductive argument shows that for every induced subgraph H of G which
satisfies (3) in (ii) of Proposition 2.1, the procedure Greedy removes all the vertices in
Si (1 < i < q), except for an arbitrary one. The fact that the graph C(G) returned by
Greedy is a cograph, as well as the fact that (7(G) is as large as possible is immediate. The
uniqueness implied by the term canonical is justified by the following stronger result.

PROPOSITION 2.4 (Theorem 3 in [8]). For a graph G with no induced C5, thefollowing
statements are equivalent:
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(i) G is P4-sparse;
(ii) For every induced subgraph H of G, C(H) is unique up to isomorphism.
We are now in a position to give the result which is the basis for the recognition

algorithm.
THEOREM 2.5. If G is a P4-sparse graph, then G + z is P4-sparse if and only if the

following conditions are satisfied:
(2) z is neutral with respect to G;
(3) x belongs to at most one P4 in C(G) + x.

Proof. To prove the "only if" part, assume that G + x is a P4-sparse graph. Since
(2) is trivially satisfied, we only need prove that (3) holds. In fact, we shall prove the
following stronger result.

(4) For every induced cograph H ofG, x belongs to at most one P4 in H + x.
To see that (4) is true, we use induction on the size of G. If G + x or G + x is

disconnected, then we are done by the induction hypothesis applied to the component
containing x. We may, therefore, assume that both G + x and G / x are connected. If
G is not P4-free, then H + x is a P4-sparse graph with strictly fewer vertices than G + x.
Now we are done by the induction hypothesis applied to H + x.

Finally, we may assume that G is P4-free. If G + x is P4-free, then there is nothing
to prove. Otherwise, by virtue of Proposition 2.1, G+ x is a spider. The vertices ofG+ x
can be split into S, K, and R as in (sl)-(s3). Since G contains no P4, x belongs to K t3 S.
If x belongs to two distinct P4’s in G+ x, then by Theorem 2.3, these P4’s are induced by
the sets {x,x’, y, f(y)} and {x,x’,z, f(z)} with y z, and with x f(x’)or x’= f(x),
depending on whether or not x K.

But now, Theorem 2.3 guarantees that {y, z, f(y), f(z)} induces a P4 in G, contra-
dicting the assumption that G is P4-free. Thus (4) must be true.

To prove the "if" part, let G be a P4-sparse graph and suppose that both (2) and (3)
are satisfied, yet G / x is not P4-sparse. There must exist a set of five vertices in G / x
inducing two distinct P4’s. We let/3 stand for such a set containing as few vertices from
G C(G) as possible. Clearly, since G is P4-sparse, we have x e B. Since (3) is satisfied,
B must contain vertices from G C(G). Let a be such a vertex.

Now the definition of the canonical cograph C(G) implies the existence of vertices
b, c, d in C(G) such that A {a, b, c, d} induces a P4 in G with edges ab, bc, cd.

Our arguments rely on the following simple observation whose justification amounts
to a straightforward case-by-case analysis.

OBSERVATION 4. Let G (V, E) be an arbitrary graph. If a set A induces a P4 in G,
then the subgraph of G induced by A t_J {x, y} is P4-sparse whenever x, y V A have
no partners in A.

By Observation 4, we must have IAfqB[ < 2. By (2), no vertex in B A has a partner
in A. This implies that

(5) Nv(a) fq (B A) N(d) fq (B A) and N(b) fq (B A) Nv(c) fq (B A).

By (5), IA N B[ 1 leads to an immediate contradiction: the set B {a} t3 {d}
induces two distinct P4’s in G, contradicting our choice of/3.

Now we may assume that IA fq/31 2. But now if A tq B {a, b}, then by (5) the
set (B {a, b}) t2 {c, d} contradicts our choice of B; if A f3 B {a, c}, then the set
(B {a, c}) t_J {b, d} contradicts our choice of B. Finally, if A fq/3 {a, d}, then by
(5), B {a} must induce a P4, and either b or c must have a partner in this P4. This
completes the proof of Theorem 2.5.
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3. Algorithms I: Recognition. We shall use the criteria obtained in Theorem 2.5 to
develop a linear-time incremental algorithm to recognize P4-sparse graphs. In the pro-
cess, we maintain two data structures describing the portion of the graph successfully
processed. One structure represents the canonical cograph; the other contains all ver-
tices which belong to some P4 in the graph. In case the graph is P4-sparse, it turns out
that these two structures can be used to construct the ps-tree of the graph in linear time.

To define our data structures and outline our recognition algorithm for P4-sparse
graphs, consider an arbitrary graph G. We assume that we have already processed a
nonempty induced P4-sparse subgraph H of G. (Note that such a subgraph H can always
be found; in fact, the subgraph induced by a subset of at most four vertices in G is a P4-
sparse graph.) T(H) contains the canonical cotree of H, i.e. the cotree representation
of the canonical cograph C(H).

The insight provided by Theorem 2.3 motivates our method of storing the P4’s in
the special partition of H. More precisely, we use the array SK(H) to store the sets Si
and Ki of the special partition of H. (Naturally, when we write SK(i) we mean the ith
element of the array SK.) As vertices are added to SK(H), SKsize(i) keeps track of
the cardinality of S and SKadj(i) keeps track of the cardinality of N/, (s) for s S.
Vertices in SK(H) will be stored as ordered pairs (s, g(s)) where g(s) is the unique
vertex in K adjacent to s if SKadj(i) 1 and the unique vertex in K nonadjacent to s
if SKadj(i) > 1.

We also maintain, for every vertex v in G, pointers to the location, if any, of that
vertex in SK(H) and T(H). Specifically, Tree(v) points to the location in T(H);
SKindez(v) gives the index of the ordered pair containing v (if any) in SK(H);
SKtype(v) is either "S" or "K." Throughout the algorithmic sections, we shall assume
that all data are initialized to zero or null, as appropriate.

The actual recognition algorithm consists of the following two stages.

Algorithm Recognize(G);
Stage 1. {Initialization}

H - {Vl, v2};
construct the cotree T(H) rooted at R;
SK(H) -0;

Stage 2. {Incrementally process the remaining vertices in G H, as follows}
Step 2.0 pick z in G H;
Step 2.1 if z is not neutral with respect to H then return("no");
Step 2.2 if z belongs to more than one P4 in C(H) + z then return("no");
Step 2.3 H H + z; update T(H) and SK(H).

In the incremental stage of the algorithm, we first determine whether or not H / z
is P4-sparse. If it is, then we update the data structures to represent T(H + z) and
SK(H + z). When the incremental stage is complete, we have either rejected the graph
or constructed T(G) and SK(G). Theorem 2.5 guarantees that to determine whether or
not H + z is P4-sparse, we need only verify that (2) and (3) are satisfied.

Observation 3 gives the criteria for a vertex to be neutral with respect to a Pa-sparse
graph. In order to verify (2) in time proportional to tin(z), we shall examine each neigh-
bor of z and maintain counters of how many vertices in each set S and each set S t3 K
are processed. We shall also maintain test bits Ktest(i) and SKtest(i). The procedure
UpdateP4 increments the counters and sets the appropriate test bit whenever a counter
reaches the cardinality of the set with which it is associated. UpdateP4 also builds a list,
SKlist, of neighbors of z which belong to some P4 in H. The procedure TestNeutral
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processes each vertex in SKlist by checking the appropriate test bit and decrementing
the associated counter. If any test bit indicates the criteria are not met, the graph is
rejected. TestNeutral also resets a test bit whenever the associated counter reaches 0.
All data are reinitialized in the process. Both UpdateP4 and TestNeutral process each
neighbor of z at most once and each iteration of the main loop is completed in constant
time. Thus, we can state

(6) Step 2.1 of Stage 2 is performed in time bounded by da(x).

The procedure UpdateP4 is implemented as follows.

Procedure UpdateP4(z);

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

begin
for each v E NH(X) such that SKindex(v) > 0 do begin- SKindex(v);

Sgcount(i) - Sgcount(i) + 1;
if Sgcount(i) Sgsize(i) then Sgtest(i) -- 1;
if SKtype(v) "K" then begin

gcount(i) - gcount(i) + 1;
if Kcount(i) Ksize(i) then Ktest(i) ,-- 1;

end
end

end; {UpdateP4}

The details of procedure TestNeutral are spelled out as follows.

Procedure TestNeutral(x);

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

begin
for each vertex v in SKlist do begin-- SKindex(v);

t - SKtype(v);
if SKtest(i) 1 and t=’S’ then return "no";
Sgcount(i) -- Sgcount(i)- 1;
ifSgcount(i) 0 then Sgtest(i) -- 0;
if t="K" then begin

if Ktest(i) 1 then return "no";
gcount(i) - gcount(i)- 1;
if gcount(i) 0 then gtest(i) -- 0
end

end
end; {TestNeutral}

An algorithm for testing (3) in time proportional to dH(x) relies on a generalization
of the marking scheme developed by Corneil, Perl, and Stewart [4]. For convenience,
we borrow their notation relevant to the marking scheme.

For a node u in the canonical cotree T(H), rooted at R, we let d(u) stand for the
number of children of u; rod(u) represents the current number of marked, and subse-
quently unmarked children of u. (Initially, md(u) is 0 for all the nodes u in T(H); when
u is unmarked, md(u) is reset to 0.) A marked 1-node of T(H) is said to be properly
marked whenever rod(u) d(u) 1; otherwise it will be termed improperly marked.
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The procedure Mark using the adjacency information of a new vertex z performs
the following actions:

marks, and subsequently unmarks, as appropriate, certain nodes of T(H);
adds marked but not subsequently unmarked nodes ofT(H) to one or the other
of the linked lists M0 (containing marked 0-nodes), M (containing improperly
marked 1-nodes)or M2 (containing properly marked 1-nodes).

It turns out that (3) is satisfied if and only if all vertices remaining marked at the
termination of Mark lie on a single path (to the root) with special properties which will
be detailed shortly. In order to test (3), we first mark the cotree with respect to z. Then
we identify a vertex c which, if (3) holds, will be the lowest vertex still marked. Finally,
we test the path from c to the root for the desired properties.

Thus Step 2.2 can be further refined as follows:

Step 2.2. {if z belongs to more than one P4 in C(H) + z then return("no")}
Step 2.2.1. Mark(z);
Step 2.2.2. Find a;
Step 2.2.3. If the path in T(H) joining R and a is not admissible then return("no");

We will give the procedures used to accomplish each of the three substeps and the
appropriate proofs.

Procedure Mark(z);
Oo
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

begin
Mo M1 -- M2 - 0; co *--Cl c2 0;
for each v in Nn(x) do

if v is a leaf in T(H) then mark v;
for each marked node u in T(H) do

if d(u) rod(u)then begin
unmark u;
md(u) -- O;
if u # R then begin

mark w;
rod(w) ,,-- md(w) + 1;
add u to the list of marked and subsequently unmarked
children of w
end

end
else {now d(u) # md(u), and so u is marked but not unmarked}

case label(u) of
0: begin {u is a marked 0-node}

Co - co + 1;
Mo Mo

end;
1" begin

ifrod(u) d(u)-I then begin {u is improperly marked}
1 1 + 1;
M1 +-- M1 {u}
end;

else begin {now u is a properly marked 1-node}
c2 c2 + 1;
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28. M= M= U {u}
29. end;
30. end
31. endcase;
32. if (co + cl + c2 > 0) and d(R)= 1 then markR
33. end; {Mark}

OBSERVATION 5. Mark(z) runs in da(z) time.
To justify this claim, note that since all the internal nodes of T(H), with the possible

exception of the root, have at least two children, the number of nodes that are marked
(and possibly subsequently unmarked) is bounded by da(z). Hence, IM0 to M1 U MI is
bounded by da(z). It follows that the number of nodes of T(H) that are examined by
procedure Mark is also bounded by da(z). Clearly, every node examined by Mark(z) is
processed in constant time.

In the remainder of this paper a node w ofT(H) will be referred to as marked only if
w remains marked at the end of procedure Mark (i.e.. w is marked but not subsequently
unmarked). For a node w in T(H), T(w) will denote the subtree of T(H) rooted at w.
For later reference, we make note of the following simple observations.

OBSERVATION 6. Let w be a marked node in T(H). There must exist a child w’ of w
such that all the leaves in T(w’) are adjacent to z.

If this were not true, the node w could not possibly be marked.
OBSERVATION 7. Let w be a never marked or a marked, but not an unmarked, node

ofT(H). There must exist a descendant w" ofw in T(w) such that all the leaves in T(w")
are nonadjacent to z.

If this were not true, w would have been marked and subsequently unmarked.
Let w be an arbitrary node of T(H) and let I(w) stand for the set of children of w

which have a marked (and not subsequently unmarked) descendant in T(H). Let T’(w)
stand for the subtree of T(w) defined by

T’(w)--T(w)- U T(u).
uGI(w)

Partition the leaves of T’ (w) into nonempty, disjoint sets A(w) and B(w), in such a way
that x is adjacent to all the leaves in A(w) and nonadjacent to all the leaves in B(w).

OBSERVATION 8. w is the lowest common ancestor of any leaves a in A(w) and b in

To see this, note that every descendant w’ of w in T’(w) is such that T(w’) contains
leaves from A(w) or B(w) only, for otherwise with u standing for a counterexample with
the lowest level in T (w), u must be marked, a contradiction.

IfT(H) contains marked nodes, then the marked node with the lowest level in T(H),
denoted a(x) (or simply a, if no confusion is possible) plays a distinguished role in our
algorithm. (If several marked nodes are at the same level, pick one arbitrarily.) Let

(7) (P) wl(= R), w2, ..., Wp a(x) (p >_ 1)

stand for the unique path in T(H) joining R and a. The path (P) is referred to as com-
plete if no marked vertex in T(H) lies outside (P).

For nodes wj with I < j _< p-1 of a complete path (P), the subtree T(wj)-T(wj+)
contains no marked node; as before, we let

A(w) stand for the set of leaves in T(w) T(w+) that are adjacent to z;
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B(w) stand for the set of leaves in T(w) T(w+i) that are not adjacent to x.
For wv c(x), denote by

A(wv) the set of all the leaves in T(wv) that are adjacent to x;
B(wv) the set of all the remaining leaves in T(wv).

OBSERVATION 9. No w (1 < k < p) on the path (P) is marked and subsequently
unmarked.

This is obvious, by definition, for a; let j be the largest subscript for which we is
a counterexample. However, since w was both marked and unmarked, it follows, in
particular, that so was w+, a contradiction.

OBSERVATION 10. Let w be an arbitrary unmarked node, or an improperly marked 1-
node in (P). There exists a nonempty set S of leaves of T(w), such that x is nonadjacent
to all the leaves in 5’.

By Observation 9, any unmarked node in (P) cannot have been both marked and
then, unmarked. Now the conclusion follows instantly from Observation 7.

OBSERVATION 11. If d(R) I and R is marked, then R is properly marked.
This follows easily from the marking scheme: if d(R) 1 and R is marked, but

not unmarked then, trivially, rod(R) 0 and so d(R) rod(R) + 1, implying that R is
properly marked.

Call a node w (1 < j < p 1) of (P) regular if w is either a properly marked
1-node or else an unmarked 0-node. Otherwise, w is termed special. The path (P) is
said to be admissible if the following conditions are satisfied.

(al) (P) is complete;
(a2) there is at most one subscript k (1 < k < p- 1) such that the nodew is special.

Furthermore, if a special node exists, then the following conditions must be true
(a2.1) k p- 2 or k p 1;
(a2.2) If k p 1 then IA(wp)l IB(wp)l 1; furthermore,

IB(w)l i whenever wv is a 0-node and
IA(w)l 1 whenever wp is a 1-node.

(a2.3) If k p 2 then
IB(w)l IA(wv-1)l IA(w)l I and B(wp_) whenever wv is a 0-node;
IA(wp)l- IB(w-x)l- IB(w)l 1 and A(wp_x) 0 whenever wv is a 1-node.

Note that, if T(H) contains no marked nodes, then the path (P) is, trivially, empty
and hence vacuously admissible. Now in our notation, Theorem 1 in Corneil et al. [4]
can be formulated as follows.

PROPOSITION 3.1. IfH is a cograph, then H + x is a cograph ifand only ifthepath in
T(H) joining the root and a(x) is admissible and contains no special nodes.

We are now ready to state a result which provides the theoretical basis for our algo-
rithm to test condition (3). We assume the existence of an underlying graph G (V, E)
which is in the process of being investigated by the recognition algorithm.

THEOREM 3.2. If H is a P4-sparse graph, then (3) is satisfied if and only if the path
joining the root ofT(H) and (x) is admissible.

Proof. Let H (VH, EH) be described by the tuple (T(H),SK(H)), where T(H)
is the cotree associated with the canonical cograph C(H). Assume that the vertex x is
neutral with respect to H. If T(H) contains no marked nodes, or if the path in T(H)
joining R and c(x) is admissible and contains no special nodes, then by Proposition 3.1,
C(H) + x is a cograph, and hence, no Pa in H + x contains x.

Nowwe may assume that the path (P) joining R and c(x) is admissible and contains
a special node. In this case, a straightforward argument, which is left to the reader, shows
that x is contained in precisely one Pa in C(H) + x.
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Conversely, assume that the (2) and (3) are satisfied. In particular, z must be neutral
with respect to H. We only need prove that in the presence of special nodes, the path
(P) joining R and a(x) is admissible.

Our proof relies on the following intermediate results that we present as facts. Write
(P) as in (7).

FACT 1. (P) is complete.
Proof. Suppose not; let 7 stand for the lowest marked node in T(H) that does not

belong to (P), and let wi stand for the lowest common ancestor of a and " in T(H). We
claim that

(8) and wi are either both 0-nodes or both 1-nodes.

Suppose not; symmetry allows us to assume that 7 is a 0-node and that wi is a 1-
node. By Observations 6-8 combined, we find leaves a, b, c, d in A(a), B(a), A(7), B(7),
respectively. Since w is a 1-node, we have ad, bc, bd E E. Since 7 is a 0-node, cd E.
It follows that zcbd is a P4. Now a must be a 1-node, for otherwise ab E and so zadb
would be a second P4 containing z. Clearly, our choice of a implies that a and wi are
distinct nodes of T(H). Since they are both 1-nodes, we find a 0-node wj on the path
from a to wi. Let t be an arbitrary leaf in T(w) T(w+x). Clearly, ta, tb q E and
tc, td E. We must have zt E, or else zctd is a P4, implying that z belongs to two
distinct P4’s. However, now tzab is a P4, contradicting that (3) is satisfied.

Now (8) allows us to assume without loss of generality that

both 7 and wi are O-nodes.

(the case where both 7 and wi are 1-nodes is perfectly symmetric).
As before, by Observations 6-8 combinedwe find leaves a, b, c, d in A(a), B(a), A(7),

B(7), respectively. Since, by assumption, wi and 7 are distinct 0-nodes, we find a 1-node
0 on the path in T(H) from 7 to wi. Let t be an arbitrary leaf in T(O) T(c(O)) (here,
c(O) is the child of 0 that lies on the path from 7 to 0). Obviously, we have at, bt q E and
tc, td E.

Observe that xt E, for otherwise {a, x, c, t, d} induces two distinct P4’s. Now axtd
is a P4 in H + x. Furthermore, note that a must be a 0-node, else baxt is a second P4
containing x. Since a and w are distinct 0-nodes, we find a l-node wj on the path from
a to w. Let t’ be a leaf in T(wy) T(wy+). We have t’a,t’b E, t’c,t’d E. But now
either btxc or xatb is a P4 depending on whether or not xt E. Either case leads to a
contradiction, and the proof of Fact 1 is complete, lq

FACT 2. If wk (1 < k < p) is an improperly marked 1-node or an unmarked 1-node,
then k p- 1 or k p- 2, depending on whether or not a(x) is a 0-node. Furthermore,
if k p 2, then wp_ is unmarked.

Proof. To begin, we claim that

(9) d(wk) >_ 2.

This follows from the definition of the cotree, combined with Observation 11.
Clearly, (9) implies that T(w) T(w+) . By Observation 9, w+ cannot be

marked and subsequently unmarked, and so d(w) >_ md(wk) + 1. Since this inequality
must, in fact, be strict, there exists a leaf d in T(w) T(wk+l) with dz E.

We let, as usual, a, b stand for arbitrary leaves in A(a), B(a), respectively. Obvi-
ously, since w is a 1-node, we have ad, bd E. It is easy to see that
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if the statement is false, then we find distinct subscripts i, j
(k < i < j < p) such that both wi and w are 0-nodes.

To justify this observation, note that in case wp is a 0-node we set j ,--- p and since
k < p i we set i p 2; in case wv is a 1-node, we set j p 1 and i k + 1.

Let t be an arbitrary leaf in T(wi) T(wi+). Since wi is a 0-node, ta, tb q[ E; since
wk is a 1-node, ad, bd, td E. If wv is a 0-node, then zadb is a P4; in addition, either
bdtz or zadt is a P4 depending on whether or not zt E.

We shall, therefore, assume that wp is a 1-node. Let t be an arbitrary leaf in T(w)
T(w+). Note that tt’,t’a,t’b f[ E and t’d E; since wp is a 1-node we have ab E.
But now, {a, b, z, t, t’, d} induces at least two distinct P4’s containing z. To see that this
is the case, note that zt, zt’ f[ E, else bazz, zzdb are Pa’s with z t or z t’ such that
zz E. However, now zadt and zadt’ are distinct P4’s containing z, contrary to our
assumption.

Finally, we claim that

if k p- 2, then wp_ is unmarked.

Ifwp_ were marked, then by Observation 6 we would find a vertex c in T(wp-1) -T(wp)
with zc E. Since wp_ is a 0-node ac, bc f[ E; since w is a 1-node, cd E. But now,
the set {a, b, c, d, x} induces two distinct Pa’s containing z (namely, bazc and bdcz), a
contradiction.

This completes the proof of Fact 2. q

FACT 3. If w (1 < k < p) is a marked 0-node, then k p 1 or k p 2,
depending on whether or not a(z) is a 1-node. Furthermore, if k p 2, then Wp_l is
properly marked.

Proof. Trivially, w R. By Observations 6 and 9 combined, there exists a leaf c in
T(w) T(W+l) such that xc E. We claim that

if the statement is false, then we find distinct subscripts i, j
(k < i < j < p) such that both w and w are 1-nodes.

To justify this observation, note that if wp is a 0-node, then since k < p 2 we set
j -- p 1 and i k + 1; if wp is a 1-node, then set j p and since k < p 1, we set
i+-k+l.

As usual, we let a, b stand for arbitrary leaves in A(a), B(a), respectively. Let t be
an arbitrary leaf in T(w) T(Wi+l). Since w is a l-node, we have at, bt E; since Wk
is a 0-node, we have ac, bc, tc E. We note that

(10) wp is a 0-node.

Otherwise, baxc is a P4, and either taxc or btxc is a P4 depending on whether or not
xteE.

By (10), j p; let t’ be an arbitrary leaf in T(w) T(w+). Note that since Wp is a
0-node ab E; now xt, xt E, or else {b, z, a, x, c} induces two distinct P4’s with z t
or z t. But now, btxc, btxc are distinct Pa’s containing x, contrary to our assumption.

Finally, we claim that

if k p 2, then w_ is properly marked.

Suppose not; now by Observation 10, T(w_) T(w) contains a leaf d with xd
E. However, with c as above, {c, x, a, d, b} induces two distinct Pa’s in C(H) + x, a
contradiction.
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This completes the proof of Fact 3. [3

FACT 4. The path (P) contains at most one special node.
Proof. To begin, note that by Facts 2 and 3 combined, (P) cannot contain two distinct

special nodes of the same kind (both 0-nodes or both 1-nodes). We let wk (1 _< k < p)
be a special 1-node and wr (1 < r < p) be a special 0-node in (P).

If wp is a 0-node, then by Fact 2, k p 1. By Fact 3, r p 2 and wp_ must be
properly marked, a contradiction.

Thus wp must be a 1-node. By Fact 3, r p- 1. By Fact 2, k p- 2 and wp_1 must
be unmarked, a contradiction.

To complete the proof ofTheorem 3.2, we need only prove that the conditions (a2.2)
and (a2.3) in the definition of the admissible path are satisfied. For this purpose, we
distinguish between the following two cases.

Case 1. wp is a 0-node.
If wk is an improperly marked 1-node or an unmarked 1-node, then, by Fact 2, k

p 1. For every choice of a leaf a in A(wp), b in B(wp), and d in B(wk), xadb is a P4. It
follows that

IA(wp)l IB(wp)l IB(wk)l 1.

Furthermore, if wk is a marked 0-node, Fact 3 implies that k p 2 and that Wp_
is properly marked. This implies that B(Wp_l) . Now for every choice of b in B(wp),
t in A(wp_l), and c in A(wk) we have btxc a P4. It follows that

IB(wp)l- [A(wp_l)[ IA(w)l- 1

Case 2. wp is a 1-node.
If wk is a marked 0-node then, by Fact 3, we have k p 1. Note that for every

choice of a in A(wp), b in B(wp), and c in A(w), baxc is a P4, implying that

IA(wp)l IB(wp)l IA(wk)l 1

If w is an improperly marked 1-node or an unmarked 1-node then, by Fact 2, k
p 2 and wp_ is unmarked. By Observation 6, A(wp_l) 0. Furthermore, for every
choice of a in A(wp), d in B(wk) and t in B(wp-1), cadt is a Pa, and so

IA(wp)l IB(wp-x)l IB(w)l- 1,

and the proof is complete.
COROLLARY 3.3. If IMo t_J M > 2, then (3) is not satisfied.
Proof. If co + c > 2 then the path (P) joining a and R cannot be admissible. The

conclusion follows by Theorem 3.2.
Two nodes of T(H) play a distinguished role in Steps 2.2-2.3. First, a(x) stands, as

before, for a marked node in T(H) with the lowest level (ties being broken arbitrarily);
next, 7(x) is a candidate for a special node on the path joining c and R. (We shall write,
simply, c and 7 instead of a(x) and 7(x) since no confusion is possible.) Step 2.2.2 is
implemented by the procedure Find whose details are given below.

Procedure Find;
{returns a node that plays the role of
1. begin Find undefined;
2. if co + Cl + c2 0 then Find A;

{now there exist marked nodes in T(H)}
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4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

case co + c of
0: if p(p(z)) is an unmarked node of T(H) for some z in M2 then

Find - z
else begin

let z be a node in M2 such that z p(p(z’)) for all z’ E M;
Find z

end;
1: begin

let z be the unique node in M0 t3 M1;
if z p(z’) or z p(p(z’)) for some z’ M then

Find - z’
else

Find +- z
end;

2: if for distinct z, z’ in M0 t_J M1, z’ p(z) or z’ p(p(z)) then
Find z

endcase
end; {Find}

OBSERVATION 12. Procedure Find runs in de(x) time.
To see this, note that by a previous observation IMI is bounded by de(x). For each

element in Mz each of the tests in lines 4, 7, and 12 takes a constant time once a bit-vector
representation for M2 is assumed.

The following result shows that (3) is satisfied only if the node returned by the pro-
cedure Find can play the role of c. More precisely, we have Fact 5.

FACT 5. Let z be the node returned by the function Find. (3) is satisfied only if the
following statements are satisfied:

(i) z A whenever T(H) contains no marked nodes;
(ii) z and a coincide whenever T(H) contains marked nodes.
Proof. To begin, note that procedure Find returns "undefined" whenever co+c > 2.

By Corollary 3.3, (3) is not satisfied. Next, line 2 in procedure Find guarantees that z A
whenever co / c + c 0. To show that (ii) must also be satisfied, we shall rely on the
following simple observations.

OBSERVATION 13. Let z be a marked node in T(H) such that the parent of z or
the grandparent of z (but not both) is either a marked 0-node or an improperly marked
1-node or an unmarked 1-node. Then (3) is satisfied only if z and a coincide.

By assumption, T(It) contains marked nodes. As usual, let c stand for a marked
node of the lowest level in T(H). If (3) is satisfied, then by Theorem 3.2, the path (P)
in T(It) joining c and R is admissible. Thus z must belong to (P). But now, z must
coincide with c, for otherwise we contradict Fact 2 or Fact 3 in the proof of Theorem
3.2.

OBSERVATION 14. Let M2 # 0 and M0 tA M1 0; (3) is satisfied only if a is ei-
ther a node in M2 whose grandparent is unmarked or, failing this, a node in M2 that is
grandparent of no node in M2.

Clearly, a M2; let z be a node in M2 such that p(p(z)) is unmarked. By Observa-
tion 13, z and a must coincide; nowwe may assume that no such node z exists. It follows
that a is a node in M2 that is grandparent of no node in M2, as claimed.

OBSERVATION 15. Let IN0 tA MI[ 1; (3) is satisfied only if a is either a node in
M2 whose parent or grandparent is the unique node in M0 tA M1 or, failing this, a is the
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unique node in M0 t_J M1.
Let t stand for the unique node in M0 t_J M1. If for some node z in Me, t p(z) or

t p(p(z)), then by Observation 13, z and a coincide. If no such z exists in M:, then
a Me or else we contradict Fact 2 or Fact 3. It follows that a and t coincide.

OBSERVATION 16. Let ]M0 t2 M1] 2; (3) is satisfied only if a belongs to M0 tA M1.
If a M0 tA M1, then the path in T(H) joining a and R cannot be admissible.
Now the conclusion follows immediately from Observations 12-16, and the proof of

Fact 5 is complete.
We assume that whenever the "unmarked w" statement is executed during Steps 2.2

and 2.3 with w Mi, the following statements are implicitly performed:

ci -- ci 1;

md(w) O.

Step 2.2.3 is implemented by the procedure TestAdmissible whose details are spelled
out next. As justified by Fact 5, we may use a for the node returned by procedure Find.

Procedure TestAdmissible;
{tests the path in T(H) joining a and R for admissibility.}

1. begin
2. if a undefined then return("no");
3. , -- a; if a A then exit;
4. if (p(c) M0) or label(p(a)) 1 and p(c) M2 then , *- p(c)
5. else if (p(p(a)) Mo) or (label(p(p(c))) 1 and p(p(a))

_
M2) then

v - p(());
(to begin, check the path between 7 and R)

6.
7. if label(z) 0 then
8. z ",-- p(z)
9. else z -- p(p(z));
10. while z T(H) do begin
11. if z Me then return("no") else unmark z;
12. z -- p(p(z))
13. end;

{check whether an appropriate number of nodes remain marked}
14. if (7 p(p(a))) and (label(a) 0) then (we know that p(a) M2}
15. unmark p(a);
16. if (co + cl + ce > 2) or ((co + c + ce > 1) and (7 not marked)) then

return("no");
{finally, check the conditions 2.2 and 2.3}

17.
18.
19.
20.
21.

case /of
p(): begin

if label(c) 0 then
if IA()I # I or IB()I # 1 or IB(’r)l # 1 then return("no")
else begin b IB(’r)l; a ,-- IB()I; c ,-- IA(a)l; d x

end
else {label(a) 1}

if IA(c)l # 1 or IB()I # 1 or IA(’r)l # 1 then return("no")
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24.
25.
26.
27.
28.

29.

32.

33.
34.
35.

else begin d IA(’r)l; b [A()I; a ,- IB(c)l; c x end
end;

p(p(a)): begin
if label(a) O then

if[B(a)[ i or [A(p(a))[ 1 or [A(-y)[ I or B(p(a))
then

return("no")
else begin d IA(a)[; b [A(p(a))[; a -- [B(a)[; c x

end
else {label(a) 1}

iliA(a)[ i or [B(p(a))[ i or [B(-)[ i or A(p(a)) 0
then

return("no")
else begin b [B(7)[; a [B(p(a))]; c -- [A(a)[; d -- z

end
end

endease
end; {TestAdmissible}

OBSERVATION 17. Procedure TestAdmissible runs in da(x) time.
To justify this claim, observe that the loop in lines 10-13 is executed at most O([M2 I)

times and that each iteration takes constant time once a bit-vector representation for M2
is assumed. The conditions (a2.2) and (a2.3) take de(x) time to check if we are careful
to keep the children of each node in T(H) in a bit-vector form.

OBSERVATION 18. If q, is chosen in lines 4 and 5 of TestAdmissible, then exactly one
of the following conditions hold true:

(i) label(a) 0 (1), label(-) 1 (0), and , p(a);
(ii) label(a) 0 (1), label(,) 0 (1), and 7 p(p(a)); furthermore,

p(a) is properly marked whenever label(a) 0,
p(a) is unmarked whenever label(a) 1.

Observation 18 follows trivially from the code for lines 4 and 5.
OBSERVATION 19. If " is chosen in lines 4 and 5 of TestAdmissible, then {a, b, c, d}

induces a P4 with edges ab, bc, cd. Further, label(-)= 1 if and only if z is endpoint of
aP4.

Observation 19 follows from Observation 18 and the code for lines 23, 24 and
31, 32.

FACT 6. The path (P) in T(H) from a to R is admissible if and only if the statement
return("no") is not executed in TestAdmissible.

Proof. To begin, assume that (P) is admissible. If (P) contains no special node then
a and , coincide and we are done. We may therefore assume that (P) contains a special
node. By Observation 18, this special node will be correctly determined in lines 4 and 5.

Next, lines 6-15 will unmark all properly marked 1-nodes in (P) from , (exclusive)
to R (inclusive) and, in case both a and 7 are 0-nodes, p(a) which by Fact 3 is a 1-node
is also unmarked. It follows that when line 16 is reached Co + c + c2 _< 2, with equality
if a and , are both marked. Finally, it is easy to see that the admissibility of (P) implies
that return("no") will not be executed in lines 17-34.

Conversely, assume that the statement return("no") is not executed in TestAdmis-
sible. We only need prove that if a T(H), then the path (P) is admissible.



398 BEVERLY JAMISON AND STEPHAN OLARIU

First, we claim that

(P) is complete.

Otherwise, line 16 would have detected the presence of a marked node in T(H) outside
(P).

Next, we claim that

(P) contains at most one special node.

Otherwise we would have executed the return("no") statement in line 11 in case (P)
contained an unmarked node or an improperly marked node other than (possibly) % or
line 16 if (P) contained a marked 0-node other then %

Finally, it is easy to see that since no return("no") was executed in lines 17-34, the
conditions (a2.2) and (a2.3) are satisfied, and the path (P) is admissible.

We note that by virtue of Facts 5 and 6, Theorem 3.2 can be reformulated as follows.
THEOREM 3.4. IfH is a P4-sparse graph, then (3) is satisfied ifand only ifthe statement

retumCno") is not executed in Steps 2.1 and 2.2 ofRecognize.
4. Algorithms II: Updating the data structures. In this section, we shall show how

the data structures are updated once we have determined that H+z is a Pa-sparse graph.
We begin by introducing a result describing the canonical cograph of H + z in terms of
the canonical cograph of H.

THEOREM 4.1. IfH+x is a P4-sparse graph, then thefollowing statements are satisfied:
(i) Ifx belongs to no P4 in C(H) + x, then C(H + x) C(H) + x.
(ii) If x is endpoint ofa P4 in C(H) + x, then C(H + x) C(H).
(iii) If x is midpoint of a P4 in C(H) + x, then C(H + x) C(H) y + x, where

x- f(B).
Proof. To show that (i) is satisfied, suppose that a set B containing z induces a P4 in

H+ z. Obviously, B must contain some vertex a that is not in C(H). By the definition of
C(H), a must be the endpoint of some P4 induced by A {a, b, c, d} with edges ab, bc, cd
with b, c, and d belonging to C(H). Since z is neutral with respect to H, no more than two
vertices from A can be in B. If d B, then B-{a}tA{d} would induce a Pa contradicting
the assumption that z belongs to no P4 in C(H) + z. Thus, A f/3 {a, d}. Since all
vertices outside A are neutral with respect to A, a and d must have identical adjacencies
in B A, contradicting that B induces a Pa.

Furthermore, (ii) follows from Proposition 2.4. To show that (iii) holds, we first
note that B is endpoint of a P4 in C(H) + z. Thus, with Greedy run as before up to
C(H) + z. Since, by Theorem 2.3, z is endpoint of no P4 in C(H) + z, z must belong to
C(H + x). [:]

Step 2.3 shall be further refined as follows.

Step 2.3 {H H + x; update T(H) and SK(H)}
if x belongs to no Pa’s in H + x then

update T(H)
else begin

update SK(H);
if z is a midpoint then
swap z with its image under the bijection f;

end

Two circumstances would require an update of T(It). If z belongs to no P4 in H/z,
then we need only add z to T(tt). To do this, we use Update1, a procedure similar
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to that used by Corneil, Perl, and Stewart [4] to update their cotree. If z is midpoint
of a P4 in C(H) + z, then we need to remove the vertex that plays the role of y in
(iii) of Theorem 4.1 and then incorporate z into the remaining cotree. This is done by
procedure Update2.

The procedure Update performs any required update of SK(H), determines which
type of update to T(H) is needed, and invokes the appropriate procedure. The variables
a, b, c, d returned by TestAdmissible provide the information needed to test the condi-
tions in Step 2.3 of Recognize. If a 0, then z belongs to no P4 in H + z. Otherwise,
either c or d will contain z, depending on whether z is midpoint or endpoint respec-
tively. If this P4 contains no vertices already in SK(H), then a new index in SK must
be created. Otherwise, precisely two vertices from {a, b, c, d} are in SK(H). The two
remaining vertices must be added to produce SK(H + z). If z is a midpoint, then the
other vertex not in SK(H) plays the role of in (iii) of Theorem 4.1.

Procedure Update;
{Main update procedure to execute Step 2.3}

2.
3.
4:
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
q;
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

begin
if a 0 then Updatel; {z is contained in no P4 in H + z}
else begin

if SKindex(a) 0 then s -- a else s +-- d;
if SKindex(b) 0 then k b else k c;
i -- max{SKindex(a), SKindex(b)};
if k b or s a then SKadj(i) - SKadj(i) + 1;
if SKsize(i) 2 and SKadj(i) > 1 then begin

swap the two elements ofK in SK(i);
add (s, k)to sg(i);
Sgindex(s) - i; Sgindex(k) - i;
SKtype(s) +--"S"; SKtype(k) --"K";
SKsize(i) - SKsize(i) + 1
end

else begin
q--q+l;
add (a, b), (d, c) to SK(q);
SKindex(a) --; SKindex(b) - q; SKindex(c) -- q; SKindex(d) -
SKtype(a) -"S"; SKtype(d) -"S";
SKtype(b) +--"K"; SKtype(c) +--"K";
SKsize(q) +-- 2; SKadj(q) -- 1;
end

if x c then begin
Update2;
if s d then begin

Tree(d) -- Tree(a); Tree(a) -- 0;
Swap (Tree(b), Tree(c))

end
end

end
end; {Update}

We shall now justify our construction of SK(H). A function g is said to be valid
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for a P4-sparse graph H whenever g satisfies the requirements (spl) and (sp2) of the
function f in the definition of a special partition. The following theorem completes our
justification of the procedure Update.

THEOREM 4.2. IfH + z is P4-sparse and SK(H) contains a specialpartition E ofH,
then, at the conclusion ofprocedure Update, SK(H + z) contains a specialpartition ’ of
H+z.

Proof. Let {$1, $2, Sq} (q > 1) be a special partition of H and let

q q

i=1 i=1

be a valid function for H.
If a b c d 0, then z belongs to no P4 in H + z and no update of SK is

needed. If z belongs to precisely one P4 in H + z, then no vertex on that P4 belongs to
any P4 in H. Thus, with E’ E U {a, d} as the special partition of H + z, the extension
g’ of g to U,/ Si U {a d} such that g’ (a) b, g’ (d) c is valid for H + z.

If z belongs to more than one P4 in H + z, then clearly, two vertices of the P4
induced by {a, b, c, d} must already be in SK (this follows from the structure of S/f). Let
i be the SKindez of those vertices. Let (s, k) be the remaining endpoint and midpoint,.
respectively. If SKadj(i) changes from 1 to 2 in line 7, then we must reorganize the
ordered pairs in SK(i) in accordance with our definition of g. This situation can occur
only once for each index i, and only two pairs of vertices need to be changed. Once g is
updated for the vertices already in SK(i), we set g(s) k to obtain a function valid for
H +x. [3

The procedures for updating T(H) are given next.

Procedure Updatel;
{x is contained in no P4 in H + x}

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.

begin
if c A then

if all nodes in T(H) were marked and subsequently unmarked then
add x as a child of R

else {no node in T(H) was marked}
if d(R) 1 then

make x a child of the (only) child of R
else begin

make the old root and x children of a new O-node O;
make 0 the only son of the new root

end
else {now a is the only marked node in T(H)}

iflabel(c) 0(1) then
if md(c) l(d(c) rod(a) 1) then begin, -- unique marked and unmarked (never marked) child

of c in T(c);
if ) is a leaf in T(H) then begin

make , x children of a new node 0;
make 0 a child of c
end

else
make x a child of )
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22.
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

end
else begin {now md(oz) 1 (d(o) md(o) 1)}

add every marked child of c to a new node 0 with
label(O) label(a);
if label(a) 0 then begin

make x, 0 children of a new node 0’;
make O’ a child of a
end

else begin
make 0 a child of p(a);
make x, a children of a new node 0’;
make O’ a child of 0
end

end
end; {Updatel}

Procedure Update2;
(swap z with nonadjacent endpoint a to produce T(H + :c)}

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

begin
remove a from T(H);
caselabel(c) of

1: if B(-y) then begin
add b as a child of %
add x as a child of p(-y);
remove c from T(H)
end

else begin
make b, d children of a new O-node 0;
make 0, children of c

end;
O: begin

if B(-) qJ then
add z as a child of p(-y)

else begin
make p(c) and d children of a new O-node 0;
make 0 and z children of a new 1-node 0’;
make 0’ a child of %
end;

if md(c) 1 then begin
let c’ be the marked and subsequently unmarked child of c;
if c’ is a leaf in T(H) then

make c’ a child of p(c)
else begin

make every child of a’ a child of p(c);
remove c’ from T(H)
end;

remove a from T(H)
end;
unmark a, unless already removed;
if 7 is marked then unmark 7
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33. end
34. endcase
35. end; {Update2}

We will conclude this section with a discussion of the timing of the recognition algo-
rithm. By Observations 5, 12, and 17 combined,

(11) Step 2.2 of Stage 2 is performed in time bounded by do(x).

Next, we claim that

(12) Procedure Updatel runs in do(x) time.

To see that this is the case, observe that all the transformations in Updatel can be carried
out in constant time, except for line 24 which involves O(A(c)) operations, which is
bounded by do (x), as claimed.

Further, we claim that

(13) Procedure Update2 runs in do(x) time.

To see that this is the case, we note that by Observation 19, in case is a 1-node, x is an
endpoint of a P4 in H+x and so lines 2-5 take a constant time to execute. Furthermore,
if-y is a 0-node, then all the tree transformations entailed by removing a from T(H) and
adding x to T(H) a take a constant time with the exception of line 32 which requires
O(A(c)) time.

Finally, we claim that

(14) Procedure Update runs in do(x) time.

To see that this is the case, observe that Update has no loops and the only procedures
invoked are Updatel and Update2. Now the statement follows from (12) and (13).

We conclude our timing argument by noting that Stage 1 of the algorithm obviously
takes constant time since only.two vertices are processed. Now, (6), (11), and (14) com-
bined can be summarized in the following theorem.

THEOREM 4.3. Given a P4-sparse graph H described by (T(H), SK(H)) and a given
vertex x H, the algorithm Recognizeperforms in time O(do(x)) one ofthe following:

(i) either determines that H + x is not a P4-sparse graph, or
(ii) incorporates x into H, updating T(H) and SK(H) accordingly.

5. Tree representation for P4-sparse graphs. Let G be a P4-sparse graph repre-
sented by the tuple (T(G), SK(G)). We now address the problem of efficiently con-
structing the ps-tree representation of G. For this purpose we shall use the fact that
T(G) is the canonical cotree of G (i.e., the cotree corresponding to the canonical co-
graph C(G) of G). We shall enumerate the vertices of SK(i) as sl(i),..., st(i) and
kl (i),..., kt(i) where t SKsize(i) and g(sj) kj for I _< j._< t. Whenever possible,
we simply write sj and ky instead of sy(i) and ki(i).

We note that Sl (i) and all vertices in Ki belong to T(G), while s2,..-, st do not. We
further note that if G is a spider, with partition S tO K tO R, then for any x, y S tO K,
SKindex(x) SKindex(y). For convenience, we shall refer to this index as SKind(G),
and define s(G)=sl (SKind(G)), sd(G) SKsize(SKind(G)). Our arguments make
use of the following result.
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THEOREM 5.1. For each i, (1 < < q), there exist a unique O-node A(i) and a I-node
A’(i) in T(G) such that, setting z 8(i), forany v,w Ki with zv q E, zw E, the
following are satisfied:

(15) p(z); ;(i) ;(i)

Furthermore,

(16) either A(i) p(v) or A"(i) p(v) with A(i) p(A"(i)).

Proof. Clearly, it it sufficient to show that if the statement is true for some induced
subgraph H of G, then it is also true after incorporating x into H. We may assume that
x is contained in some P4 in H + x, for otherwise there is nothing to prove. We shall
distinguish between the following two cases.

Case 1. z is endpoint of a P4 in H + z.
By Theorem 4.1, T(H+ z) T(H). The only new pair ofvertices satisfying the

criteria for {v, w} is {f(z), f(x)}. Let/= SKindez(z).
By Observation 19, 7 is a 1-node in T(H). If a is a 0-node, then the condition (a2.2)

guarantees that

IA(c)[- IB(c)l- IB()I- 1

Now, writing A(a) {v}, B(a) {z}, B(7) {w}, (15) is satisfied with a in place
of A and 7 in place of A’.

If a is a 1-node, then condition (a2.3) guarantees that

IA()I- IB(p())I IB()I- 1 and A(p(a))= O.

Now, writing A(a) {v}, B(p(a)) {z}, B(7) {w}, (15) and (16) are satisfied
with a in place of A", p(a) in place of A, and -y in place of A’.

Case 2. x is midpoint of a P4 in H + x.
Now {f(z), x} are the new candidates for {v, w}. Let u be the vertex such that

x g(u). By Observation 19, "y must be a 0-node. First, if a is a 1-node, then condition
(a2.2) translates as

IA(a)[ IB(a)[ IA(7)[ 1.

Now write A(a) {v}, B(a) {u}, A(-y) {z}. When lines 4-12 of Update2
are executed, condition (15) is verified with -/and p(-/) in place of A and ,V (in case
B(-),) {b), or with 0 in place of A and a in place of A’ (in case B(-),) g: q).

Finally, if a is a 0-node, then condition (a2.3) guarantees that

IB()I IA(p(c))l- IA()I-- 1 and B(p(a)) O.

Now, write B(a) {u}, A(p(a)) {v}, A(7) {z}. When lines 13-30 in Update2
are executed, conditions (15) and (16) hold true with either p(a) in place of A", 7 in
place of A, and p(,) in place of A’, or else with p(c) standing for A", 0 standing for A and
0’ standing for A’.

To complete the proof of the theorem, note that conditions (a2.2) and (a2.3) guaran-
tee, on the one hand, the uniqueness of A(i), and on the other, that no further alteration
of T(H + x) can separate A and A’ or A", A, and A’. V1



404 BEVERLY JAMISON AND STEPHAN OLARIU

Since for every i (1 < i < q), there is a unique )(i) with the properties mentioned
in Theorem 4.2, we shall write simply , )’, )", dropping the reference to i.

To construct the tree representation of a P4-sparse graph G, we need a way of in-
corporating the vertices of SK(G) into the tree structure. For this purpose, a new type
of node is needed; this is the 2-node which corresponds to the (R) operation as in (1). A
2-node has precisely two children, one of them a 1-node and the other a single vertex or
a 0-node. The details of this tree construction are spelled out in the following procedure.

Procedure Buildpstree(G);
{Input: T(G), SK(G) for a P4-sparse graph G;
Output: a ps-tree for G;}

1. begin
2. for i 1 to q do begin
3. r SKsize(i);
4. create a 2-node 0;
5. create a 1-node 0’;
6. " p(p(sl));
7. make p(s1) a chiio of 0’;
8. if r 2 then begin
9. make Sl a child of 0;
10. make kl a child of 0’;
11. else begin
12. create a 0-node a;
13. make s2,-.., sr children of a;
14. make a a child of 0;
15. if SKadj(i) I then
16. make kl a child of 0;
17. else
18. make k2, , kr children of 0;
19. end
20. make 0 a child of 0;
21. if 7 has any remaining children then
22. make 0 a child of 7;
23. else begin
24. make 0 a child of p(,);
25. remove %
26. end
27. end
28. if d(R) i then R unique child of R;
29. end; {Procedure Buildpstree}

The following result argues about the correctness and the running time ofprocedure
Buildpstree.

THEOREM 5.2. The tree TI(G) returned by the procedure Buildpstree is precisely the
ps-tree corresponding to G. Furthermore, T1(G) is constructed in linear time.

Proof. We only need prove that the root R of TI(G) satisfies the following three
conditions, as they extend easily to subtrees.

(tl) R is a 0-node of degree p whenever G is disconnected having p (p _> 2) distinct
components;

(t2) R is a 1-node of degree p whenever G is disconnected having p (p _> 2) distinct
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components;
(t3) R is a 2-node whenever G and G are connected.
Our proof relies of the following intermediate results.
FaCT 7. If both G and G are connected, then the canonical cograph C(G) induces

a disconnected subgraph of G with precisely sd(G)+ 1 components, sd(G) of them con-
taining single vertices.

Proof. Write G (V, E). By Proposition 2.1, G is a spider. C(G) contains {s(G)} to
K. Every vertex z in N(s(G)) is adjacent to every vertex in V {z}, implying that
C(G) induces a disconnected subgraph of G with exactly sd(G) + 1 components, sd(G)
of them single vertices.

FACT 8. Let G be disconnected; enumerate the components of
with p _> 2. Let I stand for the set of all the subscripts i (1 <

qand G are connected. Let r =x sd(G). Then C(G) is disconnected and contains
p + r components, of them being single vertices.

Proof. For every i 1, Fact 7 guarantees that C(G) is disconnected and
contains sd(G)+ 1 components, sd(G) of which are single vertices. The conclusion
follows.

Observe that (tl) is implied by the following result.
FACT 9. If G is disconnected, then the tree TI(G) is rooted at a 0-node whose degree

equals the number of components of G.
Proof. Enumerate the components of G as G, G, ..., Gp with p _> 2. Trivially,

the canonical cograph C(G) is also disconnected with components C(G), C(G2),...,
(7(Gp). Hence the canonical cotree T(G) is rooted at a 1-node R’ with d(R’) 1.

Let w stand for the unique child of R in T(G). By the previous argument w has
precisely p children, corresponding to the components of C(G). Since d(R) 1, it
follows that w cannot play the role of ,() for 1 < < q. Consequently, when we exit the
for loop (lines 2-28), w is left unchanged. Now line 29 guarantees that TI(G) is rooted
at w, as claimed.

Next, note that (t2) is implied by the following result.
FACT 10. If G is disconnected, then the tree TI(G) is rooted at a 1-node whose

degree equals the number of components of G.
Proof. Enumerate the components of G as G1, G2, ..., Gp with p >_ 2. Let I stand

for the set of all the subscripts (1 < < p) such that both G and G are connected.
With r as in Fact 8, the canonical cograph C(G) induces a disconnected subgraph of G,
containing p + r components, with r of them being single vertices. Consequently, the
canonical cotree T(G) is rooted at a 1-node R with d(R) p + r. G is a spider with
S t_J K in SK(G).

To see that R is the root of TI(G), note that whenever R A(i) for some 1 < <_ q,
lines 22 and 24 in Buildpstree guarantee that the newly created 2-node becomes a child
of R. By Proposition 2.1, G is a spider for every I. Further, for each i I, A(i) R.

To see that R has degree p in TI(G) note that the r children of R that are leaves in
T(G) are precisely the vertices which will be incorporated into 2-nodes in steps 16-19 of
Buildpstree, leaving R with exactly p children, as claimed.

Further, the following result implies (t3).
FACT 11. If both G and G are connected, then the tree T1(G) is rooted at a 2-node.
Proof. Write G (V, E). Since both G and G are connected, G is a spider. Let s be

the vertex from S in C(G). T(G) is rooted at a 1-node R of degree sd(G)+ 1. sd(G) of
the children of R are single vertices, and the remaining one is a 0-node -.
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Since )(SKind(G)) R, all single leaf children of R will be moved in lines 16-
18 of Buildpstree. Thus the test in line 22 will fail and R will be replaced by the 2-
node. El

Finally, to address the complexity ofprocedure Buildpstree, we note that each vertex
in SK(G) is moved at most once. Thus the procedure runs in time proportional to
This completes the proof of Theorem 5.2.

6. Conclusions and open problems. A graph G is P4-sparse if no set of five vertices
in G induces more than one chordless path of length three. P4-sparse graphs find ap-
plications to network technology, group-based cooperation, cluster analysis, scheduling,
and resource allocation, where graphs featuring "local density" properties are relevant.
In these applications it is typical to equate local density with the absence of chordless
paths of length three. Note that from this standpoint, the cographs [3] and P4-reducible
graphs [6] correspond, respectively, to the local density metrics described below:

(# 1) the graph contains no induced P4;
(# 2) every vertex of the graph belongs to at most one induced P4. Clearly, the P4-

sparse graphs correspond to the metric:
(# 3) every set of five vertices contains at most one P4.
In practical applications, metric (#3) is less restrictive and more realistic than both

(#1) and (/2).
In this work we have proposed several new characterizations of P4-sparse graphs

(see Theorems 2.3 and 2.5) and showed that they can be used, in conjunction with the
tree representation, for the purpose of recognizing the P4-sparse graphs in linear (and
thus, optimal) time.

A number of problems remain open, however. It would be of interest to know
whether the techniques developed in this paper, along with the data structures returned
by the recognition algorithm, can be used to produce efficient solutions to other compu-
tational problems important in applications such as finding a maximum clique, a maxi-
mum stable set, an optimal coloring, clustering, minimum fill-in, minimum weight dom-
inating set, hamiltonicity, and others.
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ON THE EXACT COMPLEXITY OF STRING MATCHING:
UPPER BOUNDS*

ZVI GALIL? AND RAFFAELE GIANCARLO

Abstract. It is shown that, for any pattern of length m and for any text of length n, it is possible to

find all occurrences of the pattern in the text in overall linear time and at mostn -1/2m character comparisons.
In fact, the bound on the number of character comparisons is usually tighter than this, for the bound is

expressed in terms of the structure of the pattern. The algorithm here need not have any knowledge of the
alphabet. This improves the best previous bound of 1.Sn-.5(m-1) obtained by Colussi [Inform. and
Comput., to appear] and Apostolico and Crochemore [Tech. Report TR89-75, LITP, Universit6 de Paris,
Paris, France, 1989]. In a companion paper [SIAM J. Comput., 20 (1991), pp. 1008-1020], the authors show
a lower bound for on-line algorithms that is equal to n -1/2m for m 3. For tn 1, 2, n character comparisons
is optimal. This algorithm is based on a new analysis of the string matching algorithm by Colussi. Moreover,
this new analysis of Colussi’s algorithm confirms the experimental results showing that his algorithm performs
very well in practice [Inform. and Comput., to appear].

Key words, string matching, string searching, text editing, computational complexity, worst case behavior

AMS(MOS) subject classifications. 68Q20, 68Q25, 68U15

1. Introduction. Given a computational problem, the ultimate goal is to determine
its computational complexity exactly. However, this task is usually impossible for
several reasons. One reason is that the exact complexity or even the constant factors
depend on the machine model. Consequently, an exact determination of the time
required by the problem is possible only if we restrict the model of computation, for
example, by using a comparison tree model or considering straight line programs over
a given set of operations.

For several problems involving order statistics the exact number of comparisons
is known. The simplest of these are computing the maximum or minimum in n-1
comparisons (folklore), computing the maximum and the minimum in [n-2] com-
parisons [20] and computing the largest two elements in n- 1 + [log n comparisons
[16], [22]. For many other problems, such knowledge is partial or not available. For
instance, exact bounds for selecting the third largest element are known for all but a
finite set of cases [14], [15], [23]. For the classic problem of sorting, the exact number
of comparisons is known only up to n 12 [1], [9] and for some special cases [17].
A fascinating open problem is to find the exact number of comparisons for determining
the median: the best upper bound is 3n [21] and .the best lower bound is 2n [4].

In this paper, we use a RAM with uniform cost criterion, or alternatively a binary
decision tree model [1]. We evaluate the time complexity of algorithms counting all
operations and the number of comparisons. For example, the straightforward algorithm
for computing the minimum of n numbers takes O(n) time and performs n-1
comparisons in our model.
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We investigate the exact complexity of string matching over a general alphabet.
Let w w[ 1, s] be a string. We denote by w[ i, j] the substring of w that starts at position
and ends at position j of w[1, s]. We denote the positions i, i+l,...,j as [i,j].

String Matching is the problem of finding all occurrences of a given pattern p[1, m]
in a given text t[1, n]. We say that the pattern occurs at text position if t[i + 1, + m]
p[ 1, rn]. By general alphabet we refer to the case of an infinite alphabet or of a finite
alphabet unknown to the algorithm (thus it must work if the alphabet is {a, b, c, d} or
{, , &, }). Most known linear-time, i.e., O(n + m), string matching algorithms do
not depend on the knowledge of the alphabet, since they only compare symbols.
Another common feature of these algorithms is that they preprocess the pattern, i.e.,
they gather knowledge about the structure of the pattern and then start looking for it
in the text. We count only the character comparisons that these algorithms perform
while looking for occurrences of the pattern in the text. However, we do account for
the time taken by the preprocessing. We establish new upper bounds on the number
of character comparisons sufficient for an algorithm to correctly perform string match-
ing. In a companion paper we provide lower bounds [11].

For quite some time, the best upper bound known has been 2n rn and corresponds
to the number of character comparisons made by the Knuth, Morris, and Pratt algorithm
[18] (KMP for short). Even the Boyer-Moore algorithm [5] (BM for short) could not
beat the 2n-m bound. Indeed, Knuth [18] showed that BM performs at most 7n
character comparisons, assuming that the pattern does not occur in the text. Under
the same assumptions, Guibas and Odlyzko [13] reduced this bound to 4n and, very
recently, Cole [6] showed that 3n is a tight bound (up to small order magnitude terms).
Apostolico and Giancarlo [3] designed a variation of BM that achieves the 2n-m
bound, irrespective of how many times the pattern occurs in the text. All of the analyses
of BM mentioned here are quite intricate. Crochemore and Perrin [8] devised a new
time-space-optimal string matching algorithm that performs at most 2n-m character
comparisons. Recently, Colussi [7] devised an ingenious algorithm, which we refer to
as SM, and showed that it performs at most 1.5n-.5(m-1) character comparisons
(however, as we shall see, the true bound is much more involved). Independently,
Apostolico and Crochemore [2] obtained a bound of 1.5n rn + 1 by means of a simple
modification of KMP. Their algorithm is a special case of Colussi’s algorithm. Note
that we can use the failure function used by KMP to derive deterministic finite automata
1 which perform string matching in exactly n comparisons. But this class of algorithms
must know the alphabet to work correctly and have a running time that does depend
(by a multiplicative factor) on the alphabet size. The algorithms we are interested in
have a running time independent of the alphabet size.

We denote by c(n, m) the maximal number of comparisons needed by a linear-time
string matching algorithm, excluding any preprocessing step. It follows from the
discussion above that c(n, m)< 1.5n-.5(m-1). Let Con_line(n m) be as c(n, m) for
on-line algorithms, that is, algorithms whose access to the text is limited to a sliding
window of size m. Moreover, the window can be aligned with t[ i, + m 1 if and only
if the algorithm has already decided whether an occurrence of the pattern can start at
position k of the text, for all k, 1 < k < i. The best bounds currently known for
Con-line(n, m) have been the same as the ones for c(n, rn).

We need a few definitions. A string x[ 1, m] is c periodic if and only if x[ 1, m c]
x[c+ 1, m]. We refer to c as a period of x. The period of a string x is the minimal
integer such that is a period of x. We say that x[1, m] is strongly periodic if and
only if m kl + l’, k > 1, l’ < l, and is the period of x. Given a pattern p[1, m] whose
period is z, rn kz + z’, 0 < z’ < z, the periodic decomposition ofp is a sequence of integer
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triples (Z1, Z, kl) ., (Zs, Zts, ks) such that (zl, z, kl) (z, z’, k); p[1, Z,_ - ZI_I] is
strongly periodic of period zi (and thus zi-1 + z’i_l kizi + z’i), for 1 < =< s; p[ 1, zs + z’s]
is not strongly periodic. Such a decomposition can be computed in O(m) time using
the preprocessing algorithm in [18]. The results of this paper can be summarized as
follows:

(a) A new analysis of the algorithm SM [7] showing that it performs at most
n+ [(n-m)(z’/zs + z’s)] <= n+ In-m/2J character comparisons. Our sharper bound
confirms the experiments by Colussi showing that his algorithm performs very well in
practice because for most patterns s 1 and z’ is smaller than zl

(b) Based on our analysis of SM, we devise a new algorithm and show that it
performs at most n + [(n m)(min(1/2, (z’ + 2)/2(z + z’)))] _<-n -1/2m character com-
parisons. Therefore, c(n, m) <= Con-,ne(n, m) <=n m. In the companion paper 11], we
show a lower bound for Con_n,e(n, m) that is equal to n-m for m 3.

We remark that it is possible to prove that SM performs at most n + [(n- m)x
(rain (z, m z)/ m)J <= n + In m/2J character comparisons and that our new algorithm
performs at most n + [(n- m)(min (1/2, min (z, m-z)+ 2/2m))J character comparisons.
The interested reader is referred to 12] for proofs. Here we give proofs for the weaker
bounds in (a) and (b) in order to simplify the presentation.

The O(n + m) time bound of both algorithms is independent of the alphabet size.
Both algorithms make at most n character comparisons for the important class of
nonperiodic patterns, i.e., z m. We remark that all the known linear-time string
matching algorithms require more that n comparisons for this class of patterns.

The analysis of the algorithms presented here is complicated by the fact that they
are oblivious: They sometimes forget the result of some comparisons when the pattern
is moved over the text. These comparisons may have to be repeated in the future.
Obliviousness in a string matching algorithm is not new. Indeed, the difficulty of the
analysis of BM given in [3], [6], [13], and [18] is mostly due to the obliviousness of
BM. However, none of the techniques in [3], [6], [13], and [18] could be used in our
case since the obliviousness of BM is different than that of our algorithms, as explained
in 3.

This paper is organized as follows. In 2 we show that, in order to bound c(n, m)
for any n and m, we can restrict our attention to patterns that are not strongly periodic,
i.e., patterns having period of size z and length m z + z’, 0-< z’< z. Such a reduction
simplifies the presentation of our analysis of SM as well as of its improved version.
We review SM in 3. Section 4 contains all the combinatorial results needed for the
analysis which is presented in 5. An improved algorithm is presented and analyzed
in 6.

2. A reduction. We show that, in order to bound c(n, m), we need consider only
patterns that are not strongly periodic. We recall the following well-known periodicity
lemma 18], 19].

LEMMA 1. Let y[1, n] be a string. If k and k2 are periods of y and kl+ k2<=
n + gcd (kl, k2), then gcd (kl, k2) is also a period ofy.

denote the length of p[1 Z --ZLet li zi+zi i] in the periodic decomposition of
p[1, m],l<=i<=s.

FACT 1. Assume thatp[ 1, m is strongly periodic and consider its periodic decomposi-
tion. For any fixed i, 1 < <- s, p[1, kizi]p[1, li] (p[1, Zi])k’+lp[1, Zl] cannot be prefix of
p[ 1, 2Zi_l + Z_l] (p[ 1, Zi_l])2p[ 1, Z_l].

Proof Notice that in the periodic decomposition of p[1, m l, Z_l cannot be a
multiple of z, for any j, 2 -<_j _-< s. Otherwise, by the periodicity lemma, z_l cannot be
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the period of a strongly periodic string. Thus, Zj_ Z). Moreover, zj > Zj_ Otherwise,
Zj_l + zj <- lj_l and, since zj_l and zj are both periods of p[ 1, lj_l], gcd (Zj_l, zj) is also
a period of that string by the periodicity lemma. But then, zj_ cannot be the period
of a strongly periodic string.

Assume that for some fixed i, 1 <i <- s, p[1, kizi]p[1, li] is a prefix of p[1, 2zi_1+
zi-1]. The occurrence of p[ 1, li] at (ki 1)zi + 1, zi-1 + 1 and kzi + 1 imply that p[ 1, li]

11 and [z’ kiZ q- Zhas periods [li- Zi- i-- Zi-l[(Zi-1 -- Zi-1 i)" Recall that it also has periods
Zi+landzi and thatz’ sincezi>Zi-l" Notice that Ili- Zi_ll-- li- Zi-1 Zi-1.

Assume that zi- zi-1 < 0 (z- zi-1 > 0, respectively). Since (li )+(z’
li (Zi -(Zi--Zi-1) <-- li, respectively), ui=gcd (li-
respectively) is a period of p[1, li] be the periodicity lemma. In the first case ui
gcd (z + zi- Zi--1, Zi-- Zi) Zi--1 Zi < Zi and u divides z. Also in the second case
qi < Zi and qi divides zi. But then, zi cannot be the period of a strongly periodic
string.

We now sketch an algorithm that, given all the occurrences of p[1, l] in a text
t[1, n], will find all occurrences of p[1, m] in t[1, n]. The algorithm has s stages and
each stage has a list of candidates. During stage i, s, s- 1,..., 2, the ordered list
of candidates satisfies the following invariant" all occurrences of p[ 1, li] are in the list
and each of those is a potential occurrence of the pattern in the text. This invariant
is trivially satisfied for s since p[ 1, l] is a prefix of p[ 1, m] and the algorithm knows
all of its occurrences in t[1, n]. The last stage will produce all occurrences of p in t.
We now describe stage i, 2 _-< _-< s.

Stage i. Consider the ordered list of candidates. By the periodicity lemma, the
distance between two candidates is at least zi. Divide the list into subsequences of
maximal length such that the distance between any two candidates in the same
subsequence is zi. Let q < q2 < < qr be one of those subsequences. Consider qb,

an element ofthe chosen subsequence. Assume that b > r ki + 1. Notice that p[ 1, li_]
(p[1, Zi])kip[1, Z] cannot occur at qb; otherwise the maximality of the subsequence
would be contradicted. Since p[1, li_] is a prefix of the pattern no occurrence of the
pattern in the text can start at qb for r- ki + 1 < b <= r. Assume that b < r- ki + 1. Notice
that an occurrence of (p[1, Zi])ki/ap[1, Z] starts at qb. Thus, by Fact 1, p[1, 2zi_1 + z_]
cannot occur at qb. Since p[1, 2zi_ + z_] is a prefix of the pattern and of p[1, li-1],
none of those two latter strings can occur at qb, 1 --< b < r- ki + 1. If qr-ki+ exists, it is
the only candidate of the subsequence that is an occurrence ofp[ 1, li-1] and a potential
occurrence of the pattern. Such position can be found in O(r) time and only it survives
for the next stage. Processing in a similar fashion the remaining subsequences of the
list of candidates, we get a new list of candidates for the next stage that satisfies the
invariant. Notice that the new list is smaller by at least a factor of ki => 2 and can be
obtained in linear time.

Stage 1. We have the list j, ,jr of potential occurrences of the pattern in the
text. Moreover, it is also a list of all occurrences of p[1, 11]. A position j in the list is
an occurrer,.ce of the pattern in the text if and only if j + vz is also in the list, for all
v, 1 =< v < k. This stage can be implemented in O(r) time.

Since there can be at most O(n) occurrences of p[ 1, ls in the text and, at .each stage,
the list is processed in time linear in its size and the size is reduced by at least 1/2, the
total time of the algorithm is O(n) and without any character comparisons. Thus we
have the following lemma.

LEMMA 2. Let p[1, m], rn kz + z’, k >- 1, z’ < z, be a pattern having period of size
z and let t[ 1, n be a text. Let (zs, z’s, ks) be the last term in the periodic decomposition
ofp[1, m]. For any algorithm that finds all occurrences ofp[1, z+z’] in t[1, n] in
f(n, zs + z’) character comparisons there is an algorithm ’ that finds all occurrences of
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p[ 1, m] in t[ 1, n] in the same number ofcharacter comparisons spending O(n) additional
time.

From now on, we consider only patterns ofperiod size z and length z + z’, 0 -< z’ < z.

3. Colussi’s algorithm. The algorithm that we present is a blend of the two best
known and most efficient string matching algorithms devised so far: Knuth-Morris-
Pratt [18] and Boyer-Moore [5]. It has been obtained by Colussi [7] using the
correctness proof of programs as a tool to improve algorithms.

Given an alignment of the pattern p[ 1, m with text characters t[ + 1, + m], KMP
checks whether these two string are equal proceeding from left to right. BM performs
the same check proceeding from right to left. Both algorithms then shift the pattern
over the text by some precomputed amount and the check is repeated on the resulting
new alignment. The KMP and BM approaches to string matching seem to be orthogonal
and no efficient and mutually advantageous way of combining them had been known.
The main difficulty in combining the two approaches is to find a partition of the set
of m pattern positions such that there is an efficient strategy to shift the pattern over
the text when a mismatch is found. Colussi [7] designed such partition and the
corresponding strategy. The starting point of our presentation is KMP.

We need a few definitions. Given a string w[1, m] and an index j, 1 <-j < m, we
say that kmin (j) is defined and equal to d if d is the minimal integer such that w[ 1, j]
is d periodic and w[j-d + 1] w[j+ 1]. Thus, kmin (j) is defined if a periodicity
ends at j. If no such d exists we say that kmin (j) is undefined. We refer to each
position j of the pattern, <j -< m, having kmin (j 1) defined as nohole. We refer to
the remaining pattern positions as holes. Note that 1 is always a nohole since we have
not defined kmin (0).

Let the pattern be aligned with t[i + 1, + m]. Assume that KMP has found out
that p[1,j]= t[i+l, i+j] and that p[j+l] t[i+j+l] for some j, O<=j<m. The pat-
tern must be shifted over the text by some amount. There are two possibilities: shift
past text position +j + 1 (where the mismatch occurred) and not shift past text position
i+j + 1 (thus having some overlap with the part that was matched). KMP chooses the
first possibility when there is no integer g such that p[ 1, j] is g periodic and p[j + 1]
p[j-g + 1], i.e., j + 1 is a hole, since it can be easily shown that there cannot be any
occurrence of the pattern in the interval [i+ 1, i+j+ 1]. KMP chooses the second
possibility when there is an integer g such that p[1,j] is g periodic and p[j+ 1]
p[j g + 1 ], i.e., j + 1 is a nohole. Then, KMP shifts the pattern over the text by kmin (j)
positions since no occurrence of the pattern can be in the interval + 1, + kmin (j)].
Moreover, there may still be an occurrence of the pattern at i+ kmin (j)+ 1, since
p[1,j-kmin (j)]=p[kmin (j)+ 1,j]= t[i+ 1 + kmin (j), i+j] and a pattern character
different from p[j + 1] will be aligned with t[i +j + 1] (recall the definition of kmin).

Colussi observed that if j + 1 is a nohole and p[j + 1] t[i +j + 1], we need not
know that p[ 1, j] t[i+ 1, i+j] to deduce that the pattern must be shifted by kmin (j)
positions over the text: Let the pattern be aligned with t[i + 1, + m] and assume that
all the noholes in p[1,j] match the corresponding text positions in t[i+ 1, i+j] and
that p[j + 1] t[i+j + 1],j + 1 a nohole. Then, it can be shown that there can be no
occurrence of the pattern in the text in the interval [i+ 1, i+ kmin (j)]. Moreover, we
can still use some of the knowledge acquired about t[i+ 1, i+j] after the shift by
kmin (j) takes place. Indeed, all the noholes in p[1,j-kmin (j)] will match the
corresponding text positions in t[i+ kmin (j)+ 1, i+j]. Therefore, the string matching
can be restarted by comparing the first nohole beyond j kmin (j) with the correspond-
ing text position beyond +j. Let hi < h2 < < hnd, hnd --<-- m 1, be the pattern posi-
tions such that kmin is defined and let first(x) denote the least integer y such that
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x <-hy. The following lemma is a precise statement of Colussi’s observation [7] (see
Fig. 1).

LEMMA 3. Let the pattern be aligned with t[i + 1, + m]. Assume that p[hs + 1]
t[i+ hs + l]for l <- s < r<- nd, andp[hr+ l] t[i+ hr+ l]. Let inew- i+ kmin (hr). Then,
there is no occurrence of the pattern in the interval [i + 1,/new] and the pattern can be
shifted over the text by kmin (hr) positions. Moreover, p[h + 1] t[/new + h + 1] for
1--_<s <first (hr-kmin (hr)), and the algorithm can be restarted by testing whether
p[hfirst(hr_kmin(hr))q- 1]-- t[inew q- hfirst(hr_kmin(h))d- 1].

(2) (1)

/ I

(4)

I

(3)

I
I

h+l

b+hl

FIG. 1. A mismatch with a selected position (a nohole) in iteration b. The shift is by the period kmin (he)
of the interrupted periodicity. The algorithm resumes with the first nohole aligned with a text position not before
the position ofthe mismatch (1), since smaller noholes (e.g., (2)) must match. The comparison of (3) isforgotten,
because after the shift it is aligned with a hole. On the other hand, if (4) was not compared before iteration b,
it will not be compared at all.

An operative conclusion that can be drawn from Lemma 3 is that when checking
(from left to right) if p[1, m]= t[i+ 1, i+ m], we can compare those pattern positions
j + 1 having kmin (j) defined and shift by kmin (j) in case of a mismatch. Now, assume
we know that all the noholes of the pattern match the corresponding text characters,
i.e., p[ hs + 1 t[ + hs + 1 ], 1 <= s <- nd. We must decide in which order to compare the
holes of the pattern with the corresponding text positions and what to do in the case
that a mismatch is found. If we find out that p[j+ 1] t[i++ 1], j+ 1 a hole, we
can shift past text position +j+ 1. (Recall that a shift with overlap must have kmin (f)
defined.) In order to guarantee the longest shifts while allowing the algorithm to retain
more of the knowledge it acquired about t[ + 1, + m], all the holes of the pattern are
processed in decreasing order, that is, from right to left. Another advantage for this
order is that by filling up the holes from right to left we completely match a suffix of
the pattern.

Lemma 4 describes more precisely such processing (see Fig. 2). Let hnd+l > hnd+2 >
> h,-i > h, 0 be all pattern positions such that kmin is undefined, hnd+ <- m- 1.

Given a position j of the pattern, let rmin (j) be the minimal period of p[1, m] greater
than j.

LEMMA 4. Let the pattern be aligned with t[i+ 1, i+ m]. Assume that p[h + 1]
t[ + h + 1 ], 1 <-_ s < r, and that p[ hr + 1 t[ + hr + 1 ], r > nd. Let /new + rmin
Then, there is no occurrence of the pattern in the interval + 1,/new]. Moreover p[ 1, m-
rmin (hr)] t[ inew -]-1, i-I-m] and the algorithm can be restarted by testing whether
P[ hfirst(m-rmin (hr)) -at- 1 t[/new + hfirst(m-rmin (h)) + 1 ].
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b+he+l b+m

(I)

FIG. 2. A mismatch with a hole. A complete suffix of the pattern is matched. The shift is by the smallest
period of the pattern past the mismatch. (In the first alignment a suffix of the pattern is shown and after the

shift a prefix is shown.) The algorithm resumes as in Fig. 1. After the shift the algorithm will only compare text

positions greater than tlast b + m.

The operative conclusion that we can draw from Lemma 4 is that when we have
completed a left to right pass and start a right to left pass, we are guaranteed that
there is no need to consider text positions t[i+ rmin (hr)+ 1, i+ m] every again, since
a prefix of the pattern matches t[i+ rmin (hr)"+" 1, i-f rn] and each future shift affects
only the length of the match, since we always shift by a period of a prefix at least
as large.

The subsequences h < h2 < < hnd and hnd+l > hnd+2 > > h, provide a parti-
tion of the integers {0,..., m- 1} which induces a partition on the pattern positions
{1,. ., m}. The way to put these two sequences together to perform string matching
is given by Lemmas 3 and 4. Indeed, we check whether p[1, m] t[i+ 1, i+ ml, using
the sequence h + 1, h2 + 1, , hncl + 1, hnd+l d- 1, , hm q- 1 in the order given. This
sequence can be computed in O(m) time and 2m- 1 character comparisons using the
preprocessing algorithm of KMP 18].

We define two tables disp and start having rn + entires each as follows: disp i]
kmin(hi) and start[i]=first (hi-kmin (hi)), l <=i<=nd; disp[i]= rmin (hi) and
start[i]=first(m-rmin(h)),nd<i<=m; disp[m+l]=z and start[m+l]=first
(m- z), where z is the period of the pattern. The last entry in these tables is used to
restart the algorithm correctly when an occurrence of the pattern in the text is found.
These tables are computed in the preprocessing stage.

In the pseudocode given below, variable pstart is equal to the index from which
the algorithm starts examining the sequence hi,..., h,, at the beginning of each
iteration. Variable tlast denotes an index such that text characters in t[ 1, tlast] are not
examined anymore by the algorithm. Variable b denotes an index such that the algorithm
has already found all occurrences of the pattern in t[1, b] while it has still to find the
ones in t[b+ 1, n]. Variable e points to the element in the sequence h,..., h, that
is currently being used for comparison.

Algorithm SM
begin

b <-- 0; pstart <-- 1; tlast <-- 0
repeat

e <-- pstart;
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while e _-< rn and tlast < b + he q- 1 and p[ he q- 1 text b + he q- 1 do
ee+l;

if e rn + 1 or tlast >= b + he + 1 then occurrence found
if e > nd then tlast b + m;
b - b + disp el;
pstart start e ];

until b > n m;
end

We say that an integer is an iteration if Algorithm SM sets variable b during
its execution. An iteration corresponds to an alignment of the pattern with
t[i+ 1, i+ m].

We can observe a potentially serious limitation to a good performance of SM:
After the pattern is shifted by some amount, there are situations in which the algorithm
forgets that some of the text positions match the corresponding pattern positions and
may compare them again. Consider a nohole hs + 1 of the pattern, for some fixed
s<-_ nd. It can happen that while kmin (hs) is defined, there may exist a nohole
h, + 1, s < s’ <= nd, such that kmin (h kmin (h,)) is undefined. In other words, noholes
are unstable under shifts corresponding to interrupted periodicities. The effect of this
instability is that a text position matching a nohole in a given iteration may be aligned
with a hole in the next iteration and be considered again if the algorithm starts matching
pattern positions from right to left. Figure 1 gives an example of matched text positions
that may be compared again.

Obliviousness in a string matching algorithm is not new: BM forgets part of what
it knows about the text after a shift. This phenomenon has been extensively studied.
However, none of the techniques used by KMP [18], Guibas and Odlyzko [13], Galil
[10], Apostolico and Giancarlo [3], and Cole [6] to account for the obliviousness of
BM could be used in our case. Intuitively, the obliviousness of BM is macroscopic
whereas that of SM is microscopic. Indeed, BM forgets that contiguous chunks of text
match some pattern substrings, whereas SM forgets that some text characters, not
necessarily contiguous and irregularly distributed over the text, match some pattern
characters.

Another property of SM is that it skips over some text positions while matching
noholes. Then the pattern is shifted over the text. The text positions skipped over and
to the left of the current alignment may be left untested, i.e., they are never compared
with any pattern position. Figures 1 and 2 give a qualitative description of this
phenomenon. Again, we remark that the text positions left untested are irregularly
distributed over the text.

In order to obtain a tight analysis of SM, we would like to use all the untested
text positions to pay for the mismatches and some ofthe repeated comparisons resulting
from the obliviousness of SM. Achieving this goal requires tight upper bounds on the
number of comparisons forgotten after a shift and a flexible and precise charging
scheme that allows to amortize character comparisons against untested text positions.
Such tasks are complicated by the arbitrariness and irregularity of the distributions
(over the text) of forgotten comparisons and untested positions.

4. Some properties of strings. In order to analyze Algorithm SM and its improve-
ment, we need to derive some properties of kmin and to study some new combinatorial
properties of strings. Throughout this section, let be the maximal integer such that
a string x has x[ 1 x[l] and x[l] x[ + 1 ].
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FACT 2. Let x[ 1, h be a k periodic prefix ofx and assume that h > k + 1. There can
be no other period k’ of x[ 1, h such that k k’ <- I.

Proof We give a proof only for the interval k + 1, k / l]. The proof for the other
interval is similar. Assume that x[ 1, h is k’ periodic, k + 1 _-< k’ _-< k + < h. This implies
that x[ k + + 1] x[ k + + 1 k’] x[ 1 ]. But, since x[ 1, h is also k periodic, x[k + +
1] x[ + 1]. Therefore, x[ 1 x[ + 1], a contradiction to the definition of 1.

FACT 3. Ifj >-- + 1 and kmin (j) is defined, then kmin (j) > L
Proof Assume that, for j>= l+ 1, kmin (j)_-</. Since kmin (j)-< is a period of

x[ 1, j] we must have that x[ 1, j] x[ 1 ]*, which is impossible since x[ + 1 x[ 1 and
j>=l+ l. [3

In what follows we derive relationships between the holes of a string and the
periodicities of its substrings.

FACT 4. Let x[ 1, h be a k periodic prefix of x. Ifj k is a nohole, k <j <= h, then j
is a nohole.

Proof We assume that kmin (j-1- k) is defined and show that kmin (j-1) is
defined. By definition of kmin, there exists an integer r such that x[1,j-k-r-1]
x[ r + 1, j k- 1] and x[j k- r] x[j k]. Using the k periodicity of x[ 1, h], we
obtain x[ 1, j k r 1 x[ r + k + 1, j 1] and x[j k r] x[j]. Thus, kmin (j 1)
is defined. [3

Given a k periodic prefix x[ 1, h] of x, a hole j-k may not carry over to j. The
next fact establishes a relationship between "missing holes" and periodicity.

FACT 5. Let x[ 1, h be a k periodic prefix of x. Assume that j- k is a hole while j
is not, for some j, k <j <-_ h. Then kmin (j 1) satisfies < < k.

Proof Assume that -> k for the given j satisfying the hypothesis. If k, we have
that x[ 1, j 1 k] x[ k + 1, j 1 and that x[j] x[j k]. This latter inequality contra-
dicts the k periodicity of x[1, h]. If i> k, we note that because i<=j-l,j-k-l>O.
We show that the k periodicity of x[ 1, h and the fact that kmin (j- 1) must imply
that kmin (j- 1 k) is defined. This will contradict the assumption that j- k is a hole:
From the definition of kmin, x[ 1, j 1 x[ + 1, j 1 and x[j i] # x[j]. Combin-
ing these conditions with the facts that i> k and x[1, h] is k-periodic, we obtain that
x[i+ 1,j-1]=x[i+ 1-k,j-k-1]=x[1,j-i-1]andx[j-k]# x[j-i],whichimply
that kmin (j k 1) =< k, a contradiction. Thus, < k. There is no j -< satisfying the
hypothesis of the fact. Now, for j _-> + 1, i> by Fact 3. [3

Let v be a position of x such that kmin (v 1) is defined. We say that v is reachable
from position u < v if there exists an increasing sequence of integers ul, u2,’’ ", us
such that ul u, us v, kmin (Ul- 1) is undefined and kmin (ui+- 1) ui- 1, for 1 -<

< s. Notice that u > 1 and is the only hole in the sequence. We denote the sequence
of integers u= u, u2,’’ ", us v as (uv). We say that (uv) and (u2v2) are
disjoint if they have no integers in common.

LEMMA 5. Let x[1, h] be a k periodic prefix of x. Assume that there is a position
j, k <j <- h, such thatj k is a hole whereasj is not. Then, there is a position q, + 1 < q <= k,
from whichj is reachable. Moreover, iftwo distinctpositionsjl andj2 satisfy the assumptions
of the lemma then (qlj) and (q2j2) are disjoint.

Proof There is no j <_- + 1 satisfying the hypothesis, since by definition of and
of kmin, no position j in [1, 1] can have kmin (j-1) defined and x[1, 1+ 1] is not k
periodic, for any k < + 1. Therefore, assume that + 1 <j.

Since j is nohole, i= kmin (j-1) is defined. Since j-k is a hole by hypothesis,
we can apply Fact 5 to prefix x[ 1, h] to obtain + 1 < + 1 _-< k. If kmin (i) is undefined,
j is reachable from + 1, + 1 < + 1 -< k. Otherwise, we notice that x[ 1, j 1 is periodic
and that i+ 1 is a nohole in this string whereas position 1 is a hole. Thus, we can now
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apply Fact 5 to x[1,j-1] with j’= i+ 1, k’= i, and i’= kmin (i). Iterating the above
reasoning, we get a decreasing sequence of indices that must end in a hole q, + 1 < q =<
i+l<-k.

Given ql and q2 from which jl and j2 are reachable, respectively, we now show
that (q=>j) and (q2:=>j2) are disjoint. The proof is by contradiction. Assume that
such two sequences are not disjoint. We first notice that j cannot be in (q2==>j2), since
kmin (j2-1)< k <j. Similarly, j2 cannot be in (q==>jl). Since the two sequences are
not disjoint (by assumption), there must exist two indices f and g such that

Without loss of generality, let u’ <and Uf+I Ug+l g+l(qa==>jl), Ug (q.=::>j2), uf= Ug
uy+. From the definition of reachability, we know that x[ 1, uy+- 1 is uy- 1 periodic,
with x[uy+l] x[uy+l-Uy+ 1]. Analogously, we know that x[1, u+- 1] is uy-1 peri-
odic, with x[u+l] x[U’g+-uy+ 1]. This latter inequality contradicts the uy-1 perio-
dicity of x[ 1, U+l 1 ].

Thus, (qlz=>ja) and (q2j2) are disjoint and ql # q2.

LEMMA 6. Let x[ 1, m] be a string, z be its period, m z + z’, 0 <- z’ < z. Let be the
maximal integer such that x has a prefix equal to x[1]i and let x[1, h] be a k periodic
prefix of x, k < h. Choose an integer b <- h. Assume that ji > max k, b ), 1 <-_ <-_ s, are all
the noholes in x[1, h] such that j-k is a hole and ji is reachable from a hole in

x[ 1,min (k, b)].
Ifb<-k,

(1) s<-max(o’[b-l])"2
Otherwise,

(2) s<--max (o’ [k-2J)"2
Proof For each ji satisfying the hypothesis of the lemma, let qi <-- min (k, b) denote

a hole from which ji is reachable. By Lemma 5, each qi is distinct and greater than
l+l. From the inequality q> l+l, we can immediately deduce that s=0 when
min (k, b) -<_ + 1. In what follows, we consider the case min (k, b) > + 1.

For each (q==>j), let ui be the minimal integer in that sequence greater than b.
By Lemma 5, all (qi :=,j) are disjoint. Thus all ui’s are distinct and the correspondence
between q’s and u’s is one to one. Let di kmin (ui-1)+ 1. Note that all d’s are
distinct (d (q:=>j)). We obtain the bounds by bounding the number of d’s. In a
one-to-one fashion, we associate with the d’s a set of integers ri in the interval I
containing the d’s. The two sets are disjoint and therefore their size is bounded by
half the size of their union or half the number of the elements of I that are "used."

We must have + 1 <di -< min (k, b). Indeed, + 1 <_- q 1 <= kmin (u 1) di 1 <_-

kmin (j- 1), and kmin (j- 1)< k by Fact 5. Using the definition of reachability and
the fact that ui is the least integer in (q =:>j) larger than b, kmin (ui- 1) d- 1 < b.

We divide the d’s in two sets B and C defined as follows" B=
{d- d -<_ min (b, k) l}; C {di" b < di -<_ min (b, k) }.

It is obvious that B and C partition the d’s when b-_< k. We prove that we have
a partition also in the case that k < b. The proof is by contradiction. Assume that there
exists a dg such that dg B U C. Then, k-l< dg-<_min (k, b-l). Since x[1, hi is k
periodic, x[ 1, Ug 1 is dg 1 periodic, k < b and Ug > b, x[ 1, b] is both k periodic and
dg- 1 periodic. Since b >dg + l- 1, we apply Fact 2 to x[ 1, b] (with k =dg- 1), to
obtain that no period of x[1, b] is in [dg, dg+l-1]. But k is in that interval. A
contradiction.
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We associate each d B with d +/. Obviously, the correspondence is one to one.
Moreover, d+ldi for l<=i<=s, since by the (di- 1) and d-1 periodicity of x[1, b]
we have x[ + 1 x[ d + l] x[ 1 x[ d]. We also have + 1 < d + _-< min (k, b). We
can now obtain the claimed bounds by assigning a suitable number of positions in
[1, min (k, b)] to elements in C that nave not been assigned to elements of B and that
are different from any di, 1 <-i-<_ s. We distinguish two cases.

If k < b(k >- b, respectively), then ICl_-< l- l(ICl z, respectively). Noting that
positions [1, l+ 1] are different from any d and have not been assigned to elements
in B, we can assign to elements in C a corresponding number of these positions to
obtain bound (2) ((1), respectively). [3

5. Analysis of Algorithm SM. We need a few definitions. An iteration r matches
a suffix ofthe pattern if t[r + h -- 1 p[ h +- 1 ], 1 <- nd, and, at least, t[r + m p[m].
Two iterations r and u, r < u, have a suffix-prefix overlap if r matches a suffix of the
pattern and u <-r+ m-1. For any iteration u, let tlast (u) be the value of tlast in
algorithm SM when u starts.

LEMMA 7. U < tlast (u) if and only if u has a suffix-prefix overlap with an iteration

Proof. Assume u < tlast (u). Let u’ < u be the last iteration that advanced last.
Note that 0= last (0), so u cannot be the first iteration. We have last (u)= u’+ m
and since u < last (u), u _-< u’+ m- 1. Therefore u has an overlap with u’. Moreover,
e >nd at the end of iteration u’, otherwise last could not be updated during that
iteration. Since max (hna, hna/l) m 1, and e > nd at the end of iteration u’, we know
that p[m] has been compared with t[u’+ m] during that iteration and that u’ cannot
use kmin as a shift function since all the noholes match. If u’ did not match any suffix
of the pattern, we must have p[ m] # t[ u’+ m]. But, in that case, there would be a shift
by m of the pattern over the text (recall the definition of rmin and the fact that u’
cannot use kmin for shifts). Therefore, the iteration succeeding u’ is a u’+ m > u, a
contradiction. Thus p[m] t[u’+ m] and u has a suffix-prefix overlap with u’.

Assume that u has a suffix-prefix overlap with u’, u’< u. We first show that u
cannot have a suffix-prefix overlap with any other iteration a < u. Assume the contrary.
Thus, u min (a, u’) _-< m 1. Since both a and u’ matched a suffix of the pattern, there
was a shift by at least z of the pattern over the text at the end of both iterations. Thus
min (a, u’) + z _-< max (a, u’) and max (a, u’) + z -< u implying that min (a, u’) + 2z _-< u.
A contradiction since u min (a, u’) _-< m 1 < 2z (m z + z’, z’ < z).

Since u has a suffix-prefix overlap with u’, u’ must have matched a suffix of the
pattern and set last u’+ m. We claim that no iteration a, u’ < a < u can advance
last. Assume a advances last and hence e> nd at the end of iteration a. Since

max (h,a, h,a+l) m 1, and e > nd at the end of iteration u’, we obtain that p[m]
has been compared with t[ a + m]. If p[m # t[ a + m], the pattern would be shifted by
at least m implying u-u’_-> m. A contradiction, since u and u’ overlap. If p[m]
t[a + m], then matches a suffix of the pattern and u has a suffix-prefix overlap with
a (recall u’ < a < u and u u’_-< m 1). A contradiction to the fact that u has suffix-
prefix overlap with u’. Therefore, when u starts last (u): last--u’+ m and since
u u’-< m 1, u < last (u). 1-]

The iterations of Algorithm SM are divided into sequences of consecutive iter-
ations. There are two kinds of sequences: light and heavy. Informally, a heavy sequence
is a maximal sequence of iterations such that the first matches a suffix of the pattern
and every other iteration has a suffix-prefix overlap with some iteration in the sequence
preceding it. A heavy sequence can be followed by a heavy or light sequence. A
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nonempty sequence of iterations between two consecutive heavy sequences is a light
sequence. As will be explained later, light sequences are easier to analyze and pay for
themselves.

Formally, a sequence sl, s2,’’’, Sy of consecutive iterations is light if
(1) sl does not match a suffix of the pattern and it is either the first iteration of

the string matching algorithm or it is preceded by an iteration that ends a heavy
sequence.

(2) si _-> last (si), 1 < _-< y and either Sy is the last iteration of the algorithm or u
matches a suffix of the pattern, where u is the iteration succeeding Sy.

A sequence ul, u2," ", Ug of consecutive iterations is heavy if
(1) u matches a suffix of the pattern and it is either the first iteration of the string

matching algorithm or it is preceded by an iteration that ends a sequence, either light
or heavy. Notice that in both cases u advances last to u + m since it matches a suffix
of the pattern.

(2) ui < last (u), < -< g and either us is the last iteration of the algorithm or
s_-> last (s), where s is the iteration succeeding Ug.

By Lemma 7, the preceding definition implies that s has no suffix-prefix overlap
with any iteration preceding it. Moreover, it also implies that u, 1 < i=<g, has a
suffix-prefix overlap with some uj, 1 =<j < i, as we show next. Our claim follows from
Lemma 7 if u is the first iteration of the algorithm. Assume ul is not the first iteration
of the algorithm. By Lemma 7, u has a suffix-prefix overlap with some u’ < ui, u- u’ =<
m-1. Assume also that u’< u. Since both u’ and u match a suffix of the pattern,
the pattern is shifted over the text by at least z at the end of both iterations. Therefore,
u’ + z _-< u and u + z _-< u implying u u ’-> 2z > m z + z, < z, a contradiction, since
we assume that u- u’_-< m 1. Therefore u’= uj for some j, 1 _-<j < i.

In order to ensure that each iteration of the algorithm has a successor, we add a
dummy iteration that follows the last iteration of the algorithm. Such dummy iteration
does nothing, is not part of any light or heavy sequence, and is not regarded as the
last iteration of the algorithm. We set it equal to n.

We will use a charging mechanism in which each position in the text may pay for
at most one comparison. Given an iteration j we say that a position d >j of the text
is free if t[d] has never been considered by the string matchingalgorithm or it has
been compared with one or more characters of the pattern but, for each comparison,
a different position d’, d’-<j, of the text paid for it. A position d _-<j of the text is busy
if it paid for exactly one comparison performed by the algorithm.

Given an iteration s, let start (s) be the value of e in algorithm SM at the beginning
of iteration s. Given an iteration v starting either a light or a heavy sequence, let c(v)
be the number of noholes in the pattern between zero and hstart(v). Notice that
c(v)=start(v)-l. For notational convenience, we define c(v)=0 for the dummy
iteration. In our account of the number of character comparisons performed by
algorithm SM we maintain the following invariant for any iteration s starting a sequence.

INVARIANT 1. Start (s)--< nd + 1 and all positions of the text in t[s+ 1, s+ hstart (s)

aligned with holes ofthe pattern arefree whereas those remaining match the corresponding
positions of the pattern. All positions in t[s+ hstarts+ 1, n] are free and, in the worst

case, all positions in t[ 1, s] are busy.

5.1. The analysis of light sequences. Let Sl, $2,. Sy be a light sequence and let
Ul be either the iteration that starts the following heavy sequence or the dummy
iteration. We estimate the number of comparisons performed by the algorithm during
iteration Sl and we prove that, if s2 is not the dummy iteration, it satisfies invariant 1
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when it starts. Then, we inductively extend the same analysis to the remaining iterations
in the sequence. We will charge each iteration in the sequence. This charge is related
but not equal to the number of character comparisons done by the algorithm during
that iteration. If iteration s makes r comparisons, we will charge it r+ c(s)-c(s’)
comparisons, where s’ is the next iteration. Thus s pays for the c(s) comparisons done
before s, but does not pay for the c(s’) comparisons that s’ is going to inherit. We
show that s can pay for the number of comparisons being charged to it using only
free text positions. The free text positions used to pay become busy at the end of
iteration s. (This is what we meant by saying that light sequences pay for themselves.
In fact, each item of a light sequence pays for itself.)

We assume that s satisfies invariant 1 when it starts. Thus, t[Sl+hl+l]--
p[hl+ 1],. ., t[s1+ hstart(sl)_1+ 1]--p[hstart(sl)_1+ 1] at the beginning of S1. This
amounts to C(Sl) matches that Algorithm SM has identified during previous iterations.
None of these text characters is going to be compared to any pattern character during
iteration Sl.

During iteration Sl, the algorithm performs some r-> 1 comparisons. By the
definition of a light sequence, r-1 of these comparisons are matches and one is a
mismatch. Thus, at the end of iteration Sl, the algorithm has the additional knowledge
that t[ S -- hstart(sl -- 1 p[ hstart(s + 1 ],. , t[ sl + hstart(sl)+r-2 -- 1 p[ hstart(sl)+r_2 -- 1 ],
t[s q- hstart(sl)+r_ -- 1] p[hstart(sl)+r_ -- 1]. Let N= {S -- hi + 1" 1 =</=<start (Sl) -+- r-- 1}.
Notice that the algorithm performs r IN[- c(sl) comparisons during iteration Sl. We
bound this number by bounding IN].

If s2 is the dummy iteration, IN[ =< m =< s2- Sl + c(s_), since s n, Sl =< n m and
c(s)=0. Therefore, the algorithm performs at most s-s+c(s2)-C(Sl) character
comparisons during iteration Sl paying for s-s comparisons.

Assume s is not the dummy iteration, i.e., s =< n m. We consider two mutually
exclusive cases: start (s)+ r- 1 =< nd and start (Sl)+ r- 1 > nd. For brevity, let h denote
hstart(s)+ r-1.

Assume that start (s)+ r- 1 > rid. By definition of a light sequence, this case can
happen only if hnd < m- 1. Otherwise Sl matches a suffix of the pattern. Moreover, we
must have start (sl)+ r- 1 nd + 1, hnd+l tn 1 and t[Sl + m] p[m] =p[hnd+l + 1].
The algorithm shifts the pattern over the text by rmin (m- 1)= m > m- 1 positions.
Thus, s sl + m. Obviously, IN[=< m s2-s and c(s2)=0. Therefore, the number of
character comparisons performed by the algorithm during iteration Sl is at most

s-Sl+ c(s)-C(Sl). Moreover, since none of the text positions in Is1+ 1, s] is busy
(by invariant 1), they can pay for C(Sl) + r- c(s2) IN[ comparisons and become busy
at the end of iteration Sl. Obviously, s satisfies invariant 1 when it starts.

Let us consider now the case start (Sl)+ r- 1 =< rid. Since kmin (/) is defined and
t[ S -I- ] + 1 s p[/+ 1 ], we have that s2 Sl + kmin (/). We divide the set N into four
disjoint subsets Nnomatch, Nbusy Nholes, Nnohole defined as follows.

Nnomatch {s -- h + 1},
Nbusy={iN: i=<s2}.
Nholes is the set of i’s in N-{Sl+ h + 1} such that i> s2 and each is aligned

with a hole of the pattern at the beginningAof iteration s2.
Nnohole is the set of i’s in N- {sl + h + 1} such that > s and each is aligned

with a nohole of the pattern at the beginning of iteration s2.

At^ the beginning of iteration s2, Algorithm SM sets variable e=start (s) to
first (h kmin (h)). We claim that

(3) [Nnoo,es[- start (s2)- 1 c(s2).



420 ZVI GALIL AND RAFFAELE GIANCARLO

Consider j, one of the first c($2) noholes in the pattern not compared in iteration
s2. By Fact 4, j + kmin (h) is a nohole in iteration Sl. Thus, in iteration sl, j is aligned
with an element of Nnohoes. Conversely, each element of Nnohoes is aligned with a
nohole of the pattern in both iterations and the nohole in iteration s2 is one of the
first c(s2) of the pattern (start (s2)= first (/-kmin (/))). Thus, (3) holds.

We claim that

(4) INoles[S2-sl-l-INbusyI.
Indeed, consider p[1,/] and let J denote the set of positions j in this string such

that kmin (/)< h,j is nohole and j-kmin (/) is a hole. At the end of iteration
each j J has a match with exactly one text position in Nhoes and vice versa. Thus,
INhoe[ [11. If kmin (/) -<_ l,/-< by Fact 3 and IJ[ INbusy{ 0 since there cannot be
any noholes in p[ 1, l]. Thus (4) obviously holds. Assume now that kmin (h) > I. From
Lemma 5 (with k kmin (h)), we know that each j J is reachable from a distinct
hole q in p[2, kmin (/)]. The number of holes in p[1, kmin (/)] is s2--sl--lNbusyl
kmin (h)-INbusy[, since by efinition, the elements of Nbusy are exactly those aligned
with noholes in p[1, kmin (h)]. Thus, [Nhesl--IJ[<-s2-sl 1- INbusy and (4) follows.
We notice that the holes in p[2, kmin (h)] were aligned with free positions at the
beginning of iteration sl, by invariant 1. Such text positions were ignored during
iteration sl because sl tried to match noholes first and start (sl)+ r- 1 =< nd. Thus, there
are enough free text positions from sl + 2 to s2 to pay for the comparisons that involved
text positions in Nhoes. That is, at the end of iteration sl all text positions in Nhoes
are free, provided that the text positions aligned with holes in p[2, kmin (h)] during
iteration sl are declared busy.

We also observe that position Sl+ is free at the beginning of iteration Sl since
it is aligned with p[1] (a hole) and Invariant holds. Therefore, it can pay for the
mismatch. Thus, text position sl +/+ 1 is still free provided that sl + 1 becomes busy
at the end of iteration sl. All text positions in Nbusy are declared busy at the end of
iteration

We remark that all text positions declared busy at the end of iteration Sl were
either free at the beginning of this iteration or they were part of the c(sl) matches that
sl inherited from previous iterations. Moreover, they are not going to be considered
again by Algorithm SM after iteration

Using the identities (3), INnomatch[ 1, and inequality (4), it follows that INI-<
s2-sl + c(s2). Since c(sl) of those comparisons were performed during previous iter-
ations, the algorithm performs at most s2-sl + c(s2)-c(sl) comparisons during iter-
ation sl. Moreover, c(s2) of them are left unpaid by

Iteration s satisfies Invariant when it starts. Indeed, all text positions in
t[s + 1, $2 + hstart(s2)] aligned with holes of the pattern are free. Such text positions are
a subset of Nhoes. All text positions in t[s2+ 1, s2+ hstart(s2)] aligned with noholes of
the pattern match the corresponding characters. These positions are in Nnohoes. All
text positions in t[s+ hstart(s2)+ 1,/I] are free because either they were free at the
beginning of Sl and the algorithm did not consider them during sl, or free text positions
in t[sl + 1, s2] paid (by becoming busy) for their comparisons.

The analysis of the other iterations in the sequence is similar. Consequently,
iteration si makes ri comparisons and charges ri+(si)--(Si+l) (Sy+l--Ul) to free
positions in [si + ul]. Summing up these charges we get -’Yi=1 ri + (s1)- (Ul) Ul- s1,

and hence i=1 ri _-< ul sl + (Sl) (Ul). Moreover, Invariant 1 holds for Ul induc-
tively. Therefore we have the following Lemma.
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LEMMA 8. Let $1, $2, Sy be a light sequence and let ul be the iteration that
starts the succeeding heavy sequence or the dummy iteration. Assuming that Sl satisfies
Invariant 1, Algorithm SM performs at most Ul- sl + C(Ul) C(Sl) character comparisons
during the execution ofsuch a light sequence. Moreover, iteration U satisfies Invariant 1.

5.2. The analysis of heavy sequences. Consider a heavy sequence Ul, u2,. Ug
and let Sl be the iteration succeeding it. We estimate the total number of comparisons
that the algorithm performs during the execution of such a sequence. We also show
that s satisfies Invariant 1 if it is not the dummy iteration.

We partition the sequence Ul, u2,"’, Ug into d consecutive subsequences
U1, U2,’’’ Ud as follows. Let Uil<Ui2<’’’<Uid be the iterations among
u,u2,..., Ug that match a suffix of the pattern. Then, U={u,..., ui,}, U2
{ui,+l,..., u2} Ud {u_,+,..., ug}. We denote the first and last element in each
sequence Uj as first (Uj) and last (Uj), respectively. For each j, 1 =<j _-< d, last (Uj) can
be thought of as being m positions to the left of a boundary line on the text that we
denote by linej last (Uj)+ m. Moreover, we set lineo u. Note that after iteration
last (Uj), 1 -<_j < d, this boundary line is never crossed to the left because the algorithm
sets tlast to linej, i.e., tlast linej when iteration last (Uj) ends. We bound the number
of character comparisons that the algorithm can perform between two consecutive
boundary lines during the given heavy sequence.

We assume that u satisfies Invariant 1 when it starts. Since u starts a heavy
sequence, it matches a suffix of the pattern. Thus, U1 {ul}. By Invariant 1, there are
c(u) noholes in the pattern that match the text characters in t[lineo+ 1,..., line]
aligned with them at the beginning of iteration u. Such positions are not going to be
considered by the algorithm during u, since start (ul)= c(u)+l. Moreover, the
remaining text positions in t[lineo+ 1, n] are free. During iteration u, in the worst
case, the algorithm can compare all other symbols of p[ 1, m]. In any case, the pattern
is shifted u2-u-> z positions to the right over the text. Fact 6 follows from these
observations.

FACT 6. Assume that Ul satisfies Invariant 1. The number of character comparisons
performed by the algorithm during ul, the first iteration of a heavy sequence, is bounded
by m c(ul).

We now derive an upper bound on the number of comparisons performed by the
algorithm during iterations in Uj, 1 <j =< d. For each u Uj, 1 <j =< d, let C (u) denote
the set of text positions in [line,_1 + 1, line] that are aligned with noholes in the pattern
at the beginning of iteration u and that have been successfully matched against pattern
characters during iterations in the heavy sequence preceding u. Of course, C(u) may
be the empty set. (Unlike c(u), IC(u)] only counts text positions between two lines
that are aligned with noholes at the beginning of u.)

LEMMA 9. Assume that ul>l for some j,l<j<-d. The number of character
comparisons performed by the algorithm during an iteration u Uj, u <last (Uj), is
bou aed by max (1, [(u’-u)/21)/lf(u’)l-If(u)l, where u’ is the iteration succeeding
u in Uj.

Proof. We give a proof for the case in which U2 satisfies the hypothesis of the
lemma. The proof can be immediately extended to the case j > 2.

Consider an iteration u U2, u < last (U2), and let u’ be the iteration succeeding
it in U2. Iteration u inherits Ic(u)l matches in [line + 1, line2] from previous iterations
in U2. (Recall that all comparisons before U2 were to the left of line1.) Since u fails
to match any suffix of the pattern, we must have e =< nd at the end of iteration u. Thus,
the algorithm performs q comparisons between noholes in p[hstart(u)+ 1, m] and the
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corresponding text positions in [line1 + 1, n], skipping text positions in C(u). One of
those comparisons is a mismatch and q-1 are matches. Then, the pattern is shifted
over the text by u’- u kmin (hstart(u)+q_l) positions. Among the IC(u)[+ q- 1 text
positions in [line1+ 1, line2] that matched the corresponding pattern positions during
iteration u, tle algorithm records only IC(u’)l during iteration u’ and such character
comparisons/will not be repeated during u’. We bound q by bounding S=
IC(u)l+ q-IC(u’)l- 1, i.e., the number of matches that the algorithm forgets in going
from iteration u to u’. Let k u’- u, h hstart(u)+q_l, b line1 u. We notice that b _-< h
(since after u the algorithm only compares text symbols beyond line1) and that
k kmin (h) is a period of p[ 1, h]. We next show that u’ < line1 which implies k < b
for our choice of k and b. Indeed, by the way we partition the heavy sequence,
last (U2) => u’> u is the only iteration in U2 that can increase the value of variable tlast
in algorithm SM when that iteration ends. Since tlast =line1 when iterations in U2
start and u’ < tlast (u’) by definition of heavy sequence, we obtain u’< line1.

Observe that the S matches that the algorithm forgets at the end of iteration u
correspond to positions j in p[ 1, h such that j is a nohole, j > b max (k, b), and j- k
is a hole. By Lemma 5, each of these pattern positions is reachable from a distinct
hole in p[1, k], k min (k, b). Since our choice of k, b and h satisfies the hypotheses
of Lemma 6, we obtain S_-<max(0, [(k-2)/2J) from bound (2). Therefore q=
S+ l +]C(u’)l-]C(u)]<=max (1, [(u’-u)/2J)+]C(u’)l-]C(u)].

We now consider the last iteration in U, 1 <j < d. Again, without loss of generality,
we limit our discussion to the case j 2. Iteration last (U2) matches a suffix of the
pattern since it advances tlast to last (U2) + m and, by assumption, U does not conclude
a heavy sequence. Thus, in the worst case, the algorithm performs line2-1inel-
[C(last U2))[ comparisons of text positions in [line1 + 1, line2], skipping text positions
in C(last (U2)). Then the pattern is shifted over the text by at least z positions and
tlast is set equal to line. Thus, all text positions in [line1+ 1, line] are not going to
be considered again by the algorithm. Fact 7 summarizes these observations.

FACT 7. The algorithm performs at most linej-linej_i-lC(last (U))] character
comparisons during iteration last (U), 1 <j < d.

If we had enough free text positions in [linej_l+ 1, line],j < d, to pay for all
character comparisons performed during iterations in U, the analysis of heavy
sequences would be the same as for light sequences. Unfortunately, last (U) must use
most of the free text positions in [line_ + 1, line] in order to pay for its own character
comparisons. The remaining iterations in U pay for their character comparisons using
a credit line. For any sequence S={Xl;Xz;...;XlsI} let credit(S)=
k=2 max (1, [(Xk Xk-1)/ZJ) (if IS[----< 1, let credit (S) 0).
LEMMA 10. For each U, 1 <j < d, the total number of comparisons performed by

the algorithm during iterations in U is bounded by

linej linej_l + credit (U).

Proof By induction on j. For j--2, an upper bound on the total number of
comparisons performed by the algorithm during iterations in U2 is obtained by summing
the bound in Lemma 9 for each u U2, u < last (U2), and that in Fact 7. Since IC(u2)l =0
(ua is the first iteration in U2), this sum can be rewritten as (5). The proof is similar
for j> 2. ]

We now consider the number of character comparisons performed by the algorithm
during iteration ug, the last iteration in the heavy sequence. Throughout our discussion,
we assume that ug u, i.e., g > 1 and d > 1.
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LEMMA 11. Let g> 1. The number of character comparisons that the algorithm
performs during iteration Ug is bounded by

(6) S + C(Sl)--lined_l--lC(Ug)]
when Ug is the last iteration of the algorithm, and by

(7) Sl+C(Sl)_lined_l_lC(ug)l+max(1, [lined_l ug +1J)2
when Ug is not the last iteration of the algorithm.

Proof. Iteration Ug inherits ]C(ug) matches in [lined_l/ 1, lined] from previous
iterations in Ud. Obviously, if Ud {Ug} then C(ug) is empty. The algorithm performs
q comparisons between text characters in t[lined_l / 1, lined] and the corresponding
pattern characters. Then, the pattern is shifted over the text by at least lined_l-Ug
positions (past lined_l tlast (Sl)). We consider two cases according to whether or not

Ug is the last iteration of the algorithm. Let y start (Ug)+ q-1, i.e., p[hy + 1] is the
last character of the pattern compared during this iteration.

Assume that Ug is the last iteration of the algorithm. Obviously, q_-<
lined-lined_l-lC(ug)]. Recalling that Sl n when Sl is the dummy iteration and that
lined----< n, we obtain that q is bounded by (6).

Assume Ug is not the last iteration of the algorithm. We consider two subcases:
y>- nd + 1 and y<- nd.

Subcase (i). y >-nd + 1 and Ug not the last iteration of the algorithm: At the end
of Ug, the pattern is shifted by rmin (hy), so Sl- Ug rmin (hy). Since y > nd and the
algorithm processes the sequence hi in increasing order of until either m + 1 or a
mismatch is found, p[hnd / 1]= t[Ug/ hnd / 1]. Recall that by definition of heavy
sequence, tlast (Sl) --< Sl. Thus, by Lemma 7, Sl cannot have a suffix-prefix overlap with
any iteration. It follows that rmin (hy) m since rmin (m 1) m and rmin (hy) < m
for hy < m 1 would imply that Sl has a suffix-prefix overlap with Ug. Thus, Sl- Ug m.
This equality implies that Sl=lined (lined=Ug+m) and, in turn, that C(Sl)=0 (no
comparisons made beyond lined). Therefore, q_--<lined-lined_l-lC(ug)] is bounded
by Sl + C(Sl)-lined-l-IC(u)l and (7) holds.

Subcase (ii). y<-nd and Ug is not the last iteration of the algorithm. Since

hm O, nd < m (kmin (0) is never defined) and given the way the algorithm processes
the sequence hi, we have that the q comparisons made during iteration Ug result in
q- 1 matches and a mismatch. At the end of iteration Ug, the total number of matches
between pattern positions and text positions in [lined_l+ 1, lined] is IC(ug)]+q-1.
We bound q by bounding ]C(ug)]+ q.

Let N be the set of text positions in [line d_l + 1, lined] that the algorithm has
successfully matched with the corresponding pattern positions at the end of iteration
Ug. C(ug)is included in N. Thus, ISl/l-lC(u)l/q. We partition S into three
disjoint subsets as follows. Nnoholes is the set of positions in N aligned with a nohole
of the pattern at beginning of iteration Sl. Ndead is the set of positions in N falling in
the interval [line d_l + 1, Sl]. Nhoes is the set of positions in N aligned with holes at
the beginning of iteration Sl. We claim that

(8) Nhles <= Sl lined- Ndeadl + max (o’ [line d- Ug l J )"2

Indeed, let h=hy, k=kmin (hy)<-h and b=lined_l--Ug. Since lined_l tlast
(Sl) --<-- Sl by definition of heavy sequence, b lined_l- Ug <-- Sl- Ug kmin (hy) k.
Thus, b <= k < h and k is a period of p[1, hi. Consider p[1, hi and let J be the set of
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positions j in that string such that kmin (h) <j -< h, j is a nohole and j- kmin (h) is a
hole. At the end of iteration Ug, each j J has a match with exactly one text position
in Nholes and vice versa. By Lemma 5, each position in J is reachable from a distinct
hole in p[1, kmin (h)]. We can further partition J in two subsets J’ and J such that
j’ J’ is reachable from a distinct hole in p[ 1, b] and . is reachable from a distinct
hole in p[b+ 1, kmin (h)]. We have I.l-+-INdeadl_--<kmin (h)-b=sl-lined_l, since
kmin (h) sl Ug, b line a-1 Ug and at the end of iteration Ug each position in Ndead
has a match with a distinct nohole in p[b+l, kmin(h)]. Therefore, I 1_<
sl--lined---lNdeadl. We use Lemma 6 with the same k, h and b to bound J’. Each
j’ J’ is such that j’> k max (k, b), j’-k is a hole and j’ is reachable from a hole in
p[1, hi, b min (k, b). Therefore, our choice of J’, k, b and h satisfies the hypotheses
of Lemma 6 and since b<=k, by (1) IJ’l-<max (0, [(b- 1)/2J)
max (0, [(lined_l-Ug-1)/2J). Using the bounds on and IJ’] and the fact that
]Nholes] IJI [-1 + [J’l, we obtain (8).

Recall that Nnohoes is the set of positions in N aligned with noholes of the pattern
at the beginning of iteration sl. We have that INnohoesl start (s) 1 c(s) (the proof
is analogous to the one that (3) holds and is omitted).

Using the identities [Nnoo,esl=start(s)-=c(s),lNl+=lC(u)l+q, and
inequality (8) we obtain that q is bounded by (7). tq

We can finally bound the total number of comparisons performed by the algorithm
during iterations in Ua. Again, we must use credit in order to pay for some of the
comparisons performed during iterations in Ua. For any sequence S {x x2; xlsI}
let credit* (S) [kS[=21 max (1, [(Xk--Xk_)/2J)+max (1, [(Xlsl--Xlsl_1+ 1)/2J) (if Isl_-<
1, credit* (S)- 0).

LEMMA 12. The number ofcharacter comparisons performed by the algorithm during
iterations in Ud, d > 1, is bounded by

(9) Sl + C(Sl)-lined_l +credit* Ud (-J {lined_l}),
when Ug is not the last iteration of the algorithm; by

(10) Sl + C(Sl)-lined_l +credit Ud)
when ug is the last iteration of the algorithm.

Proof. Assume that Ug is not (is, respectively) the last iteration of the algorithm.
A bound on the number of character comparisons performed during iterations in Ud
is obtained by summing the bound in Lemma 9 for each u Ud, U < Ug, and bound
(7) ((6), respectively) in Lemma 11. Since [C(first Ud))] =0, this sum can be rewritten
as (9) ((10), respectively). ]

We will repeatedly use the following lemma to bound the credit ofeach U, 1 <j =< d.
Its conditions are easily verified in each case.

LEMMA 13. Consider the subsequence U, for some j, 1 <j <-d. Let a and fl be
real numbers, z >- . For each u U t_J{linej_l}, a u first U + fl <=
[a((u -last U_))((z’ +/3)/m))J.

Proof Let left (u first (U_I) +/3 and let right (u last U_l))((z’ +/3 )/m).
We prove that left <- right and therefore [aleftJ <- [a rightJ proving the lemma.

Since first (U) last (U_a) => z by definition of rmin, left -< u last (U_a) z +/3.
Since u -< linej_ and linej_l- last (U_a) m, u- last (U_I) <= m. Moreover, z >-/3
by assumption. Thus, left<=(u-last(U_l)-(z-fl)m/m)<=((u-last(U_l)) (1-
(z-fl)/m))=(u-last(U_))((z’+fl)/m)=right, since m-z=z’. [3

We are now ready to prove the following lemma.
LEMMA 14. Let p[1, m] be a pattern with period z. Let Ul, u2, ", Ug be a heavy

sequence and let Sl be the succeeding iteration or the dummy iteration. Assume that Ul
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satisfies Invariant 1. If Ug is not the last iteration of the algorithm, SM performs at most

(11) Sl tll + C( S1) C( tll) + [ (line d_l tll) ( Z--- ) J
character comparisons during the execution of such a heavy sequence. If Ug is the last
iteration of the algorithm, the number of character comparisons is bounded by

1.
Moreover, s satisfies Invariant 1.

Proof We consider two cases: ul is the only iteration in the sequence and its
logical complement. We first derive a bound on the total number of comparisons
performed by the algorithm during the heavy sequence for both cases. Then, we show
that Sl satisfies Invariant 1.

Assume that Ul is the only iteration in the heavy sequence. By Fact 6 the number
of comparisons during iteration Ul is at most rn-c(ul). Moreover, u + rn line1
tlast (Sl) S and S U -> m if s n m and also if Sl > n m. Therefore, m C(Ul)
is bounded by (11) when u is not the last iteration of the algorithm and is bounded
by (12) when Ul is the last iteration of the algorithm.

Consider now the case in which Ul is not the only iteration in the heavy sequence,
i.e., g > 1 and d > 1. We recall that the number of character comparisons performed
by the algorithm during U1 is

(13) m c(ua) line1- u- c(u).
For each U,l<j<d, we now bound credit(U). Since max(l, [x/2])<=[x],

for x_>l, and the sequence U is strictly increasing, we have credit(U)_-<
[last (U)-first (U)] and by Lemma 13 (with u--last (), a 1,/3 =0) credit (U)=<
[last (( U)-last(U_l))(z’/rn)J. Using (5), the number of character comparisons per-
formed during U is bounded by

(14) linej-linej_ + [(last (U)-last (U_)) (-) J.
Using the fact that max (1, [(x+ 1)/2])<_- [xJ, for x>= 1, (9), and Lemma 13 (with

u linea_l, a 1,/3 0), the number of character comparisons performed during Ua,
when Ug is not the last iteration of the algorithm, is bounded by

(15) sl+c(sl)-lined_l+[(lined_l-last (Ud-1)) (--) ]
Using (10) and the same arguments used to bound credit (U), the number of

character comparisons performed during Ud, when Ug is the last iteration of the
algorithm, is bounded by

(16) Sl + C(Sl)-lined_l + [(ug-last
When Ug is not (respectively, is) the last iteration of the algorithm and g > 1, a

bound on the number of character comparisons performed by the algorithm during a
heavy sequence is obtained by adding (13), (14) for each 1 <j < d, and (15) (respectively,
(16)). Such a sum is bounded by (11) (respectively, (12)) since the sequence last (U)
is increasing.

We next show that s satisfies Invariant 1 when it starts. Indeed, since u satisfies
Invariant 1, text positions in [u+ 1, n] are either free or match all the noholes in
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p[1, hstart(u,)]. Thus, text positions in t[ul + 1, Sl] can become busy at the end of the
heavy sequence. This amounts to Sl-Ul text positions being declared busy. As for
positions in t[sl + 1, n], notice they are either free (they were free when u started) or
they match noholes in p[1, hstart(s)]. Therefore s satisfies Invariant 1 when it starts.

Notice that the positions declared busy at the end of s can be used to pay for
s- ul character comparisons. This "covers" s- Ul- C(Ul) comparisons performed by
the algorithm during the heavy sequence as well as the c(u) character comparisons
(all matches) that u has inherited from the previous iteration. The C(Sl) matches
inherited from Ug by Sl are left unpaid. The remaining comparisons are paid by a
credit line.

5.3. Putting the sequences together.
THEOREM 1. Let p[1, m] be a pattern with period z, m= z+z’, and z’ <z, and let

t[1, n] be a text. Algorithm SM finds all occurrences ofp in in O(n + m) time. In the
worst case, the algorithm performs at most n+[(n-m)(z’/(z+z’))J character
comparisons.

Proofi The O(n + m) time bound is obvious. As for the number of character
comparisons, we notice that iteration zero satisfies Invariant 1 trivially and, by Lemmas
8 and 14, each iteration starting either a light or a heavy sequence satisfies the same
invariant and the bounds in Lemmas 8 and 14 hold. The bound of the theorem follows
by summing up these bounds: The sum of the terms u-sl + c(u)-c(s) or s-u +
c(sl)-c(u) is bounded by n and the sum of the terms [(s-ul)(Z’/(z+z’))J or
[(ug-u)(z’/(z+z’))J is bounded by [(n-m)(z’/(z+z’))J. Since c(u)=0 for u the
dummy iteration, no comparison is left unpaid.

The bound in Theorem 1 is tight for each value of z and m z + z’, z’ < z. Indeed,
let p[1, m] aZ’bZ-Z’a z’. Choose n cm, c integer, and t[1, n] (p[1, m]) c. Notice that
the first nohole of the pattern is z’+ 1, since kmin (z’)= 1. We show that when the
algorithm has discovered all occurrences of p[ 1, m] in t[ 1, jm], for some j, 1 -<j -< c, it
has performed jm + (j-1)z’ character comparisons and the pattern is aligned with
t[(j-1)m+ 1,jm]. Indeed, when the algorithm has discovered all occurrences of
p[1, m] in t[1, m l, it has performed m comparisons and the pattern is aligned with
t[ 1, m ]. Assume that the algorithm has just found all occurrences ofp[ 1, m in t[ 1, jm],
for some j, 1-<j < c, it has performed jm + (j-1)z’ character comparisons and the
pattern is aligned with t[(j-1)m + 1,jm]. In order to find the next occurrence, the
algorithm shifts the pattern over the text by z positions and tests whether the first
nohole of the pattern matches the corresponding text character, i.e., p[z’+ 1] is com-
pared with t[jm+l]. This comparison results in a mismatch (p[z’+l]p[1]=
t[jm + 1]) and the pattern is shifted by kmin (z’) 1. This is repeated z’- 1 additional
times, since t[jm + 2] t[jm + z’] =pill p[z’+ 1]. Then, SM finally discovers,
in m comparisons, that p[1, m] t[jm + 1, (j + 1)m]. The number of comparisons
during this phase is m + z’ which added to the jm + (j-1)z’ comparisons performed
to find all occurrences of p[1, m] in t[1,jm] gives a total of (j+l)m+jz’ character
comparisons. Moreover, the pattern is aligned with t[jm + 1, (j + 1)m].

Thus, SM performs cm+(c-1)z’=n+[(n-m)(z’/(z+z’))J character com-
parisons to find all occurrences of p[1, m] in t[1, n l, n cm.

6. Saving character comparisons. The analysis of Algorithm SM carried out in the
previous section and the examples given there show that the main source of inefficiency
(for character comparisons) is due to shifts by one during heavy sequences of iterations:
Recall that we used max (1, [x/2J )=< x, when x-> 1, where x is the distance between
two consecutive iterations, or the length of the shift. This length can be 1 exactly when
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we have a mismatch with e 1 and we shift by kmin (hi) 1. Whenever x >_- 2, we have
max (1, [x/2J)=< x/2. In this section we describe a variation of Algorithm SM that
takes care of this shortcoming by handling differently certain shifts by 1.

We give a somewhat redundant pseudo code version of the new algorithm SM’.
It behaves like Algorithm SM, except that it handles differently the shifts by one during
heavy sequences. Based on the length ofthe suffix-prefix overlap ofthe current iteration,
it decides to behave as Algorithm SM or look for the regular expression (p[ 1 ])*p[ + 1 ].
Recall that is the maximal integer such that p[ 1 p[ l] and p[ 1 p[ + 1 ]. We
assume that p (p[1])% m> 1, because such a pattern can be easily searched for in
n comparisons. We first give the pseudocode for the new algorithm and then discuss
it in some detail.

Algorithm SM’
begin

b <-- O; pstart <- 1; tlast <- O; heavy false
repeat

e <-- pstart;
if heavy true and e 1 and tlast> b / 1 then

begin
--Find longest prefix of text[ tlast + 1, n] that matches--
rathe regular expression p[ 1 ]*p[ + 1]m

<-- tlast- b + 1;
while b + _-< n and text[ b + i] p[ 1 do <-- + 1;
if _--< or text[ b + i] p[ + 1 then

begin
b<--b+i;
pstart <-- 1;
tlast <- b;
goto decide;

end
else

begin
pstart <-- 2;
tlast <- b + i;
b<-- tlast- (/+ 1);
goto decide;
end

end
while e _-< rn and tlast < b + he q- 1 and p[ he q- 1 text[ b + he q- 1 do
e<-- e+ 1;

--This part is as in Algorithm SM---
Check whether or not an occurrence has been found
set variables tlast, b, pstart accordingly

--Decide how to set heavy--
decide: if b _-> tlast then heavy false;

else heavy <-- true;
until b > n m

end

As before, u is an iteration if Algorithm SM’ sets variable b u during its execution.
Notice that SM’ simulates SM for some iterations while it does not for others. By
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simulation we mean that SM’ compares pattern positions against the corresponding
text positions according to the sequence hi," ", h, defined in 3. We point out that
the sequence of iterations for algorithm SM’ is nondecreasing (for algorithm SM it is
increasing) since b can be set to the same value twice. Indeed, assume that SM’ does
not simulate SM during some iteration u (it executes the "new" part of code) and it
tries to match a prefix of t[tlast+ 1, n] with (p[1])*p[l+ 1]. If the match is successful,
tlast and b are updated and the numeric value of the next iteration u’ may be equal
to u. (If the match is not successful, then b is increased and u < u’.) However, notice
that an iteration u in which SM’ does not simulate SM must be followed by an iteration
u’ in which it does, since either heavy false or pstart 2 (the next value assigned to
e) and the new part of code cannot be executed during u’. So, we can still distinguish
between two consecutive iterations u and u’ because either lu u’ > 0 or SM’ does not
simulate SM during only one of them. Therefore, for each iteration u of SM’, we can
still define start (u) and last (u) as in the previous section, provided that, when there
is ambiguity, we give the additional information of whether SM’ simulates SM
during u.

THEOREM 2. SM’ finds all occurrences of the pattern in the text.

Proof For any given iteration, SM’ either simulates SM or searches for the regular
expression (p[ ! ])*p[ + 1 ]. We prove the theorem by showing that when each iteration
u starts the following invariant holds.

INVARIANT 2. SM’ has correctly found all occurrences ofp[ 1, m] in text positions
[1, u] and t[u + hi + 1] =p[hl + 1], , t[u+ hpstart_, + 1]--p[hpstart_ -b 1]. Moreover, if
tlast-u >0, then t[u+ 1, tlast] =p[1, tlast- u] and tlast-u_-< hpstart.

Initially (u 0), Invariant 2 is trivially satisfied. Consider an iteration u > 0; assume
it satisfies the invariant. We show that u’, the next iteration, also satisfies the invariant.
We discuss only the case in which SM’ does not simulate SM during iteration u, since
the other case is implied by the way SM works and its correctness.

Assume that SM’ does not simulate SM during iteration u. Thus, when u starts,
e =pstart= 1 and tlast-u tlast-b> 1. Since hi is the first position of the pattern
having kmin defined, we have that hi =/. By Invariant 2, t[u+ 1, tlast] =p[1, tlast-u]
and tlast- u _-< hi =/. Thus, t[ u + 1, tlast] is a prefix of p[ 1, l].

SM’ searches for a prefix of t[tlast+ 1, n] that matches the regular expression
(p[1])*p[l+ 1]. Assume that it scans t[tlast+ 1, k+ 1] during this search. If k-u <l
or t[k+ 1] p[l+ 1], then there can be no occurrence of the pattern in the text in
[u+ 1, k+ 1] and the algorithm correctly sets the next iteration u’= k+ 1, and this
iteration must start from scratch (pstart= 1 and tlast= u’). Thus, u’ satisfies the
invariant. If k-u >-_ and t[k + 1] p[l+ 1], then there can be no occurrence of the
pattern in the text in [u + 1, k-l]. However, there may be an occurrence in k-l+ 1
since t[ k + 1, k + 1 p[ 1, + 1 ]. The algorithm correctly sets u’= k l, tlast k + 1
and pstart 2. Noting that tlast u’ -_< + 1 -< h2 and that p[h -b 1 p[ + 1 t[ k + 1
t[u’+ hi + 1], u’ satisfies the invariant. U

The analysis of Algorithm SM’ proceeds along the same lines as the analysis of
Algorithm SM. We divide the iterations into light and heavy sequences. The definition
of both sequences is as in the previous section. We remark that Lemma 7 does not
hold anymore since the condition u < tlast (u) does not necessarily imply that u has
a suffix-prefix overlap with an iteration u’ preceding it.

Again, for each iteration starting a sequence we maintain Invariant 1. Thus, we
can still use Lemma 8 for the analysis of a light sequences. In order to bound the
number of character comparisons performed by Algorithm SM’, we need to analyze
heavy sequences again and to show that the iteration succeeding a heavy sequence
satisfies Invariant 1.
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6.1. The analysis of heavy sequences for Algorithm SM’. Consider a heavy sequence
ul, u2,’", us and let sl be the iteration succeeding it. We partition the sequence
ul, u2,’’ ", Ug into d consecutive subsequences U1, U2," ", Ud as in the preceding
section. Again, for each U, 1-<j-< d, we define a boundary line, linej last (U)+ m.
Moreover, we set lineo ul. As before, last (U) is the only iteration in U that matches
a suffix of the pattern, 1 <-j < d.

We need the following observations about iterations in U, 1 <j =< d, handling a
shift by one.

LEMMA 15. Each U, 1 <j <= d has at most one iteration u such that e 1 when it
starts. It is either the next to last or the last iteration in U. When u linej_l-1, it is
the last iteration in U. When u < line,_1-1, it cannot match any suffix of the pattern.

Proof Assume that there is more than one iteration in U such that e 1 holds
when it starts. Let u and u’, u -< u’ be the first two. We consider two cases: u linej_ 1
and u < line_a 1 (we cannot have u -> line_ since u U). Notice that when u starts,
tlast must be equal to linej_l since no iteration in U preceding u has matched a suffix
of the pattern or it had e 1, an essential condition to modify the value of tlast in the
new code. Moreover, SM’ simulates SM at least up to the iteration preceding u.

Case u line_- 1. Since tlast line_ u + 1 Algorithm SM’ simulates SM dur-
ing the execution of iterations in U at least up, and including, u. Now, if u finds a
mismatch before matching any suffix of the pattern, it shifts by at least up to 1 and
does not update tlast: the next iteration fi is such that linej_l tlast= tlast ()=< a.
Therefore u concludes the heavy sequence. If u matches a suffix of the pattern, u
concludes U. In any case, u’ cannot exist and u is the last iteration in U.

Case u < line_ 1. Since tlast line_ > u + 1, heavy true and e 1, Algorithm
SM’ looks for the longest prefix of t[linej_ + 1, n] matching the regular expression
(p[1])*p[l+ 1]. If no prefix matches, u ends the heavy sequence and no u’exists. If a
prefix matches, then tlast- (l + 1) tlast (fi) (l + 1), the iteration succeeding u,
must shift by at least l+ 1. Thus, if u’ exists we have fi < u’. Moreover, SM’ must
simulate SM during ft. Now, if a does not match a suffix of the pattern, it concludes
the heavy sequence. Indeed, tlast tlast (fi) cannot be updated and the next iteration
is s _-> a + + 1 tlast (a) tlast (s). Therefore no u’ exists. If fi matches a suffix of the
pattern, a is the last iteration in U and no u’ exists. Therefore, u is either the next to
last or the last iteration in U.

Iteration u can match a suffix of the pattern only if p[1, m]=p[1]p[l+ 1] (see
Algorithm SM’). But, recalling the definition, of heavy sequence, we can have only
heavy sequences consisting of one element for p[ 1 ]p[ + 1 ]. Indeed, each iteration that
matches a suffix of the pattern must then shift the pattern by + 1 positions. Thus,
there is no suffix-prefix overlap between consecutive iterations implying that b-> tlast
always holds during the execution of SM’ for p[ 1 ]p[ + 1 ]. So, variable heavy is always
false, a contradiction since we are assuming that heavy true when u starts. [3

For each U, 1 <j =< d, let so (U) denote the only iteration in U, if any, such that
e 1 and so (U)< linej_- 1 when it starts. Notice that so (U) is the only iteration
in U in which SM’ does not simulate SM. We also need the following fact.

FACT 8. Assume that so (U) exists in U, 1 <j<=d, then the pattern must have
p[1, q]=p[m-q+ 1, m]=p[1]q, for some q, 2<= q<= I.

Proof By the way we partition the heavy sequence, last (U_l) must match a suffix
of the pattern. Moreover, so (U) is the first iteration in U that can advance tlast.
Therefore, so (U.) has a suffix-prefix overlap with last (U_). The length of the overlap
is line,_1 -so (U) -> 2, since so (U) < linej_l- 1 by hypothesis. Therefore, letting q
line,_l-SO (U),p[1, q]=p[m-q+ 1, m], q=>2. But q<=l because the overlap with
last (U_) is at most 1; otherwise the shift and e would be larger than 1. [3
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Assume that ul satisfies Invariant 1 when it starts. Since ul is the first iteration of
the heavy sequence, Algorithm SM’ starts with heavy false. This implies that SM’
simulates SM during the execution of ul. Thus, Fact 6 holds.

We now estimate the number of comparisons that SM’ performs for iterations in

U, l <j<-d.
LEMMA 16. Consider an iteration u U, for some j, 1 <j <-d. Assume that u <

last (U) and that u # so (U), if so (U) exists. The number of character comparisons
performed by SM’ during iteration u is bounded by [(u’-u)/21 /lc<u’)l-Ic(u)l, where
u’ is the iteration succeeding u in U.

_Proof. By the hypothesis of Lemma 16 and Lemma 15, no iteration in U up to,
and including, u can start with a value of e 1. This implies that SM’ simulates SM
on these iterations. Moreover u’-u-> 2, since none of those iterations can shift by 1.
Therefore, the bound in Lemma 9 holds and it reduces to
Ic(u)l. D

We now consider last (U) and so (U), if it exists, for a given subsequence
U, 1 <j < d. Then, we consider last (Ud) and so (Ud), if it exists.

FACT 9. Consider a subsequence U, for some j, 1 <j < d. Assume that so (U) does
not exist. The number ofcharacter comparisonsperformed by SM’ during iteration last (U)
is bounded by linej-linej_l- [C(last (U))[.

Proof Since so (U) does not exist, SM’ simulates SM during all iterations in U.
Thus, the bound follows as in Fact 7. El

FACT 10. Consider a subsequence U, for some j, 1 <j < d, and assume that so (U)
exists. Then so (U) is not the last iteration ofU and the number ofcharacter comparisons
performed by SM’ during iterations so (U) and last (U) is bounded by linej- linej_l-
If(so

Proof We note that C(so (U))= b when so (U) starts, because it starts with
e= 1. Since so (U)<line_-1, Algorithm SM’ tries to find the longest prefix of
t[line_+l,n] that matches the regular expression (p[1])*p[l+l]. Since we are
assuming that U does not conclude a heavy sequence, the algorithm must succeed in
its task (otherwise it would set tlast b and then heavy false). Therefore, it sets

b=last(U) and tlast=last(U)+/+l and the text characters to the left of
last (U) + + 2 will not be considered again by future iterations. By inspection of the
pseudocode performing the search for (p[1]*)p[l+l], the algorithm performs
last (U) + + 2 line_ character comparisons, one of which is a mismatch in iteration
so (U). Now, iteration last (U) performs at most m- l-1 character comparisons.
Therefore, the total for the two iterations is m+last(U)-line_+l=
line- line_ IC(so U))I + 1. El

We can now prove the following lemma:
LEMMA 17. The number of character comparisons performed by Algorithm SM’

during U, 1 <j < d, is bounded by

(17) linej-line_+ (last (U)-last (U_)) 2-
if so (U) does not exist. Otherwise, it is bounded by

(18) line,-line,_l+ (so (U)-last (U_))
2m /

when I 1> 2; and by

(19) line linej_ + 1

when Iv l 2.
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Proof Assume that so (U) does not exist. A bound on the number of character
comparisons performed during iterations in U is obtained by adding the bounds in
Lemma 16, for each iteration u last (U), and the bound in Fact 9. This sum is
bounded by linej -linej_l+ [(last U)- first U))/2J, since C(first (U)) b and, in
turn, by (17) since [(last (U)-first (U))/21 =< [(last (U)-last (U_l))(z’/2m)] by
Lemma 13 (with u last (U), a 1/2 and/3 0).

Assume now that so (U) exists. If 1 1-2, bound (19) follows from Fact 10 and
the fact that C(so (U)) b. Consider now the subcase [UI > 2. A bound on the number
of character comparisons performed by iterations in U is obtained by adding the
bounds in Lemma 16, for each iteration u < so (U), and the bound in Fact 10. This
sum is bounded by line- linej_l + [(so (U) first (U) + 2)/2/, since C(first U))= b
and, in turn, by (18) since z->2 and [(so(U)-first(U)+2)/2J_<-[(so(U)
last U_))((z’+ 2)/2m)/ by Lemma 13 (with u so (U), a 1/2 and q 2). U

We now consider so (Ua) and last (Ua), when so (Ua) exists. We do not discuss
the case in which so (Ua) does not exist, since SM’ simulates SM for all iterations in

Ua and a bound on the number of character comparisons performed by SM’ can be
obtained using Lemma 12.

When so (Ua) starts, algorithm SM’ tries to find the longest prefix of t[linea_l+
1, n] of length at least l+ 1-linea_ +so (Ua) that matches the regular expression
(p[1])*p[l+ 1] (SM’ does not Simulate SM during so (U)). Assume that the algorithm
"scans" t[linea_l, k] during this search. It can be easily se,.-i that the number of
character comparisons is at most k-linea_l + 1. If so (Ua) is the last iteration of the
algorithm or in Ua (end of text or search not successful), k s and C(Sl)= 0, where
Sl is the next iteration (recall our conventions about the dummy iteration). Otherwise
(search successful and not end of text), k last (Ua) + + 1. In all cases, text characters
to the left of k + 1 will not be considered again, since SM’ sets tlast k. So, we have
Fact 11.

FACT 11. Assume that so (Ua) exists. The number of character comparisons perfor-
med by Algorithm SM’ during so(Ua) is bounded by

(20) s + c(sl)- linea_ + 1

when so (Ua) concludes either the sequence or the algorithm, and by

(21) last (Ua)+/-linea_l +2

in all other cases.
Consider last (Ua), when so (Ua) exists. Algorithm SM’ behaves like Algorithm

SM when matching pattern positions with the corresponding text positions in
[last (Ua) + + 2, last (Ua) + m]. We consider two cases: last Ua is not the last iteration
of the algorithm and its logical complement. In any case, let q be the number of
character comparisons that SM’ performs between t[last (Ua)+ l+ 2, lineal and the
corresponding part of the pattern during last (Ua).

Assume that last (Ua) does not conclude the algorithm. Since it concludes the
heavy sequence, the q comparisons result in q- 1 matches and a mismatch (last (U)
can match the pattern and conclude the heavy sequence only when z’= 0, but then the
heavy sequence consists of one element only and so (U) could not exist). Then, the
pattern is shifted over the text by at least + 1 => 2 positions (recall that last (Ua) shifts
by at least + 1). We are interested in finding an upper bound on q. We consider two
subcases: S last Ud m and S last (Ud) < m.

If s last (Ud) m, we have s lined last (Ud) + m. Since no text character in
t[lined, n] has been considered by the algorithm during iterations preceding Sl, we
have that C(Sl)= O, and q is obviously bounded by Sl + C(Sl)-(last (Ud)+ l+ 1).
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Assume now that sl -last (Ua) < m. Let N be the set oftext positions in [last Ua +
+ 2, linea] that the algorithm has successfully matched with the corresponding pattern

positions at the end of iteration last (Ud). Thus, NI / 1--q. We partition N in three
disjoint subsets as follows. Nnoholes is the set of positions in N aligned with a nohole
of the pattern at the beginning of iteration Sl. Ndead is the set of positions in N falling
in the interval [last (Ud)+ l+ 2, Sl]. Nholes is the set of positions in N aligned with
holes at the beginning of iteration s. We bound q by bounding ]Nholesl/ INdeaOl and

Nnoholesl
Let h hstart(last(Ud))+q_ Consider p[1, h] and let J be the set of positions j in

that string such that kmin (h)<j-< h,j is a nohole, and j-kmin (h) is a hole. Since
s-last (Ud) kmin (h) -> + 1 (last (Ud) shifts by at least + 1) and kmin (h) <j, for
each j J, each j J has a match with exactly one text position in Nhoes and vice versa
at the end of iteration last (Ud). Therefore INo,es[--I/[. By Lemma 5 (with k=
kmin (h)), each nohole in J is reachable from a distinct hole in p[l+ 2, kmin (h)].
Each of the noholes in p[l+ 2, kmin (h)] has a match with exactly one text position
in INdeadl at the end of iteration last (Ud) (recall the definition of Ndead)o Thus,
Nholesl / Ndeadl kmin (h) 1-1 Sl- last (Ua) l- 1. Obviously, INnoholesl--"
start (sl)- l C(Sl). Therefore, q- lNl/ l lNholsl/lNoeal/lNnonolesl/ l <=
s + c(s) (last Ud)+ l+ 1)+ 1.

If last (Ud) is the last iteration of the algorithm, q is obviously bounded by
n -(last Ud)+ l+ 1) =< Sl + C(Sl) (last Ud)+ l+ 1), since tlast last Ud)+ l+ 1 when
Ud starts and no character in [1, last] is ever considered again.

These observations can be summarized as follows.
FAC-r 12. Assume that so Ud exists. The number of character comparisons perfor-

med by the algorithm during iteration last (Ud) is bounded by

(22) Sl + c(s)-(last Ud)+ l+ 1)

when last (Ud) concludes the algorithm or Sl last (Ud) m, and by

(23) s+c(s)--(last(Ud)+l+l)+l

in all other cases.
LEMMA 18. The number of character comparisons performed by Algorithm SM’

during iterations in Ud is bounded by

(24) s + C(Sl)-linea_ + (linea_-last (Ua_))
2m

when Ug does not conclude the algorithm and when so (Ud) does not exist. It is bounded
by

(25) s + c(s)-linea_l + (u -last (Ua_I))

when ue, concludes the algorithm and when so (Ua) does not exist. It is bounded by

(26) s + c(sl)-linee_ + (linee_-last (Ue_))
2m ]

in all other cases.

Proof. We first consider the case in which u does not conclude the algorithm
and so (Ue) does not exist. Algorithm SM’ simulates SM on iterations in Ua and a
bound on the number of character comparisons performed by SM’ during iterations



STRING MATCHING: UPPER BOUNDS 433

in Ud is given by (9) in Lemma 12. We will obtain (24) from this bound by bounding
credit*. Notice that the sequence Ud 12 {lined_l} is strictly increasing.

Notice that line d _l last (Ud) + 1 --> 2 (line d _l last (Ud) -> 1 by definition of heavy
sequence and the case being considered). Moreover, for each u and u’ in Ud, first (Ud) <=
u < u’ =< last (Ud), u’-- u => 2 since no iteration in Ud, except possibly the last one, has
start (u) 1 (shift by 1 in case of mismatch). Therefore, credit* Ud U {lined-i})
[(lined_l-first (Ud)+ 1)/2J. By Lemma 13 (with u =lined_l, cr =1/2,/3 1),
credit* (Ud U {lined_l}) is further bounded by [(lined_l-last (Ud-1))((z’+ 1)/2m)J.
Using (9), we obtain (24).

Consider the case in which ug concludes the algorithm and so (Ua) does not exist.
Algorithm SM’ simulates SM on iterations in Ua and a bound on the number of
character comparisons performed by SM’ during iterations in Ua is given by (10) in
Lemma 12. Employing the arguments used to bound credit*, yields credit (Ua) <-

[(u--last(Ud_l))(z’/2m)J. Using (10), we obtain (25).
Consider the remaining cases. That is, so (Ud) exists. Recall that so (Ud)<

lined_l--1. Let U={xl,’’ ",xs} be Ud up to SO (Ud), i.e., Xs<sO(Ud). Notice that
xi-xi-l=>2, i> 1, since no iteration in U has start (xi)= 1. A bound on the number
of character comparisons performed by SM’ uring iterations in is obtained by
adding the bound in Lemma 16 for each x U, 1 <i<= s. This sum is bounded by

(27) [so Ua)-first

If so (Ud) is the last iteration of the algorithm or of Ud, the sum of (20)
and (27) gives Sl + c(sl)- lined_l + 1 + [(so (Ud) first Ud))/2J --< Sl + C(Sl)- linea_l +
[(linea_l-first (( Ud)))/2], since so (Ud) --< lined_1-2 by assumption. We derive the
bound in (26) since [(lined_l-first (Ud))/2J <= [(lined_l-last (Ud_l))(z’/2m)J by
Lemma 13, with u lined_l, c 1/2 and/3 0.

If so (Ud) is neither the last iteration of the algorithm nor of Ud., the sum
of (21), (23), and (27) gives Sl+C(Sl)--lined_I+2+[(sO(Ud)--first(Ud))/2J <
sl+c(sl)-lined_l+[(lined_l-first((Ud))+2)/2J, since sO(Ud)<--linea_l--2 by
assumption. We derive the bound in (26) since [(lined_l-first(Ud_l)+2)/2J<=
[(linea_l-last(Ua_l))((z’+2)/2m]] by Lemma 13, with u =lined_l, a=1/2 and/3=2,
and z => 2. U

LEMMA 19. Consider a heavy sequence Ul, u2,"’, us and let Sl be the iteration
succeeding it or the dummy iteration. The number ofcharacter comparisons performed by
algorithm SM’ during the heavy sequence is bounded by

line d-1 U J(28) s1 -- v(s1) Ul c(lgl) ’ k iTi
when p[1, m] p[1]lp[ + 1]lp[1] t, 1=>2, and p[1] # p[ + 1]. It is bounded by

[ (z’+ 1)]2m
(29) Sl+C(Sl)-Ul-C(Ul)+ (linee_l- ul)

\

when the pattern does not satisfy p[ 1 p[2] p[m 1 p[m and Ug does not conclude
the algorithm. It is bounded by

(3O) S -]- C(S1) U C(Ul) 3
I- Ug Ul) m
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when the pattern does not satisfy p[1]=p[2]=p[m-1]=p[m] and Ug concludes the
algorithm. It is bounded by

(31) SI--C(S1)--Ul--C(Ul)-- (lined-l--U1)
2m /

in all the other cases. Moreover, s satisfies Invariant 1 when it starts.

Proof We now consider four cases, each corresponding to one of the bounds.
Case p[ 1, m p[ 1 ]lp[l + 1 ]p[ 1 ]1, _--> 2, and p[ 1 p[ + 1 ]. The contribution of

each U, 1 <j < d tothe total number of character comparisons depends on how many
iterations it contains. We claim that l<j < d. Indeed, last (U_I) matches a
suffix of the pattern and shifts the pattern by at least z + 1 setting b first (U) and
tlast linej_l last (U_I) + m. Thus, linej_ first (U) =< I. Since the first nohole in the
pattern is l+ 1, it is aligned with a text position past line_ when first (U) starts.
Therefore, start (first (U)) e 1. If tlast- b line_-first (U) 1, then SM’ simu-
lates SM during first (U) and this iteration must match a suffix of the pattern; otherwise
it would conclude the heavy sequence. Thus U[=I when tlast-b=
line,_1- first (U) 1 and the number of character comparisons is bounded by line-
linej_l. If tlast-b=line_l-first (U)> 1, then SM’ does not simulate SM during
first (U) as this iteration looks for the longest prefix of t[line_l + 1, n] that matches
the regular expression (p[1])*p[/+ 1]. It must find it, otherwise it would conclude the
sequence. Now, second (U) must match a suffix of the pattern. Thus IU] 2 when
tlast-b =line_-first (U)> 1 and by Lemma 17, the number of character com-
parisons for I 1- 2 is bounded by (19), i.e., line-linej_ + 1.

Since lUll 1, the sum of character comparisons performed during iterations in
U1, , Ud-1 is bounded by line d-1 Ul + (d 2).

Consider Ud. Notice that ul_-< 2 and that first (Ud) must have start (first (Ud))=
e 1. The proof is the same as the one showing <- 2 and that first (U) must have
start (first (U)) e 1, 1 <j < d. We claim that the number of character comparisons
for iterations in Ud is bounded by s + c(s)-lined_ + 1. This follows from Fact 11,
bound (20), when Udl 1 and so(U) exists.

When lull 1 and so (Ud) does not exist, SM’ simulates SM during first (Ud).
This implies that first (Ud) b tlast-1 =lined_l--1. Notice that, for the specific
pattern we are considering, if first (Ud) matches a suffix of the pattern the next iteration
must have a suffix-prefix overlap with first Ud and the heavy sequence would continue.
Thus, first (Ud) cannot match any suffix of the pattern. For the specific pattern we are
considering, hi and h_ m- 1 in the sequence hi, , hm. So, the mismatch must
either be with p[l + 1] or with p[21 + 1]. In either case, the shift is at least as large as
the number of character comparisons performed during first (Ud) and C(Sl)=0. So,
we obtain a bound of Sl-first (Ud) Sl--lined_l+ 1 sl + C(Sl)-lined_ + 1. When
Ud] 2, so (Ud) must exist, otherwise Lemma 15 would be contradicted. The claimed
bound is obtained as the sum of (21) and (22), since Sl-last (Ud)--m (otherwise
last (Ua) would completely match a suffix of the pattern).

Therefore, the number of character comparisons performed during this heavy
sequence is bounded by Sl + C(Sl)- Ul- C(Ul)+ (d- 1), where d- 1 is the number of
iterations in the heavy sequence that completely matched a suffix of the pattern (for
C(Ul) =0). Since after such match the pattern is shifted by at least l+ 1 positions,
d 1 _-< [(lined_l u)/l + lJ and we obtain (28).

Case. The pattern does not satisfy p[1]=p[2]=p[m-1] =p[m] and Ug does not
conclude (respectively, concludes) the algorithm. In this case, so (U), 1 <j _-< d, cannot
exist; otherwise Fact 8 would be contradicted. Thus, bound (17) holds for each
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U, 1 <j < d, and (24) (respectively, (25)) holds for Ua. The total number ofcomparisons
is obtained by adding these bounds to m- c(ul) (the contribution of ul). The sum of
the terms rn c(u), linej -linej_ and s + c(sa) -line a-1 is bounded by s + c(sa) u-
c(u). The sum of the terms [(last(U)-last(U_))(z’/2m)J and [(linea_-
last (Ua_))((z’+l)/2m)J (respectively, [(ug-last (Ua_a))(z’/2m)J) is bounded by
[(last (U)-u)((z’+l)/2m)J (respectively, [(ug-ul)(z’/2m)J). Therefore, (29)
(respectively, (30)) holds.

Remaining cases. For each U, 1 <j < d, one of (17), (18), or (19) applies. Bound
(19) is never larger than (18), since so (U)-last (U_)=>z(last (U_a) shifted the
pattern by at least z since it matched a suffix of the pattern and the sequence of
iterations from last (U_) to so (U) is increasing) and since rn z + z’, z’ < z. Since
so (U)_-<last (U)<last (U+I), 1 <j<d, the sum of bounds (17) or (18) is bounded
by lined_l-line + [(last (Ud_I) Ul)((z’+ 2)/2m)J. Adding to this bound m c(ul)
and (26), we obtain (31) (since the bound of (26) is at least as large as the bounds of
(24) and (25)).

We now show that iteration s satisfies invariant 1 when it starts. Indeed, since
Ul satisfies Invariant 1, text positions in [u+ 1, n] are either free or match all the
noholes in p[1, hstart(ul)]. Thus, text positions in t[u + 1, s] can become busy at the
end of the heavy sequence. This amounts to sl- Ul text positions being declared busy.
As for positions in t[Sl-i-1, hi, notice they are either free (they were free when Ul
started) or they match noholes in p[ 1, hstart(sl)]. Therefore s satisfies Invariant 1 when
it starts.

Notice that the positions declared busy at the end of s can be used to pay for
s- u character comparisons. This "covers" sl- u- c(u) comparisons performed by
the algorithm during the heavy sequence as well as the C(Ul) character comparisons
(all matches) that u has inherited from the previous iteration. The C(Sl) matches
inherited from Ug by s are left unpaid. The remaining comparisons are paid by a
credit line. [3

LEMMA 20. Consider a heavy sequence ul, u2,’", ug and let s be the iteration

succeeding it. The number of character comparisons performed by Algorithm SM’ during
the heavy sequence is bounded by

(32) s+c(s)-u-c(u)+ (ue,-ul) rain
3’ -]

when the pattern does not satisfy p[1]=p[2]=p[m-1]=p[m] and ug concludes the
algorithm. It is bounded by

(33) s+c(s)-u-c(u)+ (linee_l-u) rain
3’ ]

in all other cases.

Proof. Notice that (30) is obviously bounded by (32) since z’/2m <-. We now
prove (33). Let denote the alphabet. Let +’ denote the set of strings of length
m z + ’, where z is the period of the string and z’< z. Notice that (28), (29), and
(31) in Lemma 19 partition yz+, into three disjoint sets M={p[1]lp[l+l]p[1]:
1_-->2 and p[1]p[l+l]}; ={p[1, m]: not (p[1]=p[m-1]=p[1]=p[m])};=
Yz+z’-(MI,.J J). For each of the strings in these sets we prove that each of the
corresponding bounds is bounded by (33).

Consider M. Since >_- 2, m 21 + 1 and z’- for this set of strings, (28) is bounded
by (33).
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Consider . We notice that (z’+ 1)/2m-< (z’+ 2)/2m. Therefore, in order to obtain
(33) from (29), we need to show that (z’+l)/2m<-_1/2. Such inequality follows easily
on recalling that m z + z’, z’ < z and z -> 2 for strings in .

Consider c. In order to obtain (33) from (31), we first observe that for any
string in C,m>-6 since, for pCg, p[1]=p[2]=p[m-1]=p[m](p_) and p
p[1]lp[l+ 1]p[l]l(p_ d). (Recall the definition of .) We show that (z’+2)/2m<-1/2 for

Zall of the strings in c. Indeed, recalling that m z + z’, < z, this inequality holds for
any string in c having z>=5. So assume z <5. Since p[1]=p[2]=p[m-1]=p[m], we
have z’_-> 2 and furthermore z’= 3 is not possible (for z’= 3, z 4, p p[ 1 ]3p[4]p[ 1 ]3
d). Thus, z’=2 and since m_->6, (z’+2)/2m<-_. [3

6.2. Putting the sequences together again. We can finally prove the following
theorem.

THEOREM 3. Let p[1, m] be a pattern with period z, m z / z’ and z’ < z, and let
t[1, n] be the text. Algorithm SM’ finds all occurrences ofp in in O(n + m) time. In
the worst case, the algorithm performs n + L(n m)(min (1/2, (z’+ 2)/2m))J character
comparisons.

Proof. The O(n / m) time bound is obvious. As for the number of character
comparisons, we notice that iteration zero satisfies Invariant I trivially and, by Lemmas
8 and 19, each iteration starting either a light or a heavy sequence satisfies the same
invariant and the bounds in Lemmas 8 and 20 hold. The bound of the theorem follows
by adding up these bounds: The sum of the terms Ul-Sl / C(Ul)-C(Sl) or Sl-Ul +
c(sl)-c(u) is bounded by n, and the sum of the terms [(lined_l- Hi) (min (1/2, (z’+
2)/2m))J or l(ug- Ul)(min (, (z’/2)/2m))J is bounded by [(n- m) (min (1/2, (z’+
2)/2m))J.Sincec(u)=Oforuthedummyiteration, nocomparisonisleftunpaid. 3

The bound in Theorem 3 is tight for m 3 and any n 3c, c any integer. Indeed,
let p[ 1, m aba and t[ 1, n (aba)C. By Fact 8 and the definition of a light sequence,
there is no iteration u of SM’ such that u handles a shift by one and u < tlast (u)- 1.
Therefore, SM’ simulates SM when searching for aba in any text. In the previous
section we have shown that SM performs n +/(n- m)/3J character comparisons when
it searches for all occurrences of aba in [1, n] (aba)C. Since for the chosen pattern
z’- 1 and m 3, this bound is equal to the one in Theorem 3.

7. Concluding remarks. We have shown that, for any pattern of length m and
any text of length n,c(n,m)<-Con.line(n,m)<=n+[(n-m)(min(1/2,(z’s/2)/2(zs/
z’s)))J =<n -m character comparisons, where (zs, z’s, ks) is the last term ofthe periodic
decomposition of the pattern defined in the Introduction. In a companion paper [11],
we show a lower bound for on-line algorithms that is equal to n-1/2m for m 3. Our
algorithm is based on a new analysis of the string matching algorithm by Colussi [7].
Moreover, our analysis of Colussi’s algorithm confirms the experimental results showing
that it performs very well in practice.

Acknowledgments. We praise the endurance of the referee, who survived this tour
de force in analysis of algorithms with enough energy left to give us very helpful
comments.
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Abstract. This paper presents algorithms that construct approximations to sets and functions on the
reals, from randomly chosen sample points. The model that is analyzed is a generalization of the paradigm
of probably approximate learning proposed by Valiant. Previously, necessary and sufficient conditions for
learning sets were established for the case when the class of sampling distributions is finite, and for the case
when the class of sampling distributions is the set of all possible distributions. Here, sufficient conditions
are obtained for learning sets and functions over general classes of sampling distributions. The results for
functions are with respect to general metrics for measuring the distance between two functions.
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1. Introduction. Valiant 17] introduced a formal framework for the probabilistic
analysis of algorithms that learn sets defined on a predetermined universe. The
framework requires the learning algorithm to construct an approximation to a set,
given some randomly chosen examples of members and nonmembers of the set. The
examples are chosen at random according to an arbitrary but unknown probability
distribution on the universe. It is sufficient if the algorithm is "probably approximate"
in that it need only construct an approximation to the set with high probability. Blumer
et al. [4] obtain necessary and sufficient conditions for such learning, using the methods
of Vapnik and Chervonenkis [20] on the probabilistic convergence of classes of events.
Natarajan 12] obtains corresponding conditions for countable universes, using simple
counting arguments. Numerous authors report related results (see [1], [9], [15], [17J,
amongst others). Also see [13] for an introductory overview.

As a natural extension of the above results, we seek to obtain the necessary and
sufficient conditions for learning when the sampling distribution is one of a fixed and
known class of distributions. Benedek and Itai [3] obtained such conditions for the
case when the class of sampling distributions is of finite cardinality. Our result holds
for classes of finite or infinite cardinality. In essence, they involve a sharpening of
some of the results of Vapnik and Chervonenkis [20], in that we obtain an estimate
of the rate of convergence, whereas [20] proves convergence in the limit only.

In [12] and [14], the notion of probably approximate learning is extended to
functions on the reals, presenting necessary and sufficient conditions for learning over
all probability distributions, with respect to the discrete metric on function spaces.
Here, we present sufficient conditions for the learnability of functions with respect to
an arbitrary metric and class of sampling distributions. Additional results on this
problem may be found in [8].

The results presented here appeared in preliminary form in [10] and [11].

2. Learning concepts. Let R be the set of reals. A ,set f_ R is called a concept. A
set of concepts F

_
2R is called a concept class. The indicator function If" R-> {0, 1} of

* Received by the editors June 21, 1989; accepted for publication (in revised form) June 26, 1991.

" Hewlett-Packard Laboratories, 1501 Page Mill Road, Building 3U., Palo Alto, California 94304.
All sets are assumed to be Borel [5].
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a concept f is such that Iy(x)= 1 if xf and Iy(x)=0 otherwise. In the interest of
simplicity, we usefto denote both the conceptf and its indicator function Iy, depending
on the context for clarity. An example for a concept f_ R, is a pair (x,f(x)), where
x R. We say that a learning algorithm A learns F if it can construct an approximation
to everyf F, from randomly chosen examples for f

In the above, we use the term "algorithm" in a nontraditional sense" we are
interested mainly in the function computed by the learning algorithm, but we use the
term "algorithm" as it is often convenient to express the function in a procedural form.
In particular, the term algorithm is used to refer to any procedure that computes a
random function [6], i.e., the probability that the algorithm outputs a certain string
on a certain input is defined. Additional discussion on this characterization of learning
algorithms may be found in [12], [13].

The concept that is to be learned is called the target concept. To aid it in its task,
the learning algorithm is provided with a subroutine EXAMPLE, which at each call
returns an example for the target concept f. The EXAMPLES are chosen at random
according to a probability distribution P on R. Specifically, for any set S_ R, with
probability P(S), a call ofEXAMPLE will produce an example (x,f(x)), for some x S.

Notation. For a set S
_
R, P(S) is the weight of P on S, i.e., P(S)= s dP.

We say F is a well-behaved class if it satisfies the measurability conditions stated
in [4]. Henceforth we will be concerned only with well-behaved classes.

We now give a formal definition of learnability. In words, we say that a class of
concepts F is learnable if there exists a learning algorithm than can construct arbitrarily
good approximations to the concepts in F from finitely many examples. The number
of examples required by the algorithm may depend on the probability distribution P
and on the precision parameters. Previously, Ben-David et al. [2] examined some
aspects of this model of learning under the name "learnability nonuniform in the
distribution."

DEFINITION. A class F is learnable over a class of distribution if there exists
a learning algorithm A such that

(1) A takes as input reals e, 8 (0, 1], where e is the error parameter and 8 is
the confidence parameter.

(2) A may call EXAMPLE. EXAMPLE returns examples for some f in F, where
the examples are chosen randomly according to some distribution P . The number
of calls of EXAMPLE must be finite, although the exact number may depend on e,
8, and P.

(3) For all probability distributions P E and all f F, with probability at least
(1-8), A outputs g F such that p(fAg)<_ e.

Notation. For two sets f and g, fag is the symmetric difference between f and g,
i.e.,fAg-(f-g)(g-f).

In the above definition, the number of examples drawn by A may depend on the
probability distribution P. If the number of examples drawn by A depends only on e

and 8, we say F is uniformly learnable over E.
DEFINITION. Let s1= (Xl, Yl), (x2, y2)," , (xn, Yn) be a sequence of examples.

A concept f is said to be consistent with s if for each (xi, Yi) in s I, yi =f(xi).
A consistent algorithm for a class F is one that draws a certain number of examples

and then simply outputs a concept in F that is consistent with all the examples obtained.
DEFINITION. A is a consistent algorithm for a class F if
(1) A takes as input e, 8 (0, 1].
(2) A may call EXAMPLE.
(3) A outputs g F consistent with all the examples obtained during its execution.



440 B.K. NATARAJAN

Let N be the natural numbers and let m’(0, 1] x (0, 1]- N. Note that since N is
the range of m, re(e, 8) is finite for all e and 8 in (0, 1]. Learnability by consistent
algorithms is called "solid learnability" [2].

DEFINITION. A class of concepts F is solidly learnable over a class of distributions
if there exists m’(0, 1] x (0, 1]- N such that every consistent algorithm that calls

for at least re(e, 8) examples on input e, 8 is a learning algorithm for F.
Notice that solid learnability implies uniform learnability, which in turn implies

learnability.

2.1. Previous results. In [4], conditions necessary and sufficient for solid learnabil-
ity are obtained for the case where .. is the class of all distributions on R. To be
precise, they obtain their results for a slightly different formulation of the learning
paradigm, but one that is equivalent to ours as reasoned in [7]. Blumer et al. [4] use
the methods of Vapnik and Chervonenkis [20], as well as the notion of shattering
defined below.

DEFINITION. Let F be a class of concepts and let S c_ R. F shatters S if the set
{f0 SIf F } is the power set of S.

DEFINITION. The Vapnik-Chervonenkis dimension of F is the least integer d such
that every set shattered by F is of cardinality at most d. We denote the Vapnik-
Chervonenkis dimension of F by Dvc(F).

THEOREM 1 ([20], [4]). A concept class F is solidly learnable over the class of all
distributions if and only if Dvc(F) is finite.

Benedek and Itai [3] present conditions necessary and sufficient for uniform
learnability over a finite class of distributions. They define the notion of an e-cover
of a class F as follows.

DEFINITION. For concept class F, distribution P, and e (0, 1], an e-cover of F
is a subset G of F such that for all f F, there exists g G such that P(fAg) <- e.

THEOREM 2 ([3]). Let F be a concept class and .. a class of distributions offinite
cardinality. F is uniformly learnable over .. ifand only iffor all e (0, 1 and each P ..,
there exists a finite e-cover of F.

2.2. Learning concepts over infinite classes of distributions. We now obtain sufficient
conditions for the learnability of concepts over a possibly infinite class of distributions.
Our results will lean heavily on certain convergence results of [20]. Also see [16], [19],
and [21] for related results. We need the following definitions.

DEFINITION. Let P be a probability distribution on R. An l-sample x (of R with
respect to P) is the sequence of reals obtained by random draws from R according
to P.

Let f_ R and let x be an/-sample. We use f x to denote the sequence of those
items in x that are also elements of f. That is, f x is the sequence Yl, Y2,"" ", Yk,

where Yi is the ith item of x that is also an element of f. We call ffq x the subsample
of x induced by f. For instance, let f= {7, 3, 33.4} and let x1= 3, 3, 4.5, 7, 17. Then,
f f3 x is the sequence 3, 3, 7. We use F fq x to denote the set of distinct subsamples
of x induced by all the concepts in F.

DEFINITION. For concept class F, probability distribution P, and sample size l,
the entropy Hp,I(F) is given by

Hp.(F) E{log [F (q xl[},
where x is an /-sample drawn according to P.

Notation. We use "log" to denote log2 and "ln" to denote 1Oge. For a random
variable r, E(r) and V(r) denote the expectation and variance of r, respectively. For
a set S, IS[ denotes the cardinality of S.
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We now state our main result.
THEOREM 3. A class of concepts F is solidly learnable over a class of distributions

Ef
Hp,I(F)

lim sup O.
l- P

Proof. We will prove that there exists a function m such that any consistent
algorithm drawing at least m(e, 3) examples is a learning algorithm for F. The
proof is essentially a sharpening of the results of Vapnik and Chervonenkis [20], in
the sense that we estimate the rate of convergence where they prove convergence in
the limit. Our proof uses some of the intermediate results of [20].

For event E, let Pr {E} denote the probability of E occurring. Let x be an
sample and let fc__ R. The hit frequency ’(xl, f) is the fraction of items in X that are
elements of f, i.e.,

v(x’, f
[f CI xll [.]

Notation. For a sequence x l, Ixll denotes the number of items in x I.
Let 7 (0, 1]. For two independently drawn /-samples x and y, define the two

events Q and C as follows:

Q= {(sup lv(xl
gF

Lemma 1 of [20] (or Claim 4.1 of [13]) states that for

2
(1) l>--,

Pr {C} _-> 1/2Pr { Q}. We will now estimate Pr { C}.
Let x= Xl, x,..., Xl be an/-sample. Define sr to be the random variable given

by

1 1

Using symmetrization arguments, Vapnik and Chervonenkis [20, p. 276] show that

(2) Pr{C}=<2 +Pr ,2,>_
We now estimate the right-hand side of the above inequality.

Let q’(0, 1]N be such that for/z (0, 1], for all l>=q(tz)

Hp.t(F)
sup -<_
p..

Such a function q must exist because
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Since 0 -< 21 1, V(2/) E(2/). Using this and Chebyshev’s inequality, we can
write

er {12/- E(’21) >/x} <
E(21)

2

This implies that

By the definition of q, if

(3)

E(srE1) -</z3. For such l,

Choosing

(4)

we have

Pr {21 > E(21) +} E(2/)
2

>-- q(/x3)/2,

Pr {.2 >/x3 +/x} < Pr { sr2 > E(sr2) +/x} < E(r)=2//<

< 2//X +/X=r/ 16,

Pr {21> 9/2/1 6} =<
We would like to pick so that Pr {Q} _-< 2Pr { C}-< 8. To do so, it suffices to pick

so that each term on the right-hand side of (2) is at most 8/4. Specifically,

4(2/e)nl/8<=-
4’

and

Pr {21 > 9)2/1 6} <__--/X <=--.
4

After some manipulation, the former yields

(5) /_> 8_(4 In (2) In ())/ 1-1n (2)

The latter yields the additional constraint on/z,

(6) /x <--.
4

Letfbe the target concept, and let s be a sequence of randomly chosen examples
for f. Let G

___
F be given by G {glP(fAg) > e}. We wish to estimate the probability

that some g e G agrees with all of these examples, i.e., Pr {g e G is consistent with st}.
Let sl= (Xl, Yl), (x, y), , (Xl, y). Consider the sample xl= Xl, x2, x3, , x

of R, obtained by discarding the labels y, y,..., Yl from $1. NOW,

Pr {g e G is consistent with s}-<Pr {,(x, g) ,(x*,f) and g e G}.

Since g e G, [P(g)-P(f)]> e. Therefore, if ,(x,g)= u(xl, f), at least one of the
following inequalities must be true:

E
I(xl, g)- P(g)l > , I(xl, f) P(f)l >-.

2 2
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Hence,

Pr {g G is consistent with s l} _-<Pr {,(x l, g) u(xl, f) and g G}

<=Pr {(sup lv(xl, g)-P(g)[) > e/2}
+Vr {Iv(xl, f)-P(f)l> e/2}

<-2Pr {(sup ’’(xl, g)-P(g)l) > e/2}.gF

The above is exactly 2Pr { Q} for r/= e/2. Thus, if we set r/= e/2, and/z satisfies
inequalities (4) and (6), and satisfies inequalities (1), (3), and (5), we have ensured
that

Pr {g G is consistent with sl}<=2Pr((suplv(x l, g)-P(g)[)>e/2} <&=
By manipulating the inequalities listed above, we can now show that it suffices

for to satisfy

64(l>= q(/x3)-k-- 4+ln

where/z min {6/4, e2/128}.
Thus, there exists l= re(e, 6) so that, if at least random examples are drawn,

any concept g F consistent with these examples will, with probability at least (1 6),
be such that p(fAg)<__ e. It follows that F is solidly learnable.

We will now show that the conditions of the above theorem are sufficient but not
necessary. Specifically, we exhibit a concept class F and a class of distributions
such that F is solidly learnable over and yet does not satisfy the conditions of
Theorem 3.

Example 1. Let consist of the single distribution P that is uniform on the
interval [0, 1]. Let F be the set of all finite subsets of [0, 1]. For any e (0, 1], and
any pair f, g F, p(fAg)< e. It follows that any consistent algorithm that draws at
least say, one, example is trivially a learning algorithm for F. Hence F is solidly
learnable over .

For finite with probability 1, an/-sample x will have distinct items. Thus, with
probability 1, [F Oxl[=2I. Hence, liml_.Hp,l(F)/l=l. Thus, the conditions of
Theorem 3 are violated.

We now identify conditions necessary for uniform learnability over a class of
distributions.

THEOREM 4. F is uniformly learnable over E only iffor all e (0, 1 ], there exists

finite integer N such that with respect to every distribution in .., there exists an e-cover

of F of cardinality at most N.
Proof This is essentially the "only if" direction of Theorem 2 and may be proved

as in [3].
3. Learning functions. In the foregoing, we were concerned with learning approxi-

mations to concepts or sets. In the more general setting, we may consider learning
functions from R to R. To do so, we generalize our formulation of the problem.

Consider a function f:R-*R. An example for f is a pair (x,f(x)),xR. The set
graph (f) is the set of all examples for f, i.e.,

graph (f) {(x, y)lx R, y =f(x)}.
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We restrict our discussion to those functions whose graphs are Borel sets. A class of
functions F is any set of such functions from R to R.

A learning algorithm for a class of functions F is an algorithm that attempts to
infer approximations to functions in F from examples for it. The learning algorithm
has at its disposal a subroutine EXAMPLE, which at each call produces a randomly
chosen example for the target function f. The examples are chosen according to an
arbitrary and unknown probability distribution P on R,

In order to make precise the notion of two functions being approximately equal,
we consider metrics on the space of functions as follows. We will measure the "distance"
between two functions to be the expected distance between their values, measured in
some metric on R. Formally, a metric on R is a function L:R x R- R such that for
any x, y, z R: (a) L(x, y)=>0; (b) L(x, x)=0; (c) L(x, y)= L(y, x); and (d) L(x, y)+
L(y, z) >= L(x, z). For instance, consider the Euclidean metric on R, L(x, y)
((X _y)2)1/2__ ix_yl. The corresponding distance between two functions f and g with
respect to a distribution P would be IxR If(x)- g(x)l dP.

We can now define a notion of learnability in this setting.
DEFINITION. A class of functions F is learnable over a class of distributions E

with respect to a metric L if there exists an algorithm A such that
(1) A takes as input e, 6 (0, 1 ].
(2) A may call EXAMPLE. EXAMPLE returns examples for some function f in

F, where the examples are chosen randomly according to some distribution P ... The
number of calls of EXAMPLE must be finite, although the exact number may depend
on e, 6, and P.

(3) For all probability distributions P and all functionsf in F, with probability
at least (1- 6), A outputs g F such that

L(f(x), g(x)) <= e.dP
R

The notions of uniform learnability and solid learnability carry over to this setting
without change.

For the case of the discrete metric defined by

L x, y { if/=y,

otherwise,

and for .. being the set of all distributions, [12] presents conditions necessary and
sufficient for learnability. As we will be using these results, we briefly review them below.

For a class of functions F,

graph (F) {graph (f)If F}.

The following is a generalization of the notion of shattering.
DEFINITION. Let F be a class of functions from a set X to Y. We say F shatters

a set S
_
X if there exist two functions f, g F such that

(1) for all x S, f(x) g(x).
(2) for all $1 g S, there exists h F such that h agrees with f on $1 and with g

on S- $1, i.e., for all x $1, h(x) =f(x), for all x S- St, h(x) g(x).
DEFINITION. Let F be a class of functions from R to R. The generalized dimension

of F is the least integer d such that every set shattered by F is of cardinality at most
d. We denote the generalized dimension by DG(F).

THEOREM 5. Let F be a class offunctions from R to R.
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(1) F is solidly learnable over the class of all probability distributions with respect
to the discrete metric if Dvc(graph (F)) is finite.2

(2) F is learnable over the class ofall distributions with respect to the discrete metric

only if DG(F) is finite.
It can be shown that Dvc(graph (F)) >= DG(F). Also, D(F) may be finite while
Dvc(graph (F)) is infinite, leaving a gap between the "if" and "only if" conditions
of the above theorem. This ends our review of results from [12].

We now use the above results to establish conditions sufficient for learning with
respect to an arbitrary metric. To do so, we need the following definition. The diameter
of a class of functions F with respect to a metric L is the greatest value attained by
L(f(x), g(x)) over every pair of functions f, g F and every point x R.

DEFINITION. Let F be a class of functions from R to R and let L be a metric on
R. The diameter DI(F) of F with respect to L is given by

DL(F) sup L(f(x), g(x)).
xR,f,gF

We can now state the following corollary to Theorem 5.
COROLLARY 1. Let F be a class offunctionsfrom R to R such that Dvc(graph (F))

is finite, and L be a metric on R such that 19 DL(F) is finite. Then, F is solidly learnable
over the class of all probability distributions with respect to L.

Proof. Since D(F) p, for all x R, L(f(x), g(x)) <= p. Thus,

fx L(f(x),g(x)) dP= ff L(f(x),g(x)) dP<=p ff dP.
R (x) g(x) (x) g(x)

p f La(f(x), g(x)) dP.
dxR

It follows that if xi La(f(x), g(x)) dP <- e/p, then xl L(f(x), g(x)) dP <- e.

Since Dvc(graph (F)) is finite, Theorem 5 implies that F is solidly learnable with
respect to the discrete metric. That is, there exist m:(0, 1] (0, 1]- N such that any
consistent algorithm that draws re(e, 6) examples is a learning algorithm for F with
respect to the discrete metric. Letfbe the target function. Thus, any consistent algorithm
that draws at least m(e/p, 6) examples will output a function g such that with
probability at least (1- 6), xR La(f(x), g(x)) dP<= e/p. It follows that any consistent
algorithm that draws at least m(e/p, 6) examples will output a function g such that
with probability at least (1- 6), xi L(f(x), g(x)) dP<= e. Hence the result. U

We now consider the case when E is a finite class of distributions on R. To do
so, we generalize the notion of an e-cover as follows.

DEFINITION. An e-cover for a class of functions F with respect to metric L and
distribution P is a class of functions G

_
F such that for every f F, there exists g G

satisfying

L(f(x), g(x)) dP <- e.
xR

We can now state the following result.
THEOREM 6. Let F be class offunctions, and L a metric such that p DI(F) is

finite. F is uniformly learnable with respect to L over a finite class of distributions .., if
for all e (0, 1 and P .., there exists a finite e-cover of F.

Again, graph (F) is assumed to be well behaved, as in [4].
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Proof The following is a learning algorithm for F. Notice that the number of
examples drawn by the algorithm does not vary with the distribution.

Learning Algorithm A1
input: , 6 (0, 1].
begin

Let {C1, C2,’", Ck}
be finite (e/2)-covers for F
with respect to the distributions
{P1, P:,""", Pk} of ...

k

LetCU C.
i----1

4p2

Pick >= CI 6e 2.

Call for examples.
Let (xl, Yl), (x2, y2),’’’, (Xl, Yl)
be the sequence of examples obtained.
if there exists c C such that

E., L(yi, c(xi)) <

then output c.
else output any c C.

end

On input e, the algorithm constructs finite (e/2)-covers for F with respect to each
distribution in E. Since E is finite, the union C of these covers is also finite.

Let f be the target function, let x be the /-sample xl, x2,’", Xl and let c C.
Consider the random variable defined by

4’ =--] L(y,, C(Xi))-"" L(f(xi), C(Xi) ).
i=1 i=1

The variance of 4 can be written as

1
Z L(f(xi), c(xi) V E L(f(xi), c(xi))V() V 7 i=1 i=1

Since the xi are mutually independent, we have

(7) V() Z V(L(f(x,), c(xi))).
i=1

Surely,

Y(L(f(x,), c(x))) <-

Combining the above with (10), we get, V(qb)<-p2/l.
Invoking Chebyshev’s inequality, we get

le2
By definition, E()-xR L(f(x), c(x)) dP. Hence,

Pr - L(f(x), c(x)) dP > 5"eR
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It follows that

Pr (sup
cC xR

L(f(x), c(x)) dP

Thus, if is such that ICI4p2/le <- 6, then, with probability at least (1 6), any function
c C for which i--1L(f(xi), c(xi))<= e/2 must satisfy xl L(f(x), c(x)) dP<= e.

Since C contains an e/2-cover for F with respect to P, it follows that with
probability at least (1 6), the algorithm will find such c. This completes the proof. El

Unlike Theorem 2, Theorem 6 is not tight. This is illustrated below.
Example 2. Let h R be the union of finitely many closed intervals with rational

endpoints in [1/2, 1 ]. That is, h U =1 [a, b], where a and bi are rationals in [1/2, 1].
Define the function fh as follows.

if x [0, 1/2],
fh(X) h(x) xe[1/2,1],

0 otherwise,

where a is an encoding of the intervals of h, and .a simply places the decimal point
ahead of a to keep If(x)l <-- 1. (Recall that h(x) is the value of the indicator function
Ih(X). For instance, say h-[,] [, 43-]. Then a= 1014001013001201313014, where 1
is the string of a l’s. That is, a encodes the endpoints of h in unary, separating them
with zeros.

Now, let F be the class of functions defined as above, over all such sets h. Let P
be the uniform distribution on the closed interval [0, 1]. With respect to say, the
Euclidean metric, F does not have finite e-covers for any e < . Suppose the contrary,
that C _c F is a finite e-cover for F, for e < . Let x X2 X X be the endpoints
of the intervals of all the sets h such that fh C. Consider

X + X2 X2 + X X + 11 1/2+xl U Xl, U x2, ""U x,g=
2’ 2 2 2 2

For anyfh e C, notice that fh andfg disagree across half of each of the intervals [Xi, Xi+l]
and the intervals [1/2, Xl] and [xn, 1]. Thus, fh and fg disagree across half the interval
[1/2, 1]. It follows that IxR L(fg(x),fh(x)) dP>=-. Hence, C cannot be a finite e-cover
for F.

Yet, F is easily learnable with respect to P and any metric, as with probability 1/2,
a randomly drawn example for any fe F will contain a complete encoding of f

Theorem 6 is the analog of Theorem 2 for the learnability of classes of functions
over finite classes of distributions. Notice that Theorem 3 extends the sufficiency
conditions of Theorem 2 to infinite classes of distributions, using the notion of entropy
for concept classes. Similarly, Theorem 6 can be extended to infinite classes of
distributions as follows. Haussler [8] also presents an extension, using the "metric
dimension" of a class of functions.

Let P be a distribution on R and f a function from R to R. We use Py to denote
the distribution on R2 given by

P(x) ify =f(x),
Py ((x, y))

0 otherwise.

Analogously for a class of functions F and class of distributions ..,
EF={PylPeE,feF}.

Using the above notation, we can state the following theorem.
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THEOREM 7. Let F be a class offunctions and L a metric such that DE(F) is finite.
F is solidly learnable over a class of distributions .. with respect to L if

Hp,l(graph F)
lim sup O.
l-o PE

Proof Invoking Theorem 3, we have that the concept class graph (F) is solidly
learnable over EF. As in part (1) of Theorem 5, it follows that F is solidly learnable
over .. with respect to the discrete metric. Finally, as in Corollary 1, it follows that F
is solidly learnable over with respect to any metric for which DE(F) is finite.

4. Conclusion. We examined the conditions necessary and sufficient for the
learnability of sets and functions over general classes of probability distributions. Our
results for the learnability of functions was with respect to general metrics for measuring
the distance between two functions. The contributions of this paper as well as related
results are presented in Table 1.

TABLE

Finite classes Class of all Infinite classes
of distributions distributions of distributions

Solid learnability Blumer et al. [4] This paper
of concept classes

Uniform learnability Benedek and Itai [3] Blumer et al. [4] This paper
of concept classes

Solid learnability
of function classes

This paper This paper
(general metric) (general metric)

Natarajan [12] Haussler [8]
(discrete metric) (general metric)

Uniform learnability
of function classes

This paper
(general metric)

This paper This paper
(general metric) (general metric)

Natarajan [12] Haussler [8]
(discrete metric) (general metric)
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THE COMPLEXITY OF THE LIN-KERNIGHAN HEURISTIC FOR
THE TRAVELING SALESMAN PROBLEM*

CHRISTOS H. PAPADIMITRIOU"

Abstract. It is shown that finding a local optimum solution with respect to the Lin-Kernighan heuristic
for the traveling salesman problem is PLS-complete, and thus as hard as any local search problem.

Key words, local search, traveling salesman problem, PLS-complete

1. Introduction. Local search is a powerful approach for obtaining good solutions
to hard combinatorial optimization problems (see, for example, [PS] for an exposition).
A local search heuristic starts with a solution and repeatedly tries to find a better
solution which is a neighbor of the first. If a better neighbor is found, a search starts
for a better neighbor of that one, and so on. Since problems of this sort have finitely
many solutions totally ordered by cost, this process always ends at a local optimum.
The process may be repeated many times from initial solutions generated in some
randomized way. Naturally, the most critical part in the design of such a heuristic is
deciding when two solutions are neighbors. A neighborhood should be easy to search,
and at the same time rich enough to assure the quality of the local optima obtained.

Perhaps the most famous and successful local search heuristic is the one proposed
by Lin and Kernighan in 1973 ILK] for the traveling salesman problem. The Lin-
Kernighan heuristic generalizes and optimizes the most obvious neighborhood: 2-
change. A tour is a 2-change of another if the two tours differ in two edges (intercity
distances traversed, irrespective of sense). The 2-change neighborhood is easy to search,
but produces mediocre local optima. 3-change (three edges can be replaced) does quite
a bit better. But the real performance breakthrough comes from the main idea in ILK],
which is to allow changes of arbitrarily many edges. Among all exponentially many
such A-changes (as such neighbors are called), the Lin-Kernighan heuristic makes an
efficient, cost-dependent, breadth-first search for one level and then a depth-first search
for a better A-change. The quality of local optima thus obtained is very impressive.
Recent experimental studies [Be] establish the Lin-Kernighan heuristic as the champion
among approaches to large traveling salesman problems.

In the past, when the merits of a local search heuristic were debated, it was the
quality of local optima that was being disputed, not so much the efficiency of the
algorithm, which appeared to be taken for granted. There is good evidence for this. It
is reported in ILK] that, in their experience, it takes O(n22) time to produce a local
optimum. Similar reports of empirical efficiency of local search heuristics are common.
Nevertheless, it is conceivable that, in the worst case, these algorithms may follow an
exponentially long trail of local improvements (such examples are known for the
2-change neighborhood [Lu], and were suspected for all variants). How hard is it to
produce a local optimum, for the various neighborhoods?

* Received by the editors January 9, 1991; accepted for publication (in revised form) July 2, 1991. Most
of this work was completed while the author was visiting the Computer Technology Institute in Patras,
Greece. This research was supported by the ESPRIT Basic Research Action No. 3075 ALCOM, a grant
from the Volkswagen Foundation to the Universities of Patras and Bonn, and by the National Science
Foundation.
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California 92093-0114.
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In [JPY] we studied this question in depth and came up with a new complexity
class called PLS, for polynomial-time local search, apparently lying somewhere between
P and NP. PLS captures the complexities of local optimization. We showed that certain
local optimum problems are PLS-complete, and thus as hard as any such problem (for
more recent work on complexity classes closely related with PLS see IMP], [Pa]). The
original list of PLS-complete problems in [JPY] was disappointingly short (reflecting
difficulties that will become apparent in the current paper as well). It included, besides
some artificial, generic problems, just the local search heuristic proposed, also by
Kernighan and Lin, for the graph partitioning problem [KL]. Most conspicuously
absent was the Lin-Kernighan heuristic for the traveling salesman problem, the local
search heuristic par excellence, and in many ways the motivating example for the work
reported in [JPY]. Quoting from [JPY]:

What we would most like to prove is that the Lin-Kernighan A-change algorithm for the traveling salesman
problem is PLS-complete Unfortunately, we at present see no way of extending our techniques to this
problem.

In the present paper we prove this conjecture. We define a local search algorithm
for the traveling salesman problem that captures the spirit of the Lin-Kernighan
heuristic, and show that finding a local optimum under this algorithm is PLS-complete.
For the proof we build on some very technical work by Krentel, Sch/iffer, and
Yannakakis, that has been going on since the appearance of [JPY]. First, Krentel [Krl
showed that it is PLS-complete to find a local optimum for the problem of maximum
satisfiability with weights on the clauses (where two truth assignments are considered
neighbors if they agree on all variables but one). Then, SchSffer and Yannakakis [SY]
showed that the result is true even when all clauses have just two literals (this has the
important implication that obtaining a stable configuration in Hopfield neural nets
[Ho] is PLS-complete). Our reduction starts from the two-literal result.

2. Definitions. A problem H in PLS is characterized by several parameters. First,
for each input x E* (e.g., a distance matrix for the traveling salesman problem) we
have a set of feasible solutions F. (e.g., tours in the traveling salesman problem) such
that, given x and s, it is easy to decide whether s Fx. Then, given x, we can in
polynomial time produce a feasible solution s0 Fx (e.g., for the traveling salesman
problem, the tour visiting the cities in numerical order). Next, given x and s F, we
can compute in polynomial time the cost of s (e.g., the length of the tour). Finally,
given an x and an s F, we can test in polynomial time whether s is local optimum,
and, if not, produce a solution with better cost (for the example of the traveling
salesman problem, the tour generated by the Lin-Kernighan heuristic formalized
below). H is the following computational problem: Given an input x, find a locally
optimal solution s F.

2SATFLIP is an important problem in PLS. We are given a set of clauses
C1, , C,, each involving two literals (variables or negations) from xl, , xn. Each
clause Ci has an integer weight W > 0 assigned to it. A solution is, naturally, a truth
assignment to the n variables. The cost of a solution is the sum of the weights of the
clauses satisfied by the assignment. Finally, an assignment is locally optimal if, by
flipping any of the n variables, no improvement in the cost can be made. 2SATFLIP
is known to be PLS-complete [SY].

In this paper we show that the problem LIN-KERNIGHAN defined below is
PLS-complete by giving a PLS-reduction from 2SATFLIP to it. A PLS-reduction from
problem A in PLS to another problem B in PLS is defined in terms of two polynomially
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computable functions f and g. Given an instance x of A, f computes an instance f(x)
of B such that, for any local optimum s off(x), g(s) is a local optimum of x.

The problem LIN-KERNIGHAN has instances, feasible solutions, and costs as
usual in the traveling salesman problem. The innovation in the Lin-Kernighan heuristic
is their definition of the neighborhood. There are a number of difficulties. First, the
neighborhood structure of LIN-KERNIGHAN is complex, asymmetric, and cost-
dependent. More seriously, this neighborhood is defined via a very complicated
algorithm, with unspecified parameters and details; there are several existing variants
and implementations. In the sequel we define a stylized version of the Lin-Kernighan
heuristic, which, we believe, captures the spirit of the approach, while being relatively
clean. We shall next describe how "our" Lin-Kernighan heuristic searches for an
improved neighbor of a given tour. (Our goal in the description of the algorithm is
clarity, and not efficiency and programming style or succinctness.) The tour is con-
sidered as a set T of edges. The cost of edge e is denoted by c(e), and the cost of a
set of edges $ by c(S). The search of a better neighbor of T proceeds as follows:

Lin-Kernighan heuristic for improving tour T:

Step 1. All 2-changes and 3-changes (tours T’= (T- X) t_J Y with IXI [YI -< 3)
of T are tried. If one is found with c(T’)< c(T), it is the answer sought.

Step 2. We repeat Step 3 for all combinations of edges xa T and ya T such
that (a) the two edges are adjacent, and (b) c(y) < c(x) (this is the top-level, breadth-
first part of the search; the rest (Step 3) is depth-first).

Comment. Notice that, once Xl is removed, T becomes a Hamilton path. Step 3
deals with such a Hamilton path. One of its endpoints (currently the common node
of Xl and Yl) is the active endpoint, and will change as the algorithm proceeds; the
other will be inactive throughout. Once y (in our case, i= 1) has been added to the
Hamilton path, the next edge to go so that a Hamilton path results, xi+, is determined
uniquely (see Fig. 1). Also, once x+ is determined, the active endpoint changes, and
there is a unique edge 33+ that completes the tour (joins the two endpoints).

Recall that, so far, we have determined edges Xl and x to be deleted from T, and
edge Yl to be added, := 1.

Step 3. Set := i/ 1. Consider all edges y T leaving the active endpoint such
that -=1 [c(yi)-c(xi)]>O (we call this the positive sum criterion). If none, then go to
Step 4. Among all those edges, choose the yi that maximizes the difference c(y) c(x/l)
(recall that-y uniquely determines X+l; we call this the next best criterion). Break ties
lexicographically. Repeat Step 3.

Yi

Y i+l

""’- active endpoints

w

x i+l

FIG. 1. The Lin-Kernighan heuristic.
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Step 4. For j := 2,. ., i, let T T-{x1," ", xj} I..J {Yl," ", )3j}. That is, T is the
tour that would result if we stopped the procedure at i=j and joined the endpoints.
Choose the T with the smallest cost. If c(T)< c(T), then Tj. is the better neighbor
sought. Otherwise continue (with the next choice of Xl and Yl, Step 2).

Step 5. If all choices for Xl and Yl were tried and no better neighbor was found,
T is a local optimum.

This completes our definition of problem LIN-KERNIGHAN: Given an instance
of the traveling salesman problem, produce a tour such that the above algorithm fails
to improve it. It should be clear that we can search for a Lin-Kernighan improvement
in polynomial time.

The Lin-Kernighan algorithm as defined above differs in many details from the
one described in ILK]. Perhaps the most notable departure of the algorithm above
from the implementation described in [LK] is that we allow edges that enter the tour
to depart again, but disallow edges that leave the tour to re-enter; in [LK] we have
exactly the opposite. Our construction depends on this feature (compare the two
changes in the left of Fig. 7). We feel that the PLS-completeness of the problem is a
consequence of the complexity of the traveling salesman problem, and the Lin-
Kernighan philosophy of telescoping changes that are disadvantageous in the short
term; thus, we conjecture that the result is true of any other reasonable variant or
implementation (although by this we do not mean that we know precisely how to
modify the proof for each).

3. The construction. We now prove our main result.
THEOREM. LIN-KERNIGHAN is PLS-complete.
We shall PLS-reduce 2SATFLIP to LIN-KERNIGHAN. We have to describe

two polynomially computable functions f and g such that, given an input x to
2SATFLIP (a set of 2-clauses and weights), f(x) is a traveling salesman problem
instance, such that s is a Lin-Kernighan local optimum off(x) if and only if g(s) is
a local optimum of x. We shall describe f, that is, we shall show how to construct an
instance of the traveling salesman problem starting from any weighted set of 2-clauses.
The function g, recovering the local optimum, will follow from this construction and
Lemmata 1 and 2 below.

General description. We first give a high-level description of the traveling salesman
problem constructed. All edges have huge costs, except for the edges of a sparse graph,
which have reasonable costs (the precise costs will be specified later as needed, see
Fig. 8). We shall describe the graph of reasonably priced edges first (see Fig. 2; all
other "edges" will be referred to henceforth as nonedges).

For each variable we have two parallel paths, corresponding to the values true
and false (left side of Fig. 2). A tour traversing one of these paths can be thought of
as assigning a truth value to the variables. For each clause Ci we have an edge ai- bi
on the right. All these edges and paths are connected in series, via paths of length
three, and the structure is closed by the diamond on the upper right in Fig. 2. The
lower node of the diamond is connected by edges with the upper common nodes of
all pairs of parallel paths corresponding to variables; these edges are called "start"
edges. The side edges of the diamond, called "bait" edges, are the most expensive
among the reasonable edges being described.

Naturally, this is not all" The structure of the clauses must be reflected in the
construction. For each clause Ci consisting of two literals, we have an OR subgraph
(Fig. 3) connecting the paths corresponding to the two literals. It is easy to see that
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FIG. 2. The general structure of the TSP.
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an OR subgraph (connected to the rest of the graph only by its four endpoints) can
be traversed by a tour in the three ways shown, corresponding to upper literal true
Fig. 3(b), lower literal true Fig. 3(c), and both literals true Fig. 3(d). Thus the path
corresponding to a literal is in fact a series of such devices, connected as in Fig. 4.
The additional edges connecting the first nodes of consecutive OR devices and the last
node of the path are called jump edges, and are instrumental to guiding the Lin-
Kernighan heuristic. They have weight -1 (Fig. 8).

Since each OR device connects the paths standing for the truth values of the
literals of a clause, if these were the only possible traversals of the device, the clause
would be assigned the value true. However, there is yet another way to traverse this
device, say, corresponding to clause C: It can be "picked up" by a path from ai to
b (Fig. 5; recall, a- b is the edge on the rightside of Fig. 2 corresponding to clause
C). In fact, it can be picked up in two ways. However, the edges leaving a and b to
pick up the clause (called "penalty edges") are more expensive than the others,
proportionally to the weight W of clause C (see Fig. 8). Thus, if the OR device
corresponding to C is picked up this way, that is, if Ci is not satisfied by the assignment
suggested by the tour, then an extra cost proportional to W is paid, exactly as
appropriate.

Finally, let us discuss the function of the diamond. Obviously, there are two ways
that a tour can traverse the diamond. Suppose that T traverses edges 1 and 4 (Fig. 2).
Then a possible A-change of T may start by deleting edge 4 of the diamond (a "bait"
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()

() (d)

FIG. 3. The OR device.

FIG 4. Literal path with jump edges.

edge) and adding to the tour one of the "start" edges, say, the one leading to the upper
node of variable xs. This can be thought of as flipping the truth value of xs. We shall
see that, after this, the Lin-Kernighan heuristic actually implements this flipping at
the variable and clause parts. After this is done, the new tour is closed by traversing
the diamond in the other way (edges 2 and 3; that is, the traversal of the diamond
flips from one A-change to the next). The huge gains obtained from the deletion of
bait edge 4, which encouraged exploration of the flipping of the truth value of xi, were
annulled by the addition of bait edge 3. The A-change is favorable only if the new
truth assignment is better than the old one (that is, the weight of the satisfied clauses
increases).

Let us review once more the high-level description of the construction" All edges
except for those shown in Figs. 2, 3, and 4 have huge costs. The graph in Fig. 2 can
be traversed by a tour as follows (see Fig. 6): The diamond is traversed in one of the
two ways. For each variable, either the true path or the false path is taken. For the
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down

cost: Mw

x

down

FIG. 5. Picking up an unsatisfied clause..

//

FIG. 6. A standard tour.

OR device corresponding to a clause there are four possibilities: Either it is picked up
by the first literal, or by the second, or by both (Fig. 3), or finally it may be picked
up (at a cost proportional to the weight of the clause) by an ai- bi path (Fig. 5). The
tour is closed through the right side, where the edge a- bi is followed for all satisfied
clauses; otherwise the path a- bi is followed, as above. Such a tour is called a standard
tour, and it corresponds in a natural way with a truth assignment ofthe original instance
of 2SATFLI.P. This natural correspondence will be our function g. Also, notice that the
cost of a standard tour is a constant depending only on m and n, plus M j W, where
the sum is taken over all clauses satisfied by the corresponding truth assignment.

We need to prove two things.
LEMMA 1. A standard tour T is a local optimum only ifg(T) (that is, the correspond-

ing truth assignment) is a local optimum.
LEMMA 2. The only local optimum tours are the standard tours.
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It is easy to see that the main theorem follows from these two lemmas.

Simulating a flip. In this section we prove Lemma 1. We prove that, if g(T) is
not a local optimum, that is, whenever, there is a variable xi whose flipping improves
the weight of the satisfied clauses, then the standard tour T is not locally optimal
under Lin-Kernighan either. We do this by showing how the Lin-Kernighan heuristic
would improve T. In other words, we simulate a flip by a Lin-Kernighan improvement.

Suppose, without loss of generality, that the proposed flipping of xi is from true
to false (that is, x is true in g(T)). Our Lin-Kernighan improvement (recall the
algorithm in 2) starts by deleting the bait edge in T, and adding the starting edge
leading to x (see Fig. 6). Since the bait edge is more expensive than the start edge
(see Fig. 8), it will be one of the possibilities tried (recall Step 2 of the algorithm).
This immediately determines the next edge to be deleted: It is the first edge of the
path corresponding to the truth value x =true. The simulation of a flip by the
Lin-Kernighan heuristic has started. The currently active node is the leftmost node of
an OR, and the next best edge to be added is the jump edge (Figs. 7 and 9).

There are two possibilities: The clause corresponding to the OR is either satisfied
by both x and the other literal, or it is satisfied by xi alone. In the first case, the
Lin-Kernighan search follows unambiguously the changes in Fig. 7, and the end result
is that the clause is now satisfied by the other literal alone. In the second case, the
search follows the changes shown in Fig. 9, resulting in an unsatisfied clause (and the
additional cost 2MW). Notice that the jump edges were added and then deleted; this
is allowed in Lin-Kernighan, but the converse is not (recall the condition yi T in

FIG. 7. Clause twice satisfied.
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Q a b

Forced edges M4

Bait edges M
Start edges M
Penalty edges (clause Cj) MW
Jump edges
All other edges 0
Nonedges

P-*, Q-, M
V V, 0 V M
OR-* M
all bi-* M
Other v- v nonedges M

FIG. 8. The costs.

Q a b Q a b

FIG. 9. Clause Cj satisfied by x alone.

Step 3 of the Algorithm). In the end of either case, the active endpoint is at the same
position at the next OR of the path of xi, and the process (changes in Fig. 7 or Fi.g.
9) will be repeated. It is easy to check (but also necessary for our argument) that the
next best criterion and the lengths of the edges force the course described. Finally,
the end of the xi path will be reached, and the lower end of the path will become
active (Fig. 10). There is no choice but to add the last jump edge ofthe path correspond-
ing to ffi. This way, we start on the inverse process, that of satisfying the clauses
involving :.
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x

FIG. 10. Starting the i path.

Suppose that the next clause involving :i is already satisfied by the other literal
in it. Then the Lin-Kernighan search will follow the changes in Fig. 11. If it is not
satisfied, and it is picked up by penalty edges, then Fig. 12 is followed. If, however,
the OR is picked up by penalty edges from the opposite side ofi (recall the two ways
of picking up an OR in Fig. 5), then Fig. 13 is followed. The final result is that, if a
previously unsatisfied clause Cj contained x, it is now satisfied, and 2MW is saved.

Proceeding this way we flip the truth value of x, and end up back at the start
edge. The only feasible continuation is shown in Fig. 14. The start edge is deleted, a

Q

FIG. 11. Clause already satisfied.
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Q a b

Q a b Q a b

FIG. 12. Clause unsatisfied.

new bait edge is added, and the diamond is traversed in a new way. Since this is no
longer the breadth-first stage (Step 2), there is no incentive to try another start edge
and flip another variable. The only potentially satisfactory completion of the change
is the one indicated in Fig. 14. It is an improvement of the starting tour if and only if
flipping xi generated a profit. The proof of Lemma 1 is complete.

Excluding other tours. In this subsection we prove Lemma 2. We shall show that
any tour that is not standard can be improved by Lin-Kernighan. Let us start with a
very basic observation: The graph in Figs. 2, 3, and 4 (the graph of "reasonably priced
edges") is in some sense "tripartite." Exactly one-third of its nodes have degree 2 (see
Figs. 2 and 3). They are adjacent each to two other nodes of degree at least three.
Thus, we can say that the graph consists of several paths of the form vl- v2- v3, with
their endpoints ol and o3 connected in some way. It is also important to notice that
each of these paths is traversed in a particular direction in any standard tour (except,
of course, for the P-Q path, for which the two directions flip-flop), and hence it is
unambiguous which node is the vl node and which the o3 node. We shall call the edges
O --O2 and v2-03 the "forced" edges of the graph. Their cost is extremely attractive
(-M4, see Fig. 8).

Because of the huge costs of nonedges out of the 02 nodes, P, and Q (Fig. 8), in
any locally optimum tour all forced edges will be present (if one is missing, then it is
easy to see that a 2-change will correct that), and the diamond will be traversed in
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Q
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FIG. 13. Clause unsatisfied, picked up the wrong way.

3)

FIG. 14. Completing the change.
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one of the two intended ways. Thus there are no nonedges of cost higher than M7 in
a locally optimal tour.

Suppose that there is an M nonedge of the form Vl-v in the tour. Then the
3-change in Fig. 15 (2-change if v is followed directly in the tour by a v’ node)
removes it, and symmetrically for any v3-v3 edge. Hence the only possible edges
connecting two v3 or two Vl nodes in a tour are jump edges. Next, notice that all jump
edges are of the form vl- v l. Since in a tour there must be an equal number of v- v
and v3-v edges, there are no such edges whatever.

v v v /

FIG. 15. Removing v1- v edges.

Recall the OR graph in Fig. 3. It has twelve nodes: The four degree-2 nodes, the
four outer nodes (left and right, up and down), and the four OR nodes (middle, up,
and down). The next heaviest nonedges are the v-v nonedges connecting an OR
node of an OR device to another node (called OR-* edges). We shall next show that
they cannot be part of any locally optimal tour. The reasoning is as follows: Consider
an OR-, edge on the tour (Fig. 16). Next to it we have a 0-cost edge, not participating
in the tour, that leads to another OR node. If the nonforced edge out of the other
endpoint of the 0 edge is as in Fig. 16(a), then a 2-change removes the OR-, edge.
Otherwise (Fig. 16(b)) a 3-change does. Hence there are no OR-, edges. This implies
that all OR graphs are traversed in one of the intended ways shown in Fig. 3.

We next make sure that the ai’s and bi’s are traversed as intended. All nonedges
out of such a node cost a huge M5. Either one or two such edges leave an a- b pair.
In both cases an improvement by a 2- or 3-change is possible, exactly as in Fig. 16.

We have therefore established that in any locally optimal tour the forced edges,
the diamond, and all OR devices are traversed as intended. Also, the ai- b pairs are
traversed by edges: either by the ai-b edge, or by one of the two pairs of penalty
edges. It follows that such a tour differs from a standard one in that it does not visit
whole paths of the variable side, but fragments of paths (see Fig. 17 for a schematic
description). Each path fragment ends with an M4 nonedge. It is easy to see, in view
of the proof of Lemma 1, that such a nonstandard tour can be made standard
by Lin-Kernighan. The improvement starts as shown in Fig. 18, and continues as in
Figs. 7-13.

This concludes the proof of Lemma 2, and the theorem. U
There are two interesting consequences of the theorem that follow directly from

the techniques of [SY] and [PSY]: First, one can construct examples of traveling
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FIG. 16. Removing OR-* edges.

FIG. 17. Nonstandard traversal of variables.
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a
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(b)

FIG. 18. Start of the improvement.

saleman problems such that the Lin-Kernighan heuristic (actually, the variant studied
here) takes exponentially long to converge. The existence of such instances had been
open. Second, it is a PSPACE-complete problem, given a starting tour, to find any
local optimum reachable from this tour. Therefore, the problem of obtaining local
optima from given starting points according to the Lin-Kernighan neighborhood is
perhaps the PSPACE-complete problem that has been solved with the most empirical
success.

As an open problem, it would be interesting to show the same result for a variant
of Lin-Kernighan in which no added edge is deleted, and no deleted edge is added.
This would present several difficulties in the design of the devices, but we conjecture
that such a construction is possible. Also, recently Krentel showed a related result,
namely, that the k-change neighborhood for the traveling salesman problem, for some
huge value of k, also gives rise to a PLS-complete problem [Kr2]. Although such a
neighborhood is not useful in practice, the result is still interesting, at least as a promise
for a similar result with k 3 or 2 (these are the most natural neighborhoods for the
traveling salesman problem, still of practical importance). Krentel’s reduction starts
from clauses with a bounded number of appearances of each variable. It seems that a
version of our construction would yield a similar result, with a much better constant
k. However, this constant will be still in the dozens, and thus the result does not
correspond to a practically important heuristic. It would be interesting to show that
finding local optima under 2- and 3-changes in the traveling salesman problem are
PLS-complete problems as well.
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Abstract. Further applications of random sampling techniques which have been used for deriving efficient
parallel algorithms are presented by J. H. Reif and S. Sen [Proc. 16th International Conference on Parallel
Processing, 1987]. This paper presents an optimal parallel randomized algorithm for computing intersection
ofhalfspaces in three dimensions. Because ofwell-known reductions, these methods also yield equally efficient
algorithms for fundamental problems like the convex hull in three dimensions, Voronoi diagram of point sites
on a plane, and Euclidean minimal spanning tree. The algorithms run in time T O(log n) for worst-
case inputs and use P O(n) processors in a CREW PRAM model where n is the input size. They are
randomized in the sense that they use a total of only polylogarithmic number of random bits and terminate
in the claimed time bound with probability 1 n for any fixed cz > 0. They are also optimal in P T
product since the sequential time bound for all these problems is fl(n log n). The best known deterministic
parallel algorithms for two-dimensional Voronoi-diagram and three-dimensional convex hull run in O(log9 n)
and O(log2 n log* n) time, respectively, while using O(n/log n) and O(n) processors, respectively.

Key words, convex-hulls, parallel algorithms, randomization, computational geometry
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1. Introduction.

1.1. Background and previous work. Designing efficient parallel algorithms for var-
ious fundamental problems in computational geometry has received much attention in
the last few years. After some early work by Chow [6] in her thesis, Aggarwal et al. [1]
developed some general techniques for designing efficient parallel algorithms for funda-
mental geometric problems. Most of the problems tackled in that paper had O(n log n)
sequential complexity and the authors presented parallel algorithms which used a linear
number of processors and ran in O(logn) time (k being typically 2, 3, or 4) in size of the
input. Consequently, a majority of the algorithms were not optimal in P. T bounds. A
number of the problems in the original list (in [1]) have now been successfully resolved
as far as O(log n) time, n processors algorithms are concerned, mainly due to work by
Atallah, Cole, and Goodrich [2]. They extended the techniques used by Cole [12] for
his parallel mergesort algorithm and used a date-structure called plane-sweep tree (first
proposed by Aggarwal et al. [1]) to arrive at the optimal algorithms. Perhaps the two
most important problems which have been eluding such efforts are the two-dimensional
Voronoi diagram problem and the convex hull ofpoints in 3-space. These are very funda-
mental problems in computational geometry and optimal algorithms for these problems
would imply corresponding optimal solutions for a multitude of other problems.

A very general definition of Voronoi diagram given by Edelsbrunner [19] is as fol-
lows:

Let S’ be a finite set of subsets of E’/and for each s E S let ds be a mapping of Ed

to positive real numbers; we call ds(p) the distance function of s. The set {p E Ed:
ds(p) < dr(p), S {s}} is the Voronoi cell of s and the cell complex defined by the
Voronoi cells of all subsets in S’ is called the Voronoi diagram of S.
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In this paper, we confine ourselves to the case where S is a set of points in E2 and
the distance function is the L2 metric. In mathematical literature, Voronoi diagrams ap-
peared as early as 1850 (due to Dirichlet) and again in 1907 due to Voronoi. Problems
about packing and covering of space by balls and other convex figures were among the
first major applications of such diagrams. Shamos and Hoey [32] introduced Voronoi
diagrams to computer science and and since then a considerable amount of research has
been devoted to deriving efficient sequential algorithms for the two-dimensional Voronoi
diagram problem [20], [30], [10]. The Voronoi diagram is a very versatile tool for obtain-
ing efficient solutions of some important proximity problems and is also a fundamental
mathematical object in its own right. A large number of the problems can be solved in
linear or O(n log n) time from the information contained in the Voronoi diagram that
includes all-points nearest neighbor, Euclidean minimal spanning tree, diameter, smallest
enclosing circle, among others. In 6.1, we make use of this property to obtain efficient
parallel algorithms for some of these problems.

Since there are sequential algorithms for Voronoi diagrams that run in time
O(n log n), it is a fundamental question whether there is a parallel algorithm that runs
in O(log n) time using n processors. Aggarwal et al. have given an O(log n) time, O(n)
processors algorithm which was recently improved to n/log n processors by Goodrich
et al. [26] (or alternately O(log n log log n) time and O(n log n) work). However, it ap-
pears that very different techniques would be required to eliminate the O(log n) factor.
Cole and Goodrich [13] reiterated the difficulties posed by this problem when they pro-
vided some more applications of their cascaded-merging technique but were unable to
extend it to the Voronoi diagram problem. In this paper we settle this question by pre-
senting a randomized algorithm for this problem that runs in O(log n) time and uses n
processors in a shared memory model of parallel computation. The reader should note
that the lower bound of f(n log n) also applies to the randomized algorithms by a re-
duction of sorting to (one-dimensional) Voronoi diagrams. Levcopoulos, Katajainen,
and Lingas [24] presented an optimal expected time algorithm for Voronoi diagrams for
a randomly chosen set of input points; in contrast our algorithm makes no assumption
about the input distribution and is optimal for the worst-case input.

Convex hulls in three-dimensions has a wide range of applications ranging from
computer graphics to design automation, pattern recognition, and operations research.
Convex hulls in three dimensions can also be constructed sequentially in O(n log n)
time where as the best known deterministic parallel algorithm due to Dadoun and Kirk-
patrick [14] runs in O(log n log* n) time using n processors. In this paper we actually
describe an optimal randomized parallel algorithm for constructing convex hulls in Eu-
clidean 3-space. Due to a well-known reduction from two-dimensional Voronoi dia-
grams to three-dimensional convex hulls, we get an equally efficient algorithm for the
first problem as an immediate corollary.

1.2. Random-sampling and polling in computational geometry. Randomization has
been successfully used in a wide number of applications (for example, see [21], [29],
and [33]) and has recently been used to obtain efficient algorithms in computational ge-
ometry. Clarkson [8]-[10], Haussler and Welzl [22], and Mulmuley [25] used random
sampling techniques to derive better upper-bounds for a large number of problems in-
cluding the post office problem, higher-order Voronoi diagrams, segment intersections,
linear programming, and higher-dimensional convex hulls. The general approach taken
by these algorithms is as follows: a randomly chosen subset R of the input set S is used
to partition the problem into smaller ones. Clarkson [10] proved that for a wide class of
problems in computational geometry, the expected size of each subproblem is
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and moreover the expected total size of the subproblems is O([S[). A random subset R
that satisfies these conditions for fixed constant multiples is called a "good" sample and
is called "bad" otherwise. Clarkson’s results show that by using a straightforward ran-
dom sampling technique any randomly chosen subset is good with constant probability;
implying that it can also be "bad" with constant probability. Consequently, his methods
yielded expected resource bounds but cannot be used to obtain high-likelihood bounds
(i.e., bounds that hold with probability 1 1In for any a > 0). This makes it very
difficult to extend his methods in the context of parallel algorithms due to the recursive
nature of the algorithms. In particular, the expected bounds at each recursive call are
not strong enough to bound the resources used by the entire parallel algorithm for the
following reason. In a sequential algorithm, because of the linearity property of expec-
tation (i.e., the expectation of the sum is the sum of expectations), it suffices to bound
the expected time required by individual steps. The total expected time of the sequential
algorithm is the sum of expected time of the individual steps. In contrast, consider the
recursive parallel algorithm as a tree where a node corresponds to a procedure and the
children of a node corresponds to the parallel recursive calls made by the procedure.
The time required at each level of this tree is the maximum of the time required by any
node of that level. There is no known method to bound the maximum of the expectations
without using higher moments. The total time required by the parallel algorithm is the
time when all the procedures corresponding to the leaf nodes are completed. Typically,
in a parallel algorithm, the number of leaves in the corresponding process tree is at least
n (0 < < 1). Even if we succeed in bounding the expected time for completion of a
leaf-node procedure, the expected bounds are too weak to bound the maximum of the
time required by all such processes.

The above problem can be dealt with by developing a technique for choosing samples
that are "good" (as defined above) with high probability. By doing so we shall show that
a leaf-node process terminates in a given time bound with probability 1-1In for any
a > 0. In particular, for a > 1, this implies that the failure probability for the entire
algorithm is less than 1In-1 (since there can be at most O(n) leaf-level processes).
We introduce a technique calledpolling to obtain a "good" sample with high probability
with relatively small overhead. Roughly speaking, we choose a number, p(n), of random
subsets (typically p(n) O(log n)) independently. We then determine which of these
subsets is "good" and we show with high probability that one of them is "good." This
scheme, though effective, is not very efficient since we have to repeat the procedure
p(n) times. However, we show that we can draw conclusions about the "goodness" of
a sample very accurately by using only a fraction (typically 1/p(n)) of the input which
then makes the polling scheme very efficient. This is actually very similar to the idea of
polling a small fraction of the population to find out how the entire population would
behave. This turns out to be crucial in bounding the total running time of the parallel
algorithm. In addition to the applications in obtaining the improved results in this paper
in computational geometry, polling appears to be a general tool for obtaining improved
parallel randomized algorithms. A similar idea had been used previously by Dyer and
Frieze [18] to improve the efficiency of a linear programming algorithm.

Note that the second property of a "good" sample, i.e., that ofbounding the total size
of the subproblems is not an issue in one-dimensional problems. In the parallel sorting
algorithms of Reischuk [30] and Flashsort [19] the total size of the subproblems always
equals the input size. This is another reason why the straightforward random sampling
techniques do not carry over to the recursive algorithms. Clarkson [8] circumvents this
problem by limiting the number ofrecursive levels by a fixed constant. By using recursion
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over s(n) steps the problem size could grow by a multiplicative factor of 2a(8(’)) if the
sum of the subproblems increases by only a constant factor over the parent-problem at
every recursive call. This could seriously affect the efficiency of the algorithms, especially
when we are looking for optimal algorithms. We need additional arguments to bound
the total size of the subproblems at any level of recursive calls (independent of the level
number).

1.3. Main results. The main result in this paper can be summarized as follows.
THEOREM 1.1. There exists a randomized algorithm in the CREW PRAM modelfor

constructing the intersection ofn halfspaces in three dimensions that runs in O(log n) time

forany input withprobability > 1 1In (foranyfixed > O) using nprocessors. Moreover,
we can also limit the total number ofrandom bits used by our algorithm to O(log2 n).

The above theorem immediately implies equally efficient algorithms for the follow-
ing problems from well-known reductions:

(i) Convex hull of points in three-dimensions,
(ii) Voronoi diagram of point sites in a plane,
(iii) Euclidean minimal spanning tree.
The previously best-known algorithms for all these problems are suboptimal by at

least an O(log n) factor in time complexity. For the last problem we require a Priority
CRCW PRAM model. In this model, the highest priority (fixed in advance) processor
among any group of contending processors succeeds in the event of a write conflict.

We adopt a top-down approach in describing the algorithm. In 2we list some of the
preliminary results that will be used as low-level procedures in the algorithm and some
probabilistic notations used to aid the analysis. In 3 we sketch a very high-level descrip-
tion of the algorithm that uses the straightforward random sampling (without polling)
and which if implemented in a straightforward manner would not be very efficient. In 4
we give a formal description of polling and its pi’obabilistic analysis. In 5 we describe an
efficient procedure for for carrying out the divide step of the algorithm. In 6 we present
probabilistic arguments for bounding the total time of the algorithm with high likelihood
and bound the number of processors needed at any single step to complete the analysis.

2. Some preliminary results and overview.

2.1. Model of computation and notations. Throughout this paper we will be using
the CREW PRAM model which is the synchronous shared memory model of parallel
computation in which processors may simultaneously read from a memory location but
are not allowed to write concurrently. At each step, a processor is allowed to perform a
real-arithmetic operation consistent with standard models used for sequential geometric
algorithms. Moreover, each processor has access to a random-number generator that
returns in unit time a truly random number of O(log n) bits. However, see 6.3, where
we limit the use of truly random bits.

The term very high likelihood (probability) is used in this paper to denote probability
> 1 n- for some c > i where n is the input size. Just as the big-O function serves to
represent the complexity bounds of deterministic algorithms, we shall use to represent
complexity bounds of the randomized algorithms. We say that a randomized algorithm
has resource bound O(f(n)) if there is a constant c such that the resource used by the
algorithm is no more than cf(n) with probability _> 1 1/n for any c > 1. (An
equivalent definition will be bounding the resource by c. f(n) with probability greater
than 1 n-c, and in the rest of the paper they will be used interchangeably.) Note
that an algorithm whose expected resource bound is O(f(n)) does not have any better
confidence interval beyond using Markov’s inequality, i.e., the probability that it exceeds
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the resource bound by a factor k is less than 1/k. This implies that the failure probability
does not diminish as rapidly as the high-likelihood bounds. High-likelihood bounds are
especially useful for parallel algorithms, where we need to bound the time complexity of
all the processes. In contrast, the expected bounds as used by Clarkson [8] are difficult
to use to bound the overall maximum time for all processes.

We will be using the term high-likelihood in a variety of situations throughout this
paper that may look different from the canonical form given in the previous paragraph.
We illustrate this with two lemmas which will be of use later.

LEMMA 2.1. The union ofk events (k being anyfixed integer), each ofwhich succeeds
with high probability, also succeeds with high probability.

If the failure probability of event i is less than 1/n’ the failure probability of the
k _, k/n where min(al ak). Thisunion of the events is less than ]=1 n < a ,-.-

is less than n-(-e) for any g > 0. Note that the above holds with appropriate change
of constants even if k is a polynomial in n of some fixed degree.

In the remainder of this paper we shall often refer to the logical structure of the
recursive parallel algorithm as aprocess tree associated with the algorithm. The root of
this tree is an instance of the original problem. Each internal node corresponds to a
procedure and the children of a node corresponds to the parallel recursive calls made
by the procedure.

THEOREM 2.1. Given a process tree that has the property that a procedure at depth
from the root takes time Ti such that

P[T > kalogn(eo)] < 2-(e)’algn,

then all the leaf-levelprocedures are completed in O(log n) time. Here i denotes the distance
oftheprocedurefrom the root leveb k and a are constants greater than zero, and 0 < eo < 1.

A rigorous proof of this assertion can be found in Reif and Sen [27] (a generalization
of Reif and Valiant [29]). Intuitively, the time taken at a node which is at a distance
from the node is O(log n/2i) with high probability.

For the rest of the paper, we assume that the success probability required by the
algorithm is given, so that given n, we can fix c. From this, we can compute the required
probability of success at every individual step of the algorithm even though we do not
provide explicit formulae. Also, for convenience of notation, functions of n that may
not be necessarily integral valued like log log n or n" will actually denote the ceiling of
such values, i.e., [log log n] and [n’]. This does not affect the asymptotic bounds of the
algorithm.

2.2. Useful results. In the remainder of the section we shall assume that the half
spaces are described as inequalities of the form aix + biy + cz + di >_ O. We shall
also use the terms "half-space" and its bounding "plane" interchangeably where it is
clear from the context. The output is a list of vertices of the polyhedron C which is the
intersection of the half spaces. The vertices are defined by the 3-tuples of the three in-
tersecting planes defining the vertex. We assume that the planes are in general position,
that is, every vertex is the intersection of exactly three planes. This assumption is for
the convenience of analysis and not a real bottleneck for the algorithm. There are stan-
dard perturbation techniques that simulate the nondegeneracy condition. For example,
changing the coefficients by a sufficiently small randomly chosen real value satisfies the
property of nondegeneracy with probability approaching 1. The textbook [19] discusses
symbolic perturbation techniques that are deterministic but more expensive. The edges
of this polytope are those pairs of vertices that have two common planes in the tuples.



OPTIMAL PARALLEL RANDOMIZED ALGORITHMS 471

A face is defined by all tuples that have one common plane. A tuple can be written in
six ways (permutation of the three planes) and thus sorting them (all six possible repre-
sentation of the vertices) would enable us to obtain the faces and edges as the necessary
adjacency structure of the polytope (which is a planar graph).

The following observation is useful for constructing the intersection of a random
subset of half spaces that is used to split up the problem evenly.

LEMMA 2.2. The intersection ofa given set ofn halfspaces can be computed in O(log
time using n4 processors in a CREW PRAM model.

Proof. Assuming nondegeneracy (i.e., no four planes intersect at a common point),
there are O(n3) candidate vertices for vertices of the convex hull (of the intersection).
For each vertex, test whether it is a vertex of the convex polyhedron by checking whether
it satisfies all the equations defining the half spaces. This can be done trivially in O(log
time using O(n) processors for each candidate point. Only the vertices would survive.
Determine the faces of the convex polyhedron by identifying planes that contain three
vertices of the intersection. The necessary adjacency structure can be constructed by an
application of sorting.

LEMMA 2.3. Given a set ofn halfspaces, it is possible to compute their intersection in
O(log3n) time using n processors in a CREW PRAM model.

Proof. The proof follows immediately from Aggarwal et al. [1].
The previous result is used to stop the recursion at a level when the problem size is

small (typically O(logk n) for some integer k) and to solve the problem directly. Note that
any polylog-time algorithm using a linear number of processors would again suffice for
our purpose. At this stage the problem size is so small that using a suboptimal algorithm
will not affect the asymptotic complexity of the algorithm.

2.3. The dual transform. The convex hull problem has a very interesting dual prob-
lem, namely, the intersection of half spaces. This dual transformation D maps a point in
Ea to a nonvertical hyperplane in Ea and vice versa. Let p (rl, r2,’’’, ra) be a point
in Ea. Then D(p) is the hyperplane 1 rlzl + r2z2 + 7raza and vice versa such that
a hyperplane h not containing the origin is mapped to a point p for which D(p) h.

The transform/) is extended to sets of points (hyperplanes) in a natural way. Let
P be a convex polytope with nonempty interior intP and assume that the origin O is
contained in P. Then/)(P) is an infinite set of hyperplanes which avoid some convex
region around O. The dual of P is defined as

closure hps

h 7:’)

where hps denotes the half space containing the origin. The following observation can
be verified [19].

LEMMA 2.4. Point p belongs to the intP, boundaryP or complementP ifand only if
the hyperplane 1)(p) avoids 73, avoids int7 but not 73, or intersects int73, respectively.

In other words, given a set of points S, the vertices of the convex hull are the dual
transform of the facets of the intersection of the half spaces 79(S) (which will be denoted
by S* in future). This property has been exploited very often so that the same algorithm
can be used for both convex hulls and intersection of half spaces (if we know an interior
point). In this paper we actually derive an algorithm for constructing the intersection of
half spaces. Moreover, the dual transform has nice applications for searching (as used
in 5).
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3. A naive random sampling algorithm and its shortcomings. Before we embark
on a formal proof of the main theorem, let us give an informal description of the algo-
rithm using the straightforward random sampling strategy (as used by Clarkson [10]).
We intentionally leave out polling from this preliminary discussion to illustrate the pit-
falls of using naive sampling strategies for parallel algorithms. We shall assume for the
time being that we know a point p* in the intersection of the S* and later show how
to determine such a point efficiently. Using a random subset of S*, we split the origi-
nal problem evenly into smaller sized problems and then apply the algorithm recursively
to each of the problems. By using a random subset of size n", (0 < e < 1) we split
up the problem into subproblems of expected size n1-’. This results in a recurrence of
the formf(n) 7(n1-) + f(n), where f(n) is the time for dividing the problem. If
f(n) < O(log n) (which requires the use of polling as described in 4), we have an al-
gorithm whose expected running time is bounded by O(log n). We further need to show
that the number of processors required at each step of the algorithm is O(n).
ALGORITHM (Main).
Inpnt: A set S* of n half spaces H, Ha,..., H,.
Output: The output convex polyhedron C, which is the intersection of the n half spaces.

(1) Choose a random subset R S of half spaces such that IRI n (for some e,
0 < e < 1 that we shall determine during the course of analysis).

(2) Find the intersection of the half spaces in R. Take a fixed plane and cut up
each face of the polyhedron with (parallel) translates of this plane passing through the
vertices. Thus each face is a trapezoid. Further, partition each trapezoid with a diagonal
so that each face is triangular. For a face F consisting of vertices x,//, z consider the
cone C’i formed by p* as the apex and F as the base. Let CR denote the number of
cones. Note that C’R < 21 1,

(3) For the remaining S-R half spaces find the intersection of the planes (bounding
these half spaces) with the cones. Note that a plane may intersect more than one cone.
The intersection of the S half spaces is the union of the intersection of the half spaces
intersecting a cone (over all cones). That is, C is t_Ji=11 where Ii is Nj {Hi} restricted
to C.

(4) If the number ofplanes intersecting a cone is more than a predetermined thresh-
old apply steps (1)-(3) recursively to this cone for the set of half spaces (bounded by the
planes), or else solve the problem directly (using Lemma 2.3).

The algorithm outlined above that uses a straightforward random sampling in step
(1) is only a skeleton of the actual algorithm and is not very efficient in its present form.
One of the main problems is that in step (3) the total size of the subproblems could
exceed the size of the parent (calling) problem by a large factor at each recursive call.
Note that bounding this increase at each recursive call by a constant factor does not
suffice. This would imply that after O(loglogn) levels, we can only bound the the total
size of the subproblems at this stage by O(n log() n). This is where this algorithm
differs from some other recursive parallel algorithms like randomized parallel sorting
algorithms of [29], [30] where the total size of the subproblems is always bounded by the
input size. We need more sophisticated methods for choosing the random subset in step
(1) to prevent this. We will show in 4 how to solve this problem using polling. Moreover,
coming up with a fast procedure for detecting the intersection of the halfplanes with the
cones is in itself a nontrivial task. For the rest of the paper, we concentrate on individual
steps and derive the necessary refinements to prove the main theorem.
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4. Probabilistic lemmas.

4.1. The need for polling: An improved random sampling technique. A crucial part
of the analysis rests on showing that a random subset R can be chosen efficiently in the
first step of the algorithm that divides the problem into almost equal-sized subproblems.
In addition, we have to show that the total size of the subproblems is the same as the
complexity of the original problem at every stage of the recursive calls. The following
result follows from Clarkson [10, Cot. 4.3] for any random R c S with IRI r.

LEMMA 4.1. LetX denote the set ofplanes intersecting cone C (using the same termi-
nology as in step (2) ofthe algorithm). Then the following conditions hold with probability
at least 1/2:

(i) E/CI Ixl _< ktotal(n/r)" E(CR), and
(ii) maxlX[ _< kmx(n/r), log r,
where ktota and kmax are constants and C is definedpreviously.

Any subset of the input half spaces that satisfies the above conditions for some fixed
constants is defined to be "good" and is otherwise "bad." A direct consequence of the
lemma is that we can divide the problem into almost equal-sized subproblems, such that
the increase in the original problem size can be bounded by at most a constant multi-
plicative factor of kmax. Since our objective is to apply this recursively, we need a more
sophisticated sampling algorithm to obtain a sample that is "good" with high likelihood.

4.2. An informal description ofpolling. The idea for choosing a "good" sample is as
follows. Since the above events would fail only with constant probability, the probability
that the conditions would fail in O(log n) independent trials is less than 1/n’ for some
a > 0. Therefore, if we choose independently p(n)(= O(log n)) sets of samples, one
of them is good with very high likelihood. However, to determine if a sample is "good,"
we would have to carry out step (3) of the algorithm described in the previous section
O(log n) times, each of which would require O(log n) time (such a method is described
in 5). Instead, we try to estimate the the number of planes intersecting a cone C using
only a fraction of the input planes. For example, we can choose co. n log n half spaces
for some fixed integer d > 2 and a constant co of the input planes randomly for the jth
sample R. The actual value of co will be determined from the required success probabil-
ity of the algorithm. LetX be the number of planes intersecting cone C corresponding
to sample Rj, 1 _< j _< b log n, where b is fixed integer greater than zero. Let A be the
number of planes intersectin.g C out of the n/loga n randomly chosen input planes for
the same sample. Clearly, A is a binomial random variable with parameters co .n/log n

(total number of trials) and X/n (success probability in each trial). Assuming that X
is greater than . loga+ n, for some constant , we will apply Chernoff bounds (see ap-
pendix) to bound the estimates tightly within a constant multiplicative factor. Since we
do it only for 1/loga n of the input planes, the total number of operations for the O(log n)
random subsets is bounded by O(n log n) (as we show in the next section). Note that

X < logd+t n is an easy case since n. C’logd+t n for e < 1 is o(n).
4.3. Probabilistie analysis of polling. More formally, by invoking Chernoff bounds

(see Appendix equations (1) and (2)), for any a > 0 (a is a function of Co), there exists
Cl > 0, independent of n,

Prob(A < acXJi / logd n) <_ 1Ina

and

P,ob(A > z / og n) < <
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(for co > 1). From the last two inequalities, X is bounded by/fl A7 loga/0
from below, and UJ by A loga n/cla from above. With appropriate changes in the
constants, this condition holds with high likelihood (as defined in 2.1) for all X simul-
taneously. We do the procedure (described in the next section) simultaneously for all
the samples Rj and choose the sample Rio using the following simple test.

ALGORITHM (Po. lling).
(LetN A and the let actual number ofintersections be T;. Let E; be our estimate
for the sample j; upper and lower bounds obtained from N are denoted by U and L,
respectively)

If ktotaln > Uj then accept sample R (since ktotaln _> U _> TJ),
else if ktotaln _< LJ then the sample is "bad" (since ktotaln <_ Lj <_
T),
else if LJ < ktotaln _< Uj, then accept the sample Rio for which Eo is
minimum. Since both ktotaln and To lie in this interval this guarantees
that To < ca ktotaln where c3 U/L, which is a constant.

Recall, that from our earlier discussion that at least one of the samples would satisfy
conditions 1 or 3 with very high likelihood. We summarize as follows.

LEMMA 4.2 (Polling lemma). Ifwe can choose a set ofrandom splitters that expects to
be "good, "then by using the polling algorithm, as described earlier we obtain a sample that
is "good" with high probability.

The above procedure can actually be used in a more general situation wherewe need
"good" samples with very high likelihood from samples that only expect to be "good."
Moreover, according to our previous discussion, the extra amount of overhead does not
affect the asymptotic work done by the algorithm, because it uses only a fraction of the
input to test the samples.

5. Finding intersections quickly.

5.1. A locus-based approach for finding intersections. We now focus on a proce-
dure to find the intersection of planes with each of the cones Ci. Notice that a plane
may intersect more than one cone, which rules out detecting the intersections sequen-
tially. That is, if a plane intersects n cones (d > 0), we cannot afford to detect them
one after the other since we are looking for an O(log n) time procedure. Note that in
the sequential case, Clarkson and Shot’s [11] randomized incremental constructions give
optimal expected time bounds for computing the plane-cone intersections that cannot
be applied in our case.

We shall use a locus-based approach to solve this problem. This approach involves
considering each query as a higher-dimensional point and partitioning the underlying
space into regions providing the same answer. Thus any query problem can be reduced
to a point location problem given sufficient preprocessing time and space. In our case,
we have to preprocess the convex polytope of the sampled half spaces in such a way that
given any plane, we should be able to report the list of cones that it intersects in O(log n)
time using at most k processors where k is the number of intersections. We shall show
that the preprocessing for a convex polytope of size n can be done in O(log n) parallel
time using O(nc) processors, where c is a fixed constant. Thus we can choose any sample
of size less than nI/c since we have n processors. For our problem, the a value of c is will
be worked out in the proof of Lemma 5.1.
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Given a convex polytope in three dimensions of size O(n) along with an internal
point which is the apex of the cones, there are only a polynomial (in n) number of com-
binatorially distinct possibilities of the way any given plane can intersect the cones. This
can be seen from the following simple argument. Given any plane that intersects the
polyhedron, we can perturb the plane without changing the cones it intersects so long as
it remains within a fixed set of bounding vertices. Figure 1 illustrates the situation for a
two-dimensional case. Ifwe consider an equivalence relation where two lines are equiv-
alent if and only if they intersect the same sets of cones, then the equivalence classes
correspond to the cells in the arrangement ,4(H) where H {D(p) p is a vertex of the
convex n-gon or internal point and/9 is a dual transform} (see [19] for more details).
Given any query line l, the cones that it intersects is defined by the partition of A(H)
that D(1) belongs to. This observation can be extended to hold for any dimension; in
our case dimension 3. If we consider the partitions of the 3-space induced by the inter-
sections of the constraining half spaces, these are equivalent classes with respect to the
cones they intersect. Notice that even if this partitioning may not be minimal it suffices
for our purpose. All that remains to be done is to precompute for each of these regions
the cones that the corresponding planes would intersect so that for any query plane in
the same equivalence class we can list the intersecting planes in a table.

FIG. 1. Lines L andKintersect a different set ofsectors. In the dualplane the duals ofL andKlie on different
faces--in this case separated by the dual ofvertex 4.

5.2. A point-location algorithm. For the point-location problem, we use a prepro-
cessing scheme due to Dobkin and Lipton [17] because of the ease in parallelization.
The following is a fairly straightforward extension of their method.

LEMMA 5.1. Given a set ofm planes in Ea, it can be preprocessed in O(log m) time
using O(m7 )processors, such thatgiven an arbitrary querypoint, the unique cell containing
thatpoint can be reported in O(log m) time. The space required is O(mT).

Proof. Find the pairwise intersections of the given set of planes (there are O(m2)
of them). Project the resulting lines on a plane not normal to any of the lines. Find
the pairwise intersections of the straight lines and consider their projection on the
axis. There are O(m4) intervals induced by these. For each of these intervals, Order the
straight-lines in increasing ordinates by sorting. This can be done in O(log m) time using
O(m2) processors for each of the O(m4) intervals. There are now O(m6) trapezoidal
regions. For each of these, order the planes in increasing z-coordinates for binary-search
by sorting which are totally ordered in these subdivisions. This can be done in O(log m)
time using O(mT) processors. The cells inducedby this preprocessing are homeomorphic
to a 3-cube, so that given any query point it can be located in such a subdivisionwith three
binary searches.
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For each of the cells in 3-space, we can precompute the cones that the correspond-
ing plane intersects using O(n8) processors (by choosing a representative point in each
cell and testing it against all the cones). Note that these subdivisions are finer than the
minimal equivalence classes, i.e., more than one subdivision could have the same set of
intersecting cones. We also store the number of intersecting cones for each of the sub-
divisions so that while listing the number of cones each query plane intersects we can do
the processor allocation easily in O(log n) time using a prefix computation. By choosing
less than n1/8 samples, we can complete the entire preprocessing in the required time
and processor bounds.

We summarize our conclusion in this section as follows.
LEMMA 5.2. Step (3) oftheMainAlgorithm uses O(n) space and terminates in O(log n)

time using n processors in a CREW PRAM model

6. Controlling the size of subproblems and processor allocation. From Lemma 4.1,
we know that the size of the problem can increase by a constant factor at each level and
wewish to prevent this from happening over O(log log n) levels, whichwould increase the
number of processors required by a polylog factor. For this we need to quickly identify
the redundant planes that do not contribute to the output complexity and to eliminate
them from further recursive calls. This enables us to get a global bound on the total size
of the subproblems (at any stage) which we shall show to be linear in the input plus the
output size. More specifically, we allocate the processors recursively to the cones such
that the number of processors is proportional to the number of output vertices in that
cone, thereby bounding the number of processors to be O(n). The following description
provides more details of this scheme.

After we have found the planes intersecting a particular cone, we categorize them
as follows:

(a) Planes that are completely occluded by another plane in the cone
and hence these cannot be a part of the output in the cone,
(b) Planes that are occluded because of more than one other plane in
the cone, i.e., there is no one plane that completely occludes them,
(c) Planes that contribute to an edge without an endpoint, i.e., the end-
points lie in some other cones,
(d) Planes that do contribute to a vertex in the cone.

To eliminate planes of type (a), we use a variant of the three-dimensional maxima algo-
rithm. The three-dimensional maxima problem is defined as:

Given a set S of n points in a three-dimensional space, determine all
points p in S such that no other point of S has z, y and z coordinates
that simultaneously exceed the corresponding coordinates ofp. In case
there is such a point q, q is said to dominate p.

Since cones have a triangular base there are three edges that join it to the apex p*. We
sort the intersections of the planes with an edge at increasing distances from the apex.
We repeat this for all the three edges. Call these three edges X, Y, Z and denote the
intersection of a plane hi as Xi, Y, Zi and the ranks in the sorted list as r(Xi), r(Y),
and r(Zi).

Observation 1. A plane A is occluded completely by another plane B if and only if it
is dominated on its ranks of intersection on all the three edges by plane B.

This gives an effective strategy for eliminating planes of type (a) by identifying the
complement of the set of the maximal elements, where we use the ranks of the intersec-
tion on the three edges as the order relation. Usin the algorithm of [2], we can do this
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in O(log n) time using a linear number of processors. For a two-dimensional illustration
see Fig. 2.

Case (a)

A

A

Case (b)
0

FIG. 2. (a)A cannot show up in the output of the cone since it is "dominated" by B (on both edges of the
cone). (b) C cannot be a part ofthe output but it is not dominated byA or B. So it cannot be eliminated by case
(a).

To identify planes of type (b), (c), and (d) we construct the intersection of the convex
polytope C with each of the three faces of the cone. These are intersections of the faces
with C that are two-dimensional convex polygonal chain. These will be referred to as
contours in the following discussion. The contours can be computed in O(log n) time
with n processors using any ofthe optimal two-dimensional convex hull algorithms. Note
that these convex contours on the three faces are a part of the output and any plane that
appears on this contour is a part of the final output. Consequently, a plane of type (b)
cannot be a part of this contour. Unfortunately, there can be planes that are part of the
output but are not part of any contour. Consider a plane that chops off a portion of the
polytope within the cone. For the time being let us focus on only those planes that show
up in the contours and consider the three-dimensional convex polyhedron formed only
by these planes within a cone. We shall refer to such a three-dimensional polytope as a
skeletal hull. We shall use the term "flattening" to imply that the vertices of the contour
are projected along edges (intersection of two planes) they lie on, such that all of them
become coplanar. Notice that there may be several such planes. We just choose one
arbitrarily and these projected vertices defines a "base" face.We now make the following
observation.

Observation 2. Any plane that is not a part of the contour on any face can intersect
at most one skeletal hull.

This follows from convexity. Notice that such planes are not necessarily a part of the
output butwe are not aiming for an output sensitive algorithm. The previous observation
guarantees that if a plane is not a part of C it will not survive in more that one cone when
the algorithm is called recursively in the cones. The planes that do not intersect the
skeletal hull cannot be a part of C within the cone.

A plane can be a part of the contour and not contribute to any vertex of the convex
polytope C, that is, it only contributes an edge of the hull within the cone. In this case
the edge intersects the cone in exactly two faces and the these vertices can be labeled by
the two intersecting planes (which contributes to the output edge). Thus these planes
can be identified quickly using sorting on the labels of the intersecting planes. We shall
call thesefree edges.
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The objective of the above procedure is to eliminate some of the planes that do
not contribute to the output and ensure that going into any recursive call, the sum of
the subproblems is less than the output size. We define the output size of the three-
dimensional convex polytope to be 31El where V is the number ofvertices of the convex
polytope. Since the surface of the convex polytope is a connected planar map, we can use
Euler’s equation to show that IvI 21FI 2 where F is the set of faces in the polytope.
Since IFI _< n, IWl _< 2n 2, This calculation is done using the property that each
vertex is of degree 3 (which follows from our assumption that the planes are in general
position). Let the number of processors be 6n. We distribute the processors among the
subproblems depending on the output size. For a cone Ci that does not contain any free
edge, the output can be bound by the following claim.

CLAIM 6.1. The output size of a cone is bounded by 3hi + 6mi 6, where ni is the
number ofplanes in the contour contributing at least one vertex and mi is the number of
planes oftypes (b) and (d).

Proof. Let el denote the number of edges of C that intersect the contour and con-
tribute a vertex within the cone (the vertices of the contour are these edges). Let e2 be
the number of edges that lie within the cone (including both endpoints). Let v be the
number of vertices of C within the cone (these have degree 3), then el + 2e2 3v or

3v + n
el -}-e2

2

as el ?i. Consider the planar map of the polyhedron formed by n and mi planes
and a "base" face by "flattening" the contour. Refer to the explanations of the terms
"base" face and "flattening" in the previous paragraphs. The number of edges on the
contour equals the number ofvertices on the contour. Then by applying Euler’s formula,
IVI ni + 2ny 2 where ny is the number of faces of of that show up in the cone
but are not a part of the contour. Since ny (type (d)) can be bounded by m, the claim
is proved.

Notice that if a cone contains d free edges, then the above formula can be applied
separately to each of the d + 1 partitions (induced by the free edges). The participant
planes in each of these partitions are disjoint, giving us the following.

CLAIM 6.2. The output size of cone ix bounded by 3n + 6mi 6d here d is the
number offree edges.

The processor allocation strategy is simply to allocate this number of processors to
the subproblem (in the cone). The total number of vertices over all the cones is bound
by the maximum output size, and by our allocation strategy we are allocating processors
proportional to the maximum output size in each cone. Note that the actual output size
may be less but we shall never have fewer processors than required, and this maximum
size can actually be achieved. Another way to look at the processor allocation strategy is
that two processors are allocated to each edge of the output hull and we allocate those
processors to the cones which contain (or potentially contain) vertices associated with
that edge. The free edges are not allocated any processors. Hence we have sufficient
number of processors.

More formally, let us denote the edges with one endpoint and two endpoints in cone
i by e] and e, respectively. For the following discussion, a cone will refer to the portion
of the cone (as previously defined) further split up by the free edges; that is, cone i in the
new definition does not contain any free edge. This simplifies the discussion considerably
without affecting our previous observations. From previous discussion and equation (1),

(1)
2
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Using eI n,

(2) e ni / 3qi 3,

where q is the number of planes in cone i that do not show up in the contour. If a total
of N planes show up in the contour, the convex hull CN corresponding to N planes has
3N edges from Euler’s formula. Then

1/2Z +Z 3N

1/2Zn + ’(n,- 3)= 3N

using q 0 in equation (2). Here the summation is over all r cones and and are
restricted to edges of CN. By simplifying we get

(3) Z ni 2N / 2r.

The total number of processors required is

from equation (2).

=6Zni+6Zqi-6r

6N + 6r + 6Zqi 6r

from equation (3). Since y] qi < n- N, (from Observation 2, each plane in qi is counted
exactly once) the total number of processors is less than 6n from the previous equation.
Since we started with 6n processors, we have sufficient number of processors for the
recursive call. This argument can be applied inductively.

We shall now describe a procedure to construct the skeletal hull within a cone and
preprocess the skeletal hull such that queries of the kind plane-polyhedra intersection
detection can be answered quickly. The latter part can be done efficiently using a hi-
erarchical polyhedra decomposition scheme due to Dobkin and_Kirkpatrick [15]. The
construction of the hierarchical representation can be done in O(log n) time using an
algorithm of described in Reif and Sen [27] (also discovered independently by Dadoun
and Kirkpatrick [14] but the analysis given in their paper is not sufficient for our pur-
poses). Given this representation, the plane-polyhedra intersection detection query can
be answered in O(log n) sequential time [16].

We shall now discuss how to construct the skeletal hulls quickly. Although the skele-
tal hulls are themselves three-dimensional convex polytopes they have a much simpler
structure (see Fig. 3). More specifically, they have the following property: all faces are
unbounded (i.e., they are part of the contours). This implies that, if we construct them
recursively using the same algorithm, we do not have to worry about case (b) since all
planes that are part of the output will show up in the contours, and this holds for any
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level of the recursive call. From the analysis given in the next section the skeletal hulls
can be constructed in 0(log n) time using a linear number of processors. The reader
should be convinced that there is no circularity of arguments here. One way to look
at the problem is the following: Assuming that there are no planes which satisfies both
cases (b) and (d) (i.e., all planes that are part of the output show up in the contours),
the algorithm terminates in O(log n) time using a linear number of processors. So af-
ter having constructed the skeletal hull for the cone, the redundant planes are quickly
eliminated using the procedure outlined in the previous paragraph. Subsequently, the
algorithm is called recursively on the conethis time to build the actual polytope C (as
opposed to the skeletal hull).

FIG. 3. OXYZ is a cone from the sampled halfspaces and the thickened lines show a skeletal hull in the
cone. H is a halfspace that does not intersect the cone but is a part ofthe output within the cone.

6.1. Final analysis. Consider the algorithm as a tree where each node corresponds
to a procedure and the children of a node representing processes corresponding to the
recursive calls made by the procedure. Then the running time of the algorithm corre-
sponds to a worst-case sequence ofnested procedure calls along anypath in this tree from
the root to a leaf node. Let us first analyze the cost ofconstructing the skeletal hull at any
node. This process tree corresponding to this algorithm has the following property. If
we choose the sample size to be O(n1/8) a process at level (1 < i < O(loglogn))
has size less than O(n(9/)) (from Lemma 4.1) and the process terminates in time

O(log n(9/10)) (9/10)iO(log n) with probability greater than 1-1/n(9/)’ From The-
orem 2.1, any nested sequence of recursive calls exceeds time c-y log n with probability
less than 1/n"/for any’,/> 1. It follows that all the leaf processes and hence the algorithm
is completed within the same time with high likelihood. We may may thus conclude that
the skeletal hull at any node with problem size n can be constructed in O(log n) time.

For the overall algorithm, we add the time for detecting redundant halfplanes. From
the previous section this involves constructing a data structure for p_oint location for de-
tecting the plane-polyhedron intersections. Since this also takes O(logni) time, from
Lemma 2.1, the total time is also 0(log n) (with ap_propriate constants in the 0 nota-
tion). Another appeal to Theorem 2.1 results in the O(log n) running time for the overall
algorithm. The space used is O(n) at step 3 of each recursive level giving a total bound
of O(n log log n) for all the O(log log n) recursive levels of the algorithm. This proves
the main result of the section.
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COROLLARY 6.1. The followingproblems can be solved in 0(log n) time using npro-
cessors in the CREW PRAM model:

(i) Convex hull ofa set ofpoints in three-dimensions,
(ii) Voronoi diagram ofpoint-sites in plane,
(iii) All-points nearest neighbor,
(iv) Euclidean minimal spanning tree.
The algorithmfor the lastproblem uses concurrent-writefeature where as the remaining

algorithms run on CREW model
Proof. (i) follows immediately because of well-known reduction of convex hulls to

intersection of half spaces. To determine aninternal point p* in the intersection, we can
determine an internal point of the convex hull and use it as the origin for the duality
transform. The origin is known to be contained in the intersection of the half spaces.

For (ii), given a set of n points in the plane we apply an inversive transformation
given by Brown [4] to the input points to transform the problem into finding the convex
hull of n points in 3-space.

(iii) can be obtained in O(log n) time from the Voronoi diagram.
(iv) can be obtained by running a minimal-spanning tree algorithm on the edges of

Delaunay triangulation which is the dual graph of the Voronoi diagram. This algorithm
uses the stronger Priority CRCW model as in [3].

7. Bounding random bits.

7.1. Chebyehev’s inequality. The commonly used form of Chebychev’s inequality
has the form

O-2
Prob[(IX- #1-> t)] < .

This simple fact was exploited by Chor and Goldreich [5] for their two-point sam-
piing theorem where they consider the following scenario. To determine if a property P
holds for z (for example if z is prime), we often use a function f(z, r) which satisfies the
condition that if P holds for z then f(z, r) is 1 with probability at least 1/2 whereas if P
does not hold for z then f(z, r) is 0. Here r is a witness which is a random number in a
certain range. This implies that if f(z, r) is 1, then repeating the experiment for t inde-
pendent random witnesses decreases the failure probability (of incorrectly categorizing
z) to 2-t. Instead of choosing t independent witnesses, if we choose t witnesses that are
pairwise independent then we can analyze the probability of error as follows. Assume
that in t trials, f(x, ri) is zero for all the trials and P(x) is true. Let Y -]i f(x, ri). Then
E[Y] >_ t/2 and the variance tTy x//2. Then Prob[Y 0] _< Prob[lY E[Y][] _> t/2
which is less than lit from Chebychev’s inequality.

The t pseudorandom numbers can be generated from two purely random numbers
by using the scheme r a + bi where a and b are random numbers. Thus instead of the
confidence bound of 1/4 (for two numbers), we can do much better, i.e., 1/t. Karloff and
Raghavan [23] were able to extend these techniques to show that Reischuk’s sorting algo-
rithm can be implemented in the same asymptotic bounds by using only O(log n log log n)
purely random bits (instead of the naive scheme requiring O(x/-) random bits). Here we
generalize their scheme to minimize the number of random bits used by the algorithms
described in the previous chapter. For this we need to prove some preliminary results.

DEFINITION. A family of random variables is called k-way independent if any subset
of k variables are mutually independent.

Clearly a k-way independent family is/-way independent for any <_ k.
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Let p be a suitable prime number and choose k numbers ai, 0 < < k 1 randomly
from Zp. Consider the numbers of the j=k-1form ri (j-0 a. zJ) mod p. The following
is a well-known result [5] for this class of pseudorand-m number generators.

Fact 1. The numbers ri’s are uniformly distributed in Zv and are also k-way inde-
pendent.

Fact 2. If Xi, 1 < i < n are n mutually independent random variables and 8 are
real-valued functions, then

]E ,(X,) H
s--i s=l

LEMMA 7.1 (Generalized Chebychev inequality).

Prob{IXl >_ t)

_
E((X))
(t)

where is a positive monotonically increasingfunction.
Proof Let Prob[X z] f(z). Then

Prob{lXl _> t}- f(xj)

< E((IX
(t)

LEMMA 7.2. Let X be the sum ofn2k-way independent and identical Bernoulli random
variables X, 1 <_ <_ n, each ofwhich has a successprobabilityp. Thenforafixed k (chosen
independently of n), Prob{IX #1 -> #} -< O() where St np and p <_ 0(n-) for
some 0 < < 1.

See appendix for proof.
COROLLARY 7.1.

Prob{IX- #1 >a._ #} _< O (ak 1. #k
where a is a constant between zero and 1.

Proof. Substitute t a# in the previous lemma.

7.2. Rederiving probabilistic bounds with fewer random bits. In order to limit the
number of random bits, we shall rederive some of the random-sampling bounds and the
polling lemma using the 2k-way independent random variables. In particular, we shall
prove a slightly weaker bound than Lemma 4.1.

LEMMA 7.3. The probability that the maximum number ofhalfplanes intersecting any
cone exceeds n1-+6 is less than n-k6+5. Here the size ofthe sample is n and 0 < 6 < e < 1

for some constants e and 6.
Proof. By randomly choosing n" half spaces, the expected number of half spaces

chosen in the sample in a sector that has more than n1-+5 half planes is greater than
n. Thus the probability that none of the half planes was chosen in the sample is less
than n-k from Lemma 7.2. Summing over the O(n5) possible cones (see Clarkson [10]
for justification of this bound) gives us the required result.
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Although this bound is somewhat weaker than Lemma 4.1, it still suffices to show
that the process-tree (corresponding to the algorithm) has O(log log n) depth (the con-
stant is somewhat larger). Condition (i) of Lemma 4.1 is not affected since its proof in
10] uses only expectations. For probabilistic analysis of polling we make use of the fact
that if the expected number of half-planes in a sector is larger than n then Lemma 7.3
directly yields high probability bounds for some 0 < fl < 1 and choosing a sufficiently
large value for k. If the mean is less than n, then for small , n+ o(n).

An identical argument can be carried out for the problems tackled in Reif and
Sen [27], namely, the trapezoidal decomposition. Notice that the Chernoff bounds that
we were using earlier yielded much stronger bounds (of the order of 2-n’) which was
not required to prove our polling lemma. The ramifications of using these bounds are
that the constants associated with the running time for the same confidence bounds are
much larger.

From here on we can directly use the scheme of Karloff and Raghavan. The random
bits can be shared by the O(n) paths. We need an extra O(log n) multiplicative factor of
truly random bits for implementing polling for which we need O(log n) independently
chosen 2k random seeds of O(log n) bits each. Moreover, the point location algorithm
can be shown to require only O(log n) bits (Sen [31]). We summarize as follows.

THEOREM 7.1. The algorithm for constructing three-dimensional convex hulls runs in
O(log n) time using n processors and O(log2 n log log n) purely random bits.

$. Concluding remarks. The randomized algorithms presented here reinforce the
optimism expressed in an earlier paper (Reifand Sen [27]) wherewe introduced random-
ization as an effective tool for developing parallel algorithms in computational geometry.
Clarkson had demonstrated the usefulness of randomization for deriving improved ex-
pected time bounds for a large number of sequential algorithms. Althoughwe draw from
Clarkson’s work, our results should be of independent interest because of many unique
additional difficulties presented by the parallel environment and the techniques needed
to tackle them.

This paper describes the first O(log n) parallel time algorithm with optimal speed-up
for three-dimensional convex hulls and related problems; however, a number of ques-
tions are left unanswered. The most obvious problem is that of designing a deterministic
algorithm with same bounds. It is possible that an optimal algorithm for two-dimensional
Voronoi diagrams may be easier to obtain than a similar algorithm for three-dimensional
convex hulls. Moreover, we use the CREW PRAM model for our algorithm, raising the
question ofwhether the algorithm can be made to run without the feature of concurrent
reads. A more theoretical issue is that of designing sublogarithmic time parallel algo-
rithms for all these problems with optimal speed-ups. Also can the probabilistic bounds
be improved from 1 1/n for any c to say, 1 2-’ ?

An extremely important area of investigation in the field of parallel algorithms for
computational geometry is development of efficient algorithms for fixed interconnection
networks like hypercubes and butterfly networks. In spite of some elegant work done in
the PRAM model, the currently best-known results for almost all these fundamental
problems except two-dimensional convex hulls remain suboptimal. It appears very un-
likely that the optimal algorithms would be deterministic since there are no known op-
timal deterministic sorting algorithms for these networks. This should encourage more
research in the area of developing more sophisticated probabilistic methods for parallel
computational geometry. Recently, Reif and Sen [28] were able to make some progress

1Clarkson [7] pointed it out to the authors.
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in this direction by presenting efficient algorithms for triangulation.

A. Appendix. We say a random variable X upper-bounds another random vari-
able Y (equivalently Y lower bounds X) if for all z such that 0 < z < 1, Prob(X < z) <
Prob(Y _< x).

A Bernoulli trial is an experiment with two possible outcomes viz. success and fail-
ure. The probability of success is p.

A binomial variable X with parameters (n, p) is the number of successes in n inde-
pendent Bernoulli trials, the probability of success in each trial being p. Theprobability
massfunction of X can be easily seen to be

Prb(X < x) ( n )k

The tail end of the binomial distribution can be bounded by Chernoff bounds. In
particular, the following approximations due to Angluin and Valiant are frequently used:

(1) Prob(X >_ m) _< e’-’p,

(2) Prob(X < m) < e-+’,

(3) Prob(X < (1- e)pn) < exp(-e2np/2),
(4) Prob(X > (1 + e)np) < exp(-e2np/3)

for all 0 < e < 1. The last two bounds actually follow from the Chernoff bounds which
(for a discrete distribution) can be stated as

Prob[A _> x] < z-GA(z)

where GA(z) is the probability generating function. To minimize the boundwe substitute
z Zo that minimizes the right side expression.
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Abstract. The authors give a parallel algorithm for finding vertex disjoint Sl,tl and s2,t2 paths in an

undirected graph G. An important step in solving the general problem is solving the planar case. A new
structural property yields the parallelization, as well as a simpler linear-time sequential algorithm for this
case. The algorithm is extended to the nonplanar case by giving a parallel algorithm for finding a Kuratowski
homeomorph, and, in particular, a homeomorph of K3,3, in a nonplanar graph. The algorithms are processor
efficient; in each case, the processor-time product of the algorithms is within a polylogarithmic factor of the
best-known sequential algorithm.

Key words, parallel algorithms, disjoint paths, Kuratowski homeomorphs, graph theory

AMS(MOS) subject classifications. 05C38, 05C40, 68Q25, 68R10, 68Q10

1. Introduction. Given a graph G (V, E) and two pairs of vertices, sl,tl and
sz, tz, the two disjoint paths problem asks for vertex-disjoint paths connecting s with
ti, i 1, 2. This problem is a special case of undirected two-commodity integral flow
in which every edge has unit capacity (the problem is NP-complete if the capacities are
arbitrary [GJ 78]). The problem has obvious applications in certain routing situations,
and has been well studied from the point of view of sequential computation [PS 78],
[Sh 80], [Se 80]. In this paper we give a fast parallel (NC) algorithm for it. In case G is
nonplanar, our algorithm finds a Kuratowski homeomorph in G (i.e., a subgraph home-
omorphic to Ka,a or Ks). This complements the known parallel planarity algorithms,
which give a planar embedding in the positive case; our algorithm provides a certificate
of nonplanarity in the negative case. Our algorithms are processor efficient; in each
case, the processor-time product of our algorithms is within a polylogarithmic factor of
the best-known sequential algorithm.

An important step in solving the general problem is solving the planar case. A
polynomial-time algorithm for this case was given by Perl and Shiloach [PS 78]. Shiloach
[Sh 80] showed how to solve the nonplanar case as follows: Find a Kuratowski homeo-
morph. If it is a K, homeomorph, then use it as a high connectivity "switch" to find
the two disjoint paths; if it is a K5 homeomorph, use the algorithm of [Wa 68]. Indepen-
dently, Seymour [Se 80] gave a polynomial-time algorithm for the decision problem for
general graphs; by self-reducibility, this yields an algorithm for the search problem.

Our parallel algorithm for the planar case is based on studying properties of a new
algorithmically relevant structure: the pq-graph. This also yields a simpler linear-time
sequential algorithm. We first reduce the problem to the case where G is triconnected,
and start by finding vertex disjoint paths pl, p2, and pa (qx, q2, and qa) between s and t
(s and t). The subgraph consisting of these six paths is called a pq-graph. Our main
structural theorem, the pq-graph theorem, essentially states that if this subgraph does
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not contain disjoint s, t paths, i 1, 2, then it must contain sl, tl, 82, t2 in this order on
a single face. Using this, we prove that if the two disjoint paths do exist in G, then one
of them can be taken to be one of the six paths. The sequential and parallel algorithms
are now straightforward: in turn, remove each of the six paths and check whether the
remaining pair of vertices is contained in a single connected component!

Our proof of the pq-graph theorem is patterned on the familiar "crossing lemma,"
which states that a cycle C with four vertices a, b, c, and d in this order cannot have a-c
and b-d paths lying inside (7. (This lemma follows from the Jordan Curve Theorem.)
Both the crossing lemma and our pq-graph theorem relate the combinatorics of certain
planar graphs to the geometry of their embeddings.

Our planar graph algorithm extends to Ka,3-free graphs using a theorem of Hall
[Ha 43], as in [Va 89]. The main difficulty in dealing with graphs containing a K3,3 home-
omorph is finding such a homeomorph in parallel. The decision version of this problem
was shown to be in NC in [Va 89], and parallelizing the search version was left as an
open problem. We solve this problem as follows: find any Kuratowski homeomorph in
the graph, and in case this is a Ks, use it to find a K3,3 homeomorph. Once the K3,3
homeomorph is found, we use it as a high connectivity "switch" to find the two disjoint
paths; however, additional ideas are required to make this processor efficient.

We find a Kuratowski homeomorph in a nonplanar graph G as follows: use a parallel
planarity testing algorithm to obtain a subgraph G’ of G and an edge (u, v), such that G’
is planar and G’ + (u, v) is nonplanar. In G’, obtain a maximal cycle containing vertices
u and v, and using ideas from Kuratowski’s theorem find a Kuratowski homeomorph in

’ + (u, v).
The k-disjoint paths problem (where we need to find k vertex-disjoint paths con-

necting specified pairs of vertices) is NP-complete if k is part of the input [Ka 75]. For
fixed k _> 3, the problem was open for a long time. Recently, Robertson and Seymour
have given polynomial-time algorithms for this problem for any fixed k, derived from
their extensive graph minor theory [RS 86a]. The following problem is central to the
Robertson-Seymour theory: for a fixed graph H, decide whether the given graph G con-
tains H as a minor. This problem has a structure closely related to that of the k disjoint
paths problem. In fact, the minor problem polynomial-time reduces (even NC reduces)
to the k disjoint paths problem [RS 85]. Robertson and Seymour’s polynomial-time al-
gorithm for minor testing [RS 86a], together with their proof of Wagner’s conjecture
[RS 86b], has yielded nonconstructive polynomial-time algorithms for testing member-
ship in any minor-closed family of graphs. For certain families (i.e., when the list of
forbidden minors is known), this result gives explicit polynomial-time algorithms as well
(however, because of large multiplicative factors in the running time of the minor testing
algorithm, these algorithms are not practical).

A natural question is whether the Robertson-Seymour theory can be used to obtain
NC algorithms for the k disjoint paths problem, for fixed k. Robertson and Seymour
concentrate on the decision version of their problems, and rely on self-reducibility for
solving the search version. We may need more structural properties in order to find
parallel algorithms for the search versions. An NC algorithm for the k disjoint paths
problem will immediately imply that testing for membership in any minor-closed family
of graphs is in NC, without actually producing such an algorithm. As above, if the list of
forbidden minors is known, this result will give an explicit NC algorithm as well; several
natural problems fall under this category.

A dependency graph of our results is given in Fig. 1. Also listed are the time and
total work bounds (processor-time product) of our parallel algorithms, as well as the
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running time of the best-known sequential algorithm for each case.

Two Disjoint Paths: planar case Finding a Kuratowski homeomorph

Two Disjoint Paths: K3,3-free graphs Finding a K3,3 homeomorph

Two Disjoint Paths: general case

FIG. 1. Dependencygraph ofresults.

The model of parallel computation used is the Concurrent-Read Concurrent-Write
(CRCW) Parallel Random Access Machine (PRAM). APRAM employs p synchronous
processors, all having access to a shared memory. ACRCWPRAM allows simultaneous
access by more than one processor to the same memory location for both read and write
purposes. In case several processors attempt to write simultaneously in the same memory
location, an arbitrary one succeeds in doing the write. (See Table 1.)

TABLE

Algorithm Parallel time Processor-time product Sequential bound

Two paths: planar case O(log n) O(n log log n) O(n)

Kuratowski homeomorphs O(log2 n) O(n log log n log n) O(n)

Kuratowski homeomorphs O(log n) O(n2 log log n) O(n)

Two paths: general case O(log n) O(n2 log log n) O(n2)

2. A parallel algorithm for the decision problem. We first show whywe can restrict
our attention to triconnected graphs.

LEMMA 2.1. Solving the two disjointpaths (search or decision)problem for a graph G
NC-reduces to solving itfor the tconnected components of G.

Proof. Decompose G into its "tree" T’ of triconnected components [Va 89]. The
lemma is obvious if s, t (i 1, 2) are all in the same triconnected component. Suppose
s, t (i 1, 2) are in components S and T of T’, respectively (see Fig. 2). Let N be
the path from S to T in T’. If N1 and N2 do not intersect the disjoint paths are easy to
obtain. Suppose N1 and N intersect in a path P0, P1,’", P in T’. Let (a, b) be the
separating pair between P and P+I. In each triconnected component P find "parallel"
disjoint paths p(a-l, a), q(bi-1, bi) and "cross" disjoint paths p’(a-l, b), q’(b-l, a).
(We use the notation p(v, v) for a path from vertex v to vj.) If any component allows
both parallel and cross paths, then using one of these we can always find the disjoint
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paths. Otherwise, there is a unique way of connecting {a0, b0} with (ak-l,bk-1}. We
can now determine whether this allows disjoint si, ti paths. D

parallel paths
cross paths

FIG. 2. Decomposition tree T oftriconnected components.

Henceforth we will assume that G is triconnected.

THE DECISION ALGORITHM:
Step 1. If G is nonplanar then find the separating triples in G [CKT 91], [CT91]. For
each triple {a, b, c} discard the components of G {a, b, c} that do not contain a vertex
from {sl, s2, tl, t2 }. Add virtual edges between the vertices in each triple. Let G’ be the
new graph. Else if G is planar let G’ G.
Step 2. If G’ is planar then the answer to the decision version is "no" if and only if there
is a face containing all four vertices sl, s, tl, t in this order (by Theorem 2.2 below and
the fact that a triconnected graph has a unique planar embedding [Wh 33]).
Step 3. If G’ is nonplanar then the answer is "yes" [Sh 80].

THEOREM 2.2 (Perl-Shiloach). Let G be a triconnected planar graph, and let
s, t befour vertices of G. Two disjointpathsfrom s to t1, andfrom s2 to t exist, ifand
only ifthe vertices sl, s, tl, t are not on a commonface in this order

3. Two disjoint paths: The planar case. Our algorithm for finding disjoint paths
when G is planar and triconnected relies on the structure of "pq-graphs," described be-
low. Since G is triconnected, we can find three vertex-disjoint paths pa, Pb, and Pc from
Sl to tl, and similarly three vertex-disjoint paths qa, qb, and qc from sz to t2. In [KS 91]
a fast parallel algorithm is developed to solve this problem. We denote by Gpq the sub-
graph of G consisting of the pi and qj paths. We denote by p[v;vj] the segment of the
path p from vi to

DEFINITION 3.1. Gpq will be called a pq-graph if there is a numbering for the p and
q paths such that when the pi’s are ordered from sl to tl, and the q’s from s to t, the
following six conditions are satisfied.

(i) The first intersection of each q with any p-path is a vertex of
(ii) The last intersection of each qj with any p-path is a vertex of
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(iii) Let v q p, va q Pa (Vl, v3 81, tl). Then qi[v; va] intersects pz.
(iv) The first intersection of each p with any q-path is a vertex of ql.

(v) The last intersection of each p with any q-path is a vertex of qa.
(vi) Let v q f? pi, v3 q3 f-1 pi (v, V3 82, t2). Then pi[vl; V3] intersects q2.

LEMMA 3.2. If Gpq is not a pq-graph, then there exist disjoint sl,t and sz, tz paths in
Gpq. Thesepaths can be obtained in O(log n) time using O(n/ log n) processors.

The proof builds on ideas from [PS 78], where they impose conditions 1-3. In fact,
as can be seen from their solution, one of the paths can always be taken to be either
a p path or q path. Finding the three paths and checking if the graph is a pq-graph
can be done in parallel in the stated bounds using [CV 91], [KS 91]. (Hagemp’s [Ha 90]
optimal connectivity algorithm is needed for. planar graphs.) We now show the following
theorem.

THEOREM 3.3. If G contains vertex-disjoint si, ti paths, 1, 2, and if Gpq is a pq-
graph, then one ofthesepaths can be taken to be either p2 or q2.

A complete proof is given in the next section.

THE SEARCH ALGORITHM FOR PLANAR GRAPHS:
Step 1. Find a planar embedding of G. If in the planar embedding sl, s, tl, and t are
vertices on some face F of G in this order, then there is no solution.
Step 2. Find three vertex-disjoint p-paths from S to t and three vertex-disjoint q-paths
from s2 to t. Let Gpq be the graph consisting of these six paths.
Step 3. Now either

(i) s, t are in the same connected component in G pi (for some i), or
(ii) sl, tl are in the same connected component in G qi (for some i).

Step 3 works because, if Gpq is not a pq-graph then, using Lemma 3.2, one of the
paths can be taken to be either a p path or a q path. If Gpq is a pq-graph then, by Theorem
3.3, one of the two paths can be taken to be either p2 or

THEOREM 3.4. Forplanargraphs, there is an O(log n)-time algorithm for the two dis-
jointpaths search problem using O(n log log n/log n) processors.

Using the parallel algorithms of [TV 85], [FRT 89], and [RR 89], we can implement
the above algorithm in the stated time and processor bounds. The sequential complexity
of the above algorithm matches that of [PS 78] and is O(n).

Remark. The main bottleneck is the triconnectivity and planarity algorithms of
[FRT 89] and [RR 89] that use O(n log log el log n) processors. All the other algorithms
used as subroutines are "almost" optimal [CV 91], [KS 91]. (In fact, for planar graphs
one can use an optimal connectivity algorithm [Ha 90] to obtain optimal algorithms for
all the other steps.) Recently, another simple sequential algorithm has been obtained by
[Wo 90]. This algorithm can be parallelized by using [KS 91] as a subroutine.

4. Proof of the pq-graph theorem. The proof of Theorem 3.3 uses the Jordan re-
gions of a cycle in a plane embedded graph to derive results about the ordering ofvertices
on the cycle. The crossing lemma stated below is prototypical of such an argument.

Let G (V, E) be a plane embedded graph. A cycle (7 partitions the plane into
itself and two connected open Jordan regions (disjoint from C’). Aface of G is a cycle,
one of whose Jordan regions is empty, that is, contains no vertices or edges of G.

Theorem 3.3 will be presented here as a corollary to the following theorem.
THEOREM 4.1. In a pq-graph, vertices 81, 82, tl, and t2 appear in that order on a face

that is vertex disjointfrom p and q (except at the endpoints).
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COROLLARY 4.2. If G contains vertex-disjoint sl, tl, and s2, tz paths and if Gpq is a
pq-graph, then one ofthese paths can be taken to be either pz or

Proof. By Theorem 4.1 the vertices Sl, sg., tl, and tz appear in order on a face C of
Gpq, where (7 is disjoint from pz and qz (except at Sl, sz, tl, and tz). Define the four
sections of (7 to be the subpaths from Sl to s, from s to t, from tl to t, and from t
to sl. Call the empty region of (7 the inside. If G has no path inside of C between two
different sections, then the vertices sl, sz, tl, and tz lie on a face of G. (Recall that Gpq
is a subgraph of G.)

Therefore, if the two disjoint paths exist, there is some path r in G Gpq inside
(7 connecting two different sections of (7. Then we can take one path to include r and
edges of C, and the other can be taken to be either pg. or qz.

4.1. Some geometrical lemmas. Before we prove Theorem 4.1, we present a
few useful lemmas. The first is an old friend, and needs no proof.

LEMMA 4.3 (Crossing lemma). IfC is a cycle in the plane containing distinct vertices
a, b, and d in that order, then there do not exist disjoint paths p joining a and and q
joining b and d, both lying inside C.

(We have already used the crossing lemma implicitly in the proof of Corollary 4.2.)
LEMMA 4.4 (Endpoint lemma). In a pq-graph,

(i) slq2; (iii) tlq[ql; (v) s2q[p2; (vii) tzpl;

(ii) SlCqa; (iv) tq[qa; (vi) suq[pa; (viii) tuq[pu.
Proof. Vertex sl cannot lie on qz, since any pathp must hit ql first before hitting

The other assertions follow similarly.
Let C be a cycle in. a plane embedded graph. If vertices s and t do not lie on C, then

they are separated by C if they lie in distinct Jordan regions of (7.
Given a cycle C and a path p, a touching of p and C is a maximal common subpath

(with one or more vertices). A crossing ofp and C is a touching by which p crosses from
one Jordan region of C to the other.

Given a path p and vertex-disjoint paths ql, qz, and q3, a segment of p is a maximal
subpath s that is disjoint from the qi paths, except possibly at the endpoints of s. A qi-qj
hit is a segment ofp whose endpoints lie in q and qj.

LEMMA 4.5 (Cycle lemma). Let G be a plane embedded graph, and suppose that ver-
tices s, t arejoined by vertex-disjointpaths q, qz, and q3. Suppose that C is a cycle separating
s and t. Then C has a q-q3 hit.

Remark. Symmetrically, C must also have a q-qz hit and a qz-q3 hit.

Proof. Since s and t lie in opposite Jordan regions of C, each path q must contain
an odd number of C crossings. Since there are three q paths, C must contain an odd
number of q path crossings.

Suppose that C has no q-q3 hit. Denote by Q13 the region bounded by the cycle
ql q3, not containing q2. Similarly define Q12 and Q23" Denote

Q12 Q12 t2 ql,

Q23 Q23 t2 q2.

Orient the cycle C. Let v be a vertex on C, and let w be the vertex preceding v in
the orientation of C. Assign to v a state Q(v) as follows:
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Q(v)

Q12 if v Q12,

Q23 if v e Q23,

Q13B if vq3,

Q13A if vQ13
or v Q13

Q13B if vQ13
or v e Q13

and Q(w) Q13A
and Q(w) 012,
and Q(w) Q13B
and Q(w) qza.

Then it is easy to verify that, traveling along C from an arbitrary initial vertex co, the
possible state transitions are exactly those indicated by the diagram in Fig. 3.

82

FIG. 3. Possible state transitions for C.

Also, it is easy to see that a cycle whose state transitions obey this diagram must have
an even number of q path crossings. But we have argued that if C separates s and t, then
C has an odd number of crossings. Hence C must have a ql-q3 hit. [3

Suppose that G is a pq-graph. Define the regions Qij and Pij as in the proof of the
cycle lemma. Note that Q12, Q23, and Q13 are pairwise disjoint, as are P12, P23,
and P13.

LEMMA 4.6 (Region lemma). In a pq-graph

(i) sl Q13 t q; (iii) t Q13 t3 q3;

(ii) s2 P13 u pl; (iv) t2 P13 t p3.

Proof. We willshow that s2 P13 t_J p. The other assertions follow similarly.
By the endpoint lemma, if s2 lies on some p path, it lies on p. Suppose, therefore,

that s2 does not lie on any p path.
Since the first segment of ql is a path from s2 to p, s2 cannot lie in P23. Similarly,

t2 t[ P12; by the endpoint lemma, t2 p Up2. Suppose s2 P12. Then pp2 is a cycle
separating s2 and t2. By the cycle lemma, pp2 must have a ql-q3 hit, contradicting the
definition of pq-graphs. Therefore, s2 P13. l-I
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Let a be a vertex on pl. Thenwe say that a path q straddles a ifq has apl-pl segment
lying in PII whose endpoints lie on pl on either side of a. If, furthermore, a is the first
hit of some path q with pl, then we say that q straddles s. We make similar definitions
for s, tx, and

LEMMA 4.7 (Straddle lemma). No q path straddles
ort.

Proof. Refer to Fig. 4. Suppose that qi straddles a, the first hit of qj on pl. Let r be a
segment of qi lying in P
be the cycle formed by r and the section ofppg. containing p2. Then from the definition
of a pq graph it follows that (7 cannot have a q-q3 hit.

FIG. 4. qi cannot straddle

Let C’ be the cycle formed by r and the p subpath zy. Then one region of C’ is
R’ c_ P11 and one region of (7 is R R’ t_J P12 t_J zg. Because a E R and qj does not
hit (7 before hitting a, s R.

By the region lemma, t2 P12; by the endpoint lemma, t zg. Also, t2 R’,
since the last hit of any q path is with p3, not p. Therefore, t2 R, and (7 separates
and tz, contrary to the cycle lemma.

Therefore, q cannot straddle s. The other assertions follow similarly.
The proofof Theorem 4.1. Let G be a pq graph. We start by constructing a shell

around G qz. Eventually, we show that (7 is the face required by the theorem.
PROPOSITION 4.8. G qz has a directed cycle C (the shell) so that
(i) G q lies on the inside (right side) of C;
(ii) the outside (left side) ofC lies within P13;
(iii) C is disjointfrom p (except at sl and tl); and
(iv) (7 contains s, sz, t, and t2 in that order.
Proof. We give the construction in three stages. (See Fig. 5.)
Stage I: Consider first the subgraph consisting of paths p, pz, and pa, embedded so

that these paths appear in clockwise order around s. Take initially for C’ the cycle plp3,
oriented so that p is directed from s to t. Then p lies on the right of C’, the outside
of (7 is PII, and C’ is disjoint from p2 except for the vertices s and tl, which appear
on C.

Stage II: If sg. pl, then by the region lemma su E P18. In this case, add to our
subgraph the segments of q and qa from su to their first hit on p, and reroute (7 to take
these q segments. Do similarly if tu pa. Then the enlarged subgraph still lies inside C’,
the outside of (7 lies within P18, (7 is disjoint from pu, and the vertices s2, tl, t, and
appear on C’ in that order.
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$1

FIG. 5. The shell

Stage III: Since every q path now begins and ends on C, any q subpath that escapes
must return to (7. Add ql to our subgraph segment by segment, being careful to reroute
C along every segment that would otherwise escape. Let r be such a segment. The
endpoints of r must lie on a p path. Since r cannot have a pl-pa hit, r does not straddle
81 or tl. By the straddle lemma, r does not straddle s2 or t2. Therefore, C still contains
s, tl, t, and sl in that order. Also, C continues to avoid p and enclose the entire
subgraph. In a similar manner, add q3.

The remainder of the proof is devoted to showing that q also lies inside C. The next
two propositions show that C is well behaved.

Denote by C+ the oriented subpath of C from s to s2 to tl. Similarly define C-
from tl to t2 to Sl.

PROPOSITION 4.9. (i) C+ contains the first hit ofpl with ql;

(ii) C+ contains the last hit ofpl with q3;

(iii) C- contains the first hit ofp3 with ql;

(iv) C- contains the last hit ofp3 with q3;

(v) C+ contains the first hit of ql with pl;

(vi) C+ contains the first hit of q3 with pl;

(vii) C- contains the last hit of ql with p3;

(viii) C- contains the last hit of q3 with p3;

Proof. (i) If Sl ql thenwe need only observe that Sl C+. Otherwise, observe that
the first hit c ofpl with ql lies on C+ in Stage I of the above construction, and cannot be
straddled by any ql or q3 segment in Stages II or III. Statements (ii)-(iv) follow similarly.

(v) If s2 pl then we need only observe that s2 C+. Otherwise, observe that
the first hit d of ql with pl lies on C+ in Stage II of the above construction, and can-
not be straddled by any ql or qz segment in Stage III. Statements (vi)-(viii) follow
similarly.

PROPOSITION 4.10. Suppose sz
and qa upon pl. Then these vertices appear on C+ in the order Sl, a, sg, b, tl. Analogous
statements hold at tl, tz, and sl.

Proof. Let c denote the first hit of p on ql, and let d denote the last hit of pl on
qa. By the previous proposition a, b, c, and d lie on C’+, with c being the first, and d
being the last. By the crossing lemma applied to C’ and c, b, tz, and d, b cannot precede
tz. By another application of the crossing lemma to c, b, sz, and d, b cannot precede s2.
Similarly, s2 cannot precede tz.
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We now consider a cycle inside C, made up mostly of ql and q3, which we will show
contains q on its inside.

Let g be the path inside (7 from s to t constructed by following p from s to q,
ql to s2, q3 from s2 to the last hit of q along p, andp to t. Similarly, define g’ from t
to t to Sl. Then by the preceding proposition and an application of the crossing lemma
9 and 9’ are vertex-disjoint (except for s and t). We will show that q lies inside 99’.
First we prove the following.

PROPOSITION 4.11. Consecutive hits of9 with C+ appear in forward order along C+.
Similarly, consecutive hits of9’ with C- appear in forward order along C-.

Proof. We show that 9 cannot pass through a vertex a on (7+ and subsequently hit a
vertex b, which precedes a on C+. We proceed by induction on a along (7+. Initially, we
take a s. (See Fig. 6.)

FIG. 6. Consecutive y hits appear in order along C+.

If a t then g must proceed to hit C+ at some vertex b, which, by the induction
hypothesis, succeeds a along C+. If b t, then g does not proceed beyond b. Suppose
that b tl, and let r denote the a-b subpath of . Since does not self-intersect, g
will hit neither a nor b again. Suppose that hits some vertex c C+ lying strictly
between a and b. Let r’ denote the subpath of from c to tl. Then r and r’ violate the
crossing lemma applied to (7. Therefore, g subsequently never hits anyvertex preceding b
on C+. [:]

So far we have shown that the shell C is a face of the graph G q2 on which the
vertices s2, t, t2, and Sl appear in the given order, and that C is disjoint from p2 (except
for S and t). We note that q2 is disjoint from the cycle gg (except at s2 and t2). All
that remains to be shown is that q2 lies inside the cycle gg, implying that q2 (and hence
all of G) lies inside C, and that q2 is vertex-disjoint from C (except at s2 and t2).

We shall need the following. We say that gg has four sections, meaning the t2-s
subpath (section I), the s-s2 subpath (section II), the s2-tl subpath (section III), and
the tl-t2 subpath (section IV).

PROPOSITION 4.12. No gg’ segment ofp2 lying outside (to the left of) gg’ has endpoints
in two different sections.

Proof. Suppose that p2 has a gg’ segment xy lying to the left of gg’, with x and y
in different sections of gg’. By the endpoint lemma s, te ; pe, so neither x nor y is
equal to se or re. Therefore, both gg’ paths from x to y contain an s or t vertex, and in
particular both paths hit C at some point strictly between x and y. If x s or t, let a
be the last vertex of gg’ (strictly) before x which lies on C, and let b be the next vertex of
gg’ (strictly) after x which lies on C. (See Fig. 7.) If x s or t, the choice of a and b
depends on the direction of the p2 segment, gg’ hits y strictly after hitting b (and before
returning again to a), so the cycle formed by the ab subpath of gg’ and C encloses y in
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the region to its left. But gg’ hits C after hitting y, so that gg hits C after hitting b at a
vertex between a and b. This contradicts the previous proposition. [3

gg

FIG. 7. ggt cannot reach t.

PROPOSITION 4.13. Path q2 lies inside (to the right of) gg’.
Proof. Partition p2 into its 99’ segments. Since sl lies in sections I and II, and tl lies

in sections III and IV, some 99’ segment r of p crosses from either section I or II, to
either III or IV. By the previous proposition, r lies inside 99. Segment r must hit q first,
qa last, and in between r must hit an internal vertex of qz. Since q2 is disjoint from 99’,
all of q2 lies inside gg’. [3

This concludes the proof of Theorem 4.1

5. Extracting a Kuratowski homeomorph.
DEFINITIONS. Let C be a cycle in G, and let e and f be edges of G not in C. Define

the equivalence relation =c by e =c f if and only if there is a path in G that includes
e and f and has no internal vertices in common with C. The subgraphs induced by the
edges of the equivalence classes of E(G) E(C) under =c are called the bridges of
G relative to C. The vertices of attachment of bridge B to cycle C are the vertices in
V(B) V(C).

A bridge with k vertices of attachment is called a k-bridge. Two k-bridges with the
same vertices of attachment are equivalent k-bridges. The vertices of attachment of a k-
bridge B with k > 2 effect a partition of C into edge-disjoint paths, called the segments
of/3. Two bridges avoid one another if all the vertices of attachment of one bridge lie in
a single segment of the other bridge; otherwise they overlap. Two bridges B and B’ are
skew if there are four distinct vertices u, v, u’, v’ of C such that u and v are vertices of
attachment of B, u’ and v’ are vertices of attachment of B’, and the four vertices appear
in the order u, u’, , v’ on C. It is shown in [BM 77] that if two bridges overlap, then they
are either skew or equivalent three-bridges.

If C is a Jordan curve in the plane, then the rest of the plane is partitioned into two
disjoint open sets called the interior and exterior of (7. We denote the closures of the
regions by IntC and ExtC, respectively. In a plane graph G, each bridge of G relative
to C is entirely contained in IntC or ExtG. A bridge in IntC (ExtC) is called an inner
(outer) bridge.

LEMMA 5.1. IfG isplanar, and G + e is nonplanar and triconnected, then we can find
a Kuratowski homeomorph in G + e in O(log n) time with O(n log log n/log n) processors.
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Proof. Let u and v be the endpoints of e. The proof of Kuratowski’s theorem in
[BM 77] relies on finding a cycle (7 of G that contains u and v and is such that the set of
edges in IntC is maximal. We give a parallel algorithm for finding such a maximal cycle.
The rest of the proof follows by a case analysis given in [BM 77]. Since G is biconnected,
we can find a cycle C in G containing u and v by finding two disjoint u-v paths (see [KS
91]). Now consider the set of bridges of G with respect to the cycle C. Given a planar
embedding of G, the bridges may be partitioned into two sets:

Outerc {Bi Biis embedded in ExtC},

Innerc {Bj Bjis embedded in IntC}.

A bridge B E Outerc is in the set Outer-skewc if B is skew to (u, v); B is in the
set Outer-nonskewc if it is not skew to (u, v). Since G + e is nonplanar, there is at least
one bridge in the set Outer-skewc (otherwise e can be embedded in ExtC in a planar
embedding of G).

We first modify the cycle C to obtain a cycle C containing u and v so that there
are no bridges in the set Outer-nonskewc with respect to the cycle C. We then show
how to modify C1 to obtain cycle Ca containing u and v such that the bridges in set
Outer-skewc3 are single edges skew to (u, v).

Since G is biconnected, each bridge has at least two vertices of attachment on C. Let

’ (considered in clockwise order onthe attachment vertices of B on C be zi, z ,..., z
(z/k’) the first (last) attachment vertex of Bi on C. The segment C[z; zi(7). We call z

is called the attachment bar of B on C. It was shown in [BM 77] that outer bridges
avoid one another. Hence, the attachment bar of each outer bridge can overlap with the
attachment bar of another outer bridge only at an end vertex, and not at any internal
vertex. Each bridge in the set Outer-nonskewc has all of its attachment vertices (and
thus its attachment bar) on the segment C[v; u] or C[u; v].

Consider the planar embedding of B and its attachment bar, and call the resultant
andgraph B[ (see Fig. 8). Note that B is biconnected and planar. In Bi the vertices zi

zi are on the outermost face in the planar embedding. Since B is biconnected, the
k toouter face of B is a simple cycle C. Let Pi (x, xi be the subpath of C from xi xi

avoiding the the attachment bar of Bi.

C attachment bar of Bi
x 1.

X3 X2

FIG. 8. The graph B[.

In C, replace all the segments that are attachment bars of some bridge B E Outer-
k, Cnonskewc by the path Pi[x; xi ]. The new cycle contains both u and v, and all its

outer bridges are skew to (u, v).
We perform the transformation from C1 to Ca in two stages. Consider the cycle

C and its bridges Bi in ExtC1, which are skew to (u, v). If Bi has only two attachment
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vertices, then clearly the bridge is only a path, and in fact, since the graph is triconnected,
it is only a single edge. Assume that B has more than two attachment vertices on C1.

2 k, (considered in order). TheLet the attachment vertices on 6’ [u; v] be z, z, .., z
kiattachment vertices on C’ [v; u] are yl,..., /’ (see Fig. 9). We will replace C[zl; z

by a path P’ in B to obtain C2; and subsequently replace C [; V’] by a path P" in B
to obtain C’3, the maximal cycle.

s

s

S

2

FIG. 9. Bridge with attachment vertices skew to (u, v).

Obtain the subgraph B ofB by deleting the attachment vertices t on C [v; u] (see
Fig. 10). Consider the external face in a planar embedding of BI. Find a path P from z
to z’ along the external face. This path may not be simple, as shown in Fig. 11. Find the
articulation vertex closest to z on P, and obtain a simple path P by "short-circuiting"

/ pP. Replace the segment C [z;z by the path to obtain the cycle C. Do this step
in parallel for every bridge in ExtC skew to (u, v). Now iden.tify the. subgraphs B of G,

and// be the attachmentwhich form bridges with respect to the new cycle C. Let z
vertices of B on the upper and lower chains C [u; v] and Cz Iv; u]. Obtain the subgraph

of Bi on Cz [u; v]. In a planar embeddingB ofB by deleting the attachment vertices z
ofB replace the segment C [//I; y’] by the path P" from//I to//’ in the external face.
If G is triconnected it is easy to see that the path P" is simple (see Fig. 12). After the
replacementwe obtain cycle C3; the only bridges in ExtC3 are single edges skew to (u, v).

Consider the set Innerc of inner bridges of Cz. Since G + e is nonplanar, the set
Inner-skewc is nonempty (else a planar embedding for G + e can be obtained). If each
bridge in Inner-skewc avoids every bridge in Outcrop, then each such bridge can be
transferred to ExtCz, yielding a planar embedding for G + e. Hence, there must be an
inner bridge B that overlaps an outer bridge B and that is skew to (u, v).

At this point, by considering various cases for the possible configurations of attach-
ment vertices of B and B on Cz, we can obtain a Kuratowski homeomorph as in
[BM 77]. The parallel algorithm takes O(log n) time using O(n log logn log n) proces-
sors using [RR 89], [CV 91], [KS 91].

From the proof of Lemma 5.1, we also conclude the following.
LEMMA 5.2. In aplanargraph G, we can afind a maximal cycle C that contains u and
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s %

s
!

/

FIG. 10. Subgraph B.

/

%
p u

ki

1
xi

FIG. 11. Generalform ofpath P’.

p!

FIG. 12. Path P is simple.
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v in O(log n) time using O(n log log n/log n) processors.
Lemma 5.1 yields the parallel algorithm described below.

ALGORITHM FOR FINDING A KURATOWSKI HOMEOMORPH:
Step 1. Order the edges in E arbitrarily as el, e2,..., e,,. Let Gi be the subgraph con-
sisting of the first edges. Clearly, G is planar, and G,, is not.
Step 2. Find the smallest index k such that G1, G2,..., Gk-x are all planar, but Gk
(= G_ + e) is not, using the planarity testing algorithm of [RR 89].
Step 3. Find a triconnected nonplanar component of G; call it G. Note that e G
and that G e is planar and biconnected. Apply Lemma 5.1 to the graph G e and
edge ek to find a Kuratowski homeomorph.

Remarks. We can assume that G has O(n) edges; if not, we can select any 3n 5 of
them, keeping G nonplanar. Step 2 can be implemented either by checking all the graphs
Gi in parallel for planarity, or by doing a binary search on the graphs G. Using the algo-
rithm of [RR 89], that takes O(log n) time using O(n log log n/log n) processors, we can
implement the above algorithm to run in O(log n) time with O(n log log n/log n) pro-
cessors, or in O(log n) time using O(n log log n/log n) processors. We leave open the
problem of finding a Kuratowski homeomorph in the same time and processor bounds
as for planarity testing, i.e., O(n log log n/log n) processors and O(log n) time.

THEOREM 5.3. In a nonplanar graph G, a Kuratowsld homeomorph can be obtained
in O(log n) time using O(n2 log log n/ log n) processors, or it can be obtained in O(log2 n)
time using O(n log log n/ log n) processors.

6. Finding a K3,a homeomorph. Our algorithm for finding a K3,a homeomorph is
a parallelization of the sequential algorithm given in [As 85]. This algorithm is based on
the following theorem of Hall [Ha 43].

THEOREM 6.1 (Hall). Each triconnected component ofa K3,a-free graph (i.e., a graph
not containing a Ka,3 homeomorph) is eitherplanar or exactly the graph

THEOREM 6.2. There is an O(log n) time algorithm using O(n log log n/ log n) pro-
cessors, oran O(log2 n) algorithm using O(n log log n/ log n)processors, whichfinds a/3,3
homeomorph (ifone exists).

Proof. First decompose G into its triconnected components. By Hall’s theorem, one
of the components is nonplanar and contains at least six vertices. Use the algorithm of
Theorem 5.3 to find any Kuratowski homeomorph G’. In case it is a homeomorph of Ks,
call the vertices in G’ of degree four v, v, va, v4, and vs. If G’ is exactly the graph Ks,
then the triconnected component containing G’ must contain another vertex v not in G’.
Obtain three vertex-disjoint paths from v to any three vertices of the Ks, say v, v2, and
va. These can be found by introducing an artificial sink vertex u and three edges from u
to v, v2, and va, and then finding three vertex-disjoint v-u paths. From the three paths
and the K5 it is easy to find a subgraph homeomorphic to Ka,a by putting Vl,
in one partition of the K,a and v, v4, and v5 in the other.

If the homeomorph G’ is a subdivision of Ks, then consider a vertex u on the path
P(vl, v), where v and v2 are vertices of degree four in G’. (P is a subdivision of an
edge of the Ks.) Since G is triconnected, there must be a path in G {vx, vz } from u to
some other vertex w of G’. Use this path to extract a Ka,a homeomorph by considering
where the path first hits G’ (details in [As 85]).

7. Two disjoint paths: The nonplanar case. We now develop the algorithm to solve
the two paths problem for the case of general graphs. When the graph is planar, we can
use the algorithm outlined earlier. If the graph is a Ka,a-free graph, then using a theorem
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by Hall [Ha 43] it is easy to solve the problem by reducing it to the planar graph case.
Henceforth, we will assume that the graphs are nonplanar and contain homeomorphs
of K3,3.

The algorithm for the case of general graphs proceeds by first finding a Kuratowski
homeomorph in a nonplanar graph. In case the obtained homeomorph is of a Ks, we
convert it to a K3,3. Using the K3,3 it becomes easy to obtain a parallel algorithm using
the approach by [Sh 80].

Suppose G contains a subgraph (3,3 homeomorphic to K3,3. Call the nine paths of
(3,3 representing the edges of K3,3 p-edges, and call the six vertices of G3,3 representing
the six vertices of K3,3 p-vertices.

ALGORITHM FOR TRICONNECTED GRAPHS HAVING A K3,3 HOMEOMORPH:
Step 1. Find the separating triples in G [CKT 91]. For each triple {a, b, c} discard the
components of G {a, b, c} which do not contain a vertex from {sx, s, tl, t2}. Add
virtual edges between the vertices in each triple. Let G’ be the new graph. (This is
needed for Step 5; for details see [Sh 80].)
Step 2. Find a/3,3 homeomorph in G’ (else G’ is K3,3-free); call it G3,3.
Step 3. Modify G3,3 to include Sl as one of the "corner" vertices. This is done by finding
three-disjoint paths from sl to G3,3 Call the modified homeomorph G’3,3"
Step 4. Modify G,3 further to include tl either as a corner vertex or on a p-edge incident

I!to sl. Call this homeomorph (3,3.
Step 5. Find four vertex-disjoint paths 7rl, 7r2, 7r3, and 7r4 connecting sl, tl, s2, and t2
with four p-vertices of G" different from sl and tl These paths together with the/3,33,3
homeomorph yield the two disjoint si, ti, 1, 2, paths.

Step 1 can be parallelized using the algorithm in [CKT 91]. Theorem 6.2 yields a
parallel algorithm for step 2. For steps 3 and 4, Shiloach gives a sequential path extension
algorithm which modifies G3,3. We parallelize this by working withprefixes. We describe
the procedure in detail for step 3; the idea for step 4 is similar. Our case analysis is made
more complicated by the fact that we do not do the preprocessing done by Shiloach, to
obtain the "W-assumption" about the nature of the paths.

We make sl a p-vertex by constructing three-disjoint paths P1, P2, and P3 from s
9. v’ as its vertices ofto three p-vertices on the same side of G3,3. Let P have v, v ,..

intersection with the p-edges (considered in order from s). Let pl,..., p, denote the
v.’l respectively. We define the set ofprefixes (i, j, k) ofsegments Pi[sl;vi],.. ",Pi[ql; ,

P as {P P P3}
LEMMA 7.1. The subgraph G3,3 and some set ofprefixes yields a subgraph Gt3,3 of G

homeomorphic to K3,3, with s as a p-vertex.
Proof. The proof is based on an exhaustive case analysis. First consider the set

(1, 1, 1) of P. In case the prefixes are incident on different p-edges or on p-vertices, use
one of the base cases from [Sh 80], for which no extension of any prefix is required to
get G’ The nontrivial case is that in which all three prefixes are incident on the same3,3"
p-edge, say el, with endpoints vl and v2. In this case extend the middle prefix to its next
intersection with a p-edge (or a p-vertex). There are several cases to consider:

1. The extended segment hits el.
2. The extended segment hits a p-edge different from el.
3. The extended segment hits a p-vertex different from vl and v.
In the first case, continue extending the segments by extending the middle prefix at

each step. Since the P-paths end at different p-vertices, this construction eventually falls
into case 2 or 3. By extending only the middle prefix, we ensure that the middle prefix



502 SAMIR KHULLER, STEPHEN G. MITCHELL, AND VIJAY V. VAZIRANI

does not intersect the two end segments [vl; xl] and Iv2; x2] of el, where xl and x2 are
the end vertices of the nonmiddle prefixes. With this condition, in the last two cases the
solution follows from Shiloach’s base cases.

We illustrate this construction with an example. In Fig. 13 the middle prefix is of
path P, which we extend to its second hit with a p-edge. If it hits a p-edge other than
e, we immediately apply case 2. Assume that it is el. Now the prefix of P3 becomes the
middle prefix, which we extend to its second hit with a p-edge. In this case it is a p-edge
different from e; apply a base case to obtain G,3 (see Fig. 14).

p.

prefix (1,1,1)

FIG. 13. Extend the middle prefix P2.

prefix (1,2,2)

FIG. 14. Extending P3 yields a base case.

We illustrate a sequence of extensions of the middle prefixes in Fig. 15; the sequence
of extensions terminates when P hits a p-edge different from e.

We now develop a parallel algorithm for finding the subgraph G,3. First check all
the base cases (when the first hits of the P paths yield G,a). The only nontrivial case is
when the first hits of all three P paths are on p-edge e. Now "guess" the ending con-
figuration (there are only six of them) of the prefixes of the paths P, P, and P3 on el.
Extend the middle path (say P2) of the guessed configuration until it first hits a p-vertex
or an edge different from el. This can be done in O(log n) time using O(n/log n) proces-
sors. After extending Pz, compute the leftmost and rightmost hits (x and xr) of P: with
p-edge e. The segments e [v; x] and e [xr; v2] are free of intersection with P. Extend
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81

Vl v2

extend P
prefix (1,2,1)

extend P2
prefix (1,3,1)

extend Pa extend P:
prefix (1,3,2) prefix (1,4,2) v2

FIG. 15. A sequence ofextensions ofprefixes ofthe P-paths.

paths P1 and Pa independently until they land on these segments in the same order as in
the guessed configuration. We check to ensure that they do not have intersections with
any p-edge other than el. (If they do, then we guessed the configuration incorrectly.)

Shiloach showed further that we can obtain G,a with sl as a p-vertex and with either
1. tl also as a p-vertex, or
2. tl lying on a p-edge incident with 81.

The construction is similar to that given above. Find disjoint paths Q1, Q2, and Qa con-
necting tl with three distinct p-vertices of G,a; now there are more cases to consider,
since the prefixes of the Qi paths may land on p-edges incident to .81 or on p-edges not
incident to sl.

LEMMA 7.2. The subgraph G’3,3 andsorhe set ofprefixesyields G’3’,3 satisfying conditions
1 and 2.

This construction is similar to the above construction and can be carried out in
parallel.

For Step 5 we introduce artificial source and sink vertices to construct the four 7ri-
paths connecting 81, tl, 82 and t2 with four p-vertices on G,a that are different from s
and tl (these are guaranteed to exist by Step 1). Shiloach showed how G" could be3,3
used to make two disjoint connections, one between 7rl and 7re and the other between
7ra and 7r4, to yield the desired disjoint si, ti paths.

There are three cases to consider:
1. sl and tl are p-vertices not connected by a p-edge.
2. sl and t are p-vertices connected by a p-edge.
3. tl is on a p-edge incident with sl.

Shiloach showed that by considering only the first hits of 7ra and 7r4 we can obtain a
solution for case 1.
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The solution for case 2 is obtained as follows: the only nontrivial subcase (the others
are symmetric) is as shown in Fig. 16. We first describe an O(n) sequential "game" played
by paths 7rl, 7ra, and 7r4 on p-edges e2 and e3. (Our game is a modification of Shiloach’s
sequential algorithm.) We say that a prefix of path 7ri covers a prefix of 7r if they land
on the same p-edge with the endpoint of 7r closer to s than the endpoint of 7ri. The
game starts with 7ra. Inductively, we extend the current 7r path until it lands uncovered
on p-edge e2 or ca, or until it leaves the game altogether by landing on a p-edge different
from el, ez, or ca. Ultimately, one of the three paths leaves the game and we obtain
prefixes allowing disjoint 7rl-Tr2 and 7ra-Tr4 connections. See Figs. 17 and 18.

73
tl

FIG. 16. The only nontrivial subcasefor case 2.

74

7r3
tl

FIG. 17. Paths ra and 7ra cover rl.

We give a parallel algorithm to obtain such a prefix. First guess which p-edge each
path ends on, and which path has left the game. There are only six distinct configurations
and we check all of them. Suppose we guess that the first path to leave is 7r. Extend
7r to its first hit on some edge other than e, e, or ca. (The appropriate prefix of 71"

can be obtained by a prefix computation in O(log n) time using O(n/log n) processors.)
Extend 7ra and 7r4 to their shortest prefixes on edges e2 and e3 that are not covered by the
extended prefix of 7r. If our guess was correct, then from the success of the sequential
game we know that the extensions of 7ra and 7r4 hit no p-edges besides e, e, and ca. It
is now easy to obtain the required disjoint connections.
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71"4

FIG. 18. Path 7rl covers 7r4.

The solution for case 3 is very similar to the solution for case 2. The only difference
is that all four 7r paths participate in the game on all three edges e. Ultimately, one of
the four paths leaves the game to hit another edge. We guess which path is the first to
leave and extend the other paths until they are not covered by the extended prefix of the
first one. A solution can now be obtained (see [Sh 80] for details).

LEMMA 7.3. One ofthe sets ofprefixes of 7r along with the modified G3,3 provides the
disjoint 7r-yr2 and 71"3-71"4 connections.

Remark. Our Lemmas 7.1-7.3 avoid Shiloach’s "W-assumption," which relies on a
sequential process at the expense of more complicated case analyses.

The bottlenecks in the algorithm are Step 1 [CKT 91] and finding a K3,3 homeo-
morph (for which it is better to use the inefficient algorithm since it gives a better parallel
time bound).

THEOREM 7.4. Given a graph G and vertices 81, tl, 82, and t2, we can solve the two
pathsproblem in O(log n) time using O(n2 log log n/ log n) processors.

Acknowledgments. Samir Khuller thanks the people at the IBM T. J. Watson Re-
search Center for the pleasant environment provided during the summer of 1988.
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ALGORITHMS FOR SPLICING SYSTEMS*
Ft. w. GATTEFtDAMt

Abstract. In [Bull. Math. Biol., 49 (1987), pp. 737-759] T. Head proposed a mathematical abstraction of
the effect of restriction enzyme digestion and subsequent religation in the recombination of DNA molecules.
In particular, he was concerned with the structure of the language of all DNA which could be produced by
a splicing system consisting of a finite set of initial DNA and two finite sets of enzymes. He was able to show
that, under appropriate conditions, the language produced is strictly locally testable and hence recursivcly
decidable.

In this paper, an algorithmic reduction on the set of patterns is given and additional conditions introduced.
The main result is that for a particular class of splicing systems there is a universal algorithm which produces
a finite automaton that accepts the splicing language. The relation between this class and that studied by
Head is examined and the questions of membership, finiteness, and equivalence of languages are shown to be
recursive. Algorithms are given which are implementable and may be of practical interest.

Key words. DNA, finite automata, splicing system, strictly locally testable

AMS(MOS) subject classifications. 68Q20, 68Q45, 92A90

1. Introduction. The biological rationale and fundamental definitions for splicing
systems are given in some detail by Head in [5]. For the sake of completeness we give
a brief account here. See also Watson, Tooze, and Kurtz [9] for a general reference on
DNA.

A deoxyribonucleic acid molecule (DNA) will be viewed as a string on an alphabet
of four symbols, each symbol representing a deoxyribonucleotide pair. In the biological
notation the pairs are A/T, C/G, G/C, and T/A. A DNA string is thought of as being ori-
ented and the reversal of such a string is a different string. Only linear DNA, not circular,
will be considered. To illustrate the biology, consider a string

CTAGAATTCGTA...

GATCTTAAGCAT..

The action of an enzyme is to "recognize" a certain pattern, for example

GAATTC

CTTAAG

in the above, and to cut the string into two fragments

CTAG AATTCGTA...

GATCTTAA GCAT....

Note that the G/C on the left of the pattern and C/G on the right are not involved in the
cut. They are, however, required (by this particular enzyme) for the cut to take place.
The staggered ends of the DNA reconnect to any matching ends so as to produce a
complete DNA molecule. So for example if

AATTACT.

TGA...

Received by the editors May 25, 1987; accepted for publication (in revised form) June 4, 1991.
Department of Mathematical Sciences, University of Alaska, Fairbanks, Alaska 99775-1110.
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had been cut from some other DNA molecule (by a different enzyme) then a new DNA
string

CTAGAATTACT...

GATCTTAATGA.

can be formed by the recombination (called religation). To abstract this process each
pair is viewed as a single symbol in an alphabet A. An enzyme is represented by a triple
(a, z, b) for a,x,b in A*. The cut and recombination takes place at z. In the above ex-
ample, a =G/C, z =A/T A/T T/A T/A, and b =C/G. Thus if (c, z, d) represents another
enzyme and uazbv and wczdz in A* represent DNA molecules, the molecules repre-
sented by uazdz and wczbv are said to have been formed by splicing at z. We need not
consider the symbol pairing aspect explicitly since we will not be concerned with DNA
fragments which have not been recombined.

The formal definition of a splicing system which abstracts the concepts described
above as well as other fundamental definitions will be given in 2. In 3 a reduction
process on sets of enzymes is introduced and its basic properties, including associated
algorithms, demonstrated. The construction of the associated automata and fundamen-
tal algorithms for splicing systems are presented in 4. In 5 the relation of this work to
that of Head is explored. Finally, in 6 the results are summarized, some open questions
are posed, and some applications are discussed.

2. Fundamental definitions. In this section we give the formal definition of a splic-
ing system and also of certain terms which will be used to describe properties of such
systems. Before doing so we must introduce one other biological complexity. In the
example of 1, the DNA was cut

..G AATTC...

CTTAA G...

but (by a different enzyme) it could be cut

..GAATT C...

...C TTAAG....

Because of the orientation of the molecules, cuts of the former type cannot recombine
with cuts of the latter type. Consequently two sets of patterns are introduced, called left-
and right-handed.

DEFINITION 2.1. A splicing system S (A, 1, B, C) consists of a finite alphabet A, a
finite set I of initial strings in A*, and finite sets/3 and C of triples (a, z, b) with a, z, and
b in A*. Each such triple in B or C is called apattern. For each pattern (a, z, b) the string
azb (often as a substring) is called a site and the string z is called a crossing. Patterns
in/3 are called left patterns and patterns in (7 are called right patterns. For uazbv and
wczdz in A* with (a, z, b) and (c, z, d) patterns of the same hand, uazdz and wczbv are
constructed by splicing at the crossing z. The language generated by S, denoted L(S), is
the minimal subset of A* which contains I and is closed under the operation of splicing.
A language L is a splicing language if L L(S) for some splicing system S.

Example 2.1. Let A {a, b, c, d, p, q, u, v, w, x}, I {uaxbvaxbw, pcxdq}, B
{ (a, x, b), (c, x, d) }, and C be empty. The pattern (a, x, b) together with the initial string
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uaxbvaxbw can be used to create strings of the form uax(bvax)+bw. Applying the pat-
tern (c, x, d) and the initial string pcxdq, we see that the language generated is (uax +
pcz)(bvax)*(dq + bw).

Notation. For u,v,w in A*"
1. A denotes the empty string.
2. u -< w denotes u a substring of w, u w.
3. u w denotes u a substring of w, possibly u w.
4. u -q w denotes u a terminal substring (suffix) of w, i.e., w vu, possibly u w.
5. u - w denotes u an initial substring (prefix) of w, i.e., w uv, possibly u w.
DEFINITION 2.2. A splicing system S (A, I, B, C) is crossing disjoint if there do

not exist patterns (a, x, b) in B and (c, x, d) in C with the same crossing x. In the case
x A we assume all patterns (a, A, b) are in B.

Convention. All splicing systems are assumed crossing disjoint. In the following X
always denotes/3 t2 C for a crossing disjoint splicing system and we simply write S
(A,I,X).

In the full generality of splicing systems there can be a great deal of interaction
between various splicing occurrences. For example, it is possible for a crossing of a site
y to appear in a splicing product uaxdz formed from uaxbv and wcxdz as in Definition
2.1 which did not appear in either uaxbv or wcxdz. Similarly sites appearing in uaxbv
or wcxdz can be destroyed in uaxdz. For most of this work we limit this aspect of the
complexity with the following conditions.

DEFINITION 2.3. X ispermanent if for each pair of strings uaxbv, wcxdz in A* with
(a, x, b) in X, (c, x, d) in X If y is a subsegment of uax (respectively, xdz) that is a
crossing of a site in uaxbv (respectively, wcxdz) then the same subsegment y of uaxdz
is a crossing of a site in uaxdz.

Example 2.2. Let A (a, b, c, d, u, v, w, x, y}, I (udbcabcv, abcvwabcd,
vabxabcy}, and patterns B ((A, ab, A), (A, bc, A), (A, d, A) } and C be empty. In this
example there is no context (called null context) so X B tO C B is necessarily per-
manent. In 4 the language for this example will be computed.

DEFINITION 2.4. X isfull context ifwhen (a, x, b) and (c, x, d) are in X then (a, x, d)
is in X.

Note that since X is B t_J C for a crossing disjoint splicing system, the patterns of
the crossings x of Definitions 2.3 and 2.4 are all of the same hand. Also observe that
Example 2.1 is not full context but Example 2.2 (being null context) is full context.

Example 2.3. Let A (a, b, c, d, x, y}, B ((a, xy, b), (c, xy, d), (ax, y, d), (c, x, yb) },
and C be empty. Then X B tO C B is not permanent since splicing axyb with cxyd
at xy yields axyd in which the substring xy is no longer a crossing. Note that this occurs
because X is not full context.

Example 2.4. Patterns can be added to those of Example 2.3 so as to make X full
context. Let B { (a, xy, b), (c, xy, d), (a, xy, d), (c, xy, b), (ax, y, d), (c, x, yb) }. Note
that X is not permanent since splicing axyd with cxyb at xy yields axyb with y a site in
axyd but not in axyb.

Since the sets B and C are finite, it is certainly algorithmic to determine if 5’ is
crossing disjoint. Moreover it is algorithmic to determine if X is permanent since the
u,v,w,z of Definition 2.3 need be no longer than the maximum length of eyf for (e, y, f)
in X. Thus a finite search can be used to determine if X is permanent. A more efficient
algorithm is given in 3.

The fundamental results of 3, 4, and 5 depend on analysis of substrings in DNA
strings. The location of the substrings will be as important as their spelling and so we
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adopt the following notation. The diagram

u v
w x

is used to indicate that wz -< uv with z -< v and that there exist ul - A, u2 : A, vl - A,
v A, such that u uu, v vzv, uvx w, and uv uUVlZV uwzv2. That
is,

Ul u2 Vl x V2
W X

is implied. The point is that the u, u2, vl, v will play no role except to assure strict
string containment. Similarly,

$ w x $

has the same meaning except that Ul and/or v2 may be A. Also

means u A, but Vl and/or ve may be A. Finally,

w : x

means that the left end of z (right end of w) may be anywhere within u or v. That is
either

o1"

w x

is possible.

3. Reduction. In the following S (A, 1, B, (7) is a crossing disjoint splicing system
and X B tA C. An algorithmic reduction of X will be demonstrated, the purpose of
which is to remove certain superfluous patterns without changing the language L(S).
The intuition is that for X permanent there can be only limited interaction between
splicings with various patterns. Moreover only trivial interaction is possible and that can
be removed by the reduction process.

DEFINITION 3.1. Reduction is the process of forming a subset X0 of X by removing
patterns from X according to the rules:
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1. If (a, x, b) and (p, z, q) are in X such that p -t a, q b, and p # a or q # b, then
remove (a, z, b) from X.

2. If x and V are crossings with x -< , say, x2, and for each (r, V, s) in X
there is (p, z, q) in X with p q rVx and q y2s (i.e., each pattern with crossing contains
a pattern with crossing z inside V) then remove all patterns with crossing from X.

DEFINITION 3.2. A set of patterns is reduced if no patterns of X are removed by
reduction (i.e., X0 X).
e pattern sets of the examples in 2 are all reduced. Note in particular Example

2.3.
PROPOSITION 3.1. The set Xo is independent ofthe order ofthe removals according to

roles 1 and 2 ofDefinition 3.1.
Proof. Removals ofe 1 cannot affect removals ofpe 2 since (p, x, q) is removed

only if (a, x, b) is in X and axb pxq. us if (p, x, q) could be used in a pe 2 removal
to veri that a crossing can be removed, the site axb works as well. In the same way,
if a crossing z can be used in a pe 2 removal to remove a crossing V and a crossing z
used to remove x, then z can be used to remove .

PROPOSITION 3.2. The reduction process is algodthmic.
Proof. It is necessa to check finitely many substrings of finitely many strings against

a finite set of strings. E
For Xo obtained from X by reduction, Xo Bo Co, where Bo and Co are, re-

spectively, the left and right patterns in Xo (i.e., Bo Xo B and Co Xo C).
Moreover (A, I, Do, Co) is a crossing disjoint splicing system. Reduction does not affect
the language generated by the splicing system as formally stated below.

EOREM 3.1. L(A,I,X)= L(A,I, Xo).
Proof. If (a, x, b) and (p, x, q) are as in rule 1 of Definition 3.1, then any word in

L(A, I, X) constructed by a splice using axb could be constructed by a splice using pxq
and so is in L(A, I, X). Similarly, if (r, y, s) and (p, x, q) are as in role 2 then any word
constructed by a splice using rys could be constructed by a splice using pxq.

PROPOSITION 3.3. IfX i$peanent and reduced then X isll contt.

Proof. Suppose (a, x, b) and (c, x, d) are in X. Splicing axbwith cxdyields axd. Since
X is permanent, x is the crossing of a site in axd, say, (e, x, f) in X with e a, f d.
Crossing exf with axb yields exb. en in exb, x is the crossing of a site (g, x, h) in X
with g e a, h b as shown:

a x
$ e x b

g

Thus if e # a, X can be reduced by removing (a, x, b), i.e., by a type 1 reduction. Since
X is reduced, a e. By a similar argument, f d so (a, x, d) is in X.

PROPOSITION 3.4. IfX ispermanent then any splice is reversible.
Proof. If uxv is spliced with wzz at x to produce uxz and wxv, the x remains the

crossing of a site in uxz and wxv, so uxv and wxz can be recovered by splicing uzz and
wxv at x.

The significance of permanent and reduced is seen in the next theorem.
TnnOanM 3.2. If X is permanent and reduced then splicing can neither create nor

destroy crossings. That is, ifupxqv and waxbz are such that (p, x, q) and (a, x, b) are in X,
then y is the crossing ofa site in upxbz or waxqv ifand only if y is the crossing ofa site in
upxqv or waxbz at the same location.
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Proof. With the notation as above, we first show that y a crossing of a site in upxqv
implies y a crossing of a site in upxbz or waxqv. It suffices to consider the case x -< y,
since if y -e, upx or y -< xqv, then y is a crossing of a site in upxbz or waxqv, since X is
permanent. Thus let (r, y, s) be in X with rys

_
upxqv and x - y. We proceed by cases

to show x -< y (x : y) is a contradiction to X being permanent and reduced.
1. r-<p.
1.1. There exist p0 A and so A such that porys pxqso,

Splicing porys with rys at y yields rys with x the crossing of a site in porys, hence in rys
since X is permanent. Therefore (Pl, x, q) is in X withp -q p. Since X is reduced, q -<
q as otherwise plxql

_
pxq, and X can be reduced by removing (p, x, q). Then splicing

pxq with pxq at x yields pxq -< pxq, with x the crossing of a site pzxq: pxq

_
pxq,

contrary to X being reduced. Therefore case 1.1 cannot occur.
1.2. There exists p0 A and q0 - A such that porysqo pxq,

P0 v y s q0
p : x : q

Splicing porysqo with rys at y yields rysqo and splicing again with rys at y yields rys.
Since x was the crossing of a site in porysqo it must be a crossing of a site in rys because
X is permanent. Thus plxy

_
rys pxq with (p, x, y) in X contrary to X being

reduced. Therefore case 1.2 and hence case 1 cannot occur.
2. s - q. By an argument similar to that for case 1, case 2 cannot occur.
3. pxq rys (this includes the possibility pxq y),

r y s
: p : x : q :

We show that every site (m, y, n) in X contains a site with crossing the indicated x -< y.
Splice myn and rys at y to obtain ryn and rays. In each, x remains the crossing of a
site. Splice ryn with rays at y to obtain myn. Again x must remain the crossing of a site
in myn. Since the above applies to every such (m, y, n), X can be reduced by a type 2
reduction applied to y. Since X is reduced case 3 cannot occur.

Since none of r -< p, s -< q, or pxq

_
rys can occur, no crossing y with x - y

can be destroyed. Thus crossings of sites cannot be destroyed. To see that crossings of
sites cannot be created, we observe that if X is permanent any splice is reversible by
Proposition 3.4. Thus if upxqv and wrxsz are spliced at x to produce upxsz and wrxqv,
x remains the crossing of a site in each so they can be spliced at x to recover upxqv and
wrxsz. Therefore if the original splice created a site, the resplice would destroy it, which
is not possible by the preceding argument. [3

By definition, if X is not permanent then crossings of sites can be destroyed, so for
X reduced, permanent is equivalent to crossings of sites not being destroyed or created
by splicing.

The remainder of this section is devoted to the development of an algorithm to de-
termine if a crossing disjoint, reduced splicing system is permanent. The existence of
such an algorithm for an arbitrary splicing system is apparent as observed in 2 but after
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reduction, a simplified algorithm is possible. The details of this development are not
required in subsequent sections and the reader may skip to 4.

PROPOSITION 3.5. Assume X is reduced andfull context (as is the case ifX is reduced
andpermanent). Then for (a, z, b) in X, there does not exist (a’a, z, d) in X for a’ ik
Similarly, there does not exist (c, z, bb’) in Xfor b’ A.

Proof. If (a’a,z, d) is in X, then since X is full context, (a,z, d) is in X with
azd - a’azd, so a’ A or X is not reduced. The second statement is proved in a
similar way. ]

PROPOSITION 3.6. Assume X is reduced andpermanent with (a, z, b) and (p, y, q) in
X. Ifeither uaxbv pyq with y -< uax or axbv wpyq with y -< ax for some w then
v A. That is, if

or

P Y q

w p y q

then v A. Similarly, if

or

a x b
w P Y q

w P Y q

then w A.
Proof. Splicing uaxbv (or axbv) with axb at x yields uaxb (or axb). Since X is per-

manent, there exists (p’, y, q’) in X so that

If v A, then q’

_
xb with b q, so q’ -< q with q’ q, contrary to Proposition 3.5. The

second statement is proved in a similar way. [:]

THEOREM 3.3. Let X be a reduced set ofpattems. Thefollowing algorithmic tests are
to beperformed in sequence:

1. Determine if X is full context.
2. Determine if there do not exist (a, x, b) and (c, y, d) in X with cyd

_
uaxbv and

either
2a. cyd - uaxbv, cy -< uax and bv -q d with v A or

2b. cyd uaxbv, yd

_
xbv and ua - c with u A.
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3. Determine if there do not exist (a, x, b) and (c, y, d) in X with cyd uaxbv and
either

3a. d dodl, cydo -q uax, dlw b and there exists (a, x, b’) in X such
that for every writing b’ d’w’, (c, y, dod’) does not belong to X (note
v plays no role) or

3b. c clc0, coyd - xbv, wcl a and there exists (a’, x, b) in X such
that for every writing a’ w’c’, (c’co, y, d) does not belong to X (note
u plays no role).

If X has passed the above sequence of tests, then X is permanent.
Proof. First, X must be full context by Proposition 3.4. Assume X is full context. In

order for X to be permanent, we must have that for any splice using patterns (a, x, b)
and (a2, x, b2) in X for which (c, y, d) is in X and cyd uaxbv with cy uax,
there exists (c, y, d) in X such that c’yd ualxb2 (i.e., y remains the crossing of a site
after uaxblv and a2xb2 have been spliced at x to produce uaxb2). Similarly, if cyd
uaxblv with yd --< xbv then there must exist (c, y, d) in X such that cyd a2xbv.
In all cases the y must be the same subsegment. If the above conditions hold for every
choice (al,x,b), (a2,x, b2), and (c,y,d) in X then X is permanent.

We next investigate the situation (a, x, b), (a2, x, b2), and (c, y, d) in X with cyd
uaxbv and cy ualx. Since X is full context we may take a a2 a. There are
three cases to consider:

1. cyd uax, yd 2 x,

u a x bl. c y d .
In this case cyd uaxb2. That is, this case cannot result in a situation so that X is not
permanent.

2. cyd - uaxbxv, bxv -q d for v = A,

u a x b v
c Y d

By Proposition 3.6, this case implies X is not permanent.
3. d dodl so that cydo -q uax and dw bl,

c Y do d . w I.
Then for every (a, x, b) in X, splicing uaxb with axb for i > 2 we see that for X to
be permanent it is necessary that there exists (c, y, dodi) in X so that di - b. Note that
(c, y, dod) in X is sufficient but since X is full context we may take each c to be c.

Similarly, if (a,x,b), (a2,x,b), and (c,y,d) are in X with cyd

_
uaxbv and yd 5

xbv then the cases to be considered are:
4. cyd xbv, cy x,

This situation cannot result in X being not permanent.
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5. cyd uaxbv, ual c for u A,

c y d :!:
This situation implies X not permanent by Proposition 3.6.

6. c cc0 so that coyd - xbv and wc a,

a x b v
w c Co Y d

For X to be permanent in this situation it is necessary that for every (as, x, bs) in X there
exists (cc0, y, d) in X so that ci q ai. [q

4. Associated automaton. Let S (A, I, X) be a crossing disjoint, reduced, perma-
nent splicing system. We construct a nondeterministic finite automaton from S called
the associated automaton and denoted (S) as follows:

1. Let I {I1,’" ,Im} and let len(i) len(Is) denote the length (number of
symbols) of 1. Then construct states (i, j) for i 1,...,m and j 0,..., len(Ii).
Each (i, 0) is an initial state and each (i, fen(i)) is a terminal state. State transitions are
(i, j 1) to (i, j) on symbol a in A if a is the jth symbol in ls.

2. If x is the crossing of patterns (u, x, v) in X and uxv is a site in Is with the final
character of x the jth character of Is, then label (i, j) as Px. Associate all states labeled
Px (i.e., collapse all states labeled Px into a single state). Note that the association of
states depends only on x and not the particular pattern (u, x, v). The state Px is called
the crossing state for x. We denote by L(I,(S)) the language accepted by (S).

The definition of (S) is a uniform algorithm for its construction from S. The intu-
ition of the construction of (S) is that each initial string is viewed as a linear automaton
from initial to acceptance state and the sites are then "glued together" to form the fi-
nal automaton. An automaton produced by an application of the definition is of course
nondeterministic in general but by the usual technique (e.g., in [7]), a deterministic au-
tomaton accepting the same language can be constructed. The main result is contained
in the following theorem.

THEOREM 4.1. Let S (A, I, X) be a crossing disjoint, reduced, permanent splicing
system and (S) be its associated automaton. Then L(S) L((S)).

Proof. Rather than deal with a word of L((S)) directly, it will be convenient to
consider an acceptancepath in (S). By this we will mean a sequence of states and tran-
sitions in (S) beginning at an initial state and ending at a terminal state. An acceptance
path will be described by a sequence of words wl,..., Wm+ in A* and crossing states
Px, Pxm such that:

1. w - Is() and there is a sequence of states starting at (i(1), 0) and ending at Px
with transitions corresponding to the symbols of wl.

2. For i < j < m + 1, wj

__
Is(j) and there is a sequence of states starting at Pxj_

and ending at Pxj with transitions corresponding to the symbols of wj.
3. Wm+l Is(m+1) and there is a sequence of states starting at Pxm and ending at

(i(m + 1), len(i(m + 1))) with transitions corresponding to the symbols of w,+.
4. wj and wj+ are not contiguous substrings of the same Is(j). Note however that

wj and wj+ may be in the same Is(j) Is(j+1). Intuitively this condition guarantees
that a splicing takes place at Pxj.
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A word w in A* is in L((S)) if and only if w wl.. "Wm+l for wl,"’, Wm+l and
corresponding Px an acceptance path.

LEMMA 4.1.1. If Wl,..., Wm+l for wj - Ii(j) and Pxl,.’., Px, is an acceptance
path, then w wl "Wm+l can be constructed by crossing Ii(1) with Ii(2) at the site cor-
responding to Pxl, crossing the result with Ii(3) at the site corresponding to Px2, etc., and
crossing the result with Ii(m+l) at the site corresponding to Pxm.

Proof. The proof is by induction on the length of the acceptance path, m. For m 0,
w wl 1(1). Assume the statement is true for acceptance paths of length m
1, and consider an acceptance path wl,..., w,+l for wy - I() and crossing states
Pxl, Px,. Thenw, w,-l, WmU for w, - Ii(m) vw,u and Pxl,
is an acceptance path of length m- 1, and w wl""WmU can be constructed by m 1
crossings as in the statement of the lemma. In particular, w’ is in L(S). Since S is
permanent and reduced, crossings of sites cannot be destroyed by Theorem 3.2, so x,
is the crossing of a site in w’ at the indicated Px,. Therefore w’ can be crossed with
I(,+1) at that crossing to produce w Wl ""Wm+l.

By definition w is in L(tY(S)) if and only if there is an acceptance path for w in which
case w is in L(S) by Lemma 4.1.1. Thus L((S)) is contained in L(S).

LEMMA 4.1.2. If wl,..., Wm+l for wj - li(j) and Pxl,..., Pxm is an acceptance
path, and w wl w,+l is such that rxs

_
wfor (r, x, s) in X, and ifthe final symbol

ofx is the kth symbol of w, then the k + 1st state ofthe acceptancepath is Px.
Proof. The proof is by induction on the acceptance path length m. If m 0 then

w wl Ii(1), so rxs -< I(1) implies the conclusion by the construction of (S).
As in the proof of Lemma 4.1.1, wl,..., Wm-1, w,u for Wm -< Ii(m) VWmU with
Pxl,’", Px,_ is an acceptance path of length m for w wl WmU. By the preced-
ing, w’ is in L(S) and w is formed by crossing w’ with I(m+l) at Xm. Since by Theorem
3.2 the operation of splicing cannot create a crossing of a site, x must have been the
crossing of a site in either w or in I(m+l). In either case, by the inductive hypothesis or
definition of (S), the acceptance path for w’ or I(,+1) contains Px as indicated and
consequently so does the given acceptance path for w. [:]

Proofof Theorem 4.1. Let w’, w" be in L((S)) with x the crossing of a site in both.
Let w be formed by splicing w and w" at x. By Lemma 4.1.2 any acceptance path for
w contains Px and so does any acceptance path for w’. Therefore these paths can be
merged at Px to produce an acceptance path for w. Thus w is in L((S)) and L(tY(S))
is closed under the operation of splicing. We conclude L(S) is contained in L(Y(S)) and
L((S))=L(S).

Example 4.1. It is an easy matter to apply the technique of Theorem 4.1 to Example
2.2. The initial strings udbcabcv, abcvwabcd, and vabxabcy are each viewed as a linear
sequence of states with transitions on the next letter of the string. That is, state (1, 0)
is an initial state with transition on u to state (1, 1) with transition d to state (1, 2) etc.
and finally on transition v to state (1, 8), which is a terminal state. Similarly, for the
other two initial strings from state (2, 0) to (2, 9 and (3, 0 to (3, 8/. Next associate
(glue together) states (1, 2) and (2, 9) according to crossing d, states (1, 4/, (1, 7), (2, 3/,
(2, 8), and (3, 7) according to crossing bc, and states (1, 6), (2, 2), (2, 7), (3, 3), and (3,
according to crossing ab. After reduction of the resulting automaton, the language is
seen to be ud + ((v + h)ab(xab)*c + udbc)((A + vw)ab(xab)*c + dbc)*(y + v + d).

COROLLARY 4.1.1. For S (A, I, X) a crossing disjoint, reduced, permanent splicing
system, any word w in L(S) can beformed by a sequence ofsplicing operations.from "left to
right, "each splice being with a member ofL

Proof. Since w is in L(S) it is in L((S)) by Theorem 4.1, so the statement of the
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corollary is a rephrasing of Lemma 4.1.1.
COROLLARY 4.1.2. For S (A, I, X) a crossing disjoint, reduced, permanent splicing

system it is algorithmic to determine ifL(S) is a finite language.
Proof. By definition it is algorithmic to construct (S). It is algorithmic to determine

if the language accepted by a finite automaton is finite, so the required algorithm is to
construct (S) and determine if L((S)) is finite.

COROLLARY 4.1.3. For S (A, I, X) and S’ (A, I’, X’) crossing disjoint, reduced,
permanent splicing systems it is algorithmic to determine ifL(S)

Proof. Construct (S) and (S’) and by a standard algorithm determine if
L((S)) and L((S’)) are equal. (That is, construct a finite automaton to accept the
symmetric difference of L(qt(S)) and L((S’)) and determine if the language it accepts
is empty.)

5. Persistence. In [5] Head proposed the concept of apersistent splicing system and
showed that such a system is strictly locally testable using the results of Schutzenberger
[8] and DeLuca and Restivo [2]. His result does not require that the splicing system
be crossing disjoint. Since a strictly locally testable language is regular and, as we will
see, permanent implies persistent, his result is stronger than that of 4. The proof that
such a language is strictly locally testable is not constructive, however, in that it gives no
indication of how to produce an algorithm to solve the membership problem or create a
finite automaton to recognize the language based on (A, 1, B, C). In that sense, 4 can
be viewed as a realization of Head’s result. We show below that, restricted to crossing
disjoint, full context splicing systems, our results and those of Head apply to the same
class of problems.

DEFINITION 5.1. A pair of left- and right-hand pattern sets B, C (not necessarily
crossing disjoint) ispersistent if for each pair of strings uazbv, wczdz in A* with (a, z, b)
and (c, z, d) patterns of the same hand: If y is a subsegment of uaz (respectively, zdz)
that is a crossing of a site in uazbv (respectively, wczdz) then the same subsegment y of
uczdz contains a crossing of a site in uczdz.

Note that if the word contains in the definition ofpersistent is replaced by is and/3,
C by X, then the result is Definition 2.3 ofpermanent. In particular permanent implies
persistent. The converse is true for reduced, full context systems as we see below. This
fact will also show that the converse to Proposition 5.1 below is false.

PROPOSITION 5.1. IfX ispermanent and Xo isformedfrom X by reduction, then Xo
is permanent.

Proof. This follows immediately from Theorem 3.3 since X contains X0. [3

THEOREM 5.1. For crossing disjoint splicing systems, a persistent, reduced, full context
set ofpattems is permanent.

LEMMA 5.1.1. There do not exist (a, x, b) and (p, y, q) in X such that y -< x and
pyq

_
axb. That is not

Proof Let (a, x, b) and (p, y, q) be as in the statement and assume y minimal in that
there does not exist (p’, y’, q’) in X with y’ -< y and p’yq’ -< axb. We show (c, x, d) in
X implies there exists (r, y, 8) in X such that y --< x and rys -< cxd. This is contrary to
X reduced since all patterns with crossing x can then be removed from X by a type 2
reduction. Let (c, x, d) be in X and splice axb with cxd at x to produce axd. Then since
X persistent, there exists (u, z, v) in X such that
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If z --< y, z y, then splicing axd with axb at x to produce axb, there exists (u’, z’, v’) in
X so that

a x b

But this is contrary to the minimality of y. Therefore z y. Splicing axd with cxd at x
we obtain cxd and since X is persistent there exists (r, z, s) in X so that

If z -< y, z # y then splicing with axb yields axd and there exists (u’, z’, v’) in X so that

Finally, splicing with axb at x yields axb and there exists (u", z", v") in X so that

contrary to the minimality of y. Therefore z y and

Proofof Theorem 5.1. We consider ucxdv and pexfq with (c, x, d) and (e, x, f) in X
to be spliced at x. Also rys -< ucxdv, ry

_
ucx, and (r, y, s) in X. We must show that y

remains the crossing of a site in ucxfq. Without loss of generality we may take u and v
minimal so one of the following pertains:

u c x d
r : y : s
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u c x d
r $ y $ s :

We treat case 1, the others being similar. After splicing ucxdv with pexfq at x, we have
that there exists (h, z, j) in X so that

since X is persistent. Since X is full context, (c, x, f) is in X so ucxfq can be spliced
with ucxdv at x to produce ucxdv. Again since X is persistent there exists (h’, z’, j’) in
X such that

, h’ z’ :!: j’

Then h’z’j’ -’< rys with z’ <__ y so by Lemma 5.1.1, z’ z y. That is, y is the crossing
of a site, (h, y, j), in ucxfq as required.

COROLLARY 5.1.1. IfX ispersistent and Xo the reduction ofX isfull context, then Xo
is permanent.

Proof. Any splice that can take place by virtue of a pattern in X can take place by
virtue of a pattern in X0. Hence X persistent implies X0 persistent, which implies X0
permanent since X0 is reduced.

To see the that a nonreduced persistent system need not be permanent, it is possible
to construct an example wherein a site which would be removed by a type 2 reduction
does not remain a site after a splice. The interested reader may supply the details. Ex-
ample 2.3 is persistent and reduced but not permanent; Example 2.4 is reduced and full
context but not persistent.

We remark that crossing disjoint seems to be a necessary condition for the construc-
tion of the automaton of 4 to work, for otherwise the automaton recognizes strings
formed by the illegal splicing of a left-hand pattern with a right-hand pattern. The con-
ditions of crossing disjoint and full context (after reduction) represent a significant gap
between this work and that of Head.
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6. Conclusion. Given a splicing system S (A, I, B, C) the sequence of algorithms
to be applied is:

1. Determine if B and (7 are crossing disjoint. If so X A t_J B and proceed to 2.
2. Reduce X to X0 according to the algorithm of Definition 3.1.
3. Determine if X0 is permanent using the algorithm given by Theorem 3.3. If so

proceed to 4.
4. Construct (S) according to the definition.
5. From (S) answer the membership or finiteness question or, from two such ap-

plications of 1 through 4, the equivalence question.
Computer programs to implement the algorithms above have been written.
In view of Head’s result, the obvious question is what can be said if S is not persis-

tent? Culik and Harju [1] have shown that the language is still regular. In contrast, if the
number of copies of a DNA type is limited, the resulting language may be recursively
undecidable [3]. Reference [4] contains additional examples (including one which is not
strictly locally testable) and a converse of the regularity of splicing systems valid up to
homomorphism. Finally, a more extensive model of the DNA process, consistent with
the methods of this paper, is proposed by Head in [6].
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.abstract. For various polynomial-time reducibilities r, this paper asks whether being r-reducible to a
sparse set is a broader notion than being r-equivalent to a sparse set. Although distinguishing equivalence
and reducibility to sparse sets, for many-one or 1-truth-table reductions, would imply that P # NP, this pa-
per shows that for k-truth-table reductions, k _> 2, equivalence and reducibility to sparse sets provably differ.
Though Gavaldh and Watanabe have shown that, for any polynomial-time computable unbounded function

f(.), some sets f(n)-truth-table reducible to sparse sets are not even Turing equivalent to sparse sets, this
paper shows that extending their result to the 2-truth-table case would provide a proof that P NP. Addi-
tionally, this paper studies the relative power of different notions of reducibility, and proves that disjunctive
and conjunctive truth-table reductions to sparse sets are surprisingly powerful, refuting a conjecture of Ko.
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1. Introduction. Computer science is the study of informationoding informa-
tion, decoding information, organizing information, and accessing information. Sets
whose information content is small, intuitively the structurally simplest of sets, have
played a central r61e in the development of the theory of computing. Sparse setsmsets
with at most polynomially many elements of each length--are one natural notion of"sets
of small information content," and, indeed, sparse sets have been essential to recent ad-
vances in computational complexity theory ([HM80], see also [Mah86], [Mah89]).

However, in complexity theory it is common to investigate notions sufficiently robust
so as to be invariant under polynomial-time reductions. Thus, an even more natural
notion of "small information content" is Rr(SPARSE), the class of sets that polynomial-
time Turing reduce to sparse sets. The sense in which Rr(SPARSE) sets are of small
information content can be crisply formalized: Rr(SPARSE) is precisely the class--
more commonly referred to as P/poly--of sets having polynomial-sized (nonuniform)
circuits (Meyer, see [BH77]).

R(SPARSE) has been intensely studied, both in terms of the question "NP

_
R(SPARSE)?" [KI.0], [IM89], [CGH+89], [Kad89], and in terms of the robustness
of R(SPARSE). R(SPARSE) is indeed quite robust; in addition to its characteriza-
tion in terms of small circuits, R(SPARSE) is easily noted equivalent to R(TALLY),
RtPt(TALLY), and RtPt(SPARSE) (see [BDG88]). Nonetheless, Book and Ko showed
that there were limits to the robustness of R,(SPARSE); they initiated the study of
the classes of languages reducible to sparse (and tally) sets under various weak no-
tions of polynomial-time reducibility, and proved that such classes differed both from
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1Though formal definitions will be given in 2, it is useful to introduce some notation here. For a given

reducibility <rp, we define: (1) RrP(SPARSE) as the class of sets L such that, for some sparse set S, L < S,
and (2) Rr(TALLY) as the class of sets L such that, for some tally set T, L <rp T.
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R,(SPARSE) and from each other ([BK88], see also the earlier related work on two sub-
classes of R(,(SPARSE): "almost polynomial time" IMP79] and the P-close sets [Yes83],
[Sch86a]).

Tang and Book initiated an analogous study of the classes of languages equivalent to
sparse (and tally) sets under various notions of polynomial-time reducibility, and proved
that in many cases such classes differed from each other [TB]. Additionally, equiva-
lence has been used by Balcizar and Book to characterize completely a natural subset
of R,(SPARSE), namely the sets with self-producible circuits [BB86].

The study of equivalence to sparse sets and the study of reducibility to sparse sets
have each yielded a flurry of results [BK88], [TB], [CGH+89], [IM89], [Kad89], [Ko89],
[AW90], [AH], [Ko]. Nonetheless, many of the most basic questions have remained
unanswered and, in some cases, unasked.

In particular, the relationships between equivalence and reducibility to sparse sets
have remained wholly unknown. The first results along this line are those of the present
paper and the companion paper of Gavalda and Watanabe (see Theorem C below). The
present paper asks, for the case of bounded truth-table reductions, whether reducibility
to sparse sets is a broader notion than equivalence to sparse sets. We provide answers
to this question and indicate some areas in which further progress is unlikely until long-
standing open problems in complexity theory are resolved. Among our results are the
following.2

THEOREM A. R_tt(SPARSE) EPf(n)_tt(SPARSE), for any f(n) r(1).
THEOREM B. ffP NP then R_tt(SPARSE) E_tt(SPARSE). IfP NP then

R (SPARSE)= E (SPARSE) U
TheoremA implies that reducibility and equivalence to sparse sets differ sharply for

<P reductions. In contrast, Theorem B indicates that proving an analogous result for--2-tt

---tt Or --Pm reductions would involve proving P - NP. Theorem A raises the issue of
the strength of reducibility that will suffice to provide equivalence to some sparse set for
sets bounded truth-table equivalent to sparse sets. That is, what is the cost paid--in terms
of increase in strength of reductionmto achieve equivalence? Gavaldh and Watanabe
have shown that for truth-table reductions whose number of queries is unbounded, an
extremely heavy price is exacted. We show that the Gavaldh-Watanabe result cannot be
extended to the 2-truth-table case without providing a proof that P NP.

THEOREM C [GW]. Let f(n) be any unboundedpolynomial-time computable func-
tion. Then Rp tt(SPARSE) E(,(SPARSE).

THEOREM D. Let > O. IfP NP then R_tt(SPARSE) c_ EP,_tt(SPARSE).
Theorem D shows that Theorem A is optimal, and provides an upper bound, con-

ditioned upon the assumption that P NP, for the complexity of equivalence. We also
provide unconditional upper bounds.

Finally, we turn to one of the key open questions about the structure ofR(SPARSE)
classes. Ko [Ko89, p. 65] conjectures that for each k > 0 it holds that R_tt(SPARSE)

RPdtt(SPARSE). We refute this conjecture by proving the following result.
THEORE E. R .(SPARSE) C_ R .(SPARSE).

This maybe interpreted as saying that disjunctive truth-table reductions to sparse sets are
surprisingly powerful. We prove related results showing that the power of conjunctive

2Notation: given a notion of reducibility <P, we define: (1) Erp(SPARSE) as the class of sets L such that,
for some sparse set S, L < S and S <P L, and (2) ErP(TALLY) as the class of sets/_, such that, for some
tally set T, L <rp T and T <Pr L. An f(n)-tt reduction is a truth-table reduction that, on inputs of size n,
generates at most f(n) queries. See 2 for full definitions of these and other notions.
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truth-table and many-one reductions, in the nondeterministic model of Ladner, Lynch,
and Selman [LLS75], is also substantial.

THEOREM F.
1. RP(SPARSE)=RtP(SPARSE).
2. RtNtP(SPARSE)=RP(SPARSE).
The paper is organized as follows. Section 2 reviews notations and definitions. Sec-

tion 3 studies the relationship between reductions and equivalences for the cases of
many-one and 1-truth-table reducibilities. Section 4 studies the case of k-truth-table re-
ductions, k _> 2a case that differs sharply from those of 3. Section 5 investigates the
interrelationships between reducibility classes and their seemingly restrictive (but sur-
prisingly powerful) disjunctive and conjunctive versions. Section 6 presents open prob-
lems and conclusions.

2. Preliminaries. Let E be a fixed finite alphabet. Let lYl denote the length of
string y E*, and let ISII denote the cardinality of set S c_ E*. Let X/ Y de-
note (X Y) U (r X). For a set T, we define T= {y lY T and lYl n} and
T< {Y lY T and lYl < n}.

Let (., )2 denote a pairing function over finite strings (equivalently, over {0, 1, ...}
via the standard correspondence between strings and natural numbers), with the stan-
dard nice computability, invertibility, and other properties (e.g., for all a, b E* it holds
that I(a, 5)21 [al+]bl). Let (y)denote (1, y)2, and, for every k > 2, let (yl, y2, "", Yk)
denote (k, (yl, (y2, (’", (yk-1, yk 2, 2 2 e 2" This function is polynomial-time com-
putable and polynomial-time invertible, and unambiguously codes a variable number of
arguments.

We adopt the standard notions of reducibility, as introduced by Ladner, Lynch, and
Selman. (We make slight alterations in the definitions; these alterations do not effect
the reductions defined.)

DEFINITION 2.1 [LLS75].
1. A tt-condition is a finite string of the form (yl, y2, "-), where each y is a mem-

ber of
2. A tt-condition generator is a recursive mapping from E* into the set of tt-condi-

tions.
3. A tt-condition evaluator is a recursive mapping from { Ix, or1, ..-,

and (Vi)[a {0, 1}]} into {0, 1}. (We will use the convention of footnote 3
often on arguments of tt-condition evaluators.)

4. Let e be a tt-condition evaluator. A tt-condition (yl, "", Yk is e-satisfied on
inputx by B c_ * if and only if e(x, XB (Yl), "", XB (Yk)) 1.

5. Let g be a tt-condition generator and e be a tt-evaluator. Let ) (g, e). We
will say that )s (x) accepts if the tt-condition generated by g(x) is e-satisfied on
input x by S.

5. We say that A _<tPt B if there exist a polynomial-time computable generator g
and a polynomial-time computable evaluator e such that, for all x, x
g(x) is e-satisfied on input x by B. If A <tPt B we say that A is truth-table
reducible to B in polynomial time.

7. We say that A -<(,)-tt B if A _<tPt B via a generator g and evaluator e such that

on each input x, it holds that g(x) {(yl, "", Yk)lY * and k <

For notational convenience, when speaking of functions f of more than one argument, we will freely
write f(yl, "’) as a shorthand for f((yl, ...)).



524 ALLENDER, HEMACHANDRA, OGIWARA, AND WATANABE

For the special cases <_tt--that is, f(n) k, k E {1, 2, ...}--we will without
loss of generality assume that the evaluator asks exactly k questions.

8. We say that A <tt B (A is polynomial-time bounded truth-table reducible to
B) if A <--Pk-tt B for some k.

9. We say that A <tt 13 (A is polynomial-time conjunctive truth-table reducible to
B) if A <tPt B via a generator g and evaluator e such that the evaluator e has the
property that for every x, e(x, ai, ..., crk) 1 (i" 1 <_ i < k)[ai 1].

10. We say that A <Pdtt B (A is polynomial-time disjunctive truth-table reducible to
B) if A _<tPt B via a generator g and evaluator e such that the evaluator e has the
property that for every x, e(x, al, "., ak) 0 = (Vi" 1 _< i _< k)[ai 0].

In addition to the above reductions, we will also be concerned with nondeterministic
reduction types. We defer the definitions of such reductions to 5.

Having defined the above types of reductions, we can now speak of the class of sets
reducible or equivalent to a certain class of sets via a certain type of reduction. Such
notions were first investigated in a systematic way by Book and Ko [BK88] and Tang and
Book [TB]. We modify their nomenclature to allow a uniform notation for all reduction
types.

DEFINITION 2.2.
1. Let be a class of sets and let <t be a reducibility. We define

nt(C) {A I(BB)[B e C and A _<t B]}.

2. Let be a class of sets and let <t be a reducibility. We define

Eta(C) {A I(B)[B e C and A <t B and B <t A]}.

3. Many-one and 1-truth-table reductions. We first note that, if P NP, then all
sets many-one reducible to sparse sets are in fact many-one equivalent to sparse sets.

THEOREM 3.1. IfP NP then RP(SPARSE)= EP(SPARSE) U {* }.
Proof. Suppose L < S, S sparse, via many-one reduction g(.), and L E*. Define

S’ {(0z, x)Ix S and (3y)[y L and lyl and g(y) x]} (see [Mah82] for a simi-
lar "multiple-copy" approach). First, note that L <Pro S’, as y L = (01yl, g(y))
S’. Second, note that S’ <Pm L if P NP. This is because, when asked whether (0t, x) E
S’, we may use the fact that P NP to determine whether there exists a y such that

lYl and g(y) x. If not, reject (0t, x) by mapping onto an element out of L. If
so, use the P NP assumption to find one such y, call it y’, and map to asking whether
y’ L. Finally, note that, immediately from the definition of S’ and the fact that S is
sparse, that S’ is sparse. Thus, L EP(SPARSE). [3

The proof of Theorem 3.1 can easily be modified to the case of 1-truth-table reduc-
tions. We need only change the definition of S’ to S’ {(0t, x) either (1) (3y)[y e L
and lYl and the truth-table for input y accepts if and only if x e S], or (2) (Sy)[y L
and lYl and the truth-table for input y accepts if and only if x S]}.

THEOREM 3.2./fP NP then R_tt(SPARSE) E_tt(SPARSE).
We say that a truth-table reduction, with truth-table condition generator g, is honest

if there exists a polynomial q(.) such that whenever y is one of the query strings generated
by g(x), it holds that q(lYl) >- Ixl Theorem 3.2 in fact gives honest equivalence.

Note that Theorem 3.1 does not establish that RP(SPARSE) EPm(SPARSE) I,.J {E* }
is equivalent to the claim that P=NP. We now note that analogous questions about tally
sets are indeed equivalent to important open questions in complexity theory.
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First, we present some definitions. A function f is weakly invertible if there is a
polynomial-time computable function h such that f(h(z)) z for all z E range(f). Let
E denote Y k_>0 DTIME[2k’], and let NE denote U >0 NTIME[2’].

It is shown in [AW90] that the following are equivalent:
1. Every NE predicate is E-solvable.
2. Every honest polynomial-time computable function f E* 0* is weakly in-

vertible.
3. EP(TALLY) IJ {E* } E_tt(TALLY).
4. E(TALLY) (E* } Et (TALLY).

Condition I above is the natural "witness-finding" analog of the E NE question. Im-
pagliazzo and Tardos [IT89] have recently shown that there are relativized worlds in
which Condition I fails to hold, yet E NE. Their work provides a relativized refuta-
tion of a conjecture of Sewelson [Sew83], whose thesis forms the protasis of the[AW90],
[IT89] research stream.

We note that the above equivalence can be extended to include classes of the form

Rt (TALLY), and, equivalently, R(TALLY). The following result, alluded to in [AH89],
was observed independently by Fu Bin [Bin89].

THEOREM 3.3. Every NEpredicate is E-solvable ifand only if

Rt (TALLY) E(TALLY) V {E* }.

Proof. Under the assumption that Rtt(TALLY)=E(TALLY) I.J {2" }, it follows
immediately that Rtt(TALLY) c_E(TALLY) {2"} c_ Ett(TALLY) c_ Rtt(TALLY).
Thus, E(TALLY) LJ {2"} Ett(TALLY), and by the result of [AW90] mentioned
above, it follows that every NE predicate is E-solvable.

Conversely, assume, via the above-mentioned equivalence of [AW90], that every
honest polynomial-time computable function f E* 0* is weakly invertible, and let
L < T, for some tally set T, via many-one reduction 9(’). As in the proof of Theorem
3.1, define T’ {0(/, i + 1) l0 E T and (3y)[y L and Ivl and g(y) 0]}. Then
the function f defined by:

f(x)
O(Ixl, i) if g(x) 0

oll l, o) >_ o)

is a many-one reduction from L to T’. Furthermore, under the assumption that f is
weakly invertible (and assuming that L : *), it is easy to see that T’ _< L. Thus, un-
der this assumption, R(TALLY) =E(TALLY) LJ {E* }, and thusvia the fact that
RP(TALLY) =Ru(TALLY) [BK88]--it holds that Rtt(TALLY) E(TALLY)

D

4. Bounded-truth-table reductions.

4.1. A lower bound. Gavald and Watanabe have proven that for any unbounded
polynomial-tim computable function f(), R()_u(SPARSE)
their techniques do not seem to apply to the classes of sets reducible to sparse sets via

<--Pk-tt reductions, for constants k. However, Theorem 4.1, for the case ofbounded truth-
table reductions, a wide separation between reducibility and equivalence.

THEOREM 4.1 Let h(n) n(1). Then R_tt(SPARSE) Ep tt(SPARSE).
Proof. For the purposes of this proof, we change our assumptions about the pairing

function, and now assume that one of the properties of the pairing function (., -)2 of 2
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is that (/x, y)[l(x, Y}I 2lzl + lYl]. Note that in this proof (and only in this proof) we
will use both our standard pairing function (...) and its constituent function (., .)2.

Let us define an operator A such that, for any set S, A(S) {(x,y)2l[x lYl
and x lexicographically precedes y and (x E S or y E S)}. Note that for any sparse
set S, A(S) R_tt(SPARSE). We will construct a sparse set S so that A(S)

_
E(n)_tt(SPARSE).

In the following, for each k > 1, we usep to denote the polynomial n +k. Consider
some enumeration {f}_> of (--h(n)-tt reductions; without loss of generality, we may
assume that, for all k > 1 and z E*, the length of queries asked by f (z) is bounded
by p(Izl). Let C(i,j, denote the condition that, for each set W with census function

<P reduction from A(S) to W, or f is not abounded by pt, either f is not a --h(n)-tt

--Ph(n)-tt reduction from W to A(S).
Let us introduce some notations so that we may state the condition C(i j, l) more

precisely. For any polynomial p, we say that set L is p-sparse if the census of L is bounded
by p. For any set L, let f-(L) denote the set {z] the truth-table condition of f(z)
evaluates to true when given L as the oracle}. Then we can now restate C(i j, l) as the

disjunction of the following two conditions:
I: fj-(A(S)) is not p-sparse.
II: A(S) f-(fj-(A(S))); that is, some v exists such that

v e A(S) v f-(y-(A(S))).
We will build our set S in stages, where stage (i, j, l) will guarantee that C(i j, l) is

satisfied. (Initially S is the empty set.) Note that this suffices to prove that S has the
desired properties.

Stage (i, j, 1)"
Choose n large enough so that:
(i) interference with previous stages is avoided,
(ii) (2"/(2pt p(3n))h(3")) h(3n)h(pi(3n)) 1 > 0, and
(iii)h(pi(3n)) < n.

(Note that such an n always exists since h(n) n().)
Case I: If there is a set D c_ =, IIDII < h(3n)h(p(3n)) + 1, such that

f-(A(S J D)) is not pt-sparse, then set S to S [.J D.
Case II: If there is a set D c_ =, IIDII < h(3n)h(p(3n)) + 1, such that

A(S D) f(f]-(a(s [.J D))), then set S to S [,J D.
(The construction fails if neither Case I nor Case II holds.)

If the above construction is completed, then the constructed set S clearly satisfies
our purpose, that is, S is sparse and satisfies condition C(i j, l) for every (i, j, 1). Thus,
it remains only to show that the construction can be completed. That is, if Case I fails,
then Case II must hold.

Consider any stage (i, j, l) and any sufficiently large n such that Case I does not
hold. For such (i, j, l) and n, we show that Case II holds with some D. In the following
discussion, let i, j, l, and n be fixed; let h denote h(3n), and let h’ denote h(pi(3n)).

This paragraph gives an informal overview of the proof, in order to make the con-
struction easier to understand. If Case I and Case II both fail, then there are sparse sets
(call them W and W) such that the following hold:

1. f is a <Ph-tt reduction from A(S) to W and f is a <Ph-tt reduction from W
to A(S).
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2. fi is a <Ph-tt reduction from A(S (.J {0’}) to We and fj is a <Ph-tt reduction
from We to A S [.J {0’}).

That is, only a small number of strings (W1 t_J We) are sensitive to the presence or absence
of 0’ in the setwe are constructing. It follows that there is some string, wl, that is queried
by a large fraction of the strings in the set {(0’, V)2 Iv E*} (recall that at this point,
n is fixed). Thus Wl may be thought of as being "influential" in some sense, and we
can define Y1 to be the (large) set of strings that are influenced by wl. Let Z1 be the
(small) set of strings queried by the reduction f on input w. By setting membership
for all the strings in Z, we completely determine membership for Wl, which means that
there must be some string w2 and some large subset Y2 c_ Y such that w2 influences
Y2. We continue in this way until we arrive at a nonempty set of strings, each ofwhich is
influenced by (and thus queries) x,xe, ..., xh+. But this is a contradiction, since no
string makes more than h queries. This informal argument is made precise below.

We construct sets Dx, ..., Dko, DI+, Dk+o so that either Do or D+ satisfies
Case II. The construction proceeds as follows:

Basis:
Set Yo E=’ {0n }, Do 0, and Zo 0.

Definition ofD and D+ (1 < k):
Set D D_t [.J Z_, D+ D I,.J {0}.
Set Ak A(S I,.J Dk), A+k A(S I,.J D+k ).
For each w E*, set Qk(w) {y Y- If((O", Y)e) queries w}.
Set Ck {w [Qk(w) # 0 and w e ff(Ak) A ff(A+ )}

if Ck is empty, then terminate the construction.
Set wk to be a string in Ck such that IIQk(wk)ll >_ IIYk-xlI/2Pz o pi(3n);

if such wk does not exist, then terminate the construction.
Set Zk {z E E=’ {0’} [fj(wk) qUeries (0n, Z)2}.
Set Yk Qk(wk) Zk.

Now we show, in the following claims, that the construction terminates at some k0,
1 < k0 < h / 1. Note that the construction terminates either because Cko is empty
or because no Wko exists. For each case, we prove that either Ako f( (ffl(Ako)) or

Ak+ f-(f-l(Ak+o) occurs; that is, either Dko or Dk+ satisfies Case II.
Before going further, let us explain the purpose of each of the sets in this construc-

tion. For each k, Yk is a (large) set of strings that queries each of (w, we,..., Wk}. Zk is
the set of strings queried by wk, and Dk [-Js<k Zs. (The strings w, we,.., are chosen
to be "influential," and the sets Dk are constrSacted so as to eliminate the influence of
these strings.) D+ is just Dk t3 {0’}, and the sets Ak and A+ are constructed from Dk
and D+ using the A(.) operator. Ck is the set of those strings that are sensitive to the
difference between Ak and A+, under reduction fy.

Claim 1 states some properties that are immediate from the construction; its proof
is omitted.

CLAIM 1.
(1) For any k, 1 < k < h + 1, such that A and A+ are defined:

(a) IIDkll <_ IID+II _< (k- l)h’+ 1,
(b) {(0’,z)e Iz E 1,3<_< Z} c_ Ak C_ A+,
(c) IIY-xll _> (2/(2p o p,(3))-1) -(- 1)h’- 1 > 0, and
(d) A+ A

_
{(0,y)2 IV Y_} # 0.

(2) Let k, 1 < k < h + 1, be any index such that Yk is defined. For every !1 Y,
fi 0’ 11 e) queries Wl, w.
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The set Ck is the set of strings w such that (i) w is queried by f((0’, y)2) for some
y E Yk-x, and (ii) fj (w) evaluates differently between oracle Ak and Ak+. The following
property of Ck is central to our construction.

CLAIM 2. Let k, 1 < k < h + 1, be any index such that Ck is defined. For every s,
l<,s<k,wCk.

Proof. Note that every (0’, z) 2 (except (0’, 0’ 2) that is queried by fj (w) is in A.
Thus, the truth-table value of f(w) does not vary by changing the oracle from Ak to

Ak+o [:]

CLAIM 3. Suppose that the construction does not terminate at h. Then Ch+ is empty;
thus, the construction terminates at most at h + 1.

Proof. It follows from Claim 1, part (2), that for every y Yh, f((O", Y)2) queries
w,... Wh. Since f is a <--Ph-tt reduction, {w, Wh} is exactly the set of queries that
are asked by f((0n, y)2) for some y Yh. (Recall that Ix, y) 21 3n whenever x =’
and y E=’.) Thus, Ch+l C_ {wl,.-. Wh}. On the other hand, from Claim 2, none of
w, Wh belongs to Ch+. Therefore, Ch+l .

CLAIM 4. Suppose that the construction terminates at ko. Then either Ako
or AL

Proof. First suppose that the construction terminates at k0 because Cko q}. Since
k0 < h + 1, it follows from Claim 1, part (1.d), that (0", yo)2 Ak+o Ako for some
Y0 E Yo-. On the other hand, since Co 0, the truth-table values of f((0’,Y0)2)
relative to f(Ako) and ff(Ak+o) are the same. Hence, either Ako f-(ff(Ako))
or ak+ f(-(f-(Ak+o) ).

Next we show that if no Wko exists (and thus the construction terminates at k0), then
either Ao f(ff(Ao)) or A+ f-(ff(Ak+o) ). We prove the contrapositive,
i.e., for any k, 1 < k < h, if Ak f-(ff(A)) and A+ f-(f(A-)), then
certainly exists.

We show that Y_ {z I(3w Ck)[Z Qk(w)]} and IICkll _< 2pt opi(3n), thereby
proving that some wk Ck exists such that IIQk(wk)ll >-- IIY-II/2P o p(3n).

Consider any y Yk-1. Since (0’, Y)2 is in Ak/ A+k (from Claim 1, part (1.d)),
and -1 + 1 -1 +Ak f (f l(Ak)) and Ak f(- (fy (Ak )) (from the assumption), fi((0
must query some wy that is in f-i (Ak)/ fl (A-). Recall that Ck is the set of strings
in f-(A)/ fj-(A+) that are queried by f((0’, y)z) for some y Y_. Hence, w
is in Ck. Thus, for each y Yk-1, there is some wu Ck such that fi((0’, Y)2) queries
wu, i.e., y Qk(wu); in other words, Yk-1 {z ](3w Ck)[Z Qk(w)]}.

Recall that we are assuming that f-1 (A(, U D)) is pt-sparse for any D c_ E=’,
IIDtl <_ hh’ + 1. Hence, both fj-X(a) and ffl(a+k) are pt-sparse; then clearly Ck
ff(Ak)/ ff(A+) is 2p,-sparse. Note that each w Ck is queried by f((0’, y)z) for
some y E E=’ and that the length of such a string is bounded bypi(] (0’, Y)21) < pi(3n).
(Recall that I(x, Y)2I 3n for every x and y E=’.) Thus, IICkll _< 2pt(pi(3n)).

This proves Theorem 4.1.
The following is an immediate corollary.
COROLLARY 4.2. For every k > 2, it holds that R_tt(SPARSE) E_tt(SPARSE).
4.2. Upper bounds. Corollary 4.2 establishes that, for all k > 2, R_tt(SPARSE)- E_tt(SPARSE). Gavaldt and Watanabe [GW] have proven that, for any unbounded

polynomial-time computable function f(n), Rp tt(SPARSE) E,(SPARSE). Both
these results suggest that equivalence exacts a price; in order to achieve equivalence to
sets reducible to sparse sets, one must use a more powerful type of reduction.
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It is natural to seek the exact price that equivalence extracts. This section shows that,
unless P NP, every set 2-truth-table reducible to a sparse set is truth-table equivalent
to a sparse set. It follows that the result of Gavald and Watanabe cannot be extended
to 2-truth-table reductions without providing a proof that P - NP.

THEOREM 4.3. IfP NP then R_tt(SPARSE) c_ EtPt(SPARSE).
Proof. Let L --tt S, S sparse, via truth-table generator g and evaluator e ILLS75].

Under our hypothesis that P NP, we construct a sparse set such that L =tPt . Let
{Ti I1 < i < 16} represent the sixteen truth-tables of arity two. Let Hi {z[ the truth
table that e(z, -, .) uses is table Ti}. For each i, 1 < i < 16, we will define a sparse set
and truth-table reductions Ai (9i, ei) and 7i (9, e) such that:

1. (Vi: 1 < i < 16)(z E Hi)[z L = A*.s’(z) accepts] and
Hi NL2. (Vi" 1 <_ i <_ 16)(Vy)[y e S == ")’i (y) accepts] and

3. (Vi 1 <_ i <_ 16)(Vy)[g(y) queries only strings in Hi].4
Set {(i, j)IJ Si and 1 _< i _< 16}. By the above three conditions, L <tP

via the reduction that, on input x, determines which Hi contains x and uses ),i modified
so that each query z to Si becomes a query (i, z) to . Clearly, <_tPt L via (g", e"),

ett(where g"((i, z)) gi(z) and (i, z), .) ei(z,...), for i <_ i < 16, and as noted in
footnote 4 for other i. Thus, S --tPt L.

Figure 1 lists the sixteen truth-tables of size two. We proceed to define the sets
S, ..., S.

Note that without loss of generality we make the following assumption.
ASSUMPTION 4.4. g is length-increasing and g(x) (b, c) = Ibl
This is simply because if A <--tt B, B sparse, via truth-table generator h, then

A ---tt B’ via truth-table generator h’, where B’ { (0, y) ]y S} and if h(x) outputs
(ql, q2) then h’(x) outputs ((0Iq21/lxl/l, ql ), (0Iqxl/lxl/l, q2) ). Note that B’ is sparse and
h’ maintains the properties asserted in Assumption 4.4 (recall that
We assume these properties throughout this proof.

Tables 1 and 16 are trivial; let S S6 O. Tables 6, 8, 9, and 11 are 1-truth-table
reductions; thus the construction of $6, $8, $9, and S1 is essentially handled byTheorem
3.2. Similarly, Table 4 represents conjunctive 2-truth-table reductions and is essentially
handled by the same result, since every set that conjunctive bounded truth-table reduces
to a sparse set in fact many-one reduces to some sparse .set.

Let us say that 2-truth-table a is the complement of 2-truth-table b if a and b differ
on each possible response; for example, Tables 4 and 13 are complementary. Suppose
we have proven that: (**) if A reduces to sparse set B via a 2-truth-table reduction that
always uses Table T, then A EtPt(SPARSE). It follows immediately that we have also
proven: if A reduces to sparse set B via a 2-truth-table reduction that always uses Table
complement(T), then A E Ett(SPARSE). This is so because A 2-truth-table reduces to B
via truth-table complement(T) if and only if A 2-truth-table reduces to B via truth-table

T. Thus, if we have established (**), we can conclude that (3 sparse set C)[A =Ptt C],
and thus --tt Ptt C, so 2t C. Thus it follows that the case of Table 13 follows
immediately from that of Table 4. Below, we will use complementarity to reduce our
work.

4 We assume that each Hi is nonempty; the case where some Hi are empty can easily be dealt with by
using vacuous truth-table reductions. For example, if H7 0, then set $7 Oand reduce $7 to L via the

truth-table evaluator that always rejects. Similarly, when resolving the membership in S of elements of the
form (i, j), with {1, 2, ..., 16}, we can also use a vacuous reduction.
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Table

Number

8

9

10

11

12

13

14

15

16

First Query Answered "no"

2nd Ans. "no" 2nd Ans. "yes"

1 0

0 0

0 0

0 1

First Query Answered "yes"

2nd Ans. "no" 2nd Ans. "yes"

0 0

1 0

0 1

0 0

10 0

1 0 0 1

1 1 0 0

0 0 1 1

0 1 0

0 0 1

1 0 1 1

1 1 1 0

1 0 1

0 1 1

FIG. 1. Truth-tables ofarity two.

Consider the case ofTable 15 (2-disjunctive reductions). Let 5’15 represent all strings
in 5’ that are queried by some truth-table reduction from a member of H15. Recalling
Assumption 4.4, let polynomial q(n) strictly upper-bound the number of elements in $15
of length at most n. We will say that a string z is busy if there are more than q(Izl) distinct
strings w (each necessarily of the same length as z) that satisfy the condition:

there exists a string ao E H15 1") L such that the (unordered) pair of
strings queried by g(ao) is {z, w}.

All busy strings are in 5’15. However, there may also be strings in 5’15 that are not
busy. We now define $15 { (0, z) (/, w)[l/[ and the (unordered) pair of strings
queried by 9(/) is {z, w} and z is busy]} [,J {(0t, /, z)I()[ll and w E L and the
(unordered) pair of strings queried by 9(w) is {y, z} and neither /nor z is busy]}.

Clearly, for strings in H15, membership in L can be tested via ---tt reduction to
5’15, and clearly S5 is sparse.

CLAIM 1. IfP NP then $15 truth-table reduces to L via a truth-table reduction that
queHes only members of H15.

Proof. There are two cases, corresponding to the two types of strings in $15. In
the first case, we are asked whether a string (0t, z) is in 5’x. Use our assumption that
P NP to find if possible (if not, then reject) more than q(lz[) strings (not necessarily
of length l) ai H5, with each ai mapping to {z, wi}, with all the wi’s distinct, and use
our P NP assumption to find an appropriate /(of length and in H15). Then, via a

5Via binary search, in the standard fashion, using a test set such as { (z, prefix, c1, ..-) there exists a
string E H15 whose prefix is prefix and that differs from all the ai and g(a’) yields the pair {z, p} and this
pair is not yielded by g(ai) for any i}.
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truth-table query to L, check whether all the ci are in L and accept if and only if all are.
In second case, we are askedwhether a string (0, y, z) is in $15. Use our assumption

that P NP to attempt to find more than q(Izl) strings c E H15, with each c mapping
to {z, wi} with all the w’s distinct. Also, use our assumption that P NP to attempt
to find more than q(lzl) strings/3i H5, with each/3i mapping to {y, vi} with all the
v’s distinct. Finally, use our P NP assumption to find a string w E H, of length l,
such that g(w) maps to the pair {/, z}. Now, we make a truth-table query to L, inquiring
about the membership of w, the ai’s, and the fli’s. We accept if and only if (1) w L
and (2) either we failed to find the requisite number of ai’s or some of the ai’s found
are not in L and (3) either we failed to find the requisite number of fli’s or some of the
’s found are not in L.

Note that, by the earlier complementation argument, solving Table 15 implicitly
solves Table 2.

Consider now the case of Table 10 (exclusive or). Let S0 represent all strings in
S that are queried by some truth-table reduction from a member of H0. Recalling
Assumption 4.4, let polynomial q(n) strictly upper-bound the number of elements in $10
of length at most n. We will say that a string x is heavy if there are more than
distinct strings w (each necessarily of the same length as x) that satisfy the condition:

there exists a string ao e Hi0 L such that the (unordered) pair of
strings queried by g(ao) is {x, w}.

All heavy strings are in S0. However, there may also be strings in S0 that are not heavy.
We now define $10 {(0/, Z),lZ is heavy} I,.J {(0g, w, z)[w is heavy and ( y)[lyl and
y L and the (unordered) pair of strings queried by 9(Y) is {w, z}]} (,J { (1t, w,
( y)[lyl and y L and the (unordered) pair of strings queried by g(y) is {w, z} and
neither w nor z is heavy] }.

Clearly, for strings in H0, membership in L can be tested via <P reduction to--5-tt

$10, and clearly S10 is sparse.
CLAIM 2. If P NP then So truth-table reduces to L ia a truth-table reduction that

queries only members ofHo.
Proof. There are three cases, corresponding to the three types of strings in So.
Case 1. In the first case, we are asked whether a string (0z, z) is in Slo. Use our

assumption that P NP to find (as before) as many a as possible (but no more than
2q([z[) + 1) such that a H10 and g(a) queries the (unordered) pair {z, w} and
j # k = w #- w. If we have found < q(Izl) such ai’s, then reject. Otherwise, make a
truth-table query to L regarding the ai’s, and see if more than q([z[) of the ai’s are in L,
and accept if and only if this is the case.

Note: the above strategy works since (1) if z is heavy, then there are no more than
q(lzl) values w such that some nonmember of H0 L maps to {z, w} (as these w’s
must be in S10), and (2) if z is not heavy, there can be at most q(lz[) distinct values
such that some member of L Hx0 maps to {z, wi}.

Case 2. In the second case, we are asked whether a string (0, w, z) is in $10. Check
whether w is heavy as in Case 1. Also, use our P NP assumption to find a /as in the
definition of S10, and use L to check whether L. Accept if and only if an appropriate
B was found and/ L and w is heavy. (Note that all the above can be done via a single
round of truth-table queries to L.)

Case 3. In the third case, we are asked whether a string (1, w, z) is in $10. Check

6Unlike the case of disjunctive reductions, in the exclusive-or case a string in Hlo L may map to two
strings in the sparse set, and we wish not to allow such cases to contribute towards heaviness.
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that w is not heavy and that z is not heavy as in Case 1, except exchanging criteria (that
is, if there are less than or equal to q(Izl) values ai then we find a string "not heavy,"
otherwise a string is "not heavy" if and only if no more than q(Izl) of the ai’s are in L).
Also, use our P NP assumption to obtain y as in the definition of $10, and use L to
verify that y E L. Accept if and only if an appropriate y exists and y E L and w is not
heavy and z is not heavy. (Again, note that all the above can be done via a truth-table
query to L.)

Note that, by the earlier complementation argument, solving Table 10 implicitly
solves Table 7.

Consider now the case of Table 3. Let Sa represent all strings in S that are queried
by some truth-table reduction from a member of Ha. Recalling Assumption 4.4, let
polynomial q(n) strictly upper-bound the number of elements in Sa of length at most
n. We will say that a string z is top-heavy if there are more than q(Izl) distinct strings w
(each necessarily of the same length as z) that satisfy the condition:

there exists a string ao Ha L such that the (ordered) pair of strings
queried by g(ao) is (z, w).

All top-heavy strings are in Sa. However, there may also be strings in Sa that are not top-
heavy. We now define Sa { (0 z) z is top-heavy} [.J { (0t, z’, z’ is not top-heavy
and and y L 0 Ha and g(y) (z’, z")]} [.J ((1, z, z’)Iz is top-heavy
and (zo)[ll- and w Ha L and 9(w) (z,

Clearly, for strings in Ha membership in L can be tested via <P reduction to Sa,--3--tt
and c|ady $3 is sparse.

CLAIM 3. If P NP then $3 truth-table reduces to L via a truth-table reduction that
queries only members of Ha.

Proof. There are three cases, corresponding to the three types of strings in $3.
Case 1. In the first case, we are asked whether a string (0t, z) is in Sa. Use our

assumption that P NP to find (as before) as many ai as possible (but no more than
2q(lz[) + 1) such that a Ha and g(a) (z, w) and j = k = w = Wk. If we have
found more than q([z[) such ai’s that are in L, then accept; otherwise reject.

Note: the above strategy works since if z is top-heavy, then there are no more than
q(Izl) values ai as above such that ai E H3 L.

Case 2. In the second case, we are asked whether a string (0t, z, z") is in $3. Check
whether z is not top-heavy as in Case 1, except flipping our notions of acceptance and
rejection. Also, use our P NP assumption to find y as in the definition of $3 (reject if
there is no such y). Accept if and only if y is in L and z’ is not top-heavy.

Case 3. In the third case, we are asked whether a string (1, z, z’) is in $3. Check
whether z is top-heavy as in Case 1. Also, use our P NP assumption to find w as in
the definition of $3 (reject if there is no such w). Accept if and only if w is not in L and
z is top-heavy.

Note that, by the earlier complementation argument, and by symmetry, and by both
complementation and symmetry, solving Table 3 implicitly solves Tables 14, 5, and 12.
This proves Theorem 4.3.

In fact, a careful inspection of the proof ofTheorem 4.3 reveals that various stronger
statements than Theorem 4.3 have been implicitly proven. These improvements show,
among other things, that Theorem 4.1 cannot be improved. The power of unbounded-
truth-table reductions, and the strength of ttie P NP assumption, are both used only
in one direction. Thus we have Theorem 4.5.

THEOREM 4.5. Let e > O. IfL R_tt(SPARSE) then there exists a sparse set S’ such
that:
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L <--tt S’, and,

ifP NP then S’ <-tt L.

Proof. The proofofTheorem 4.3 provides a set S such that L <_tt S, and ifP NP
then < L for some k. Now let S’ {xl0I1’ zn -tt
it is immediate that L -tt St, and if P NP then S’

Of course, the assumption that P NP is a ve strong one. However, though the
P NP assumption gives polynomial-time computations access to the full power of the
polynomial-hierarchy, in fact the above proofs used the P NP assumption only to give
polynomial-time computations access to the power of NP (and in particular, the power
to find sets of inverses of honest polynomial-time many-one functions). Thus the above
proof in fact proves Theorem 4.6 below, whose oracle access mechanism is exactly that
used in defining the eended-low-o sets [BBS86]a mechanism that also appears in
other applications [HH90]. Of particular note is that the set L isas in Theorem 4.3 but
unlike Theorem 4.7queried only polynomially often.

EOREM 4.6. IfL R_tt(SPARSE) then there exists a sparse set S’ such that:
L -tt St and

S pNPL.
The above results are all conditioned upon the assumption that P NP or the essen-

tially equivalent use of an NP oracle. In fact, we can outright eliminate such assumptions,
at the cost of acquiescing to relatively powerful reductions that are allowed to access the
set L far more than polynomially often. Thus, the following theorem neither implies nor
is implied by Theorem 4.6.
ORM 4.7. IfL R_tt(SPARSE) then there exists a sparse set S such that:
L -tt S, and. S DPL.

Here, DE difference polynomial time, is the class of setsfirst studied by Papadim-
itriou and Yannakakis [PY84]that can be represented as the difference ofoNP sets;
DP sets are crucial to the normal-form structure of the boolean hierarchy [CGH+88] and
appear naturally in many settings [CM87]. Informally, we may describe Theorem 4.7 as
stating that all sets 2-truth-table reducible to sparse sets are DP-equivalent to sparse sets.
We omit the proof, as it is based on a detailed analysis similar to that of Theorem 4.3.

Finally, we note that all the theorems of this section yield not only equivalence but
indeed honest equivalence.

5. On the power of conjunctive and disjunctive reductions. In this section, we will
show several inclusions among classes of sets that are reducible to sparse sets. We first
show the following lemma.

RL.(SPARS ) R .(SPARS ).
Proof. t L be a set that is -tt reducible to a sparse set S. We will show that

L tt U for some sparse set U. To prove this, we need to define some notation. For
string x and n 1, we will use x to denote the nth symbol in x. Foro strings x and
y and a set A, xAy denotes the set {xwy w A}. t # be a special symbol not in E.
Foro sets A and B, A B denotes the set 0A lB. Since S is sparse, there ests a
polynOmial p0 such that for eve n 0 it holds that ]sSn]] po(n).
tT {0z0 ]z S} 01". It is not hard to see that for eve x

0x0 T and for eve n 1, T= 0. Moreover, for eve n 0,

IIT  II il   -21l +n IIs nil +n po(n)+n.

Therefore, T is sparse.
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Now define U to be the set of strings of the form #u#b such that:
(1) u E 5]_<n and b E 5],
(2) ubP* T= 0; that is, ub is not a prefix of any string in T=’, and
(3) uE* I"1 T=’ # O; that is, u is a prefix of some string in T=’.
Then, for every n > 0:

< I]{#mu#b e uI1 < m <

II{#mu#bl 1 < m < n and b e 5] and us]*

<_ 2n[l{w Iw is a prefix of some string in T-<}I

<_ 2n(po(n) + n).

Therefore, U is sparse.
We now establish the following claim.
CLAIM 1. Let x 5]* and y OxO. Then, y t[T ifand only if {#lYlyx... Yk#Yk+l

1 _< k _< lYl- 1} f’) U #OandyTifandonlyif#1Vly#Oe V.
Proof. Let x be any string and let y 0x0. Furthermore, let n denote lYl (= x] + 2).

First suppose that y T. Since ]y01 > n and y T=, #y#O U. Furthermore,
for every i, 1 < i < n, yl’"yi is clearly a prefix of y. Thus, for every k, 1 < k < n,
#’yl""" y#y+l is not in U.

On the other hand, suppose that y 9 T. Clearly, #’y#0 f/ U because y 9 T=’.
Furthermore, since for every n > 1 it holds that T-n and T= c_ 05]*, there exists
a unique m, 1 _< m < n 1, such that y ...y, is a prefix of some string in T= but
Yl"’Ym+I is not a prefix of any string in T=n. So, clearly, #nyl’’’ym#Ym+l U.

From the above considerations, y E T if and only if #ny#O U and y 9 T if and
only if for some k, 1 <_ k < n, #’y Yk#Yk+l U. This proves the claim. [:]

Since x e S if and only if y 0x0 e T, from Claim 1, we have:

#lyly#0 U and

(k" 1 < k < lYl- 1)[#Iylyl’’’Yk#Yk+I E U].

Therefore, S @ <Pdtt U. Since L -1-tt
<p S implies that L <P S @ , L <Pdtt U and this

proves the lemma.
From Lemma 5.1, we obtain the following theorem.
THEOREM 5.2. Ru(SPARSE) C_ Ru(SPARSE).
Proof. Let L be a set <--u reducible to a sparse set S for some k _> 0 via a

polynomial-time computable function f. To establish the theorem, we have only to show
that there is another sparse set A to which L is <_ reducible. Since f witnesses that
L _<_** S, without loss of generality (see [LLS75]), we may assume the following: For
every x

(a) f(x) is of the form b11.., blk$’" Sb,... b,kSw$... $wk, where (1) $ is a
new symbol not in {0, 1, #}, (2) for every i, 1 < < m and j, 1 < j < k,
bij e {0, 1 }, and (3) for every i, 1 < i < m, wi P*, and

(b) x L if and only if (i" 1 < i < m)(Vj 1 < j < k)[xs(wj) true
bj 0], where Xs is the characteristic function of S; that is, for every w,
Xs(w) true if w S and false otherwise.

Since S (R) is {0s Is S} [3 {ls Is }, it is not hard to see that the condition (b) is
equivalent to the following:
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(bl) x E L if and only if (i 1 <_ i <_ m)(Cj 1 <_ j <_ k)[bijwj S @ S].
Now recall that we showed in Lemma 5.1 that there is a sparse set U to which S @ S
is -<tt reducible. Let g be a _<t, reduction from S @ to U. Then, without loss of
generality, we may assume that for every y *,

(c) g(y) is of the form z15... $z,, where m P(lY[) for some polynomial p and
(d) y e S S if and only if {Zl,-.., Zm} [") V # O.

For each y, let a(y) denote the set of all strings {Zl,..., Zm} that g outputs upon input
y. Then, the condition (bl) is equivalent to the following:

(52) x L if and only if (3i 1 <_ <_ m)(Cj 1 <_ j <_ k)[a(bjwj) V # 0].
For each i, 1 _< i _< m, let H(i) denote the set:

{Ul$... $uk I(Vj 1 <_ j <_ k)[uy e o(biyw)]}.

Also, define:

A {Ul$’"$uk [(Vj" 1 <_ j _<_ k)[uj e U]}.

Then, it is not hard to see that the condition (b2) is equivalent to:
(b3) z L if and only if (i 1 < i < m)(v H(i))[v A].

Since f and g are polynomial-time computable and k is a constant, there is a polynomial
q such that II{z I( i" 1 <_ i <_ m)[z n(i)]}ll _<

Furthermore, it is easy to see that the set {z I( i. 1 < < m)[z H(i)]} is polyno-
mial-time computable in Ixl. So, let h be a function that computes v$... Sv, so that
v,. , v, is an enumeration of all strings in H(i) for some i, 1 < i < m. h is polynomial-
time computable, x L if and only if {vl v,} (] A O. Thus, h witnesses L <P--dtt
A. Finally, since U is sparse and k is a constant, clearly A is sparse. Therefore, L
RPdtt(SPARSE), and this proves the theorem.

Next we consider the classes of sets that are reducible to sparse sets via polynomial-
time nondeterministic Turing machines. The following definitions are due to Ladner,
Lynch, and Selman.

DEFINITION 5.3 [LLS75].
(1) A set A is polynomial-time nondeterministic many-one reducible to a set B (de-

noted A <NmP B) if there exists a polynomial-time nondeterministic Turing ma-
chine M such that for every x E*,
(1A) for each computation path of M on x, M outputs some string, and
(1B) x A if and only if there exists some string y B that M outputs for

some computation path on input x.
(2) A set A is polynomial-time nondeterministic Turing reducible to a set B (de-

noted A <TNP B) if there exists a polynomial-time nondeterministic oracle Tur-
ing machine M such that for every x E *, x A if and only if there exists an
accepting computation path of M on x relative to B.

(3) A set A is polynomial-time nondeterministic bounded truth-table reducible to a
set B (denoted A <ttP B) if there exist k > 0 and a polynomial-time nondeter-
ministic Turing machine M such that for every x E*,
(3A) for each computation path of M on x, M outputs a string of the form

(a, y,..., Yk), where a is a k-truth-table and y,..., Yk *, and
(3B) x A if and only if there exists some output (a, y,..., Yk) ofM on x for

some computation path such that a(XB(Y),"’, XB(Yk)) true, where
XB is the characteristic function of B.
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(4) A set A is polynomial-time nondeterministic truth-table reducible to a set/3,
denoted by A <vP B, if there exists a polynomial-time nondeterministic Turing
machine M and a polynomial-time computable truth-table evaluator such that
z A if and only if M, on input z, computes on some computation path a
tt-condition that is e-satisfied by/3.

(5) A set A is polynomial-time nondeterministic conjunctive truth-table reducible to
a set B, denoted by A <vP B, ifthere exists a polynomial-time nondeterministic--ctt
Turing machine M such that for every *,
(5A) for each computation path of M on z, M outputs a string of the form

(1,’’’, ), where yl," "’, E*, and
(5B) z A if and only if there exists some output (y,...,) of M on z for

some computation path such that {y,..-,} c_/3.
(6) A set A is polynomial-time nondeterministic disjunctive truth-table reducible to

a set B, denoted byA <NP B, if there exists a polynomial-time nondeterministic--dtt

Turin machine M such that for every x E*,
(SA) fo each computation path of M on x, M outputs a strin of the form

(Yl,""", Yk ), where Yl,""", Yk *, and
(SB) x A if and only if there exists some output (y,..., y) of M on x for

some computation path such that {y,..., y} B 0.
DEFINITION 5.4. RNmP(SPARSE)(RP(SPARSE), Rtff(SPARSE), RtNtP(SPARSE),

Rntf(SPARSE), Rte(SPARSE)) denotes the class of sets that are <P (respectively,
--ctt <--dtt ) reducible to some sparse set.

We may also use Lemma 5.1 to obtain the following theorem. It is important to
emphasize that the results of this section depend crucially on the fact thatwe are reducing
to the class ofsparse sets. In particular, the following theorem should be contrasted with
the fact that there are classes C, and indeed single sets, such that RttPc and NPR,, C differ
ILLS75].

THEOREM 5.5. RNP(SPARSE) R bNttP(SPARSE)
Proof. To prove this, we will show that RttP(SPARSE) c_ RttP(SPARSE). Ladner,

Lynch, and Selman [LLS75, Thm. 4.1, Part (iii)] have shown that for every pair of sets
A and B, it holds that A NrP B if and only if A NP<--art B. It follows immediately
that RaNttP(SPARSE) c_ RP(SPARSE). Thus, it suffices to show that RtP(SPARSE) c_
RttP(SPARSE).

Let L be a set that, for some k, is NP<---tt reducible to a sparse set S via polynomial-
time nondeterministic Turing machine M. Without loss of generality, we may assume
that there is a polynomial p such that for every z E*, each computation path of M on
z has length exactly p(Izl). Define A {z#B I E=p(II) and M(z) on computation
path y has output of the form (a, yx,..., y) such that a(Xs(y),’.’, Xs(Y)) rue}.
It is not hard to see that A <-P-tt S, and for every z E*, z L if and only if for
some -(ll) it holds that z#y A. Since A <-tt S, from Theorem 5.2, there
exist a sparse set S’ and a polynomial-time computable function f such that A <-att S’
is witnessed by f. Consider a machine N that, on input z E*, nondeterminis-
tically guesses -p(ll) and outputs f(z#y). Clearly, the machine N witnesses
L _< S’.

Next we prove the following theorem.
THEOREM 5.6. RttP(SPARSE) RP(SPARSE).
Proof. Let L be a set in RP(SPARSE). Thus, there exists a polynomial-time non-

deterministic oracle Turing machine and a sparse set S such that for every z, z L if
and only if M on input z relative to S accepts. Here, without loss of generality, we may
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assume the following: There exist two polynomials p and q such that for every x,
(1) M on input x has exactly p(Izl) nondeterministic steps for each computation

path, and
(2) for every computation path and for every oracle set X, M on x queries the oracle

set exactly q(Ixl) times.
We will encode each computation path ofM on input x as a string of length

Moreover, since S is sparse, there exist a polynomial-time computable function f
and a sparse set U such that S --Pdtt U via f.

Now consider the following nondeterministic Turing machine M’:
1. On input x, M’ nondeterministically guesses a string w E Z]=p(Ixl) and bl,...,

bq(ixl) E {0, 1}. M’ simulates the computation of M on input x for the compu-
tation path w in the following way: whenever the ith query y is made, instead
of querying to the oracle M’ regards the answer to the query as YES if b 0
and NO otherwise, and M’ stores the query string on its tape. If the simulation
of M on x terminates at an accepting state, then M’ proceeds to the next step.
Otherwise, M’ outputs a fixed string not in U and halts.

2. For each i, 1 < i < q(lzl), M looks up the table of query strings computed in
the previous step, computes f(biyi), and nondeterministically picks a string
in the output of f.

3. Finally, M’ outputs z15... Szk and halts.
From the above description, as in the proof of the previous theorem, it is not hard

to see that (1) M’ runs in time polynomial in Izl and (2) x L if and only if M’ on x
outputs some (Zl,..., Zq(ll) such that {zx,.-., Zq(ll) } c_ U. Therefore, M’ witnesses
that L RcttP(SPARSE), thus proving the theorem.

6. Conclusions and open problems. This paper addressed the question of whether
reducibility to sparse sets is a broader notion than equivalence to sparse sets. For the
many-one and 1-truth-table cases, we showed that differentiating reducibility from equiv-
alence would yield a proof that P NP. In contrast, for the k-truth-table case, k _> 2,
reducibility is a provably broader notion than equivalence.

Nonetheless, there are limits on how much broader it can be. Gavalda and Watan-
abe have proven that for every nice unbounded function f, some sets f(n)-truth-table re-
ducible to sparse sets are not Turing equivalent (or even strong-nondeterministic equiv-
alent) to any sparse set. However, we showed that their result cannot be extended to the
2-truth-table case without yielding a proof that P NP. In particular, if P NP then
all sets 2-truth-table reducible to sparse sets are truth-table equivalent to sparse sets.

Finally, we addressed the power of disjunctive and conjunctive reductions to sparse
sets. Refuting a conjecture of Ko [Ko89], we proved that all sets bounded truth-table
reducible to sparse sets are indeed disjunctive truth-table reducible to sparse sets. Relat-
edly, for nondeterministic reductions to sparse sets, we proved that bounded truth-table
reductions are no stronger than many-one reductions, and that Turing reductions are no
stronger than conjunctive truth-table reductions.

A number of questions remain open. Regarding 5, though we refuted Ko’s conjec-
ture about disjunctive reductions, Ko’s other conjectures have as yet been neither proven
nor refuted. Regarding 4.2, can our proofbe generalized from the 2-truth-table case to
the bounded truth-table case?

A particularly interesting issue is that, even in the wake of the Gavald and Watan-
abe’s study of the case ofTuring reductions, many of the same questions remain open for
the Turing case. Gavald and Watanabe [GW] show that not all sets Turing reducible to
sparse sets are even strong-nondeterministic equivalent to sparse sets. This is essentially
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an NP coNP lower bound on the strength of the reduction needed to achieve equiva-
lence. A moment’s thought reveals--via [Sch86b, Lemma 5.6]--an upper bound of E;
that is, every set Turing reducible to a sparse set is= to some other sparse set.7 How-
ever, the exact location of the optimal strength of reduction needed to achieve equiva-
lence has not yet been pinpointed more accurately than the range (NP I’ coNP, E].
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RAY SHOOTING AND OTHER APPLICATIONS OF SPANNING
TREES WITH LOW STABBING NUMBER*

PANKAJ K. AGAPWALt

Abstract. This paper considers the following problem: Given a set G of n (possibly intersecting) line
segments in the plane, prcproccss it so that, given a query ray p emanating from a point p, one can quickly
compute the intersection point &(G, p) of p with a segment of G that lies nearest to p. The paper presents an
algorithm that preproccsses G, in time 0(3/2 log n), into a data structure of size O(nc(n) log4 n), so that

for a query ray p, /,(, p) can be computed in time O(v/nc(ni log2 n), where w is a constant < 4.33 and
a(n) is a functional inverse of Ackermann’s function. If the given segments are nonintersecting, the storage
goes down to O(n log3 n) and the query time becomes O(v/- log2 n). The main tool used is spanning trees
(on the set of segment endpoints) with low stabbing number, i.e., with the property that no line intersects
more than O(x/) edges of the tree. Such trees make it possible to obtain faster algorithms for several other
problems, including implicit point location, polygon containment, and implicit hidden surface removal.

Key words, arrangements, fractional cascading, point location, ray shooting, spanning tree, stabbing num-
ber, zone

AMS(MOS) subject classifications. 52A37, 68Q20, 68Q25, 68R99

1. Introduction. In the last few years many efficient randomized algorithms, based
on the random sampling techniques of [C1] or on the related e-net theory [HW], have
been developed to solve efficiently a variety of geometric problems. One such recent
development is due,to Welzl [We] (see also [CW]), who showed that, for a given set S of
n points in the plane, there exists a spanning tree T of S, such that no line intersects more
than O(log n) edges of T. Such a tree T is called a spanning tree with low stabbing
number (a formal definition is given in 2). Welzl used spanning trees with low stabbing
number to obtain an almost optimal algorithm for simplex range searching, namely, given
a set S of n points in the plane, preprocess it into a data structure of linear size so that,
for a query triangle A, one can quickly count (or more generally report) all points of
S lying inside A. His algorithm counts (respectively, reports) the points lying inside a
query triangle A in time O(log2 n) (respectively, O(log2 n + K), where K is the
number of points inside A). Soon after this paper, Edelsbrunner et al. [EGH*] used
these trees to preprocess a given set of n lines in the plane into a data structure of size
O(r log r) so that, for a query point p, the face of the arrangement A() containing p
can be computed quickly. The main challenge in both of these papers was to use only
roughly linear space (i.e., O(n log(1) n) space), because if we allow quadratic space,
then a query can be easily answered in O(log n) time [Ed], [EOS], [EG].

In this paper we present several new applications of spanning trees with low stab-
bing number. The algorithms presented in this paper are faster than the previously best
known algorithms for these problems. One of the main goals of this paper is to demon-
strate that such a spanning tree is a versatile tool that can be applied to obtain efficient
algorithms for a large class of problems, much beyond the simplex range searching prob-
lem for which they were originally introduced. We also show that by combining the span-
ning tree data structure with the recent partitioning algorithm of [Aga] and [Agb], we can
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(b)
FIG. 1. Ray shooting in an arrangement of (a) nonintersecting and (b) arbitrary segments.

obtain a trade-off between space and query time. Similar trade-offs have been obtained
earlier [EGH*], [Agc], [Chd].

The first and perhaps the most interesting application that we consider is ray shooting
in arrangements of segments. There are two versions of this problem, one for segments
that are nonintersecting, and one for an arbitrary collection of segments. Formally, these
problems can be stated as follows:

(a) Given a collection {el, en} ofn nonintersecting line segments in
theplane, preprocess it so that, given a query ray p emanatingfrom a point
p in direction d, we can quickly compute the intersection point (, p) of
p with the segments of that lies nearest to p (see Fig. l(a)).

(b) Sameproblem, except that the segments in can intersect arbitrarily ( see
Fig. l(b)).

If the segments in 6 form the boundary of a simply connected region, then the algo-
rithm of Chazelle and Guibas [CGa] preprocesses 6 into a data structure of linear size
so that, for any ray p, (6, p) can be computed in O(log n) time (see also [GHLST]).
For the general case, however, the ray shooting and other visibility problems are much
harder even for nonintersecting segments. For example, a result of Suri and O’Rourke
[SO]. shows that the portion of a polygon, with holes, visible from a fixed edge can have
f(n4) edges on its boundary, while for simple polygons such aregion is bounded by only
O(n) edges.

We are not aware of any ray shooting algorithm for nonsimple polygons (or for an
arrangement of segments), which answers a query in O(log(1) n) time, using roughly
linear space. Ifwe allow quadratic space, then a query is easy to answer in time O(log n)
(see 4.1). Our goal in this paper is to obtain efficient solutions that use roughly linear
space, and to establish a trade-off between space and query time.

For a special case, where G is a set of lines, a result ofEdelsbrunner et al. [EGH*] im-
plies that we can construct, in randomized expected time O(n/ log2 n), a data structure
of size O(n log2 n), so that a ray shooting query in ,4(/2) can be answered in O(x/- log3 n)
time. (The preprocessing has been made deterministic and the query time has been re-
duced to O(x/-logn) in [Age].) Unfortunately, this algorithm does not apply to seg-
ments. An algorithm with a sublinear query time for the case of segments can be de-
veloped using the "recursive space-cutting tree" of Dobkin and Edelsbrunner [DE] (see
also [EW]). The best-known algorithm for computing I,(G, p) is by Guibas et al. [GOS],
which constructs a data structure of size O(n), so that a query can be answered in
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O(n/+) time, for any 6 > 0. Their algorithm is based on the random sampling tech-
nique of [C1] and [HW], and constructs a multilevel partition tree. The preprocessing of
their algorithm is randomized with O(n log n) expected running time. However, the pre-
processing can be made deterministic without any additional overhead using the recent
partitioning algorithms of Matouek [Maa] or Agarwal [Agb].

In this paper we show that ray shooting can be performed in roughly (that is, up to
polylogarithmic factors) time, while still using only roughly linear space and employ-
ing deterministic, rather than randomized, preprocessing techniques. We first give an
algorithm for the case of nonintersecting segments. This algorithm constructs, in time
O(n/ log n), a data structure of size O(n loga n) so that, for a given ray p, (, p)
can be computed in O(x/ log n) time, where w is a constant less than 4.33. Our algo-
rithm is simpler than that of [GOS] because it maintains only a two-level data structure.
We then extend the above algorithm to general arrangements of segments. Although
the basic idea remains the same, we need several new techniques, and the algorithm is
more complex. In this case a query can be answered in O(v/na(n) log2 n) time, using
O(na(n) log4 n) space, after O(n3/2 log n) preprocessing. Another major difference
between the two cases is that in the first case we can report all K intersections between
a query ray p and G in O(x/- log n + K log n) time, while we still do not know how to
report these intersections in a comparably efficient manner in the general case. One
disadvantage of our algorithms over those of [GOS] and [DE] is that our preprocess-
ing time is roughly na/2 instead of roughly linear. This is the price that we must pay to
achieve deterministic preprocessing and to reduce the query time.

The second problem for which we give an efficient algorithm using the spanning tree
data structure is implicitpoint location. The implicit point location problem is an exten-
sion of the widely studied planar point location problem (see [Ki], [EGS], and [ST]). In
the latter problem, a planar map M consisting of n faces is given, and the goal is to pre-
process M into a data structure that supports fast point location queries, i.e., queries that
seek the face of M containing a query point p. The above algorithms construct, in time
O(n log n) (or sometimes linear), a data structure of linear size, so that a query point
can be located in M in O(log n) time. In the implicit point location problem the map is
defined implicitly. In particular, we assume that it is defined as the arrangement (i.e.,
overlay) of a given set of n geometric polygonal (possibly intersecting) objects of some
simple shape (or as a collection of arbitrary line segments), and the goal is to obtain
certain information related to the arrangement of the objects; for example, to deter-
mine whether a query point lies in the union of the objects. A more formal description
is given in 7. Guibas et al. [GOS] have presented an algorithm with O(n/+) query
time, for any 6 > 0, using the random sampling technique. We improve the query time to
O(x/- log n) and use deterministic preprocessing. The algorithm of [GOS] uses O(n)
space, while ours requires O(n log2 n) space.

Guibas et al. [GOS] have described several applications of the implicit point loca-
tion problem, such as polygon containment, implicit hidden surface removal, polygon
placement, etc. We show that our implicit point location algorithm improves the query
time of these algorithms too.

This paper is organized as follows. In 2we discuss spanning trees with low stabbing
number. Section 3 describes our ray shooting algorithm for arrangements of noninter-
secting segments. In 4 we show that ray shooting queries can be performed faster, ifwe
are allowed to use more space. Section 5 extends the algorithms of 3 and 4 to report
all intersections between G and a query ray p at logarithmic cost per intersection. In 6
we generalize our ray shooting algorithms to arrangements of arbitrary (possibly inter-
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secting) segments. Section 7 presents an efficient algorithm for implicit point location
and 8 discusses other applications of the spanning tree data structure. We conclude in
9 with some final remarks.

2. Spanning trees of low stabbing number. Let S be a set of n points in lRa, and let
7" be a spanning tree of S whose edges are line segments. The stabbing number
of 7" is the maximum number of edges of 7" that can be intersected by a hyperplane h.
Chazelle and Welzl [CW] (see also [Chc], [We]) have proved that, for any set of n points
in IRa, there exists a spanning tree with stabbing number O(nl-1/a), and that this bound
is tight in the worst case. For a family T of trees, the stabbing number or(T) is s if for
each hyperplane h there is a tree 7" E T such that h intersects at most s edges of 7".

Chazelle and Welzl [CW] also proved that a spanning tree of n points in IRa with
stabbing number O(n1-/a) can be constructed in polynomial time. In the plane, a
spanning tree with stabbing number O(x/) can be constructed in O(na log n) time. A
recent algorithm of Matouek [Mab] improves the running time to O(n5/2 log2 n) at the
cost of increasing or(T) to O(x/ log n). As for constructing a family of spanning trees,
Edelsbrunner et al. [EGH*] have presented a randomized algorithm, with expected run-
ning time O(na/ log n), to compute a family T (T, T} of O(log n) spanning
trees, with tr(T) O(x/- log2 n). The running time of their algorithm has been im-
proved to O(n4/a log n) in another randomized algorithm by Matouek [Mab]. (The
stabbing number of T computed by Matouek’s algorithm can actually be improved to
O(x/ log n); see [Agc].) An additional property of the algorithms of [EGH*] and [Mab]
is that the trees they produce are actually spanning paths. The best known deterministic
algorithm for constructing a family of spanning path is due to Agarwal [Agc], who has
shown the following.

THEOREM 2.1. [Agc] Gfien a set S of npoints in the plane, we can deterministically
construct afamily C ofO(log n) spanningpaths on S with a(C) O(x/), in O(na/21ogwn)
time, using O(n3/2) working storage, where w is a constant less than 4.33. Moreover, for any
query line g, we can determine in O(log n) time a spanningpath C such that g intersects
at most O(x/-d) edges ofC.

The paths constructed by [Mab] and [Age] can generally be self-intersecting. How-
ever, Edelsbrunner et al. [EGH*] have shown that a spanning tree 7" can be converted
into a simple polygonal path C in O(n log n) time, so that if a line g intersects s edges of
T, then g intersects at most 2s edges of C. Therefore, if desired, we can assume that the
spanning paths produced by the techniques of [Mab] and [Age] are non-self-intersecting.

Let C be a spanning path on S. For our applications we need to construct a balanced
binary tree B on t7 whose leaves store the points of S in their order along C. Each node
v of B is associated with the subpath C. of C connecting the points stored at the leaves
of the subtree rooted at v; let us denote by S the subset of S consisting of these points
(see Fig. 2).

A line g stabs a node v of B if g intersects tTv. Let V(g) denote the set of nodes v of
/3 such that v is not stabbed by but its parent (if one exists) is stabbed. It is easily seen
that {Sv v Vn(g)} is a disjoint partitioning of S. Moreover, we have the following
lemma.

LEMMA 2.2. If a line g intersects s edges of C, then IV(g)l <_ 2(s + 1) log n and the
nodes of Vt(g) lie on at most 2(s + 1)paths orB.

Another simple but key observation is given in the following lemma.
LEMMA 2.3. A line g intersects a polygonalpath ifand only if g intersects the convex

hull ofthe vertices of.
Lemma 2.3 implies that g stabs a node v if and only if g intersects the convex hull
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FIG. 2. C and B(C): black nodes of 13 denote Vt3

of S.. Since an intersection between a line and a convex n-gon can be detected in
O(log n) time, it follows that Vt (/) and the paths containing its nodes can be computed
in o(Iv (e)l log n) time, ifwe store the convex hull of the subpath Cv at each node v of B.
The running time ofthis computation can actually be improved to time o(Ivw(e)I+log n),
using fractional cascading (cf. [CGc]).

All the problems considered in this paper involve a set ofsegments in IR2 and most of
the algorithms presented here are based on spanning paths with low stabbing number.
The spanning path is constructed either on the endpoints of the segments or on the
points dual to the lines containing the segments. To answer a query, we choose a line
depending on the query and the problem (e.g., in the ray shooting problem, we take to
be the line containing the query ray), and compute the intersection points of t? and the
spanning path. The portion 7r of the spanning path between two consecutive intersection
points lies either above or below L The query for segments corresponding to the points
lying on 7r is answered directly in O(log(z) n) time, see below for details. We repeat
this procedure for all such portions of the spanning path and then compute the overall
answer from them. If intersects s edges of the path, the query time is O(s log(1) n).
Since s O(x/-), the query time of these algorithms will be O(x/-log(z) n).

3. Ray shooting in arrangements of nonintersecting segments. In this section we
present an algorithm that preprocesses a given set of n nonintersecting segments so
that, given a query ray p emanating from a point p in direction d, (, p) can be com-
puted quickly. (For technical reasons we consider p as an open ray, i.e., the point p does
not belong to p.) We will also use (,/9) to denote the distance of that point from p;
if no such intersection exists, we put (, p) +oo. Without loss of generality, we re-
strict our attention to rightward-directed rays; leftward-directed rays can be handled in
a symmetric way. We also assume that there is no vertical segment in . Denote the set
of left endpoints of the segments of G as S {p, -.., Pm}, where m < n. Let 12
{C, Ck} denote a family of k O(log n) spanning paths on S, with a(C) O(v/-).

We show how to preprocess a single path C. First, construct the binary tree
B B(C). Let Gv c_ G be the set of segments whose left endpoints are in S (see Fig. 3).
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FIG. 3. G,: dashedpath denotes Cv ;solid lines denote Gv; bullets denote S,.

Let denote the line containing the query ray p; then

min ( (I)(Gv, p)}.(g’P)

Note that for a node v E VB(i) C,, is a connected path; therefore, either all points
in S,, lie above or all of them lie below . In what follows we assume that all points
of Sv lie above/. We will show below that /,(Gv, p) can be computed in O(log n) time.
First, a few notations: Let t?- (respectively, /+) denote the half plane lying below (re-
spectively, above) the line/?. We distinguish between the two sides of a segment e, the
top (respectively, bottom) side of e is denoted by e+ (respectively, e-). We say that a
ray p hits e from above (respectively, below) if slightly to the left of their intersection, p
lies above (respectively, below) e. Ifwe think of e as expanded into a very thin rectangle
and of e+, e- as denoting the top and bottom sides of that rectangle, respectively, then
p hits e from above if, when traversed from left to right, p first intersects e+ and then
e-, and symmetrically for rays that hit e from below (see Fig. 4). If p hits e from above
(respectively, below), then we also say that it hits e+ (respectively, e-). The following
lemma is quite obvious, so we state it without proof.

+

FIG. 4. Two-sided segments: p hits el from above and e2 from below.

LEMMA 3.1. Let v be a node of VB(g). Under the assumption that all points of S, lie
above g, if p hits a segment e , then it hits efrom below.

Before proceeding, we introduce a linear ordering among the segments of 7,,, as de-
fined in [GOS] (see also [GY]). As we will see later, this ordering sorts the segments in
a manner that is consistent with any order in which they can be crossed by a rightward-
directed ray (from below).
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DEFINITION 3.2 [GOS]. For a given set {e, e,} of segments,
(i) ei < e if there exists a (nonvertical) line/? hitting both e- and e- such that

its intersection with e lies to the left of its intersection with e, and such that
+ for k y i j, at a point between ei and edoes not hit any e,

(ii) e < e if there exists a vertical line intersecting both e and e such that its
intersection with e lies below its intersection with e.

(iii) ei < e if ei and e have nonoverlapping z-projections and the projection of ei
lies to the left of that of e.

(iv) e < e if either e precedes e in the transitive closure <, of <, or e and e
are not related by <, and e < e.

THEOREM 3.3 [GOS]. < is a partial order, and < is a linear order that extends <.
Moreover < can be computed in time O(n log n).

Remark 3.4. It is possible for a pair of segments e, ez that e < e within some set, but e < e relative to a subset ’ c (see Fig. 5). Therefore, it is important to
mention the set relative to which we are ordering the segments.

FIG. 5. Ordering ofa pair ofsegments is relative to a set.

Nextwe prove a technical lemma about < thatwe will need later. Let l (respectively,
r) denote the left (respectively, right) endpoint of a nonvertical segment e.

LEMMA 3.5. Forallsegrnents , b , ifr lies below gand z(r) < z(l), then a < b
(relative to ).

Proof. Suppose, to the contrary that, there is a pair of segments a, b . such that
r lies below and z(r) < z(l), but b < a. Since the z-projection of b is to the right
of that of a, the only way b can precede a in <-ordering is by the transitive relation <...
Thus there exists a sequence of segments in . such that b e <. e <. < e a.
Let 7r, denote a shortest sequence among all such sequences, and let d, denote the
length of 7r,. We obtain a contradiction by showing that, for every k > 0, there is no
sequence 7r, such that d, k.

Obviously d, > 2, because z(r) < z(16). If d6, 3, then there is a segment
c G. such that b < c < a. This implies that x(r) >_ x(lb) > X(ra) > x(l). Let q be
the intersection point of c and the vertical line x x(ra). Note that a and c satisfy the
following properties: (i) c < a, (ii) x(r) > X(ra), (iii) a does not intersect c, and (iv)
the point l lies above (because c e G). These properties imply that lies below/?
(see Fig. 6), which contradicts the assumption that b <v c (because x(r) >_ x(lb) and c
lies below b at x x(lb)). Hence db,a > 3.

Now assume that, for all segments a, b Gv satisfying the conditions of the lemma,
either a < b or db, >_ k. Suppose there exists a pair a, b such that b <.. a and db,a k.
Let b e < <v ek-1 <v ek a be a corresponding shortest sequence T’b,a,
and let c ek-. Since 7rb, is a shortest sequence, it is easily seen that x(r) > x(ra).
Indeed, let e be the first segment in this sequence whose x-projection overlaps that
of a. Then e must lie below a, for otherwise we would have obtained a cycle in <..,
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which is impossible. Hence ej <v a and we can shortcut the sequence after ej. Clearly,
z(r) > z(ra). Let q be the intersection of cwith z z(ra), as above. Againwe can argue
that lies below e. If z(rc) < Z(Ib), then c and b satisfy the property of the lemma,
and thus contradict the inductive hypothesis because db,c < k. On the other hand, if
z(r) > z(lb), then we have c <,, b (because c lies below b at z z(lb)), contradicting
the assumption that b <v. c. Hence, we can conclude that a < b, and this completes the
proof. [3

FIG. 6. Illustration forLemma 3.5, db,a 3.

Using Lemma 3.1 and Theorem 3.3 we obtain the following lemma.
LEMMA 3.6. Let (e, e,) denote the segments of ordered with respect to

< (relativeto ), andsuppose (,p) pAef, forsome I < f < m. Thenforall i < f,
ei does not intersect p.

Proof. If ei intersects p, it does so at a point to the right of p f3 ey. This implies that
ey <8 e, which means el < e since < extends <8. D

Hence the original problem is reduced to the following restricted problem:
Given a sequence ofm segments sorted according to <, preprocess so
thatforany (rightward-directed) query ray p emanatingfrom apoint p and
lying on a line thatpasses below the left endpoints ofall segments in , we
can quickly determine ey (p), the first segment ofg hit by the ray p.

A possible approach to solving this problem is to do a binary search on g, where each
step of the search tests whether p intersects a segment in some contiguous subsequence
of t segments of g. If p were a full line g, then such an intersection could be easily
detected in O(log t) time after O(t log t) preprocessing (in whichwe construct the convex
hull of the right endpoints of these t segments). However, no equally fast procedure is
known to detect an intersection between a ray and such a set of segments. To overcome
this problem, we next show how to reduce the intersection detection problem to one
involving the line containing p rather than p itself.

For any point q in the plane, let eh eh(q) denote the first segment of g whose
left endpoint lies to the right of (or above) q (see Fig. 7), and let e e,(q) denote the
segment in g lying immediately above q, that is, the vertical ray emanating from q in the
upward direction hits e, before any other segment. If eh (respectively, e) is not defined,
we put h m + 1 (respectively, u m + 1). Finally, put bq min{h, u}.

To compute eh, construct a balanced binary tree L whose leaves store the segments
of in their order in g. For each interior node z ofL we store the rightmost left endpoint
of the segments stored at the subtree rooted at z. L can be constructed in O(m log m)
time, and eh can be determined, by searching for q through L, in O(log m) time. As for
e,, we can easily calculate it in time O(log m) after O(m log m) preprocessing, as in [ST].
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e. eh

eu

ecp eh

FIG. 7. Segments eh, eu, and e.

LEMMA 3.7. The query ray p emanatingfrom a point p cannot intersect any segment
ei for < Cp. Moreover, p intersects ei for i > Cp ifand only if its right endpoint lies
below the line containing p.

Proof. If the first part of the lemma were not true, then there would exist a segment
ei for < Cp, intersecting the ray p. In this case the left endpoint of e must lie to the left
of p, so the vertical ray 7 from p in the upward direction must intersect e. But then the
first segment e, hit by must satisfy k u k Cp (because e <. e and by definition of
Cp), a contradiction that proves the first half of Lemma 3.7.

The "only if" part of the second half of Lemma 3.7 follows from the fact that if both
the left and the right endpoints of a segment e lie above , then e cannot intersect . For
the "if" part let e be a segment of
does not intersect p. If the left endpoint l, of e lies to the right of p, then obviously e
intersects p, so l, must lie to the left of p. Since e does not intersect p, the intersection
point of e and lies to the left of p. Moreover if x(r,) < x(l() ), then by Lemma 3.5
e < e(p). If x(r,) > x(l()), then ei and e,(p) must have x-projections that overlap
at some point between and p; since e lies below eu(p) at this point, we again have
e <.. e(p). Similarly we can show that e < e(p). Hence i < min{u, h), contradicting
the assumption that i _>

Lemma 3.7 implies that the binary search technique proposed above will work, pro-
vided we can detect quickly whether the right endpoint of any segment in some contigu-
ous subsequence of lies below . In other words, the problem now has been reduced to
that of detecting an intersection between a set of points and a query half plane. Clearly,
this is equivalent to detecting an intersection between the convex hull of these points
and the half plane (see Fig. 8).

We are now ready to describe how to preprocess so that el(p), the first segment
of hit by p, can be computed quickly, for any ray p with the above properties. Let ri
denote the right endpoint of ei e , and let R {r, ..-, rm}. We construct a binary
tree T on R in the same way as we constructed B, i.e., the points r are stored at the
leaves of 7" in order, and each node w of 7- is associated with the subsequence Ro of R
containing all points stored at the leaves of the subtree rooted at w.

At every node w of T, we store the convex hull of Ro. Using T we can determine
el(p) in time O(log2 m) as follows: We first find Cp, as described above, in O(logm)
time. Then we treat the suftK {r, r,} of R as the union of logm subsets Ro,
w e T, which we can compute in O(log m) time. We test each Ro in increasing, left-to-
right order, to find the first w for which the line g containing p intersects the hull of Ro.
Then we do a binary search within Ro until we find el(p). All this takes O(log2 m) time.
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e

FIG. 8. Convex hull CH(gp) intersecting -.

However, we can easily reduce the time to O(log m), using fractional cascading. This
is possible since, as in [CGc], detecting intersection between and a convex polygon
amounts to searching for the slope of in the sequence of slopes of the edges of the
polygon (see [CGb] and [CGc] for more details). We thus have the following lemma.

LEMMA 3.8. Given a set of m nonintersecting line segments in the plane, we can
preprocess it, in time O(m log m), into a data structure ofsize O(m log m) so that, given a
(rightward-directed) query ray p whose containing line lies below the left endpoints ofall the
segments in , we can compute the first segment of hit by p in time O(log m).

Returning to the original problem, Lemma 3.8 and the preceding discussion imply
that we can compute (,, p) for each v E Vt(e), in time O(log n). Equation (3.1) and
Lemma 2.2 then imply the following theorem.

THEOREM 3.9. Given a set of n nonintersecting line segments, we can preprocess it
in time O(na/2 log n)for some a; < 4.33 into a data structure ofsize O(n logan), using
O(na/2) working storage, so that, given a query ray p, its first intersection (, p) with can
be computed in time 0( log2 n).

Remark 3.10.
(i) The space used can be reduced to O(n log2 n) without affecting the query time

if we use a single tree structure instead of a family of O(log n) trees. But then
the preprocessing time increases to O(na log n) (see [EGH*]).

(ii) If we allow randomization, the (expected) preprocessing time of the algorithm
can be reduced to O(n4/a log2 n) using Matouek’s algorithm for computing a
family of spanning trees [Mab], but then the query time bound increases by a
factor of log n.

4. Trade-off between space and query time. In this section we show that the query
time for the ray shooting problem in arrangements of nonintersecting segments can be
improved if we allow ourselves more storage. Similar trade-offs have been obtained for
several related problems, such as computing a face in an arrangement of lines [EGH*]
and simplex range searching [Agc], [Chd]. The main result of this section is an algorithm
for computing (, p) with O( log7/2 + logn) query time, using O(m) space,
where n logan < m < n2.

4.1. The case of quadratic storage. First, we show that ifwe allow O(n2) space, the
query time can be reduced to O(log n).
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FIG. 9. A segment e and its dual e*.

Let {el, en} be a collection of n nonintersecting segments. The dual of
a segment e ab is a double wedge e* formed between the dual lines a*, b* of a, b,
respectively, and not containing any vertical line (see Fig. 9). Dualize all segments e
obtaining a set * ofn double wedges. Let E* denote the set of lines bounding the double
wedges of * (i.e., the duals of the endpoints of segments in ). Let A(E*) denote the
arrangement of E*, and let wf be the set of segments dual to the double wedges of
containing the face f E 4(E*). Standard duality arguments yield the following lemma
(see, e.g., [CGL]).

LEMMA 4.1. Letp be apoint lying in the interior ofaface f ofA(*). Then p* intersects
each segment e wy transversally at an interiorpoint, and is disjointfrom any othersegrnent
of.

LEMMA 4.2. Ifthe segments of are nonintersecting, thenfor allpoints p in a face f of
.A(*), the line p* intersects the segments ofwy in the same order.

Proof. Suppose there are two points and in a face f such that the lines
intersect the segments of w, in two different orders. Since the segments in are nonin-
tersecting, rotating * towards * (in the direction that avoids a vertical orientation) we
must reach a line p* that either contains a segment of wy, or passes through an endpoint
of a segment of wy. (Note that this claim does not hold if the segments can intersect.)
The dual p of p* is a point that lies on the segment --, hence in f. This, however, con-
tradicts Lemma 4.1, thus showing that the duals of all points in f intersect the segments
of wy in the same order.

Sort the segments in w/, in the order provided by Lemma 4.2. For a ray p, let the
image ofp be the dual ofthe line containing p. If the image ofp lies in the face f E 4(E*),
then (, p) can be computed in O(log n) time by a binary search on wy. Therefore, it
suffices to show how to store all the lists wy using only O(n2) space, so that binary search
in each of them can still be done in O(log n) time.

Let 7) denote the dual graph of 4(E*), i.e., the graph whose nodes represent faces
of .A(*) and whose edges connect pairs of nodes representing adjacent faces. Let
denote a spanning tree of 7). We can convert 7" into a path II by tracing an Eulerian tour
around the tree. Observe that if two vertices vl, v2 in II represent faces f, fz sharing an
edge "),, which is a portion of a line g, then w/, w/, is the set of segments having the
dual of g as an endpoint. Let 6. denote this set of segments. The set wy can be obtained
from w/,1 by deleting the segments of 6. fq w/, and inserting the segments of
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Therefore, we can maintain all lists wf using a persistent data structure (see [Co], [ST]
and [DSST]). Since at each edge " of II only the segments of 6-r are inserted or deleted,
the total space required to store all ws is O(n + ’]-ren and the total preprocessing
time is O((n + -]-rerI I[) log n). Moreover, using the persistent data structure, (, p)
can be computed in O(log n) time (see [ST]). Thus, it suffices to prove that --r
O(n2). Suppose the segments of have t < 2n distinct endpoints and us segments are
incident to the ith endpoint. It is easy to check that if ,,/is a portion of the line dual to

)-]S=l vs 2n and each line of* is split intothe ith endpoint, then 16.r[ < vs. Obviously,
< t / 1 edges, which implies that

16:,1 < + l)vs < 2n(2n + 1).
q,T i=1

Hence, we have the following theorem.
THEOREM 4.3. Given a collection ofn nonintersecting segments, we can preprocess

it, in O(n2 log n) time, into a data structure ofsize O(n2) so that, forany query ray p, (G, p)
can be computed in O(log n) time.

4.2. The general case. Theorems 3.9 and 4.3 represent roughly two extremes of the
spectrum, because we need at least O(n) space, and we cannot hope to answer a query
in o(log n) time. The general case where the allowed storage m assumes an intermediate
value between n log3 n and n2 is handled as follows. For technical reasons we assume
for the time being that no endpoint of a segment in G has degree > 3 (that is, incident to
more than three segments of G). In 4.3 we show how to handle degenerate cases (i.e.,
when there are endpoints of degree > 3).

Using the algorithm of [Agb], partition the dual plane, in time O(nr log n log- r),
into M O(r) triangles/Xl, ,/XM, each meeting at most lines dual to the end-
points of the given segments, where r is a parameter to be chosen later. Let ’ denote

n For eachthe set of dual lines that intersect the triangle/s for 1 ..., M; _<
/s, define the subset Gs of to consist of all segments e having at least one endpoint
whose dual is in . Obviously [!Ts[ <_ -. We define Ws c as

LEMMA 4.4. For eachpoint p lying inside the line p* does not intersect any segment
of

Lemma 4.4 implies that

(4.1) if(G, p) min{(Ws, p), (Gs, p)},

where/ks is the triangle containing the image of p. Using the same argument as in
Lemma 4.2, we can prove

LEMMA 4.5. All lines whose dual points lie inside/Xs intersect the segments of Ws in
the same order.

We can thus order the segments of Ws in the order provided by Lemma 4.5, and
compute (Ws, p), for any ray p whose image lies in/ks, in O(log n) time, using binary
search. Let/X and/ be two adjacent triangles and let

(4.2) G2 { I( e )/ (/ c *)).

It follows from the definition of Wi that W (W tO Gz) -Ge. Since [GI[, I[ O(.),
we have [W WI O(). As earlier, we define a graph 79, whose vertices are the
triangles A and whose edges connect pairs of vertices representing adjacent triangles.
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Now an edge between vl and v2 has the set 1t32 associated with it. Again, we construct
a path II on a spanning tree of 79, and obtain a persistent data structure T() to store
Wi for all triangles. It can be easily shown that Tt () requires O(nr) space, and can
be constructed in O(nr log n) time. For any ray p, (Wi, p) can still be computed in
O(log n) time, where i is the triangle containing the image of p.

We preprocess each i into a data structure T(i) of size O(lil log I1) for ray
shooting queries, as described in 3, so that for any ray having its image in , we can
find (i, p) in O(log ) time.

To compute (, p), for a given ray p, we first find the triangle that contains
its image; this can be done in O(log n) time, using an ecient point location algorithm
[EGS], [ST]. It follows from (4.1) that (, p) can be computed by calculating (Wi, p)
and (i, p), as described above; therefore the quew time is

)+ log n

As for the space complefi S(n), we will need O(r) space to store the triangle
logz) to store each i (cf. eo-,... ,, O(nr) space to store Tx and O(

rem 3.9). us,

Ifwe choose r m/n log3, then S(n) O(m) and the que time becomes

Q(n) 0
m/(n log3

O log/+log
Neg, we bound the preprocessing time P(n). We can compute 1, , in

O(nr log n. logw-1 r) time (see [Agb]). Since can be constructed in O(r log n) time
and each can be preprocessed in O(()a/ log ) time (cf. Theorem 3.9), we have

( o(ogog-1 ) + o

( )O n log n logw-
m m n

n logz

O mlogn+nlog-a/
Since we need O(nr) space to compute 1, , and O() to preprocess

each , the total space required for preprocessing is

o + o g + //(og )/
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(0 m+ m./2 log9/9

Hence, we can conclude the following theorem.
THEOREM 4.6. Given a collection of n nonintersecting segments in the plane with

the property that no endpoint has degree > 3, and a parameter n log3n < m < n, we can
preprocess , in O(m log n +nlog-a/ n) time, into a data structure ofsize O(m) so

that, for que ray p, we can compute (, p) in O((n/) logT/Z(n/) + logn) time.
The working storage requiredforpreprocessing is O(m + (rialto/) log9/ (n/)).

Remark 4.7.
(i) If we allow randomization, then using Matouek’s algorithm i can be prepro-

cessed in 0 (()4/ log n) time, but the que time increases by a factor of

O(log n). erefore, following the same analysis we obtain

P(n) O (m/n/ + mlog n)
Q(n) O log9/2+logn

(ii) If we maintain a single tree data structure for each Gi, the queu time can be
reduced to O( log3 n), but the preprocessing time increases considerably.

4.3. Coping th degenerate eases. The analysis of the algorithm described in the
previous subsection breaks down if the segments of G have endpoints of arbitrarily large
degree, because then we cannot guarantee that lGi] O(), and the analysis to bound
the total space required to storeT relies heavily on this bound for ]Gi . In this subsection
we overcome this difficul by showing that, given a set G of n nonintersecting segments,
we can transform it into another set G of at most 3n (nonintersecting) segments such
that no endpoint of a segment in G has degree > 3, and (G, p) can be determined from
(G’, p) in O(1) time.
t Gp {e, et} be a subset of segments of G all having a common endpoint

p. t 6 be the minimum distance from p to its closest neighbor in G Gp, and let c be
the circle of radius with p as center. For a segment ei Gp, let qi denote the intersec-
tion point of c and ei. Assume that the segments of Gp are ordered in counterclocise
direction along p. There areo cases to consider:

(i) There esto consecutive segments in Gp, say et and e, such that the angle
beeen et and e is > 180. For I < i < t, we remove the portion of e that lies
in the interior of c (i.e., ), and add the segments qq2, qt-qt to G (see
Fig. 10(a)).

(ii) e angle beeen eveo consecutive segments of Gp is < 180. For each
e Gp, we remove the portion of e that lies in the interior of c, and add the
segments qlq2, qt-qt, qtq to G (see Fig. 10(b)).

We repeat this process for each endpoint of the segments of G whose degree is
greater than 3. tG be the new set of segments; obviously IGI 3n, and each endpoint
has degree 3. If the ray origin s of p lies inside one of the newly created little polygons,
say in pqi-lqi of the polygon created around the endpoint p, then (G, p) lies on one
of the segments incident to qi_, qi, and can be determined in O(log n) time by locating
s in A(G). On the other hand, if s does not lie in any of the newly created polygons
and (G, p) lies on a segment of G, then (G, p) (G’, p). Finally, if s lies outside all
newly created polygons but (G, p) lies on a segment qi_q and ei_x (respectively, e)
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q6
q5

q

(b)

q6

ql
q4

FIG. 10. Modifying segments having a common endpoint ofdegree > 3.

is the segment of G incident, to q_ (respectively, q), then ,I,(6, p) lies on either e_x or
ei. Therefore, I,(G, p) can be computed from I,(G’, p) in O(1) time. Moreover, for each
endpoint p, the minimum distance 6p can be computed in O(n log n) time by construct-
ing the closest point Voronoi diagram of G [Ya]. Hence by Theorem 4.6, we have the
following theorem.

THEOREM 4.8. Given a set ofn segments and a parameter n log3 n < m < n2, we
canpreprocess it, in time O m log n+nv/- log-3/2 n/x/’-) ), into a data structure ofsize
O(m) so that, for a query ray p, we can compute (, p) in O((n/x/-) logT/2(n/x/-) +
log n) time.

5. Reporting all intersections. In the last two sections we gave algorithms to com-
pute I,(, p) for a collection of nonintersecting segments. We now extend these algo-
rithms to solve the following problem:

Given a set of n nonintersecting segments, preprocess it so that, for a
query ray p, we can quickly report all intersections Zp between and p in
their order along p.

Dobkin and Edelsbrunner [DE] have given an algorithm that preprocesses 6 into a
data structure of linear size so that, for a query ray p, 2- can be computed in O(n0"695

I:ZoI) time. (In fact, their algorithm works for an arbitrary collection of segments.) We
first present an algorithm that uses roughly linear space, by generalizing the algorithm
described in 3.

Preprocess G, as in 3, in O(n3/2 log n) time using O(n log3 n) space. For a given
ray p, we compute 2- as follows. Let g denote the line containing the ray p, and let
be a spanning path in C that intersects g in O(x/) edges. As described in 2, compute
Vt(g) in O(x/ log n) time. Now we report all intersection points in Zp by walking along
the ray p and stopping at each point of2. For a point q 6 p, let pq be the ray emanating
from q and contained in p.

The algorithm maintains the following invariant: When we are at a point q 6 p, we
maintain a list of all points ,I,(,,, pq) for v Vt(g), as a priority queue Q (with respect to
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their order along p). Observe that Q remains the same between two consecutive points
of Zp and that the root of Q stores the point of Zp that we are going to encounter next.
Therefore, it suffices to show how to update Q after visiting a point ofZp. Suppose, when
we are at a point q, the root of Q stores a (, pq) for some u E VB(g). It is easily
seen that when we cross a, the next intersection point of p and ., for v Vt(g) {u}
does not change. Thus Q can be updated by deleting a from Q and inserting (,p)
in Q provided (,p) . Continue this process until Q becomes empty. It is easily
seen that this procedure reports all intersection points ofp and the segments of in their
order along p.

In order to bound the running time of the algorithm, observe that initially we spend
O(x/- log2 n) time to construct the queue Q for q p, and then spend O(log n) time in
updating Q after each intersection. Hence, we have the following theorem.

THEOREM 5.1. Given a collection ofn nonintersecting segments, we can preprocess
it, in time O(n3/2 log n), into a data structure ofsize O(n log3 n) so that, given a query ray
p, Ip can be computed in O(x/- log2 n + IZpl logn) time.

An immediate corollary of Theorem 5.1 is the following.
COROLLARY 5.2. Given a collection ofn nonintersectingsegments, we canpreprocess

it, in time O(n3/2 log n), into a data structure of size O(n log3 n) so that, given a query
segment e, we can compute all K intersections between e and in time O(v/- log2 n +
K log n).

Next we show that, as in 4, the query time can be improved ifwe allow more space.
Now preprocess G as described in 4 (if the segments of G have endpoints with degree
> 3, we modify the set G, as described in 4.3). Recall that in 4 we maintain two data
structures: (i) the persistent data structure T1 to store Wi for each triangle/i, and (ii)
T2(Gi) for ray shooting queries. For a query ray p, we compute 2-p as follows.

Suppose the ray origin p lies in the triangle/i; let the sorted Wi be (el, e2, em)
and suppose (W, p) E e. Then by Lemma 4.2, e, e, intersect p in that order
along p, and we thus obtain all intersections between W and p. The intersections be-
tween Gi and p are obtained by the procedure described above, except that the the size
of is now onlyO(log ) because IGil -< . 2-p is then obtained by merging the two
output lists of intersections with W and G. Hence, following the same analysis as in 4,
we can conclude the following theorem.

THEOREM 5.3. Given a collection of nonintersecting segments and a parameter
n log3 n < m < n2, we can preprocess it, in time O(m log n + nv/ log-3/2(n/)),
into a data structure of size O(m) so that, given a query ray p, Zp can be computed in

O((n//-) logT/2(n/v/--) + logn + IZ, log(n/-)) time.
COROLLARY 5.4. Given a collection ofn nonintersecting segments and a parameter

w w 3/2n log3 n < m < n2, we canpreprocess it, in O(m log n+nv/- log (n/x/)) time, into
a data structure ofsize O(m) so that, given a segment e, we can compute all K intersections
between e and G in O((n/v/-) logT/2(n/v/-) + logn + glog(n/v/-)) time.

6. Ray shooting in general arrangements of segments. In this section we extend our
algorithm to arrangements of possibly intersecting segments. The section is organized as
follows. In 6.1 we describe how to preprocess G for ray shooting queries, and in 6.2 we
show how to answer a query. We analyze the time and space complexity of our algorithm
in 6.3 and finally, in 6.4, we derive a trade-off between space and query time, similar
to that of 4.

6.1. Preprocessing the segments. In this section G denotes an arbitrary collection
of n segments in the plane. To simplify the exposition, we assume that the segments of
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are bounded. The preprocessing of is done as follows. We construct a partition
tree T, and associate with each node v E T a collection v c_ of nv segments, a

segments. If n < c, for some fixedtriangle/, and another auxiliary set ’ of ,n
constant c, then v is a leaf of 7". Otherwise it is an internal node of T, which is further
processed as follows. For some fixed constant r > 2, partition/. into M O(r:)
triangles/x, ...,/u, using the algorithm of [Agb] (or of [Maa]), so that the interior
of each triangle/i intersects at most lines containing the segments of v. Create M
children wl, ..., WM of v, and associate with each child wi the corresponding triangle
/o, =/. We put a segment e E in o, if at least one of the endpoints of e lies in
/. We also .associate with w an auxiliary set , of all segments of that intersect
the interior of/k. For the sake of convenience we regard each element of, as the
subsegment e f/o, of the corresponding segment e. Let M. be the planar map formed
by the triangles/1, "",/XM. The root u of 7" is associated with itself, and/ is a
triangle that contains all the segments of . Moreover, ’ , by definition.

We preprocess each node v 7" as follows. Preprocess the planar map 3// for point
location queries (see [EGS] and [ST]) and store the resulting data structure at v. Let .

’. Preprocess vdenote the set of lines containing the segments of ’ levi < n.
into a data structure TI(E) for computing (v, p) as described in Edelsbrunner et al.
[EGH*] (see also [Agc]). If (E, p) lies outside/k, then we reset it to +c.

DEFINITION 6.1. The zone of a triangle/k in an arrangement 4() of a set of
segments is the collection of the face portions ffq, for all faces f E A(), that intersect
0/ (see Fig. 11).

FIG. 11. Zone ofa Mangle/Xi;somefaces are nonsimplepolygons.

Using the same argument as in [EGP*], it can be proved that the total number of
edges in the zone of a triangle in an arrangement of n segments is O(na(n)), where
a(n) is a functional inverse of Ackermann’s function. Let denote the zone of/ in
4(’); 7-/ has O(n’a(n)) edges. 7-/ can be computed using the algorithm of Guibas
et al. [GSS] because under the assumption that the segments of’ have been clipped to
/v, is the unbounded face of A(’). Since the edges of. are nonintersecting, we
preprocess 7% into a data structure T(’) for computing(, p), using the algorithm
described in 3.

We repeat this preprocessing for every node v of 7". The resulting collection of data
structures is the output of the preprocessing stage.

6.2. Answering a query. Let p be a query ray emanating from a point p in direction
d. The query is answered by traversing a path IIp of 7" and computing tr (, p) at
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each node v E IIa in a bottom-up fashion. At the end of this process we obtain at the
root u, cr (,, p) O(, p).

The path IIa is defined so that for each node v along IIa the ray origin p lies in/v.
At each node v E IIa we compute cry as follows. Let Wa be the set of children w of v for
which p intersects/o. Obviously,

(6.1) av min { (w, P)}.

Ifw IIa, that is, p lies in/o, thenwe have already computed (Go, p). Concerning
is the sameao’ ( ,p), since the segments of completely cross,a

as (E, p) (we are assuming that (E, p) and a, are set to + if they do not lie in
the interior of ). Thus a can be computed using T(E).

For all other children z E Wp, the fact that p lies outside implies that (G, p) is
the same as (z, p), and therefore it can be computed using T(G) (see Fig. 12).

FIG. 12..A(w); shaded re#on is a face ofT-Go.

Repeating the above step for all w Wp and using (6.1) we can compute

6.3. Analysis of the algorithm. The correctness of the algorithm follows from the
above discussion, so we only have to analyze the time and space complexity of the al-
gorithm. First, consider the query time Q(n). Let Ha be the path followed by the algo-
rithm as it computes (G, p). We bound the time spent at each node v Ha. We spend
O(log r) time to find the triangle &o containing the ray origin p. It follows from [EGH*]
(see also [Aga] and [Agc]) that (, p) can be computed in O(logn) time. At
other triangles &, intersected by p, we spend O(n(n)log2 n) time to compute
(G, p), for , has at most O(n(n)) edge (cf. Theorem 3.9). Since n n. for all
children of v, the time spent at v is O(r2n,(n,) log2 n.). Summing over all nodes of

Ha and using the fact that r O(1), we obtain

(6.2) Q(n) X O(n(nv)log2n).
For a node v at level i, nv (n/r); therefore,

(i )O
n

i=0
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because r _> 2. Next, let us analyze the space complexity S(n) and the preprocessing
time P(n) of our algorithm. At each node v 6 7" we store the following data structures:

(i) /" The node v is partitioned into O(r) triangles in O(nr logn log’- r)
time [Agb], therefore by [EGS], j4,, can be preprocessed, in time O(rz log r),
into a data structure of size O(rz) for point location queries. Since r is chosen
to be constant, the time bound is just O(n log n,,) and the space required is

(ii) T()" It follows from the result of Edelsbrunner et al. [EGH*] (see also
[Agc]) that T() requires O(n log n) space and O(n’/ log nv) prepro-
cessing time.

r(iii) T2() Since 7-/v has O(n,a(n,))edges, 2() requires O(na(n)log
space and O(n’3/2az/2 (n) log n) preprocessing time (which subsumes the
time O(na(n) logz n) needed to compute 7-/ [GSS]).

Thus, the space used at v is O(na(n,) logz n). Summing over all nodes of T, we get

S(n) Z(nva(nv) lg3 nv )"

Observe that each triangle ofM intersects 0() segments of , so Y’own
O(nr). Consequently,

Since each endpoint of a segment e 9 falls in the interior of only one triangle,/, for
each level of T, e appears in of at most two nodes of the same level. Let l(v) denote
the level of the node v in 7". Then for every _< log n we have

(6.3) n, < 2n.
t(,)=i

Hence,
log r

S(n) O(na(n) log3 n) O(na(n) log4

i=1

Finally, we bound the preprocessing time P(n) of our algorithm. The above discus-
sion implies that the total time spent in preprocessing is at most

P(n) O(n3/2a3/2(n’v) logw n)

(6.4) a/ a/O( (og.
Since is a constant less than 4.33, we can write a/(n)log n in (6.4) as log n,
where is a different constant but whose value is still less than 4.33. Thus

log

o( y
i=1 l(v)=i
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)-O r
n

log n
i--1

log n
1

0 n3/2 log n

<_ O(na/ log

because r > 2. Hence, we can conclude the following theorem.
THEOREM 6.2. Given a collection ofn (possibly intersecting) segments, we can pre-

process , in time O(n3/2 log n), into a data structure ofsize O(na(n) log4 n) so that, for
any query ray p, we can compute (, p) in o( v/na(n) log n) time.

Remark 6.3. If contains unbounded segments, then the triangle/k associated
with the root u of T should be a triangle that contains all intersection points and all
bounded segments of . Such a/ can be easily computed in O(n log n) time. Now for
each segment e E , we compute e e N/k and apply our algorithm to the new set
of segments. The portions of the segments lying in the exterior of/X do not intersect
each other, and are ordered in the nondecreasing order of their slopes along 0/X, in
counterclockwise direction. Therefore, if a query ray does not hit a segment of inside
/X, we can determine, in additional O(log n) time, the first segment hit by the ray outside
/X, which shows that our algorithm works for unboundedjsegments as well.

{.4. Trade-offbetween space and query time. In this subsectionwe establish a trade-
off between space and query time for ray shooting in general arrangements of segments.
As in 4we first give avery simple algorithm that preprocesses 6, in time O(n2a2(n) log n),
into a data structure of size O(n2a2(n)) so that, given a query ray p, O(G, p) can be com-
puted in O(log n) time.

Compute the arrangement A(g;) in time O(n2 log n) using the line sweep method
[PSI (or in time O(n) using a more involved algorithm [EOS]), and preprocess A(6)
for point location queries lEGS], [ST]. Since the edges of A() are nonintersecting, we
can preprocess each face f E fl,(G) into a data structure T] for logarithmic-time ray
shooting queries, using O(Inz[2) space, where n] is the number of edges bounding f, as
described in 4.

To compute (6, p), for a query ray p, first locate the face f of ,4() containing
the ray origin p. Obviously (, p) lies on the boundary of f, and therefore (6, p)
O(Of, p) can be computed in O(log n) time, using Tz. Thus, the overall query time is
O(log n).

As for the storage, A(G) can be preprocessed for point location queries using O(n2)
space (cf. [EGS] and [ST]). The total space required to store all T] is O(- n}). The-
orem 4.3 implies that the preprocessing time is O( n} log n). It has been shown in
[EGP*] that

Hence, we have the following theorem.
THEOREM 6.4. Given a collection ofn segments in the plane, we can preprocess ,

in time O(n2a2(n) log n), into a data structure ofsize O(n2a2(n)) so that, for a query ray
p, (G, p) can be computed in O(log n) time.

Next we give an algorithm for the general case, where n1+’o < m < n2-’1, for some
constants eo, el > 0. Let m f(n). To preprocess into a data structure of size O(m),
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we proceed in the same way as in 6.1 except that at each node v E 7" we are allowed
more space, so we construct larger-size data structures that facilitate faster ray shooting
in ,,, ’,,, etc.

Edelsbrunner et al. [EGH*] (see also [Agc]) have shown that, given a set of n
lines and a parameter 1 < /3 < n, E can be preprocessed, in O(nS/2x/-log n) time,
into a data structure T() of size O(n/31ogz n) so that, for any query ray p, we can
compute (/, p) in O(x/-n-logn time. At each node v of level i, we store
with an appropriate value of/3 =/3i (to be specified later).

Similarly, we have shown in 4 that, given a set of n nonintersecting segments and
a parameter/3, we can preprocess g, in time O(na/zx/’log n), into a data structure
T(g) of size O(n/3 log n) so that, for a query ray p, we can compute (g, p) in time
O(x/-n- log n). For a node v at level i, we store Tz (7’) with/3 13i. (Recall that if
has a vertex of degree > 3, then the segments of 7-t,, need to be modified, as described
in 4.3.)

Next, we analyze the complexity of this algorithm. First, consider the space used by
and O(nc(n)), the space used by a node v ofour algorithm. Since IZ: l _<

n’ n’c(n’)t3i logs n’) O(n’vc(n) logs n’) The total spaceat level i is O( / log2 n,, +
used is therefore

log n

Z Z O(nva(n)fli lgs
=o ()=

log

i=0

where n is the maximum value of I’1 for a node v at level i. The last equality follows
from (6.3) and the fact that n’ < rn. Ifwe choose/3 (f(n)/(nc(n) loga n)), which
is easily seen to satisfy 3i > 1, then

logn

( f(ni) nc(n) log3 ni)o
i=0

\ i=0

O(f(n)) because f(n) > n1+’

As for the query time,

Q(’O

1Actually, the preprocessing time is O((m3 + ns/ V/-) log" n), but it can be verified that for our choice

of/3 the first term never dominates, so for simplicity we only write the second term.
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log2

because f(n) < n2-’

Finally, the preprocessing time at a node v of level i is O(n’a/x/-,c3/ (n’) log n’,,).
The total preprocessing time is thus

log n

P(n) Y Z O(n’123/2(n) log n)
=o ()=i

0 n v ).a/2(n,)logn,
=o

i=0 V5 na/2(n) logw n)
o

i=0

O(n(n)log-a/

Using the same argument as for (6.5), we can ignore the term (n) in the above
equali. Hence, we can conclude the following theorem.

EOREM 6.5. Given a set of n seents and a parameter nl+e _< m n2-q,
for some constants eo, el > O, we can preprocess , in O(nlogw-a/= n) time, into a
data stcture of size O(m) so that, for any que ray p, we can compute (, p) in time

Remark 6.6. e algorithm of [EGH*] actually constructs T(), in time

using O(n log ) space, and answers a que in time O(log ). Similarly the
algorithm described in 4 constructs T=(), in time

using O(n5 log ) space, and answers a que in O(log= ) time. Using these
bounds in the above analysis, we can improve the que time (n) to

(no(n) (no(n)O
k logr/Z\ ,]

+log
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The preprocessing time is now

O (m log" n + na(n)x/- log"-3/2 ( na(n) ] )
7. Implicit point location. The planar point location problem is a well-studied prob-

lem in computational geometry [Ki], [EGS], [ST]. In this problem we are to preprocess
a given planar subdivision so that, for a query point, we can quickly determine the face
of the subdivision containing it. Guibas et al. [GOS] have considered a generalization of
this problem, in which the map is defined as the arrangement of n possibly intersecting
polygonal objects of some simple shape, and the goal is to compute, for a query point
p, certain information related to its position within the arrangement of the objects; for
example, to determine whether p lies in the union of the objects. For simplicity we break
the given objects into a collection of segments, and consider the following formal state-
ment of the problem:

We are given a collection {el, en} ofn segments, and with each
segment e we associate a function be defined on the entire plane, which
assumes values in some associative and commutative semigroup S (denote
its operation by +). Define (x) (x). We want to preprocess
so that, for any querypoint p, we can quickly compute (p).

We assume that and satisfy the following conditions:
(i) For any given point x, (x) can be computed in 0(1) time.
(ii) Any two values in S can be added in 0(1) time.
(iii) Given a set ofn segments in the plane, we can preprocess it in time O(n logk n),

for some constant k > 0, into a linear-size data structure 79(G) so that, given a
point x lying either above all the lines containing the segments of G, or. below
all these lines, (x) can be calculated in O(log n) time.

It is shown in [GOS] that many natural problems including the problem of deter-
mining whether p lies in the union of the given objects, or of counting how many objects
contain p, fall into this scheme. See also the following section for details.

The goal is to come up with an algorithm that uses O(n log(1) n) space and com-
putes I,(p), for any query point p, in sublinear time. Guibas et al. [GOS] gave a ran-
domized algorithm, with O(n logk+ n) expected running time, to construct a data struc-
ture of O(n) size so that, for a query point p, (p) can be computed in O(n/z+) time
for any > 0. In this section we present an algorithm that improves the query time
to O(x/’logz n), and makes the preprocessing deterministic (albeit no longer close
to linear).

Let/ denote the set of lines containing the segments of . Dualize the lines of/
to obtain a set Z* of n points. Let C {C1, C} denote a family of k O(log n)
spanning paths on/* with a(C) O(x/-). We show how to preprocess a single path
CC.

First, construct a binary tree/3 B(C) as in 2. With each node v of B we associate
a set of segments e such that the dual of the line containing e belongs to S
(as defined in 2). At each node v we store D() so that, for any query point p lying
either above all the lines containing the segments of or below all of them, (p)
v(P) can be computed in O(log n) time.
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For a given query point p, we compute (p) as follows. Let p* denote the dual of p.
Obviously,

i--1 vYB(p*

Therefore, it suffices to show how to compute v(p), for a node v E VB(p*). Observe
that for any v VB(p*), p* lies either above all the points of Sv, or below all of them,
say below. Since duality preserves the above-below relationship, p lies below all the lines
containing the segments of G.. Therefore, (p) can be easily computed in O(log n)
time using

Next, let us analyze the complexity of our algorithm. First consider the time spent
in answering a query. By Theorem 2.1, we can determine, in O(log n) time, a path C C
that intersects p* in at most O(x/-) edges, and it follows from the discussion in 2 that
Vt(p*), for a given line p*, can be computed in O(x/-log n) time. By property (iii), for
each v Vt(p*), Y,(p) can be calculated in. O(log n) time. The total time spent is thus
O(v/-log2 n). As for the space complexity, 79() requires O(lvl) space. Since the
segments associated with the nodes of B at the same level are pairwise disjoint, the total
space required to store/3 is O(n log n). Finally, the preprocessing time is bounded by
the time spent in computing C plus the time spent in preprocessing G. for all v B.
Hence, the total preprocessing time is O(n3/2 log n + n logk+2 n) O(n3/2 log n).

Therefore, we can conclude the following theorem.
THEOREM 7.1. Given a collection of n segments, and function c associated with

each segment satisfyingproperties (i)-(iii), we canpreprocess , in O(n3/2 log n) time, into
a data structure ofsize O(n log2 n) so that, for any querypoint p, (p) can be computed in
O(log2 n) time.

Remark 7.2.
(i) As in 3, we can reduce the space complexity to O(n log n) by maintaining a

single tree structure instead of a family of O(log n) trees. Also, if we allow ran-
domization, then the (expected) preprocessing time is O(n4/3 log2 n), but the
query time increases by a factor of log n.

(ii) In some applications, where calculation of (x) in (iii) above is accomplished
by a binary search, it is possible to reduce the query time to O(log n), using
fractional cascading.

(iii) As in the case of the ray shooting problem, the query time can be improved by
allowing more storage. Instead of describing the trade-off for the general case,
we will describe it in the next section for a specific example.

(iv) In a companion paper [Agc] we solve the batched version of this problem, where
all the query points p are given in advance. We present there a solution that runs
in time

0 m2/an2/a log/a n log/a v t- n logk n log + m log n

where m is the number of given query points.

$. Ofler lpiefis. In this section we consider other applications of our tech-
nique. All these problems were studied in [GOS], who obtained algorithms with
O(n2/a+e) query time, for any > O. We show that using our approach the query time
can be reduced to roughly /.
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8.1. Polygon containment problem: Preprocessing version. First consider the fol-
lowing problem:

Given a set T ofn (possibly intersecting) triangles, we want topreprocess T
so that, given a querypoint p, we can quickly count the number oftriangles
in T containing p (orjust determine whether p lies in the union of these
triangles); see Fig. 13.

FIG. 13. Polygon containmentproblem.

We first present an algorithm that uses roughly linear space, and then show that
the query time can be improved by using more space. Our algorithm is based on the
following observation of [GOS]. Let denote the set of edges bounding the triangles
in T and, for each e E , let B(e) denote the semi-infinite trapezoidal strip lying below
e. Define a function in the plane so that (p) 0 for a point p outside B, and for
p E B, (p) 1, if the triangle corresponding to e lies below the line containing the
segment e, otherwise (p) -1. It can be checked that (p), for a point p, gives the
number of triangles of T containing p. Moreover, obviously satisfies properties (i)
and (ii). As to property (iii), if a point p lies above all lines containing the given edges
then (p) 0, by definition. On the other hand, if p lies below all these lines, we do
the following. Let denote the z-projection of an edge e of some triangle. It is easily
checked that

(P) E
P &

where px is the x-coordinate of p and ej is the nonzero value of at p. Note that the
sum of the right-hand side remains the same between two consecutive endpoints of the
projected segments, and the constant values of over these intervals can be computed,
in overall time O(n log n), by scanning the projected segments from left to right. Hence,
we can preprocess T, in time O(n log n), into a data structure 79 so that, for a point p
lying below all lines of , 9(p) can be computed in O(log n) time.

Thus, the observation of [GOS] and Theorem 7.1 imply that by preprocessing 7.
into the above data structure 7)v, for each node v of B, the number of triangles in T
containing a query point p can be counted in O(v/- logz n) time. But observe that each
of the data structures 73v is a sorted list, and at each node v we do a binary search in 79, to
compute I%. We can therefore apply the fractional cascading technique of [CGb] to the
collection of lists 79, attached to the nodes v of/3. This will allow us to search through
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the lists 79,, of all nodes v E Vt(g) in overall time O(logn + IV (e)l) o(x/-logn).
Hence, we have the following theorem.

THEOREM 8.1. Given a set T ofn tKangles in the plane, we can preprocess T, in time
O(n3/2 log’ n), into a data structure ofsize O(n log2 n) so that, given a query point p, we
can determine, in time 0 log n), the number oftriangles in T containing the point p.

We next establish a trade-off between space and query time for the polygon contain-
ment problem. If we allow O(n2) space, then we can construct the entire arrangement
7-/of Jee Be. It is easily seen that the value of does not change within a face of 7-/,
and while constructing 7-/we can compute for each of its face. Now given a point p,
we can compute I,(p) in O(log n) time by locating p in 7-/. Thus if we allow quadratic
storage, the query time can be reduced to O(log n). Next we give an algorithm for the
general case when n log2n < m < n9.

FIG. 14. Triangle/Xi and segments of: solid lines are dashed lines are .
Let F denote the set of lines bounding the trapezoidal strips Be, that is, the lines

containing the segments of and the vertical lines passing through the endpoints of
segments in . Partition the plane into M O(r) triangles/, ...,/, each meeting
at most lines of F [Agb]. With each/i we associate a set i consisting of all segments
e E such that either e or one of the two downward-directed vertical rays emanating
from its endpoints intersects/ (see Fig. 14). Let . We can compute ,
for each i, in total time O(nr log n). Since/i does not intersect the boundary of
for e :,, be remains constant over xi. Moreover, -]eI be for every/i can be
computed in O(nr) time, as described in [Agc]. We preprocess i into a data structure
of size O( log2 ), using the method just mentioned. For answering a query, we first
locate the triangle/k containing the query point p. Once we know/k,
can be determined in O(1) time, and Y’eak Ce (p) can be computed as described above.
Since the query time is

Q(n) 0 (flg-n +lgn)"r
We need O(r2) space to store the planar map formed by/1, ,/M and 0( log2 )
to store the data structure constructed for each . Therefore, the total space used is

S(n) O(r2) q-0 (r2. n
log2 )r
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O (nr log2 -)
If we choose r (m/n log2 ’), which is easily seen to satisfy 1 < r < n, then S(n)
O(m), and the query time. is

0
m/(n log m + log n

0 log+logn

P(n) O(nr log n log-1 r) + 0 r. _n log n_
r r

O(mlg"n+na/2nlog
O m log n +nlog-1

Hence, we can conclude the following theorem.
gogN 8.2. Given a collection ofn ossibly intersecting) tgangles in the plane,

we can preprocess , in time O(m log n +nlog- ), into a data stcture ofsize
0(m) so that, for a quepointg we can count the number oftangles of containing p in
time 0( log + log

Remark 8.3. The batched version of this problem, when all points are given in ad-
vance, can be solved, in time O(m/an/a log/a n log/a + (m + n)log n), using a

different technique [Agc]... IlieiiesNeerel. The ne problem that we consider is the fol-
lowing version of hidden surNce removal problem:

Given a collection of opaque objects in three-dimensional space, and a
viewingpoint we wish to calculate the scene obtained by viewing these
objectsom a.

The hidden surface removal problem has been extensively studied by many research-
ers (see, e.g., [De] and [MK]), because of its applications in graphics and other areas. For
the sake of simplici let us restrict our attention to polyhedral objects, whose boundau
T is a collection {A, } of n nonintersecting triangles. In the case of implicit
hidden surface removal, we do not want to compute the scene explicitly, but only to pre-
process them so as to determine quicy the object seen at any particular que pkel
[CS], [GOS]. In this subsection, we consider the following special case of the implicit
hidden surface removal problem. t T {A, A} be a collection of n noninter-
secting triangles such that
are some ed heights. Preprocess T so that, given a que point p on the xy-plane, one
can determine the lowest triangle A hit by the upward-directed vertical ray emanating
from p.

[GOS] have given an algorithm for this problem that uses randomized processing
and has O(n/3+6) que time, for any > 0. Their algorithm first projects all triangles

Finally, the preprocessing time is
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on the zy-plane, and then performs a binary search through the sequence (/k, ...,/)
of projected triangles to find the first index j such that/ contains the query point
p. Each step of the binary search tests whether p lies in the union of some contiguous
block of projected triangles, using the polygon containment algorithm. Therefore, the
preprocessing step consists of constructing a binary tree g on T whose leaves store the
triangles of T in increasing height, and each internal node w is associated with a set of
triangles To, stored at the leaves of the subtree rooted at w. For each node w of Z,
preprocess To for the polygon containment problem, using the algorithm described in
8.1. It now follows from the above discussion that a query can be answered by following
a path 7r in 2; and solving the polygon containment problem at each node of 7r. Hence
using Theorem 8.1, we can conclude with the following theorem.

THEOREM 8.4. The implicit hidden surface removal problem for an ordered collec-
tion of n triangles in three-dimensional space can be solved in O(x/ log2 n) query time,
O(n log3 n) space, and O(n3/2 log n) preprocessing.

Remark 8.5.
(i) Recently several algorithms for other variants of the implicit hidden surface re-

moval problem have been developed; see [SML], [Be].
(ii) As in the case of the polygon containment problem, the query time can be im-

proved if we allow more space. In particular, if we allow O(m) space, where
n < m < n, then Q(n) O(’ log ’ + log n) and P(n) O(m log n +
nv/logO- n).

(iii) We can easily modify our algorithm without affecting its time complexity so that
the query point p lies anywhere in ]l:t3, rather than lying on the xy-plane. We
leave it for the reader to fill in the details.

8.3. Polygon placement problem. Finally consider the following problem:
Let P be a k-gon (not necessarily simple) and let z {/1, ,/,} be
a set of n (possibly intersecting) triangles. Preprocess so that, given a
(translated) placement of P, we can quickly determine whether P inter-
sects any ofthe obstacles at thatplacement.

Such a situation arises in several applications [Cha]. A special case, in which P is
convex and the triangles are non-intersecting, has been widely studied (see, e.g., [BZ],
[CD], [Fo], [LS]). But the best known solution for the general case is by [GOS], who
have given an algorithm with randomized preprocessing and O((kn)2/3+) query time,
for any 6 > 0, by reducing this problem to the polygon containment problem. Using
their technique, and applying Theorem 8.1, we can easily obtain the following theorem.

THEOREM 8.6. We can preprocess A and P, in O((kn)3/2 log kn) time, into a data
structure ofsize O(kn log2 kn) so that, given a translatedplacement ofP, we can determine
in time 0 log kn), whether P collides with the obstacles at thatplacement.

Remark 8.7. The trade-off between space and query time described in 8.1 works
here as well. Therefore, if we allow O(m) space, where n < m < n2, then Q(n)
O( kn log2 kn + log kn) and P(n) O(m log kn + knvlog-1 kn).

9. Conclusions. In this paper we presented efficient algorithms for various prob-
lems involving collections of segments in the plane, using spanning trees with low stab-
bing number. Since the submission of this paper there have been a number of significant
developments on these problems. We summarize some of the new results here:

(i) Matouek has proposed an O(n3/2 log2 n) algorithm to construct a single span-
ning tree of a set of n points in ]l:t2 with O(v) stabbing number [Mac]. It
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immediately improves the space complexity and the preprocessing time of all
the algorithms presented here by a factor of log n and log-2 n, respectively.

(ii) Cheng and Janardan [CJ] have shown that a set of n (possibly intersecting) seg-
ments can be preprocessed into a data structure of size O(n log3 n) so that a ray
shooting query can be answered in O(v/log n) time. Their algorithm is based
on spanning trees with low stabbing number and therefore its space complex-
ity and preprocessing time can also be improved by incorporating Matouek’s
procedure.

(iii) Using an entirely different approach, Yehuda and Fogel [BF] have designed
another ray shooting algorithm for nonintersecting segments that requires
O(n log n) space and supports O(x/log n) time queries. The preprocessing
time of their algorithm is O(n3/2). Their algorithm can be extended to inter-
secting segments using the approach described in 6.

(iv) Another recent development in this area is by Chazelle et al. [CEGGSS], who
showed that a polygonal region with k holes can be preprocessed into a data
structure of size O(n log n) so that a ray shooting query can be answered in time
O(x/ log n). The preprocessing time of their algorithm is roughly n/.

(v) A drawback of all these algorithms is that unlike Guibas et al.’s algorithm [GOS]
their preprocessing time is not close to linear. Agarwal and Sharir [AS] have
shown that the preprocessing can be improved to O(nTM) without affecting the
query time significantly. In particular, their algorithm preprocesses a collection
of segments, in time O(nl+’), into a data structure of size O(nl+’), so that a
ray shooting query can be answered in O(n/+) time, where e is an arbitrarily
small positive constant. Their algorithm relies on a recent partitioning scheme
of Chazelle et al. [CSW]. It can be modified to report all k intersections between
a collection of n given segments and a query segment in time O(n/+ + k).

(vi) Another shortcoming of the above algorithms is that they do not extend to ar-
bitrary arcs (except the algorithm of [AS]). Some progress in this direction has
been made by Agarwal et al. [AKO], who have developed a ray shooting algo-
rithm for nonintersecting Jordan arcs that answers a query in timeO(log n)
and requires O(n log n) space.

In spite of these various developments, there are several interesting open problems:
1. The most challenging open problem is to give nontrivial lower bounds for the

ray shooting and the implicit point location problems. Recently Chazelle [Chb]
showed that ifwe allow only O(n) space, then a simplex range query (i.e., count-
ing the number of points of a given set contained in a query triangle) requires
f(x/-) time. We conjecture that similar lower bounds hold for these problems
as well.

2. Mark Overmars has posed the following problem, which is a generalization of
the polygon containment problem: Given a set T oftriangles, preprocess it so that,
for a query segment e, one can quickly determine if e is contained in the union of
triangles ofT. It will be interesting to come up with an efficient algorithm using
spanning trees of low stabbing number.

3. Finally, there remains the task of looking for other interesting problems that
can be solved efficiently using the spanning trees of low stabbing number.
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THE NILPOTENCY PROBLEM OF ONE-DIMENSIONAL
CELLULARAUTOMATA*
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Abstract. The limit set of a celullar automaton consists of all the configurations of the automaton that can
appear after arbitrarily long computations. It is known that the limit set is never empty--it contains at least
one homogeneous configuration. A CA is called nilpotent if its limit set contains just one configuration. The
present work proves that it is algorithmically undecidable whether a given one-dimensional cellular automaton
is nilpotent. The proof is based on a generalization of the well-known result about the undecidability of the
tiling problem of the plane. The generalization states that the tiling problem remains undecidable even if one
considers only so-called NW-deterministic tile sets, that is, tile sets in which the left and upper neighbors of
each tile determine the tile uniquely. The nilpotency problem is known to be undecidable for d-dimensional
CA for d >_ 2. The result is the basis of the proof of Rice’s theorem for CA limit sets, which states that every
nontrivial property of limit sets is undecidable.
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1. Introduction. Cellular automata are discrete and deterministic dynamical sys-
tems. They provide simple models of complex natural systems encountered in physics,
biology, and other fields. Like natural systems they consist of large numbers of simple
basic components that together produce the complex behaviour of the system.

A d-dimensional cellular automaton consists of an infinite d-dimensional array of
identical cells. Each cell is always in one state from a finite state set. The cells alter their
states synchronously on discrete time steps according to a local rule. The rule gives the
new state of each cell as a function of the old states of some nearby cells, its neighbors.
The array is homogeneous so that all its cells operate under the same local rule. The
states of all cells in the array are described by a configuration. The local rule of the
automaton specifies a global function that tells how each configuration is changed in
one time step.

The long time behaviour of a dynamical system is described by its attractors. At-
tractors are states of the system towards which the system is attracted. The system can
converge to a particular fixed point attractor or to a periodic limit cycle attractor. If
the system expresses chaotic behavior then its attractors are called strange. Limit sets
have been introduced as possible formalizations of attractors in the theory of cellular
automata. A limit set of a cellular automaton consists of all the configurations that can
occur after arbitrarily long computations.

A cellular automaton is called nilpotent if its limit set containsjust one configuration.
Using a compact topology defined on the set of configurations one can show that, if a CA
is nilpotent, then there is an upper bound n such that every configuration turns into the
only configuration ofthe limit set in at most n time steps (see [2] for the proofofthis fact).
The nilpotency can be characterized also using the graphs of cellular automata. The
graph of a cellular automaton is an infinite digraph, whose nodes are the configurations
of the automaton, and whose arcs express the transitions between the configurations.
Obviously the graph of a nilpotent cellular automaton is connected. Also the converse
is true: if there is just one component in the graph, then the automaton is nilpotent. In
[11] it was proved that, if the graph has more than one component, then the number of
components is uncountable.
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The nilpotency problem consists of deciding whether a given CA is nilpotent or not.
It was shown in [2] that the nilpotency problem is undecidable for two- and higher di-
mensional CA. The purpose of the present work is to prove the same result for one-
dimensional CA. In [2] a known undecidable problem, the so-called tiling problem, was
reduced to the nilpotency problem. This method does not work in one-dimensional
case since the one-dimensional tiling problem is decidable. We can, however, use some
two-dimensional tilings also in connection with one-dimensional CA. One can namely
consider the space-time diagram of a one-dimensional CA as a tiling of the plane. In
this case the tiling is locally deterministic in one dimension. It is easy to reduce the tiling
problem of locally deterministic tile sets to the nilpotency problem. The difficult part is
to show undecidable the tiling problem of locally deterministic tiles. To prove this, we
use a modification of Robinson’s proof ofthe undecidability ofthe general tiling problem
[8].

2. Basic definitions. Formally, a cellular automaton (CA) is a quadruple ,4 (d, S,
N, f), where d is a positive integer indicating the dimension of A, S is a finite state set, N
is a neighborhood vector

N (5:1, 2, ", n)

of n different elements of Zd and f is the local rule of the CA presented as a function
from S’ into S. The neighbors of a cell situated in : E Za are the cells in positions

for i 1, 2,...,n.

A configuration of a CA A (d, S, N, f) is a function

C zd ---r S

that assigns states to all cells. Let t denote the set of all configurations. The local rule f
determines the global function

Gf "C --- C.

At each time step a configuration c is transformed into a new configuration Gy(c) where

S( (e + + +

for all 2 in Zd. For any configuration c the sequence c, Gf (c), Gf(c), is called theorbit
of c. For each state s in S let conf(s) denote the homogeneous configuration where all
the cells are in the same state s.

The limit set A [,4] of a CA ,4 (d, S, N, f) contains all the configurations that can
occur after arbitrarily many computation steps. Define

A() , and

A(i) Gy(A(-1)) for i_>1.

Then the limit set of ,4 is

i=O
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Every configuration c E A [A] has a predecessor c’ (that is, a configuration c’ such
that Gf(c’) c) that is also in A [A]. This can be proved easily using the compact topol-
ogy of C (see [2] for the definition of the topology). This means that for every configu-
ration c in the limit set there is a countably infinite sequence of configurations co, Cl,
such that c co and Gy(ci+l) ci for every > 0.

It is easy to see that the limit set can never be empty. Indeed, every homogeneous
configuration conf(s) remains homogeneous during the operation of the automaton.
Because the state set is finite, there are only finitely many homogeneous configurations.
This means that some conf(s) must turn back into conf(s) in k time steps, for some
k _> 1. Then obviously conf(s) is in the limit set.

If the limit set of a CA contains just one configuration then the CA is called nilpotent.
It was shown in [2] that if a CA is nilpotent then there exists an integer n such that every
configuration turns into the unique configuration of the limit set in at most n time steps.

In [11] Podkolzin studied graphs of cellular automata. The graph of a CA A is an
infinite, directed graph. Its, nodes are the configurations of 4, and for every c E C there
is an arc from c to Gy(c).

Let us consider the components of the graph. If the CA A is nilpotent then its
graph has only one component, since every configuration is connected to the unique
configuration of the limit set. Conversely, suppose that the graph of ,A contains just
one component. Let conf(s) be a homogeneous configuration that is contained in the
orbits of all configurations. Such a configuration must exist because there is only one
component in the graph. In [2] itwas proved that, if A [4] {conf(s)}, then there exists
a configuration c whose orbit does not contain conf(s), which contradicts the selection
of conf(s). We conclude that A [Jt] {conf(s)}, and the CA A is nilpotent.

It was shown above that a CA A is nilpotent if and only if its graph has only one
component. In [11] it was proved that the graph of any CA contains either one compo-
nent or uncountably many components. Consequently, the graph of every non-nilpotent
automaton has an uncountable number of components.

It is a natural question to ask what kind of local rule makes a cellular automaton
nilpotent. The problem of testing whether a given local rule defines a nilpotent CA is
called the nilpotency problem. In [2] it was shown that the nilpotency problem is unde-
cidable for d-dimensional CA where d > 2. In the following the same result is proved
for one-dimensional CA. The undecidability of the nilpotency problem plays a central
role in [6] in the proof of the Rice’s theorem for CA limit sets. It is described in [6] how
the nilpotency problem can be reduced to the problem of testing any nontrivial property
of limit sets. Consequently, every nontrivial property of limit sets is undecidable.

Tilings of the plane play an important role in our proof. Suppose we are given a
finite set of unit squares with colored edges, the tiles. The tiles are placed with their
edges horizontal and vertical. We have infinitely many copies of all the tiles and we
want to tile the entire plane using the copies, without rotating any of them. In a valid
tiling the abutting edges of adjacent tiles must have the same color. The tilingproblem
consists of deciding whether the plane can be tiled with a given collection of tiles. The
tiling problem was proved undecidable by Berger [1]. A simpler proof was given later
by Robinson [8]. In [2] the tiling problem was applied to prove the undecidability of the
nilpotency problem for two- and higher dimensional CA.

In one-dimensional case certain restricted types of tile sets will be used. We call a
tile set NW-deterministic if for any pair (A,/3) of tiles there is at most one tile C such that
the lower edge of A has the same color as the upper edge of C, and the right edge of/3
has the same color as the left edge of C. This means that the tiles A, B and C can form
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the pattern of Fig. i without violating the tiling rule. The pair NW of letters refers to
the directions north and west. In a NW-deterministic tile set the northern and western
neighbors of a tile define the tile uniquely, provided there exists a matching tile at all.

A

FIG. 1. For every A and B there is at most one matching

For every NW-deterministic tile set 7" a partial function 7- :T2 7" can be
defined by

f C’ if A, B and C’ match each other in Fig. 1,
P7-(A, B)

not defined if there is no matching C’ T.

This means that the tiles A, B and C’ in Fig. 1 match if and only if C’ 7-(A, B).
The colors of the tiles are not needed any longer if the partial function 7- is known.

So we do not need to restrict ourselves to tiles with colored edges. Any finite set 7" with
a partial function 7- 7-2 T will be called a NW-deterministic tile set. A tiling of
the plane with the elements of T is valid iff 7-(A, B) C’ whenever A, B and (? form
the pattern of Fig. 1.

In 3 we show how the tiling problem with the NW-deterministic tile sets can be
reduced to the nilpotency problem of one-dimensional CA. In the remaining two 4
and 5 we complete the proof by showing that the tiling problem remains undecidable
even if we restrict ourselves to NW-deterministic tile sets. This proof looks very similar
to the undecidability proof of Robinson in [8]. We only need to make sure that the tiles
constructed during the proof are always NW-deterministic.

3. The nilpotency problem. The following proposition is the basis of our proof for
the undecidability of the nilpotency problem.

PROPOSITION 3.1. The tiling problem with NW-deterministic tile sets is undecidable.
The proposition will be proved in 4 and 5.

Let us now show how the tiling problem with NW-deterministic tiles can be reduced
to the nilpotency problem. Let T be any NW-deterministic tile set with the partial func-
tion 7- 7-2 T defining valid tilings. Let q be a symbol not in 7-. We construct a
one-dimensional CA ,47- (1, 7- t_J {q}, (0, 1), fT-) whose state set is 7- t3 {q} and local
rule fT- is defined as follows:

f 7-(A, B) if A, B E T and 7-(A, B) is defined,
fT-(A, B)

q otherwise.

It is easy to see that ,47- is not nilpotent if and only if the tile set T can be used to
tile the plane. Namely, suppose that the plane can be tiled legally using the tiles of 7-.
Let us index the positions of the tiles on the plane using integer coordinates. For every
x, y E Z let T(x, y) denote the tile in the position (x, y). For each t Z a configuration
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ct of .A- is constructed by taking the tiles in the infinite diagonal row that runs through
the tile in the position (t, 0) (see Fig. 2). For all integers t and i,

7 (t + i,

Because of the way the local rule f- was defined, ct+l Gf. (ct) for each t E Z. This
means that the configurations ct are in the limit set of .A-. The limit set contains also
conf(q), so that AT- is not nilpotent.

-1

-2

c,(o)

t-2 t-1 t t+l t+2

FIG. 2. The tiles defining the configuration ct.

x

Conversely, suppose that AT- is not nilpotent. Then its limit set contains a configu-
ration c different from conf(q). Without loss of generality we may suppose that c(0) q.
Because c A [.AT-] there is an infinite sequence of configurations..., c_, c_, co, such
that co c and Gfr (Ct--1) Ct for every t < 0. Let us define a tiling of the upper left
quadrant of the plane by placing the tile ct(i) to the position (t + i, i) for every t < 0
and 0 < i < -t. The tiling is valid. This follows from the way the local rule of AT was
defined. Because we can tile one quadrant of the plane, we can tile the whole plane.

Iftherewere an algorithm for decidingwhether a given one-dimensional CA is nilpo-
tent, then this algorithm applied to automata AT- would solve the tiling problem ofNW-
deterministic tile sets. From Proposition 3.1 we get Theorem 3.2.

THEOREM 3.2. The nilpotencyproblem ofone-dimensional CA is undecidable.
Note that in the proof of Theorem 3.2 only CA with the neighborhood vector (0, 1)

containing just two elements are used. Since a two-element neighborhood is contained
in every nontrivial neighborhood (that is, a neighborhood containing more than one ele-
ment), we conclude that the nilpotency problem remains undecidable even ifwe restrict
ourselves to the class of CA using the neighborhood vector N, for every fixed nontrivial
neighborhood vector N.

In [6] a more general result is proved, showing that every nontrivial property of limit
sets is undecidable. In its proof the fact that the CA AT contains a spreading state q is
needed. (A state s is called spreading if every cell whose neighborhood contains a cell
in state s is turned into the state s on the next time step.)
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In the subsequent sections we prove Proposition 3.1 that was needed in the proof of
Theorem 3.2.

4. The basic tiles. Our proof of Proposition 3.1 follows the lines of the proof of
the same result for general tile sets in [8]. We only need to take care that the tile set
constructed in the proof is NW-deterministic.

First we note that we may weaken the restrictions made for NW-deterministic tile
sets and allow the tile A’ in Fig. 3 to affect the choice for the tile C. So we have a partial
function 7- of three arguments instead of two. In a valid tiling every four tiles forming
the pattern of Fig. 3 must satisfy 7-(A’, A, B) C. This modification is done in order
to make our construction more readable.

A

B

A

C

FIG. 3. For every A, At, and B there is at most one matching C.

If the tiling problem for NW-deterministic tile sets is undecidable after the modifi-
cation, then it is also undecidable when the original definition is used. For every tile set
7" with a three argument partial function I,7- we construct a new tile set T’ 7-2 with
the two argument function -, given by

7-, ((A, A’), (B, B’)) (7-(A’, A, B), B).
The second component of a pair (A, A’) E 7" is used to remember the left neighbor of
the tile. It is not difficult to see that there is a valid tiling with the tiles of 7- if and only if
there is a tiling with the tiles of 7-’.

First a NW-deterministic set of basic tiles will be described. The tiles have the prop-
erty that every valid tiling of the plane is nonperiodic, that is, there exist no translations
of the plane that leave the tiling unchanged. The basic tiles are the same that were used
in [8], and they resemble also the tiles used in [5]. Only a small change is needed to
make the tiles NW-deterministic. The tile set is by no means minimal--it is possible to
construct a NW-deterministic, nonperiodic set containing only 16 tiles [4]. However, the
basic tile set described below is better suited for our purpose.

The tiles contain arrows. The arrows are first horizontal and vertical. Later on also
diagonal arrows will be introduced. On a valid tiling each arrow head must meet an
arrow tail on the neighboring tile. The seven basic tiles are represented in Fig. 4. The
tiles may be rotated, so that the total number of different tiles is 28. Each tile contains
central arrows in the middle of their sides and possibly some additional side arrows.

The first tile containing arrow heads on all four sides is called a cross. The cross is
said to face to the two directions where it has the side arrows. The cross drawn in Fig. 4
faces up and to the right.

The other tiles are called arms. Every arm contains a principal arrow running across
the tile from one side to the opposide side. The arm is said to point to the direction of its
principal arrow. The arm may have also a side arrow parallel to the principal arrow. The
side arrow may be on either side of the principal arrow. Each arm has also two meeting
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(b)

FIG. 4. The seven types ofbasic files: (a) a cross and (b) arms.

arrow heads at right angles to the principal arrow. If the two meeting arrow heads have
side arrows then they must be toward the head of the principal arrow.

As in [8], a cross must be forced to occur in alternate columns in alternate rows.
This is accomplished by adding a new componentma parity tilemto every basic tile. The
four parity tiles are depicted in Fig. 5. In every valid tiling of the plane the parity tiles
alternate both horizontally and vertically. If the coordinates of the columns and rows
are shifted suitably the lower left parity tile occurs in the intersections of even numbered
rows and even numbered columns.

FIG. 5. Theparity tiles.

The parity tiles are attached to the basic tiles so that the parity tile at the lower left
in Fig. 5 is attached only to the crosses. The parity tile at the lower right is attached to
vertical arms and the upper left tile is attached to horizontal arms. The parity tile at the
upper right can be attached to any of the basic tiles. Every basic tile has two possibilities
for the parity tiles so that the total number of tiles becomes 56. The use of parity tiles
forces the tiles in the intersections of even numbered rows and even numbered columns
to be crosses.

Let us now study the possible tilings with the set of 56 tiles described above. The
set is exactly the same that was used by Robinson in [8], so that his analysis of possible
tilings can be directly used.

For each positive integer n, four (2’ 1)-squares are defined recursively. A cross
with the parity tile at the lower left in Fig. 5 is a 1-square. There are four 1-squares
because there are four possible orientations of the cross.

For every n >_ 2 a (2’ 1)-square consists of four (2’- 1 1)-squares separated by a
cross and rows of arms,leading radiately out from the center (see Fig. 6). The cross in the
center is called the central cross of the (2’ 1)-square. There are four (2’ 1)-squares
because the orientation of the central cross is arbitrary. The (2’ 1)-square is said to



578 JARKKO KARI

(2’- 1)-square
facing down and

to the right

(2 1)-square
facing down and

to the left

(2n- 1)-square
facing up and
to the right

(2n- 1)-square
facing up and

to the left

FG. 6. Constructing a (2 1)-square.

face to the same direction as its central cross. An example of a 7-square is depicted in
Fig. 7. It is easy to see that the tiling property is satisfied inside the (2’ 1)-squares.

The following lemma was proved in [8].
LEMMA 4.1. In any valid tiling oftheplane using the tiles above there must be a (2n 1)-

square on theplanefor every n > 1.
According to Lemma 4.1 every legal tiling of the plane is nonperiodic. This follows

from the fact that a (2’ 1)-square is not invariant under any horizontal or vertical
translation of length less than 2’ 1.

To make the tile set NW-deterministic, diagonal arrows running from the upper left
corner to the lower right corner of the tiles must be added. Each tile contains exactly
one diagonal arrow, and the arrow is labeled either Ver or Hor. The head and the tail
of the arrow may have different labels. In a valid tiling the tail of the diagonal arrow on
each tile must have the same label as the head of the diagonal arrow on its upper left
cornerwise neighbor.

On each horizontal arm the diagonal arrow has label Hor on its tail and Ver on its
head (see Fig. 8). On vertical arms the labels are the opposite: Ver on the tail and Hor
on the head. The diagonal arrows of the crosses have always the same label on their tail
and head. For each cross there are two possibilities to choose the diagonal arrow. It may
be labeled either Hor or Ver. The total number of tiles is 64 after the diagonal arrows
are added.

The diagonal arrows force the horizontal and vertical arms to alternate on each di-
agonal row of tiles that is running down and to the right. There may be any number of
crosses between the arms, but the next arm after a horizontal arm must always be vertical
and vice versa. It is not difficult to prove that this is always the case in the (2’- 1)-squares
defined above. So the following lemma holds true.
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F----+

FIG. 7. The 7-square facing up and to the right. Only the principal arrows and their side arrows of the arms
are drawn.

(a) Hor

Vet

(b) Vet

nor

(c) Hor Ver

Hot Vet
FIG. 8. The diagonal arrows on (a) horizontal arms, (b) vertical arms, and (c) crosses.

LEMMA 4.2. For every n >_ 1 the tiling is valid on the 2n 1)-squares even after the
diagonal arrows are added to the tiles.

It follows from Lemma 4.2 that the tile set can be used to tile the plane. Naturally,
the diagonal arrows do not affect Lemma 4.1, so that all such tilings are nonperiodic.

The diagonal arrows are needed to make the tile set NW-deterministic.
LEMMA 4.3. The tile set constructed above is NW-deterministic.
Proof. First note that the parity tiles of Fig. 5 are NW-deterministic (actually every

tile defines both its right and its lower neighbors uniquely, so that it is enough to look
at either A or B of Fig. 3 to determine C). Let us then consider the basic tiles of Fig. 4
with the diagonal arrows of Fig. 8. We have different cases depending on what kind of
tiles the tiles A and/3 of Fig. 3 are.

Suppose first that the arrows on the lower side of A and the right side of B are both
pointing away from C. Then the tile C must necessarily be a cross. The orientation of the
cross is uniquely determined by the side arrows of A and B. The label on the diagonal
arrow of C is fixed by the diagonal arrow of A’.
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Suppose then that the lower side of A has an arrow pointing away from C, while the
arrow on the right side of B is pointing towards C. Then C must be an arm pointing
upwards. Again the side arrows of (7 are uniquely determined by the side arrows of A
and B. The case when A has an arrow pointing downwards and B an arrow pointing to
the left is symmetric. Then C must be an arm pointing to left.

Finally, suppose that both A and/3 have arrows pointing towards C. In this case the
diagonal arrow of A is needed. If the head of this arrow is labeled Hot then (7 must be
an arm pointing to the right, if the label is Ver then C is pointing down. The side arrows
are again fixed by the side arrows of A and B.

5. The undecidability of the tiling problem of NW-deterministic tiles. In this sec-
tion the halting problem of Turing machines started on a blank tape is reduced to the
tiling problem ofNW-deterministic tile sets. Turing machines will be simulated on tilings
with the basic tile set of 4. The idea is very similar to the one used by Robinson in [8].

A Turing machine consists of a finite state set S and a finite alphabet A of tape
symbols. The tape is infinite in both directions. A special tape symbol a0 A is called
blank. There are two special states in S: so is the initial state and sh is the halting state of
the machine. The machine works under some rules of the form

(a, s) --, (a’, s’, d), where a, a’ A, s, s’ S and d {L, R, S}.

The rule says that, if the machine is in state s and its read-write head is scanning the tape
symbol a, then it will overprint a by a’, change its state into s’ and move its read-write
head as d indicates. If d is S then the head remains in the current position; if d is L then
the head moves one symbol to the left; and if d is R then the head moves one symbol to
the right. The Turing machines considered here are deterministic. This means that for
every pair (a, s) there is exactly one rule of the form above, except if s sh, in which
case there is no rule at all.

Initially the Turing machine is in the initial state so, and its read-write head is in the
position 0 of the tape. The tape contains only blank symbols a0. The halting problem
asks whether the Turing machine eventually is changed into the halting state. The halting
problem is known to be undecidable--there is no algorithm that could decide of a given
machine whether it halts or not.

In the following Turing machine computations will be simulated on tilings of the
plane. We show how to construct for any given deterministic Turing machine a NW-
deterministic tile set based on the basic tiles of 4 such that there is a legal tiling if and
only if the Turing machine does not halt when started on a blank tape. The simulation of
the computation is straightforward. The tape of the Turing machine is represented on a
diagonal row of tiles. Consecutive rows represent the content of the tape on consecutive
time steps. Signals are used to pass the tape symbols from one time step to another.
Also the read-write head of the Turing machine is included in one tile, and its operation
can be simulated using signals. To make the tiling impossible if the Turing machine halts
tiles representing the halting state sh are omitted.

However, we have to guarantee that on each tiling of the plane there is a simulation
going on, that is, there is a read-write head of the Turing machine somewhere on the
plane. In fact, in our construction there will be infinitely many simulations at the same
time. Among them there are arbitrarily long simulations, so that the halting state is
reached in some of them, if the Turing machine halts.

To obtain this we have to add some new features to the basic tiles. First, by coloring
the arrows of the basic tiles we can separate arbitrarily large hollow squares, so-called
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borders, on each legal tiling. Inside every border the Turing machine is simulated. How-
ever, the borders can be situated inside each other. To prevent the computations from
interfering with each other only so-called free rows and columns are used. A row or
column is free inside a border if it does not intersect with any smaller border inside. In
order to recognize free rows and columns in a NW-deterministicway a new set of signals,
called obstruction signals, are used.

Let us go into details. Remember that every (2’+ 1)-square contains four (2’- 1)-
squares in the corners, and a cross in the center with rows of arms radiating out from it.
Each of the crosses in the centers of the (2’ 1)-squares is facing two of the others.
These crosses together with the arms in between them form a hollow square whose side
has the length of 2’ / 1 tiles. This hollow square will be called a 2’-border.

A (2’+ 1)-square contains one 2’-border, four 2--borders, sixteen 2’-2-

borders, etc. The only cross inside the (2’+ 1)-square which does not belong to a
border within this square is the one in the center. The 2’-border does not intersect any
other 2’-border, and the only larger border it intersects is the 2n/-border one ofwhose
corners is at the center of the 2’-border. So two borders can intersect only if the side of
one is twice the side of the other. This is true inside all (2’ 1)-squares.

The basic tiles are now modified by coloring the side arrows red or green, just like
in [8]. In a valid til.ing two meeting side arrows must always have the same color. In each
tile only one color is used horizontally and one color vertically. In a cross, the same color
is used both vertically and horizontally, while in an arm which has ,side arrows both ways,
the horizontal and vertical side arrows have different colors. The side arrows of those
crosses that are attached to the parity tile at the lower left corner of Fig. 5 are always
colored green. So the crosses in alternate columns in alternate rows are green.

The colors go completely around the borders, so that each border is either green or
red. Two intersecting borders are always of different colors. The 2-borders are forced to
be green by the constraint above for the crosses in alternate columns in alternate rows.
So 4-borders are red, 8-borders green, etc. Every 2’-border is green when n is odd, but
red when n is even.

The coloring of the side arrows should be NW-deterministic. To obtain this also the
arrows without a side arrow are colored green or red. The rule of this coloring is very
simple" In each tile all horizontal (principal as well as side) arrows have the same color.
Similarly, all vertical arrows have the same color. In a valid tiling the meeting arrows
must have the same color, so that the colors run unchanged through the horizontal and
vertical rows of the plane. The coloring is obviously NW-deterministicthe color of the
horizontal arrows is determined by the left neighbor, and the color of the vertical arrows
is forced by the upper neighbor. The coloring of principal arrows does not violate the
restrictions given above for the colors of the side arrows, because inside every (2’ 1)-
square the borders of different sizes have their horizontal and vertical edges on different
horizontal and vertical rows, respectively. So the coloring can be done without violating
the tiling property.

Let us now forget the green borders and consider the red borders. They are exactly
the 4’-borders, for all positive integers n. Two red borders cannot intersect, but a smaller
red border may lie completely within a larger one. The region within a red border but
outside all red borders within it will be called a board. On a board we want to locate the
rows and columns which run completely across the board, from outer border to outer
border, without running into any of the smaller boards inside. These rows and columns
will be calledfree.

Next we count the number of free rows and columns. Let F, denote their number
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in a board with the side of 4’ I tiles. Note that the positions of the 4k-borders repeat
both horizontally and vertically with the period 2.4k. So the pattern of free columns of a
board of side 4’- 1 tiles is exactly repeated in the middle of a board of side 4’+1 1. Also
halves of this pattern are repeated at the sides of the larger board, excluding the center
column of the pattern. Thus F,+I 2F, 1. Because F 3, we get F, 2n + 1. The
number is naturally the same for the rows as well.

In order to locate the free rows and columns in a NW-deterministic way, new signals
running along the rows and columns are needed. The signals will be called the obstruc-
tion signals, since they tell whether there is any obstruction on the line. There are two
obstruction signals: one horizontal that travels to the right, and one vertical that travels
down. The signals are emitted and absorbed by the red borders.

Let us consider the vertical signal (the horizontal one is symmetric). The signals on
different tiles are depicted in Fig. 9. Every tile on the lower edge of a red border emits
a signal downwards. These are the tiles having a red horizontal side arrow below the
central level. They are the only tiles that emit signals. They can also absorb a signal
coming from the tile above them. (In this case the tile both absorbs and emits a signal,
so that it has the same effect as if the signal had only been transmitted through the tile.)
The tiles on the upper edge of a red border, on the other hand, can only absorb signals.
All other tiles transmit a signal coming from the tile above to the tile below.

(a) (b) (c)

FIG. 9. Thepossible vertical obstruction signals of (a) the tiles on the lower edge ofa red border, (b) the tiles
on the upper edge ofa red border, and (c) all the other tiles.

For each tile there are two possibilities for its vertical obstruction signals as depicted
in Fig. 9. The tiles on the lower edge of a red border are the only tiles that necessarily
contain some signal. Symmetrically, each tile also has two possibilities for the horizon-
tal signals. The signals are NW-deterministic: The vertical signals of a tile are always
uniquely determined by the signal it receives from the tile above it, and similarly its hor-
izontal signals are forced by its left neighbor.

Let us see how the obstruction signals are used to locate the free rows and columns.
Consider a 4’+-border on the plane. It contains four 4’-borders inside. Take the one
that is situated in the upper left corner. We claim that there are vertical obstruction
signals on the upper edge of this 4’-border in exactly those tiles that do not start a free
column inside the 4’-border, and that are not corners of the border.

If there is a vertical obstruction signal in a tile belonging to the upper edge of the 4’-
border, then there has to be a 4-border, for some k < n, emitting the signal somewhere
between the upper edges of the 4’- and 4n+X-borders. Because the 4-borders repeat
with the period 2.4, this means that there is a 4-border in the same column inside the
4-border. So the column is not free.

Conversely, consider a tile on the upper edge of the 4’-border that does not start
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a free column. Then it is either in the corner of the border, or in its column there is a
4k-border, for some k < n, inside the 4’-border. But the 4k-borders repeat with the
period 2 4, and the distance between the upper edges of the 4’- and 4’+l-borders is
2.4’- 1, so that there is a 4-border between them in the same column. The lower edge
of this border emits an obstruction signal that reaches the upper edge of the 4’-border.
(On the way there can be other borders whose upper edges absorb the signal, but their
lower edges always emit a new one.)

In a similar way, the horizontal obstruction signals locate the free rows inside the
same 4’-border. The free rows and columns of the other three 4’-borders inside the
bigger border will not be found using the obstruction signals. For example, the border
situated in the lower left corner receives obstruction signals to every tile on its upper
edge from the 4’*-border above it, so that none of the columns is recognized to be free.
But this does not matter, since it is enough to locate the free columns and rows inside
one 4’-border for every n.

The 4’*-border and the free rows and columns inside form a grid (see Fig. 10) in
which the operation of a Turing machine is simulated. The simulation is done in a NW-
deterministic way. Let us index the rows and columns of the grid by natural numbers.
The leftmost column gets the number 0, and the numbers increase to the right. The
numbers of the rows increase downwards, and the number of the uppermost row is 0.
Let N F, + i be the maximum row and column index in the grid.

0 1 2 N-1 N

N-1

N

FIG. 10. The grid where the computation ofthe Turing machine is simulated.

Let us now see how a given deterministic Turing machine can be simulated in the
grid defined by the 4’-border in a NW-deterministic way. For any natural numbers k
and m, 0 < k, m < N, let T(k, m) denote the tile in the intersection of the kth row
and ruth column of the grid. The tiles T(k, m) will be called the intersection tiles. Each
intersection tile can contain one tape symbol a from the tape alphabet of the Turing
machine, and possibly a state s from the state set of the machine. The state indicates
that the Turing machine is in state s, and its read-write head is scanning the tape symbol
contained in the tile. The intersection tiles can send signals down and to the right. The
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signals are transmitted unchanged to the next intersection tile by the tiles in the corridors
between them. The corridors do nothing but transmit the signals.

The simulation of the Turing machine is started at the tile T(0, 0). It contains the
blank tape symbol and the initial state of the Turing machine, expressing the original
situation where the read-write head is scanning the blank symbol in the initial state. The
subsequent configurations of the Turing machine are represented on the diagonal rows
of intersection tiles. For k > 0 the tiles

T(2k, 0) T(2k-l, 1)T(2k-2,2)... T(1,2k-1) T(0,2k)

(or those T(x, 2k x) of them where x, 2k x < N) represent the positions -k, -k +
1,..., k 1, k of the tape of the Turing machine after k time steps. They contain the
tape symbols in the corresponding positions of the tape. Also the state of the machine,
representing the read-write head, is contained in the tile that corresponds to the tape
position the machine is scanning after k time steps. Note that only every other diagonal
row represents the Turing machine configurations.

This representation of the configurations is accomplished as follows. Let a be the
tape symbol that is contained in a tile T(z, 2k z) of the grid, where 0 < z < N. The
tile sends a signal a9 downwards. The subscript D denotes the fact that the symbol is
traveling down. When the signal comes to the next intersection tile T(z + 1, 2k z), it
is changed into an and sent to the right. When an reaches the tile T(z + 1, 2k + 1 z)
(which represents the same tape position as T(z, 2k z), only one time step later) the
tile knows that its tape symbol is a. This works if the tile T(z, 2k z) does not contain
the read-write head of the Turing machine. If some state s is at the tile, representing the
read-write head, then the signal a9 is sent instead, where a is the symbol that the Turing
machine overprints a with. This is how the tiles T(z, 2k z) with z, 2k z > 0 get their
tape symbols. The tiles T(0, 2k) and T(2k, 0) always contain the blank tape symbol a0.

Let us now consider the read-write head and state s of the Turing machine in some
tile T(z, 2k z). Let a be the tape symbol in the same tile, and let s be the state the
Turing machine is changed into when scanning a in state s. Let d {L, R, S} denote
the direction where the head moves. Suppose s is not the halting state of the Turing
machine.

Suppose first that d L. In this case a signal z, 1) is sent downwards from the
tile T(z, 2k z), provided z < N. The subscript of s denotes d, and the number 1
expresses the fact that the signal is on the first part of its way to the next tape position
(every signal goes through two corridors between the intersection tiles before reaching
its goal). When the signal comes to the next intersection tile T(z+ 1, 2k-z) it is changed

8into z, 2) and sent again down (if z + 1 < N). The next intersection tile it meets is
T(x / 2, 2k z) that represents the Turing machine tape position situated one step to
the left from the position of T(z, 2k z), at the next time instant. So this tile knows it
contains the read-write head of the machine, which is currently in state st.

Similarly, if d R then the signal (s, 1) is sent to the right to the tile T(z, 2k+l-z).
This tile sends (8, 2) again to the right. So the tile T(z, 2k + 2- z) gets the state s’ (this
happens naturally only if 2k + 2 z < N), which is correct since it represents the tape
position one step to the right from the position represented by T(z, 2k ).

8Finally, if d S then a signal s, 1) is sent down from T(z, 2k z), and a signal
(s, 2) to the right from the tile T(x + 1, 2k x). So the tile T(z+ 1, 2k + 1 z) receives,
quite correctly, the state st.

It is obvious that the signals described above make sure that the diagonal rows rep-
resent the configurations of the Turing machine correctly, if the Turing machine does not
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halt. The signals are bounded inside the grid, because neither the tiles on the lower edge
ever send signals downwards, nor do the tiles on the right side send any signals to the
right. If the read-write head of the Turing machine tries to get out of the grid (this can
happen after [N/2J time steps from the beginning), then the head simply disappears,
and in the subsequent diagonal rows only the tape symbols are contained.

The signals are NW-deterministicmthey travel only down and to the right. Because
the Turing machine simulated is deterministic, also the signal a9, which is created from
the tape symbol a in the tile that contains the read-write head as described above, is
uniquely determined.

The halting state sh of the Turing machine is never contained in any tile. Also there
are no signals carrying the halting state. If at some tile containing the read-write head
the machine is turned into the state sh, then no signal (sh, i) can be sent, and the tiling
becomes impossible.

Suppose the given Turing machine halts in K time steps after it has been started.
Choose n > log2(2K). Consider the grid composed of a 4’-border and the free rows
and columns inside. According to Lemma 4.1 such a grid must occur in every valid tiling.
The maximum index of the rows and columns in the grid is

N Fn + I 2 + 2 >_ 2K+2.

The read-write head of the Turing machine cannot go out of the grid during the first
N/2J > K time steps of the simulation, since the portion of the tape represented in the
grid keeps expanding to both directions. This means that the halting state sh is encoun-
tered in the grid. But no tile can contain the halting state, so that the tiling is impossible.

On the other hand, if the Turing machine never halts, then the simulation is possible
in the grids inside the 4’-borders, for every n. This means that the plane can be tiled
with the tiles.

We have proved that the given Turing machine halts if and only if the NW-determin-
istic tile set constructed in 4 and 5 can be used to form a valid tiling. Since the halting
problem of deterministic Turing machines started on the blank tape is undecidable, this
proves Proposition 3.1, and completes the proof of Theorem 3.2. q

6. Concluding remarks. We have shown that the nilpotency problem of cellular au-
tomata is undecidable even in case of one-dimensional CA. The proof was based on the
close relation between computations of one-dimensional CA and tilings of the plane
with tile sets that are locally deterministic in one dimension. Such tilings can be consid-
ered as space-time diagrams of one-dimensional CA. We propose the use of this close
relation also in solving other open problems concerning one-dimensional CA. Tilings,
being static objects, are easier to handle than dynamic CA. The construction presented
above could have been done without considering tilings. For example the signals run-
ning across the plane along rows and columns correspond to the traditional signals of
CA transferring information to the right or left.

The specific property of tilings that corresponds to the nilpotency of CA is the exis-
tence of legal tilings. The undecidability ofthis problem is proved using a straightforward
extension of Robinson’s proof for the undecidability of the existence of legal tilings with
arbitrary tile sets [8]. Robinson’s construction has to be changed only to make the tile
sets obtained remain locally deterministic.
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Abstract. Valiant introduced a new computational model of concept learning by examples, gave the def-
inition of learnability of classes of Boolean functions, and derived algorithms for learning specific classes of
Boolean functions. Using his model as a base, the authors show that the class of Boolean functions expressed
by monotone disjunctive normal form formulae with at most a fixed number of monomials and the class of
Boolean threshold functions are polynomial time learnable when the examples are generated according to the
uniform distribution.
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1. Introduction. Recently, Valiant [V1], [V2] introduced a new computational mod-
el of concept learning, gave the definition of learnability of classes of Boolean functions,
and derived algorithms for learning specific classes of Boolean functions. A class of
Boolean functions is said to be learnable if there exists a polynomial time learning algo-
rithm to learn any Boolean function in the class: when given some partial information
about some unknown target Boolean function in the class, the polynomial time learn-
ing algorithm outputs with high likelihood a Boolean formula that is a reasonably ac-
curate approximation to the target Boolean function. A special form of the learning
model is called the distribution free model, in which information about a function f to
be learned is given through examples of the form (v, f(v)), v E {0, 1}n, generated ac-
cording to some fixed but unknown probability distribution. Assuming the distribution
free model, some classes of Boolean functions, or class of Boolean formulae, are proved
to be learnable and, on the assumption that RP y NP, others are proved to be not learn-
able [V1], [KLPV1], [KLPV2], [PV]. In particular, it is shown in [KLPV1] and [PV] that
the following classes are not learnable unless RP NP: the class of disjunctive normal
form formulae with at most k monomials, denoted k-terrn-DNF; the class ofmonotone
disjunctive normal form formulae with at most k monomials, denoted k-terrn-MDNF;
the class of monotone disjunctive normal form formulae, in which each variable occurs
at most once and at most k monomials appear, denoted k-terrn-/MDNF; the class of
Boolean threshold functions, denoted TI-I, and so on.

In the definition of learnability examples are assumed to be drawn on some unknown
arbitrary probability distributions. This assumption, however, may be too strong in some
practical situations. In the case where learning a class is thought to be intractable, or no
learning algorithm exists, it is reasonable to try to find feasible learning algorithms that
work for specific natural input distributions of the examples. In this paper we restrict
ourselves to the case where examples are generated according to the uniform distribution
and give a polynomial time learning algorithm for k-term-MDNF and one for TH,
both of which, as mentioned above, are known not to be learnable in the distribution
free model unless RP NP. This suggests that learning under uniform distribution
alone is quite limited. It is shown in [KLPV1] that/MDNF, the class of monotone
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disjunctive normal form formulae in which each variable occurs at most once, is learnable
in the uniform distribution setting while it is not in the distribution free setting on the
assumption RP NP. The same result also holds for/DNF, the class of disjunctive
normal form formulae in which each variable occurs at most once. This is because we
can relabel negated variables with new variables that denote their negations.

The main result of this paper shows that, ifwe restrict ourselves to the case where the
number of monomials in disjunctive normal form formulae is at most a fixed number, the
restriction of allowing only one occurrence of each variable can be removed in learning in
the uniform distribution setting: for fixed k, k-term-MDNF is learnable in the uniform
distribution setting. Using different approaches, the same result is proved in [KMP] and
recently in [OM]. However, how to use uniformly distributed examples to find the target
function is not mentioned explicitly in [KMP]. It is interesting to note that learning k-
term-/MDNF is as hard as learning k-term-MDNF, and hence learning k-term-
DNF, in the distribution free setting [KLPV1].

This paper is organized as follows. In 2, we illustrate Valiant’s learning model and
give the definition of learnability. On the assumption of uniform distribution of exam-
pies, we show in 3 that, for fixed k, k-term-MDNF is learnable, and show in 4 that
TH is learnable.

2. Preliminaries. We first describe Valiant’s learning model formally. In this paper,
we restrict the objects to be learned to Boolean formulae. Let f be a Boolean function.
In the following, we will use f to express a representation of f and the set ([f() 1}
as well as the function f, when the meaning can be understood by the context. Thus, for
two Boolean functions f and g, we may write f c_ g, which means that {vlf(v) 1} c_
{rig(v) 1}. A Boolean function f of n variables may sometimes be written as f to
stress that it is a function ofn variables. Let size(f) denote the fewest number of symbols
needed to write function f or the function that formula f represents. In particular, the
size of a monomial is the number of literals in it. The learning model defined by Valiant
consists of a learning protocol and a learning algorithm. The former specifies the manner
in which information about a function to be learned is obtained from outside and the
latter is the procedure by which a formula to approximate the target function is deduced.
In this paper we are exclusively concerned with the learning protocols by which positive
and negative examples of a target function, denoted f, are supplied. More precisely,
learning algorithms are assumed to call the following subroutines.

P-EXAMPLE: It returns a vector v f-(1) according to the probability distribu-
tion D}- on f-(1).

N-EXAMPLE: It returns a vector v f- (0) according to the probability distribu-
tion D- on f-(0).

In the above, D}- and D- denote the probability distributions according to which
the positive and negative examples, respectively, are generated. When D- and D- are
some arbitrarily fixed unknown distributions, the model of learning is called the distri-
bution free model of learning by examples, while when D}- and D- are some known
distributions, the model is called the distribution specific model of learning by exam-
ples [KLPV1]. In this paper, we deal with the distribution specific model. In particular,
+Dy (respectively, D-) is assumed to be the uniform distribution over the positive exam-

ples of f (respectively, the negative examples) unless otherwise stated. In what follows,
D}- and D- will be simply written as D+ and D-, respectively, when no confusion arises.
In Valiant’s general learning model, other types of protocols, e.g., one that returns the
value f(v) for v the learning algorithm chooses, are also considered.
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For Boolean functions f and 9, let

D+[f Ag]= E D+(v)
vy-g

and

D-[fAg]-- E D-(v),
veg-:f

where f-g denotes {vlf(v) 1}-{vlg(v) 1}, and simi!arly for g-f. When f denotes
a function to be learned and g denotes an output of a learning algorithm to approximate
f, these quantities are thought of as the errors in the output. The following definition of
the learnability for a class of Boolean formulae is due to Valiant [KLPV1], [V1].

DEFINITION 2.1 [V1]. Let F be a class ofBooleanformulae. F is learnable ifand only
ifthere exists a polynomial p(., .,.) and a learning algorithm A that calls P-EXAMPLE and
N-EXAMPLE such that for any n, f’ E F, and h > 1 (errorparameter) the algorithm A
halts in time p(n, size(fn), h) and outputs a formula gn F that with probability at least
1 1/h satisfies

D+[f A g] < 1/h

and

D-[f A g] < 1/h.

For a more complete discussion ofthe learningmodel and relevance ofthe definition
of learnability see [V1].

For later reference, we define here the classes of formulae which we shall consider.
Let the variables of fn be denoted x1,..., x,. Let the set of variables be denoted X.
Given a target function f, let v denote the random variable that takes values in f-l(1)
according to the uniform distribution D+. Similarly, let u denote the random variable
that takes values in f- (0) according to the uniform distribution D-. Let v denote the
ith component of v and similarly for ui. When no confusion arises, v and u also denote
vectors in {0, 1}’. A monomial is a conjunction of variables. Let Var(m) denote the
set of variables that appear in monomial m. For a subset Y of X, let I(Y) denote the
set of indices of the variables in Y. Let log2 x, log x and 2x be denoted log(x), In(x)
and exp(x), respectively, where e is the base of the natural logarithm. We define the
following classes of formulae.

k-terrn-MDNF the class of monotone disjunctive normal form formulae with at
most k monomials.

Let Y be a subset of {xl,..., x,} and t be a positive integer. The threshold function
th,,t is defined to be

thy,t(Xl,...,Xn) { 1, if at least t xi’ Y take value 1

0, otherwise.

TH" the class of formulae that compute thy,t, where Y is a subset of {xl,... ,x,} and
1 < t < IY[ (IYI denotes the cardinality of the set Y).
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Before closing this section, we give a series of propositions which will be used in the
following sections.

For 0 < p < 1, positive integers r and t, let LE(p, r, t) denote the probability of
occurring at most t successes in r independent Bernoulli trials with probability of success
p. Similarly, let GE(p, r, t) denote the probability of occurring at least t successes in r
independent trials with probability of success p.

PROPOSITION 2.2 [AV], [C], [ES]. For 0 <_ p <_ 1, 0 < b <_ 1, and r > O,

and

LE(p, r, (1 b)pr) < exp(-b2pr/2)

GE(p, r, (1 + b)pr) <_ exp(-b2pr/3).

For 0 < p _< 1, 0 < b < 1, and h > 1, define R(p, b, h) 3 ln(h)/(pb2)q. From
Proposition 2.2, we can immediately get the following three propositions.

PROPOSITION 2.3. For 0 < p <_ 1, 0 < b _< 1, h > 1, and r >_ R(p, b, h),

LE(p, r, (1 b)pr) < 1/h.

PROPOSITION 2.4. For 0 < p <_ 1, 0 < b _< 1, h > 1, and r >_ R(p, b, h),

GE(p, r, (1 b)pr) < 1/h.

For hi, h2 > 1, and positive integer t, let L(t, hl,h2) min {rlln r independent
Bernoulli trials with probability at least 1/h of success, the probability of occurring
fewer than t successes is at most 1/he.}.

PROPOSITION 2.5 [C], [ES], [V1]. For t, h, h2 > 1,

L(t, h, h2) _< 2h (t + ln(h2)).

3. Learning k-term-MDNF. In this section we show that, for a positive integer k,
k-term-MDNF is learnable.

Monomial m is a prime implicant of f if and only if rn c_ f and for any m’ with
m C m’, m’ f, where m c m’ means m c_ m’ but m m’. m +... + mj is a
nonredundant prime implicant expression of f if each mi, 1 < < j, is a prime implicant
off, f m +... + m and m +-.. + m_ + m+ +... + my c f for anyi. It is
easily seen that if f is a monotone function, then the disjunction of all prime implicants
of f is the unique nonredundant prime implicant expression of f. When g c_ f, we say
f includes g. For formula g, let

D+[g] Z D+(v)
vg

and

D-[g] D- (u).

PROPOSITION 3.1 [OM]. Let f E k-term-MDNF and v be the random vadable
taking values in f- (1) according to D/. Then for any xi not appearing in f,

Pr[vi 1] 1/2
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andfor any zi appearing in someprime implicant rn of f,

Pr[vi 1] _> 1/2 / D+[m]/2k.

Proof. It is obvious that Pr[vi 1] 1/2 for xi not appearing in f. Let xi be
,a variable that appears in some prime implicant rn of f, and let T be the set of prime
implicants of f that include the variable x. Let f’ be the disjunction of the prime impli-
cants in T and f" be the disjunction of the remaining prime implicants of f. Then it is
easy to see that

(3.1)

Pr[vi 1]
1Pr[f’(v)=l and f"(v)=O]+Pr (v)=l]

Pr[f’(v)=l and f"(v)=O]
1

(1 Pr[f’(v) 1 and f"(v) 0])+
1 1

Pr[f’(v) 1 and f"(v) 0]7+
> +11pr[vEm and f"(v)=O].

Clearly, for each prime implicant my of f", there exists x that appears in mj but not in
m. Therefore, since the number of prime implicants of f" is at most k 1, there are at

’s. Let those ’s be where e < k- 1. {vlv {0, 1}’ v emost k 1 such xi xi xi xie,
m} is partitioned into 2e < 2k- blocks according to the values of the ith, the ieth
components of vs. Since v m and f"(v) 0 for v’s belonging to the block consisting
of vs with vi 0,..., vi 0, we have

Pr[v e m and f"(v) 0]_>D+[m]/2t

> D+ [m]/2k-.
Combining this with (3.1), we have

Pr[v I] _> 1/2 + D+[rn]/2k.

Given f k-term-MDNF and error parameter h, the prime implicant rn of f is
called predominant if D+[m] > 1/(kh). Let g be the disjunction of all the predominant
prime implicants of f. Since the number of the nonpredominant prime implicants of f
is at most k 1, we have D+[fAg] < (k 1)/(kh) < 1lb. We will use this fact in what
follows.

Before describing the learning algorithm for k-term-MDNF, we give an outline of
the algorithm. We determine in step 1 of the algorithm if xj appears in a predominant
prime implicant of f by calling P-EXAMPLE sufficiently many times. If there are only
"few" such variables, then in step 2we construct all possible monomials ofthose variables
and delete such monomials that are not included by f by calling N-EXAMPLE appro-
priately many times (in fact, monomial rn is deleted whenever N-EXAMPLE outputs a
vector u such that m(u) 1). It is easy to choose the predominant prime implicants of
f from the remaining monomials and give as output g the disjunction of them, which is
a desired approximation to target f.

On the other hand, if there are "many" variables that have been determined in step
1 to appear in predominant prime implicants of f, in step 3 we construct an output in
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a different way. First, we partition the set of variables obtained in step I into blocks of
"reasonable" size, make all of the monomials of "reasonable" size consisting ofvariables
in exactly one of the blocks, and form all of the disjunctions of k such monomials. By
restricting the way of constructing the monomials as mentioned above, we can make the
run time polynomial. Finally, by calling P-EXAMPLE appropriately many times, we can
choose as output the disjunction of k monomials among those mentioned above so that
D+ [fAg] is minimized.

The learning algorithm AMDNF is given in Fig. 1. In the algorithm, error param-
eter h > 1 and the number of monomials k > 1 are given in advance. 0 denotes the
all zero vector. L(.,-,.) and R(-,., .) be as in 2. For u, v E {0, 1}’, u + v means
(ul + vl,..., u, + v,), where ui and vi are the ith components of the corresponding
vectors.

Note that IMI 21YI for M obtained in step 2.1,

2t2 )IMI < (IYl/t) [log(2kh)]

for M obtained in step 3.2, and that IGI IMI for G obtained in step 3.2. Since k > 2
holds in step 3, R((1-1/k)/h, 1/(2k), 41GIh) in step 3.3 is well defined. In the algorithm,
c is a vector of n components whereas d is a vector of IGI components. It is also noted
that partitions that satisfy the condition in Step 3.1 are not unique and that the algorithm
works for any of them.

LEMMA 3.2. Let f k-term-MDNF, h > 1 and Y be as in AMDNF. Let v be
the random variable taking values in f- (1) according to the uniform distribution D+, and
put

Xp {xilxi occurs in somepredominantprime implicant of f},
and

Then

X {zi Pr[vi 1] _< 1/2 + 1/(2+2kh)}.

and

Pr[Xp c_ Y] _> 1- 1/(4h)

Pr[X r ] >_ 1 1/(4h).

Note. Xp and X8 are uniquely determined by f, k and h, while Y determined in step
I ofthe algorithm is a random variable.

Proof. Let xi Xp. Then, by Proposition 3.1 and the definition of a predomi-
nant prime implicant, Pr[v 1] >_ 1/2 + 1/(2kkh). Putting p 1/2 + 1/(2kkh)
and b 1/(2k+2kh), we have p(1 b) > 1/2 + 1/(2k+kh). Therefore, since t
R(1/2, 1/(2k+2kh), 4nh) >_ R(p, b, 4nh), we have by Proposition 2.3

Pr[xi Y] Pr c _< + tx

_< Pr[c < p(1 b)tl]
<_ LE(p, tl, (1 b)ptl)

1<
4nh’
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begin
step 1:

c := 0; tt := R(1/2, 1/(2k+2kh), 4nh); g := ;
for i := 1 to t do
begin

v: P-EXAMPLE;
C:-- C+V

end;
Y "= {xjlcj > (1/2 + 1/(2k+lkh))tl};
if k 1 then
begin
g’= the conjunction of variables in Y;
goto exit

end;
t := max( [log(n)], [k log(2k+2k3h2) };
if IYI < t then goto step 2 else goto step 3;

step 2:
step 2.1" M:={monomials of the variables in Y};
step 2.2: for i := 1 to L(IMI, 2k+lgl, 2h) do

begin
u: =N-EXAMPLE;
for m M do if m(u) I then delete m from M;

end;
step 2.3: repeat

let m0 be one of the monomials in M with the smallest size;
g := g V m0;
for m M do ifm c_ m0 then delete m from M;

until M ;
goto exit;

step 3"
step 3.1" M ;

partition Y into [lYI/tz] blocks of cardinality between te and 2t;
step 3.2: for each block in the partition do

construct all monomials of size log(2kh)] of variables
in the block and add them to M;

G:= {disjunctions of k monomials in M };
step 3.3: ta "= R((1 1/k)/h, 1/(2k), 41alh);

d "= 0;
for j I to ta do
begin

v: P-EXAMPLE;
for gi E G do if gi(v) 0 then di di + 1;

end;
Let d. be the minimum value among the di’s
g := gin;

exit:
end.

FIG. 1. Learning algorithm AMDNF.
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where ci is as in step i of algorithm AMDNF. Therefore, since there are at most n xi’s
in Xp, we have

Pr[XpgY] Pr[xieXpxieY]
1
4h’

which verifies the first inequality of the lemma.
By a similar argument as above, we have

1
Pr[Xs fq Y ] _< 4’

which verifies the second inequality of the lemma. [:]

LEMMA 3.3. 1-term-MDNF is learnable.

Proof. The lemma follows easily from Lemma 3.2 and step 1 of AMDNF. [:]

LEMMA 3.4. Let k >_ 1, h > 1 and f k-term-MDNF. IfAMDNF executes step
2, then with probability at least 1 l/h, AMDNF outputs a formula g k-term-MDNF
such that D+[fAg] < 1/h and D-[fAg] O.

Proof. Let events E1 and E2 be defined as follows:
E1 M contains all predominant prime implicants of f for M obtained at the end

of step 2.1.
E2" All monomials rn in M with rn g f are deleted from M, i.e., Vmi e M, mi c_ f,

for M obtained at the end of step 2.2.
From the first inequality of Lemma 3.2 and the fact that in step 2.1 AMDNF con-

structs all monomials of variables in Y, it follows that

(3.2) Pr[E1] > 1- 1/(4h).

Let M be the set obtained in step 2.1, and let m be any monomial in M with rn f.
Then for each prime implicant m’ of f there exists a variable that appears in m’ but not
in m. Therefore, following a similar argument as in Proposition 3.1, we have

D-[m] > 2n-lYI/(2klf-(O)l)
>_ 2n-(k+lYI)/2n 2-(k+lYI),

because there are at most k prime implicants of f and the size of rn is at most IY[. There-
fore, ifM contains any monomial not included in f, the probability that at least one such
monomial is deleted from M during the execution of the inner for statement in step 2.2
is at least 2-(k+lYI). Therefore, by the definition of L(.,., .) we can conclude that with
probability at least 1 1/(2h) it is the case that, after the for statement is executed
L(IMI, 2k+lyl 2h) times, all monomials not included in f are deleted from M. That is,

(3.3) Pr[E2] >_ 1- 1/(2h).

Now assume that both E and Ez hold. And let g be obtained at the end of step 2. By
Ez, we have

(3.4) D-[fAg] O.

On the other hand, it is easy to see that E implies that g includes all predominant prime
implicants of f and that

(3.5) D+[fAg] < 1/h.
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Furthermore, noting the for statement in step 2.3 of AMDNF, it is easy to see that any
monomial ofg is a prime implicant of f, which implies

(3.6) g k-term-MDNF.

Thus, by (3.2), (3.3), (3.4), (3.5), and (3.6), we have

Pr[g e k-term-MDNF A D+[yAg] < 1In A D-[gAg] 0]
_> Pr[E1 A E2] _> 1- 1/(4h)- 1/(2h) > 1- h,

establishing the lemma.

LEMMA 3.5. Let k > 2, h > 1 and f E k-term-MDNF. IfAMDNF executes step
3, then, with probability at least I- l/h, AMDNF outputs a formula g k-term-MDNF
such that D+[fAg] <1D-[fAa] < 1lb.

Proof. Let Xp, X8 and Y be as in Lemma 3.2. Then by Lemma 3.2,

Pr[Xp c_ Y A Xs f’l Y ] >_ 1 1/(2h).

To prove the lemma, it suffices to show that, on the assumption that both Xp c_ Y and
X8 Y hold, algorithm AMDNF outputs, with probability at least 1 1/(2h), g
that is a desired approximation to target f. Let r log(2kk2h).

CLAIM 1. If X f3 Y holds, then the size ofanyprime implicant of f is at least
IVl/k-r.

Proof. Assume for purposes of contradiction that there is a prime implicant m0 of
f with size (m0) < IYl/k r 1. By Proposition 3.1 and the definition of X, any
variable not appearing in f is in X. Then, since X n Y , any variable in Y appears
in f. Therefore, since there are at most k prime implicants of f, there is an xy Y that
only appears in the prime implicants with size at least IYI/k. Let f’ be the disjunction
of those prime implicants, with size at least IYl/k, containing xy. Then by reasoning as
in the proof of Proposition 3.1, we have

1 1
Pr[f’(v) 1]Pr[vj=l]_<+

Since the size of m0 is at most IYI/k r i and the size of any prime implicant of f’ is
at least IYI/k, we have

Pr[f’(v) 1] I{vlf(v) 1}1
I{vlf’(v) 1}1
I{vlmo(v)- 1}1
k2n-lYI/k

2n-lYl/k+r+l
k

2r+1
1

2k+lkh"

Therefore,

1
Pr[vj=l]_< + 1

2k+2kh"
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Thus, by the definition of Xs, xj E Y is also in Xs, contradicting the assumption XfqY. Cl

CLAIM 2. If both Xp C_ Y and X fq Y hold, then, for any predominant prime
implicant m of f, AMDNF constructs in step 3.2 a monomialm such that m c_ m.

Proof. Let m’ be any predominant prime implicant of f. Since Var(m’) c_ Xp c_
Y, Var(m’) is partitioned into at most [Y[/t2J blocks in accordance with the partition
obtained in step 3. On the other hand, by Claim 1, [Y[ > t2, t2 >_ k log(2k+2k3h2), and
r log(2kk2h), we have

IVar(m’) I/LlVl/tl >_ (IY]/k

> t/k-r
_> log(2+2k3h2) log(2k2h)
>

Therefore, there exists a block (of the partition constructed in step 3) that contains at
least [log(2kh)] variables in Var(m’). Since algorithm AMDNF constructs all mono-
mials of size [log(2kh)] consisting of variables in the block, the claim follows. U

Let G and d be as in step 3 of algorithm AMDNF. Assume that D+[fAgj] > 1/h
and that both Xp c_ Y and X fq Y hold so that we can use Claim 1 and 2. By
Proposition 2.3 and

t3

(1 k )>_ R ,41alh

we have

Pr dy> 1- - _>1
4IGIh

Therefore, since there are at most [G[ such g’s,

[ ( 1 ( 2_)t3)] 1
(3.7) Pr (VgEG) D+[fAg] >_ - = dj > 1- >_1

4h

On the other hand, since G contains all combinations of k monomials constructed in
step 3.2 and Claim 2 assures that each predominant prime implicant of f is included by
one of the monomials constructed, there is a formula gi G that includes all of the
predominant prime implicants of f. From this we have

D+[fAgi] <
k-1
kh
1- 1/k

By Proposition 2.4 and

1-1/k 1(l+k) ( h )<(1-2-)’
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we have

t3Pr[di< (1-k) 1-1/k> Pr[d<(l+k)( h )t3]
1> 1

41GIh,

where t3 R((1-1/k)/h, 1/(2k), 41GIh). Combining this with (3.7), we have that, with
probability at least 1 1/(2h) < 1 1/(4h) 1/(41GIh), the following event occurs: For
the g with D+[fAg] < (1 1/k)/h and any g Gwith D+[fAgj] > 1/h,d < dy
holds. This implies that algorithm AMDNF produces g, in k-term-MDNF such that
D+[fAgm] < 1lb. We also have

{{u[g,(u)-- 1}1D-[fAg,,] <
I{ulf(u) -0}1
k2n-lg(2kh) 1

<
2n-1 h’

because l{ulgm(U) 1} k2-g(2kh) and {{u[f(u) 0}1 2-k2-Iyl/k+ > 2-1

byClaiml.
EOREM 3.6. For anypositive integer k, k-term-MDNF is learnable.

Proof. The run time of step 1 is clearly Poly(n, size(f), h) for ed k. Since {MI
21Yl, {yl m{[log(n)], [klog(2k+2k3h2)]} andn(lMl,2k+lYl,2h) 2k+I+IYI(IM{+
ln(2h)), the mn time of step 2 is Poly(n, size(f), h) for ed k. Since

2t2 )IMI _< ([Yl/tz) [log(2kh)]

where t2 max{log(n),[klog(2k+2k3h2)]}, IYI n, I1- IMI k, and R((1-
1/k)/h, 1/(2k), 4lGIh) _< (12k2h/(1 l/k))ln(41GIh) / 1, the run time of step 3 is also
Poly(n, size(f), h) for fixed k >_ 2. Thus, by Lemma 3.3, Lemma 3.4, and Lemma 3.5,
the theorem follows.

4. Learning TH. In this section we show that TH is learnable.

PROPOSITION 4.1. Let thy, E TH, and let v and u be random variables taking values
in th,t (1) according to D+ and in th.,t (0) according to D-, respectively. Thenfor i I(Y)

Pr[vi 1] >_ t/lYI

and

Pr[ui 1] <_ (t- 1)/IYI,

andfor i I(X Y),

Pr[vi 1] Pr[ui 1] 1/2.

For Y c_ {Xl,... ,Xn} and 0 _< k _< IYI, let S(k, Y) {vlv e {0, 1}’, -xeY vj

k}.
PROPOSITION 4.2. Let D+ and D- be the uniform distributions determined by thv,

TI-I. Ift < /IYI/2J then D-[S(t- 1, Y)] > 2/n, and i/t > /IYI/2J then D+[S(t, Y)] >
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Proof. Assume t < [[YI/2J. Since IS(k, Y)I < IS(l, Y)[ for 0 < k < g < [[YI/2J,
IS(t- 1,Y)I > Ith,(O)l/t. Thus, D-[S(t- 1,Y)] > 1/t >_ 2/IY[ >_ 2/n. For the
case of t > llY[/2J, the proposition can be proved similarly using the fact that, for
LIYI/2A < k < e < IYI, IS(k, Y)I > IS(l, Y)I.

In this section we assume that, if the set Y and the threshold t are determined,
then the formula computing thy, can be constructed in polynomial time. So the key to
learning TH is to find Y and t for thy, TH. Using Proposition 4.1 we can determine
if xy is in Y by calling P-EXAMPLE and N-EXAMPLE appropriately many times, hence
set Y is obtained (step 1). Once the set Y is obtained, we can find the critical value t
by counting the number of variables in Y that take value 1 in the vectors given by P-
EXAMPLE and N-EXAMPLE, respectively (step 2). Proposition 4.2 assures that with
high probability the critical value t so obtained is correct.

Algorithm ATH for learning TH is given in Fig. 2. In fact, ATH outputs with
high probability the formula that computes a target threshold function exactly. In the
algorithm error parameter h > I is given in advance, and L(.,-,-) and R(.,., .) are as in
2. For u,v {0,1}n ,’t "t- V (1 - Vl," "", ’an -- ’On) and u.v (’tt,1 Vl," ’an" ’On).

begin
step 1" c := ; d := 0; y := ; k R(1/n, 1/(4n), 16nh);

for i := 1 to k do
begin

v "= P-EXAMPLE; c := c / v;
u := N-EXAMPLE; d "= d + u;

end;
Y := {xlc -dj > k/(2n)};
for j E I(Y) do Yi := 1;

step 2: lp := IYI; In "-0;
for 1 to L(1, n/2, 4h) do
begin

v P-EXAMPLE; v v.y;
lp := Z vj lp := min{lp, lp}

l<_j<_n

u "= N-EXAMPLE; u u.y;
/he:= Z Vj; ln:=max{ln, lne};

l<_j<_n

end;
if lp > IY[/2 then t := lp else t In + 1;

step 3" Construct the formula g that computes thy, using Y and t.
end.

FIG. 2. Learning algorithm ATH.

THEOREM 4.3. TH is learnable.
Sketch ofproof. Let thy, be a function to be learned. Throughout the proof, the set

of variables Y and the threshold t are not those obtained in ATH but those correspond-
ing to the function to be learned. By Proposition 4.1, we can show that, with probability
at least 1 1/(2h), cj dj > k/(2n) for any j I(Y), and c d <_ k/(2n) for any
j I(X Y), where cj and dy are as in ATH (the calculation of the probability is
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straightforward application of Proposition 2.3 and Proposition 2.4, and details are left
to readers). That is, ATH computes Y correctly with probability at least 1 1/(2h).
Now we assume that ATH computes Y correctly and that t <_ LIYI/2J (for t > IYI/ ,
the theorem can be proved similarly). Then we can show, using Proposition 4.2 and
Proposition 2.5, that Pr[/v _< [YI/2] > 1 1/(4h) and Pr[/, t- 1] > 1 1/(4h).
Therefore, ATH computes t correctly with probability at least I 1/(2h). Thus, since

ATH computes Y correctly with probability at least 1 1/(2h), it follows that ATH
computes Y and t correctly with probability at least 1 1/h. The run time of ATH is
clearly Poly(n, size(f), h). Thus the theorem holds, rl
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SHORTEST PATHS HELP SOLVE GEOMETRIC OPTIMIZATION PROBLEMS IN
PLANAR REGIONS*

ELEFTERIOS A. MELISSARATOSt AND DIANE L. SOUVAINEt

Abstract. The goal of this paper is to show that the concept of the shortest path inside a polygonal region
contributes to the design of efficient algorithms for certain geometric optimization problems involving simple
polygons: computing optimum separators, maximum area or perimeter-inscribed triangles, a minimum area
circumscribed concave quadrilateral, or a maximum area contained triangle. The structure for the algorithms
presented is as follows: (a) decompose the initial problem into a low-degree polynomial number of optimiza-
tion problems; (b) solve each individual subproblem in constant time using standard methods of calculus, basic
methods of numerical analysis, or linear programming. These same optimization techniques can be applied
to splinegons (curved polygons). First a decomposition technique for curved polygons is developed; this tech-
nique is substituted for triangulation in creating equally efficient curved versions of the algorithms for the
shortest-path tree, ray-shooting, and two-point shortest path problems. The maximum area or perimeter in-
scribed triangle problem, the minimum area circumscribed concave quadrilateral problem and maximum area
contained triangle problem have applications to robotics and stock-cutting. The results of this paper appear
in E. A. Melissaratos’s Ph.D. thesis [Mesh Generation and Geometric Optimization, Rutgers University, New
Brunswick, NJ, 1991].

Key words, robotics, stock-cutting, computational geometry, enclosure problems, inclusion problems,
separators, geometric optimization, shortest paths, visibility, simple polygons, splinegons
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1. Introduction. The linear-time algorithm for computing the lengths of the short-
est paths inside a triangulated simple polygon from a designated start vertex by Guibas
et al. [26] provides a useful tool in developing efficient polygon algorithms for a class of
geometric optimization problems. Although our main results refer to the polygon case
of the optimization problems, we extend our results to the curvilinear case also. Sou-
vaine and Dobkin have recently argued that, wherever possible, new results should be
presented for polygons and curved polygons simultaneously [18]. To make these exten-
sions feasible, we need to develop algorithms for shortest paths and visibility problems
in curvilinear objects. Unfortunately, shortest paths and visibility represent an area in
which little work has been done on curved polygons.

In order to express our results on the optimization problems in the most general
terms possible, we begin by focusing on decompositions, shortest paths, and visibility in
splinegons (curved polygons in which the region bounded by each curved edge and the
line segment joining its endpoints is always convex [18]). The polygonal shortest path
and visibility algorithms all require a triangulated polygon. Triangulation, however, is
not a viable method on splinegons: it may require adding additional vertices, both on the
boundary and in the interior; furthermore, curved triangles are not necessarily convex
[18], [19], [41]. By substituting a new bounded degree decomposition that is linear-time
equivalent to triangulation, we generate equally efficient curved versions of the polygon
algorithms for creating shortest paths and factor graphs and for solving visibility from an
edge, ray-shooting, and two-point shortest paths.

We then use shortest paths to design algorithms for several types of geometric op-
timization problems on both polygons and splinegons: separators, inscribed triangles,
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circumscribed concave quadrilaterals, and contained triangles.
Separators. If two points z and V lie on the boundary of a simple polygon or spline-

gon P and define a directed line segment zV c_ P that separates P into two sets, PL and
PR, then zV is called a separator.

Minimum length. The areas of P/ and PR are defined by constants KL
and Kn. Find a separator of minimum length such that the ratio of the
areas of PL and P remains equal to a given constant.

Minimum sum of ratios. Find a separator that minimizes the sum of
the ratio of the area of Pz to the square of its perimeter and the ratio
of the area ofP to the square of its perimeter.

Inscribed triangles. Given a simple polygon or splinegon P, a triangle T where
7’ c_ P and the vertices of T lie on the boundary of P is called an inscribed triangle.

Maximum area. Find the inscribed triangle of maximum area.

Maximum perimeter. Find the inscribed triangle of maximum
perimeter.

Constrained maximum area/perimeter. Find a maximum area/perim-
eter inscribed triangle with one edge of given length.

Circumscribed quadrilateral. Given a simple polygon or splinegon P, a quadrilat-
eral Q where P c_ Q and all four sides of Q intersect the boundary of P, is called a
circumscribed quadrilateral.

Minimum area concave. Find the circumscribed concave quadrilateral
of minimum area.

Contained triangle. Given a simple polygon or splinegon P, a triangle T where
7" c_ P is called a contained triangle.

Maximum area. Find the contained triangle of maximum area.

In each case, we find the global optimum by using shortest paths to decompose the
optimization problem into a low-degree polynomial number of simple continuous opti-
mization problems; each problem is solved in O(1) arithmetic operations by using the
methods of calculus analytically, standard methods of numerical analysis, or linear pro-
gramming, and computing the optimum of all the local optima. For polygons, we solve
the separator problems in O(n) time, the inscribed triangle problems in O(n) time,
and the contained triangle problem in O(n4) time, all in linear space. Subsequently, we
combine our techniques with Hershberger’s output-sensitive visibility graph technique
[29], to create modified algorithms for the area separator and maximum area or perime-
ter inscribed triangle problems, which run in O(m) and O(n2 + rim) time, respectively,
where m is the size of the visibility graph of P. The quadrilateral problem can be solved
either in 2 2O(ncnp) time and O(n) space or in O(n(np + k)) time and O(n + k) space,
where nc is the number of vertices of the convex hull of P, rp n rc, and k is an
instance-dependent parameter that ranges between O(zp) and O(np). Although some
of the algorithms for curvilinear objects obtain the same asymptotic complexity as their
polygonal counterparts, others do not: the splinegon separator algorithm runs in O(n)
time; the inscribed triangle algorithm in O(n4). We conjecture that some curvilinear
problems are inherently more difficult than their polygonal counterparts.
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The decomposition step used to solve both the inscribed triangle problems and the
contained triangle problem focuses on a new type of computationally tractable poly-
gon (respectively, splinegon), the fan-shaped polygon (respectively, fan-shaped spline-
gon). Every triangle inscribed (contained) in a simple polygon or splinegon P is also
inscribed (contained) in a fan-shaped polygon or splinegon P’ c_ P. We expect that the
fan-shaped polygon/splinegon will become a useful tool in other applications as well.

The next two paragraphs recite some of the history of the polygon version of these
problems. Lisper [32] posed the first separator problem, citing applications in solid mod-
eling and graph cutting. A linear algorithm exists for convex polygons [36]. Chang posed
the second separator problem [10], claiming applications in finite element analysis. Ag-
garwal [1] posed both the contained triangle problem and the concave circumscribed
quadrilateral problem. Previously, Chang [10] and Chang and Yap [9] had posed the
contained triangle problem as an open problem. There are numerous results for related
problems. The Klee-Laskowski bound of O(n log2 n) time for computing the minimum
area triangle containing a convex n-gon time [30] was improved to linear time by O’
Rourke et al. [37]. Finding the minimum area circumscribing k-gon of a convex n-gon
was solved first in O(n2 log k log n) time [2], next in O(n2 log k) time [3], and finally in
O(nk + n log n) by Aggarwal and Park [4]. DePano’s bound of O(n3) time for comput-
ing the minimum perimeter triangle circumscribing a convex n-gon [15] was improved
by Aggarwal and Park to O(n log n) time [4]. Note that any convex k-gon circumscribing
a simple polygon P also circumscribes the convex hull of P.

Many researchers have studied inclusion problems. Dobkin and Snyder [17] pre-
sented a linear-time algorithm for computing the minimum area triangle inscribed in a
convex polygon of n vertices. Boyce et al. [5] computed the maximum area or perimeter
convex k-gon inside a convex n-gon in O(kn log n + n log2 n) time. Aggarwal et al. [3]
improved the bound to O(kn + n log n). Chang and Yap solved the general problem of
finding the maximum area (perimeter) convex polygon contained within a given simple
polygon P in O(r7) time (respectively, O(n6) time) and O(n5) space [9], [10]. DePano
et al. [16] gave an O(n) algorithm for a maximum area equilateral triangle contained in
a simple polygon. This result can be improved using a recent result of Chew and Kedem
[14] for the problem of placing the largest similar copy of a convex k-gon in an arbitrary
polygonal environment. Fortune [22] solved the problem of placing the largest homoth-
etic copy of a k-gon in a simple polygon in O(kn log kn) time. Some recent research has
focused on simultaneous inner and outer approximation of convex polygons by a pair of
rectangles [39] or by a pair of similar triangles [21].

We have recently learned of some independent work on shortest paths and visibility
in curved regions. Many interesting, nonalgorithmic, properties of shortest paths inside
curvilinear regions appear in [7], [8]. Furthermore, Bourgin and Howe [6] provide algo-
rithms for shortest paths between two fixed points in a Jordan region that run in O(nk)
time, where n is the number of distinct sections of the boundary (i.e., the number ofver-
tices of the boundary) of the region and k is the number of the vertices on the shortest
path. Our algorithm computing the lengths of the shortest paths from a fixed point to all
the vertices of the boundary of the region runs in O(n) time. When restricted to com-
puting the shortest path between two fixed points, our algorithm would use O(n) time
for the length computation or O(n + k) time for computing the actual path, where k is
the number of the vertices of the shortest path.

In the next section, 2, we review polygon shortest path and visibility results, develop
the corresponding splinegon versions, and establish the notation to be used in the pa-
per. Sections 2.2-2.5 are long and detailed and may be disregarded by readers primarily
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interested in the polygonal versions of the optimization results. Sections 3-6 examine
each of the optimization problems in turn. Preliminary results of this paper appear in
[34], [35]. The results of this paper will appear also in Melissaratos’s forthcoming thesis,
[33].

2. Shortest paths and visibility in polygons and splinegons.

2.1. Shortest paths in simple polygons. In the next few paragraphs we establish our
conventions and review necessary facts and definitions. A simple polygon or splinegon
P has n edges represented by the integers 1, 2,-.., n in clockwise order, and edge j
has endpoints pj and pj+l; whenever a subset of polygon or splinegon vertices (edges)
are identified by uppercase (lowercase) letters, alphabetic order implies clockwise order
around P; a line is tangent to a polygonal chain C if it intersects the chain in one or
more points and C lies entirely in one of the halfplanes defined by l. A point z E P is
visible from an edge i of P if there exists a point y on i such that zy c_ P. Two edges i, j
of P are visible from each other if and only if there exist at least two points z, on i, j,
respectively, such that :e c_ P. The set of points a: E P, which are visible from an edge
i, form the visibility polygon or visibility splinegon of P from edge i. If two edges i and j
of P are visible from each other, the set of points of j that are visible from i form the
visible part ofj with respect to i.

In [26] the authors describe a linear-time and space algorithm for finding the shortest
paths from a point v inside or on the boundary of P to all its vertices, if P represents
a triangulated simple polygon. The union of these paths forms a tree called the shortest
path tree with respect to source v, or just the shortest path tree, if v is understood. The
shortest path algorithm applied to a triangulated simple polygon P at a designated start
vertex v produces a subdivisionwhere each region corresponds to afunnel based on some
polygon edge i, denoted F(i). (See Fig. l(a).) Extending the edges of each funnel up
to their intersection with the funnel’s base produces the extended shortestpath tree which
induces a refined subdivision of P where every region is a triangle. This configuration
is called the shortest path map with respect to v or simply the shortest path map, if v is
understood. The extended shortest path tree from a vertex v subdivides each edge i of
P into elementary segments. This set of elementary segments on edge i is denoted by
Sv(i) and its size by s. The union of all Sv(i) over all edges i of P is called the trace of
v. The closest vertex to z on the shortest path from v to a: is called the anchor of z with
respect to v and is denoted by anchor (z). A fundamental property of each shortest
path map of a polygon is that all points z in a particular region of the shortest path map
have the same anchor (see Fig. l(b)) [26], [29].

One can compute the visible parts of a given edge i from every other edge of the
polygon, as well as the visible parts of every edge from i, in O(n) time and space using
the shortest path algorithm. If edges i, j of polygon P are visible from each other, then
the shortest paths from pj+l to pi (SPp+ (pi)) and from pi+l to pj (SPp,+x (py)) are
inward disjoint convex chains. The region bounded by the above chains and i and j is
called an hourglass and denoted Hi, [26].

Assuming that polygon P is triangulated, the shortest path algorithm of [26] from a
vertex s of P proceeds as follows. Assume without loss of generality that s lies on only
one triangle. The computation corresponds to a preorder traversal of the binary tree
with one node for each triangle, with an edge joining two nodes whose triangles share
an edge, and with the triangle containing s as the root. The algorithm maintains the
invariant that all funnels for polygon edges belonging to processed triangles and edges
of current triangles (nodes) have been computed and are stored in finger search trees.
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(a) (b)

FIG. 1. (a) Shortest-path tree; (b) shortest-path map.

This statement is trivially true at the outset, when we process the triangle that contains
s. It has only one edge interior to P, an active edge. Go through that edge, splitting its
funnel by computing a tangent from the new vertex to one of the chains of the funnel;
the funnels for each of the other two edges of the next triangle are formed in this way.
If those two edges both lie on the boundary of P, then this triangle is a leaf. If both
are interior to P, then this triangle has two children. Otherwise, this triangle has one
child [26]. The use of the triangulation of the polygon as well as of the funnels, in the
computation of shortest paths inside simple polygons, appeared first in a paper by Lee
and Preparata [31]. Lee and Preparata present an algorithm to compute the length of
the shortest path between two fixed points inside a simple polygon. The difference is in
the following two aspects: (a) funnel representation (Lee and Preparata represent the
funnels as linked lists and not as finger search trees), and (b) when a funnel is split the
algorithm of [31] recurs to only one of the funnels, although the algorithm of [26] may
recur to both split funnels.

2.2. Bounded degree decomposition ofsplinegons. To extend the polygonal shortest
path algorithm [26] to work for splinegons, we first need to find an acceptable substitute
for triangulation, since Dobkin et al. [19] have shown triangulation of splinegons to be
infeasible. One candidate decomposition is the horizontal visibility map which would de-
compose the splinegon into horizontal trapezoids (with curved sides). Fortunately, the
Tarjan-Van Wyk algorithm [42] is applicable to splinegons, provided that the edges are
monotone to at least one of the axes [19], as is the new linear-time Chazelle algorithm
[11]. Both algorithms produce a linear number of new vertices. Ordinarily, there will
be at most one interior vertex per trapezoid edge. However, in some applications, sev-
eral vertices may have the same /-coordinate, producing an arbitrary number ofvertices
within a base of a trapezoid. Thus in theory some trapezoids could have an unlimited
number of neighbors. Our goal is to refine the curvilinear trapezoids so that every com-
ponent has at most three neighbors so that the dual of the decomposition is a binary tree,
a key characteristic of polygonal triangulations.

To guarantee that this decomposition is sufficiently general, we need to verify that
even in these degenerate cases, the decomposition can be accomplished by adding new
vertices only on splinegon boundaries. We call our decomposition of a simple splinegon,
into components with at most four sides and with at most three neighbors, the bounded
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degree decomposition. To begin, we preprocess the edges of the splinegon such that
each edge is monotone with respect to both the z and the V axes, i.e., insert the extrema
of each splinegon edge with respect to either axes as a new vertex, without duplicating
edge endpoints. The convexity of the splinegon edges means that each edge can have at
most one minimum and at most one maximum relative to each axis, and, consequently,
the additional number of edges or vertices is at most 4n. If constant time suffices to
compute the extrema of any edge, then this preprocessing uses O(n) time.

Next, we separate the set of curved trapezoids and triangles of the horizontal visi-
bility decomposition into three groups: Group I contains those that have two side edges
concave; Group II, those with one side concave and the other convex; and Group III,
the ones with both sides convex. Remember that, given our preprocessing, all curved
edges are both z-monotone and v-monotone. We focus primarily on Group I, since the
techniques we develop for that group can clearly be applied for the second and third
groups also, although simpler procedures for those groups would suffice. We classify
each trapezoid ABCD of Group/with bases AB, CD and side edges AD, BC as having
one of three subtypes, by comparing the projections of each of AB, CD to a line parallel
to both:

Type 1: The projections intersect but neither is contained in the other.
Type 2: The projection of AB is contained in the projection of CD.
Type 3: The projections have empty intersection.

For all three types, call a vertex interior to a base that vertically projects onto a curved
side of the trapezoid an a point, and add its projection as a new vertez. All other
vertices interior to bases are called b points (Fig. 2).

A B A B A B

D C D b points C D C

(a) /
(b) (c)

a points

FIG. 2. (a) Type trapezoid; (b) Type 2 trapezoid; (c) Type 3 trapezoid.

If ABCD belongs to Type 1, then connect A (respectively, C) to any b points
between C (respectively, A) and E (respectively, F) where E (respectively, F) is the
Projection of A (respectively, C) onto CD (respectively, AB); if there are no b points
then insert the diagonal AC. Connect each new point on the splinegon edge DA (re-
spectively, BC) generated by an a point on DC (respectively, BA) to the next vertex
on that edge by a diagonal (Fig. 3(a)).

If ABCD belongs to Type 2, let E, F be the projections of/3, A on DC’, respectively,
such that E, F lie in segment DC. If there exists at least one b point on CD, then
the decomposition is done as in Fig. 3(b). If there are no b points on CD and there
are on AB, then let G (respectively, H) be the vertical projection on AD (respectively,
BC) of the last a point as we move right (respectively, left) from D (respectively,
C). Assume that the y-coordinate of G is larger than that of H. Let I represent the
horizontal projection of G on BC. Then what remains is to decompose the trapezoid
ABIG (provided it has b-points on A/3), by connecting G to all b-points on A/3 (Fig.



SHORTEST PATHS AND GEOMETRIC OPTIMIZATION 607

3(C)). IfABCD is of Type 3, then there are no b-points and the decomposition is given
in Fig. 3(d).

FIG. 3. Refinement ofdegenerate trapezoids: (a) Type 1; (b) and (c) Type 2; (d) Type 3.

Finally, where possible, all remaining quadrilaterals are triangulated using a diago-
nal. Given that splinegon edges are monotone with respect to both the z and y axes, the
only class of quadrilaterals that cannot be triangulated by a diagonal consists of trape-
zoids of Type 3: trapezoids with concave-out curved side edges on the boundary of the
splinegon and parallel bases with disjoint z-intervals. These quadrilaterals have exactly
two neighbors.

THEOREM 2.1. Any simple splinegon can be decomposed in such a way that each com-
ponent has at most three neighbors, in the same asymptotic time complexity as triangulating
a simplepolygon.

Proof. The algorithm described above first computes the horizontal visibility infor-
mation and then spends at most constant time per vertex refining the decomposition.
Fournier and Montuno have proved that triangulating a polygon is linear-time equiva-
lent to computing horizontal visibility information [23].

2.3. Shortest paths in splinegons. Minor revisions allow the polygonal shortest path
algorithm [26] to work for curved polygons, also known as splinegons, in comparable
time and space bounds. The curved algorithm maintains the corresponding invariant
that all funnels for polygon edges belonging to processed and current components of
the bounded degree decomposition have been computed and are stored in finger search
trees, but there are several notable differences. A convex chain of a funnel is not nec-
essarily made of straight line segments but is rather a concatenation of straight line seg-
ments and convex curved segments. If the shortest path map is formed by extending the
straight line segments of the funnels and the tangents at the endpoints of the curved seg-
ments up to the intersection of the corresponding splinegon edge, for a point z moving
within a single component of the shortest path map, anchor (z) is not a constant func-
tion as in the polygon case. Instead, anchor8 (z) varies over a particular convex section
of a single curved edge of the splinegon boundary. Although in the polygon case the
funnel splitting operation does not create new vertices on the boundary of the polygon,
with splinegons, a new vertex may be created either in the funnel or in the boundary of
a new component or on both. All of these differences can be accommodated.
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THEOREM 2.2. The shortestpath tree inside a simple splinegon with a designated root
can be computed in O(n) time, given the bounded degree decomposition.

Proof. The main step of the polygon algorithm is as follows: given a funnel and a
triangle, with one of its sides coincident with the funnel base, split the funnel into at
most two funnels, which have the other two edges of the triangle as bases. The funnel
algorithm needs to be revised to accommodate different types of regions: triangles with
one or more curved edges; straight-edged triangles; and quadrilaterals with two curved
edges. Clearly, a region with two children must be a straight-edged triangle. Thus, only
regions with at most one child need different processing. If the total contribution of the
one-child components to the complexity of the algorithm remains O(n), then the recur-
sive formula used in [26] to prove the linearity of the entire algorithm still applies. There
are two main changes to make. One is that splitting the funnels may involve computing
tangents from a point to a curve or between a pair of curved edges. But we may assume
that each curved operation requires constant time [18], there is no asymptotic penalty.

More importantly, at a node corresponding to a quadrilateral, there are two splitting
points rather than just one (see Fig. 4). Let tl, t be the two splitting points of the current
funnel on base AB. Let n, n, n be the number of funnel vertices between A and t, t
and t, t and B, respectively. In Fig. 4, the current funnel is split into three funnels: the
first has apex t and consists of the convex chain from A to t together with the common
tangent tql and has the convex segment Aq as base; the second funnel has apex t and
consists of the splinegon boundary segment Dq followed by the common tangent tlq,
by the convex subchain tt, the common tangent tq, and by the splinegon boundary
segment qC; the third funnel has apex s, has the splinegon boundary segment qg.B as
base, and consists of the common tangent tq followed by the convex subchain ts and
the convex subchain sB. The first and the third of these funnels are not processed fur-
ther, since their bases lie on the splinegon boundary. Thus the vertices of the original
funnel between A and t and between t and B will not be used again by the algorithm.
Since the funnels are represented by finger trees, the first splitting and tangency opera-
tion takes time O(min(log(n), log(n + ha))) and the second O(min(log(nz), log(ha))).
But the first is O(n) and the second O(na). Therefore the total complexity for that case
is O(n + ha). But n + na is the number of "dead" vertices of the funnel (i.e., the ver-
tices that are not going to be processed further). Therefore summing over all zero or
one child cases gives O(n).

We can also compute the shortest path tree inside a simple splinegon directly from
the horizontal visibility decomposition without computing the bounded degree decom-
position, producing an alternate proof.

Proof. At any time, we consider the current funnel and a trapezoidal component of
which the parallel sides may contain many splinegon vertices (Fig. 5). The shortest paths
from the apex c of the funnel to v, v,. , v and to w, w,. , wt create new funnels
with bases vv+ for i 1,..., k and ww;+ for j 1,..., 1. It suffices to solve the
following subproblem: given a funnel with apex c, base bc and convex chains F1 and F,
a trapezoid bcde and a point z on de, find the shortest path from a to z that lies inside the
area defined by the funnel and the trapezoid. Call the curved sides of the trapezoid
and Cz. Consider the tangent from z to the funnel. Let t be the corresponding tangent
point. Without loss of generality, assume t lies on Fx. We have the following cases
(Fig. 6).

1. zt does not intersect any of the (7 or C’. Then the shortest path from a to z is
the concatenation of the part ofF from c to t and the segment zt.
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B

FIG. 4. Funnel vertices between A and and vertices between t2 and B will not be used again by the algorithm.

FIG. 5. A trapezoidal component with many splinegon vertices interior to the parallel sides.

a a a

f

bc c
C

C1

d d ee x e x dX

case 1. case 2.a.i. case 2.a.ii.

FIG. 6. Several cases offunnel splitting.

2. zt intersects only one of the
(a) zt intersects C’1. Let f9 be the common outer tangent ofF and C, where

f is on F and 9 is on F2.
(i) f9 does not intersect C. Then let zh be the tangent from z to C.

Then the shortest path is af, fg, 9h, hz.
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(ii) fg intersects C2. Then let ij be the inner common tangent of F1 and
C2 and kl be the inner common tangent of Cx, C2. Then the shortest
path is ai, ij, jk, kl, lh, hx.

(b) zt intersects C2. Use the same steps as in case 2(a), but let fg be the inner
common tangent ofF and (72.

3. zt intersects both Cx and C2.
(a) As we move from z to t, zt intersects first C1 and then C2. Then let fg

be the inner common tangent of Fx, C2, xh be the tangent from z to C1,
and ij the inner common tangent of Cx and C2. Then the shortest path is
af, fg, gi, ij, jh, hx.

(b) As we move from x to t, xt intersects first C2 and then C. Then let fg
be the outer common tangent of F, C, ij the inner common tangent of
C1, C2, and xh be the tangent from x to C2. Then the shortest path is af,
fg, gi, ij, jh, hx.

We use this funnel-splitting operation recursively. Following the above approach,
a funnel may be split into more than two subfunnels, thus we cannot apply the recur-
rence formula as in the two-way splitting. But this multiway splitting can be simulated
by two-way splittings. The horizontal visibility decomposition of the splinegon is a planar
subdivision where its dual is a tree, not necessarily binary. Make that tree a rooted tree,
choosing arbitrarily any node as the root. Thus in our rooted tree every node except
the root has indegree equal to one. We now apply a well-known transformation which
converts any tree to a binary one. Assume that node v has parent node u and children
nodes Wl, w2, w3, wa. The transformation constructs a binary tree with root v and leaves
wl, w2, w3, wa (Fig. 7). Then for the complexity analysis the same arguments can apply
since we have to work with a binary tree. We must note that the above transformation
has nothing to do with the implementation of the algorithm. It is useful only for the
complexity analysis. [:]

u

wl w2 w3 w4

wl w2 w3 w4

FIG. 7. Any arbitrary tree may be converted to a binary tree.

The second approach uses the horizontal visibility decomposition directly instead of
the bounded degree decomposition and applies multiway splitting of the funnels instead
of the original two-way splitting. The two approaches are equivalent from the point of
view of asymptotic time complexity but not in practice. Although to get the bounded de-
gree decomposition requires only linear time, the constant may represent computation
of intersections of higher degree curves. The second approach avoids these computa-
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tions, but requires a somewhat complicated proof that multiway splitting does not affect
the linearity of the algorithm. It might seem, therefore, that the concept of the bounded
degree decomposition is unnecessary. Some visibility problems do not present this op-
tion. Although computing the visibility splinegon from an edge depends only on shortest
paths, however they are obtained, problems like ray-shooting and the two-point shortest
path problem depend on an augmented balanced decomposition tree such as thefactor
graph, which is computable from the bounded degree decomposition.

2.4. Factor graphs of splinegons. A triangulation of a polygon can be converted in
linear time to a balanced binary decomposition tree in which each node corresponds to
a subpolygon P and to a diagonal d, which divides P so that neither of the two children
subpolygons PL and PR contains more than of the triangles of P; d roughly bisects P
[26]. As all of the diagonals in the bounded degree decomposition of a splinegon S are
straight segments, this algorithm extends directly to splinegons.

Assume that S is the initial polygon or splinegon and that we are given a balanced
decomposition tree for S. Let St be a polygon or splinegon at level in the decomposi-
tion tree, and let dt be the roughly bisecting diagonal of St. The boundary of St consists
of some edges of S and some diagonals. Thefactorgraph [13] has edges between dt and
the bounding diagonals of St; in other words, edges of the factor graph correspond to
pairs ofbisecting diagonals. Some visibility applications need an augmented factor graph
in which each edge is equipped with a representation of the hourglass corresponding to
that pair of diagonals. The bottom-up polygon algorithm for creating the (augmented)
factor graph extends easily to splinegons. Beginning with the balanced decomposition
tree, construct the trivial hourglasses for regions represented by the leaves. Now assume
that all hourglass computation up to level k has been completed. Thus, for any spline-
gon component in levels i to k the hourglasses between any pair of bounding diagonals
have been computed. To proceed to level k + 1, "delete" all the diagonals at level k and
compute the hourglasses between any bounding diagonal of the left component and any
bounding diagonal of the right component by trimming and then concatenating the two
hourglasses at level k. The hourglasses may now contain both straight edges and por-
tions of curved edges so that the trimming operation may involve computing tangents to
curved edges, but the essential procedure is unchanged.

Since representing an hourglass explicitly uses O(n) space, the augmented factor
graph could use O(n2) space overall. By keeping each edge of an hourglass only at the
highest level in which it appears in the tree, Chazelle and Guibas [13] demonstrated
that the augmented factor graph could be designed to have the following properties: the
augmented factor graph has size O(n), each node has degree O(log n), and the graph
can be constructed from the decomposition of the polygon in O(n) time.

THEOREM 2.3. Thefactorgraph and the augmentedfactorgraph ofa simple splinegon
S can be computed in O(n) time and space, given the bounded degree decomposition.

2.5. Visibility results for splinegons. In this section, we consider the following three
problems:

1. Visibilityfrom an edge: Given an edge j of splinegon S, find the points z on the
boundary of S for which there exists at least one point g on j such that zg c_ S.

2. Ray-shooting: Given a simple splinegon S, a query point q, and a ray passing
through q, find the first intersection of the ray with the splinegon.

3. Two-point shortest path problem: Given a simple splinegon S, preprocess it in
order to construct a data structure such that given any two query points p and q
the length and the shortest path itself can be computed efficiently.
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Each of them can be solved efficiently using either shortest paths or factor graphs. The
last two, however, also use planar point location. To preprocess S for this purpose, first
construct the convex hull of S, CH(S), in linear time [18], [40]. Given the bounded
degree decomposition both ofS and ofthe pockets identified in the process ofcomputing
the convex hull, a layered dag can be constructed in linear time, allowing the location of a
query point in a component of the decomposition to be determined in logarithmic time
[20].

THEOREM 2.4. Given the horizontal visibility decomposition of S, computing the part
of the boundary of a simple splinegon S of n vertices that is visible from an edge requires
O(n) time.

Proof. The linear-time polygon algorithm uses the fact that if edges i, j are visible
from each other, then the shortest paths from pj+l to pi (SPp+x (Pi)) and from Pi+l to
p (SPp+ (pj)) are inward disjoint convex chains [26]. For splinegons, this fact does not
hold (Fig. 8). We present a new method based on local computations for computing the
visibility of an edge in either a polygon or a splinegon.

Pi

Pi+l

FIG. 8. Shortestpathsfrom edge endpoints pi and pi+ are not inward convex chains.

To compute the visible region from edge j, find the shortest path maps from pj and
p+, respectively. Merge trace(p) and trace(p+) into a linear-sized subdivision M.
If z moves along an elementary segment I of M, the anchors of z with respect to the
endpoints ofj remain unchanged. Thus we can unambiguously refer to anchorp (I) and
anchorP+l (I). For each I of M, perform the following simple test: if anchorP+ (I) <>
anchorP (I), then for every point z on 1, z is visible from edge j; call such a segment 1
a valid segment. Merge adjacent valid segments and then report the results. ]

THEOREM 2.5. Given the bounded degree decomposition, the factor graph, and the
layered dag ofa simple splinegon S and all ofits pockets, a querypoint q and a raypassing
through q, thefirst intersection ofthe ray with the splinegon can be reported in O(log n) time.

Proof. Locate the query point q in the decomposition using the layered dag [20]. If q
is outside CH(S), then determine the convex hull edge first crossed by the shooting ray
in logarithmic time [12], [18]. If it is an edge of S, report it. If not, perform ray shooting
as described below in the pocket having that edge as a lid, a new splinegon. As in [13], if
q lies within S, find the diagonal crossed by the shooting ray that is closest to the root of
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the decomposition tree. Descend the augmented factor graph as follows: at each node
visited check either its L(v) or R(v) list; for each w in L(v), test if the ray from q avoids
the hourglass corresponding to the edge (v, w); at a leaf, no such hourglass exists but
the edge of the splinegon intersected by the ray can be computed in O(1) time. At first
glance, it seems we need O(log2 n) time. To achieve the O(log n) complexity, transform
the factor graph so that it has bounded degree. Then, using fractional cascading, the
O(log n) intersection tests between convex chains and the line can all be accomplished
in O(log n) time. This algorithm differs from the original polygon algorithm [13] in only
one respect. In the polygon algorithm, the test ofwhether a line intersects an hourglass is
transformed to the dual problem of point inclusion in.a convex polygon, solvable using
a variant of binary search. Since no duality transforms are known to apply to curved
objects, we solve the line-hourglass intersection problem directly using binary search on
the two convex chains bounding the hourglass. q

THEOREM 2.6. Given two querypoints p and q and the bounded degree decomposition,
the factor graph, and the layered dag of a simple splinegon S and its pockets, the shortest
path from p to q and its length can be reported in O(log n + k), where k is the number of
segments in thepath.

Proof. The polygon algorithm of [25] extends directly. U

3. Separators. In this section we solve two optimum polygon separator problems
and then generalize those solutions to accommodate splinegons. It should be clear that
an area separator does not always exist. For example, there are polygons (splinegons)
that cannot be bisected by a single segment. Our algorithm finds an optimum separator
if one exists or reports the nonexistence otherwise. Given that we solve both problems
in a uniform way, we describe the solution to the minimum length separator problem in
depth and then refer briefly to the minimum sum of ratios problem.

If z and y delimit a separator for simple polygon (splinegon) P, then z and y are
visible in P. Thus, if z lies on edge and V on edge j, then and j are visible in P.
Furthermore, the line segment zV lies in the hourglass H,j defined by the shortest paths
from pj+l top (SPp+I (p)) and fromp+l top (SPp,+I (p)). Thus our goal is to reduce
the optimum separator problem for a simple polygon to a series of optimum separator
problems on hourglasses that are simpler to solve.

Define as aL (respectively, aR) the area of P to the left (respectively, right) of the
directed segment zV (see Fig. 9). Not every hourglass will admit a separator satisfying
the constraints az Kz and an K for constants Kz and K, where Kz /K A,
and A is the area of P. Note, however, that SPp, (p+) cuts the polygon into two or
more pieces, some to its left and some to its right. The area ofP to the left (respectively,
right) of SPp+ (p) is denoted ALp+ (Pi) (respectively, ARp+ (p)). Therefore a nec-
essary and sufficient condition for H to contain a separator zV is ALp+ (p) <_ KL,
and Alp (p+) < KR. Thus when we consider hourglass Hj, we need to know both
ALp+I (pi) and AlCtp (p+). It is clear that computing these quantities for a specificH
could use O(n) time, leading to a time complexity of O(nz) for all O(n2) hourglasses.
For a fixed vertex v, however, the shortest path map from v divides P into a linear num-
ber of triangles where the funnel Fv (i) on edge is the disjoint union of some subset of
these triangles. Therefore, we can compute all ALv(p) for i 1,... n incrementally in
O(n) time.

Below, we present a high-level description of our algorithm for computing the
minimum-length separator, where shortestpath(v) represents the procedure that com-
putes the shortest path tree (map) from vertex v, c(F) denotes the area of funnel F, and
hoztrTlass(i, j, locmin) computes the minimum-length separator for H,.
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y

FIG. 9. A polygon P and an area-separator zy.

For j I to n do begin
globmin
shortestpath(py
shortestpath(py+ );
for 1 to n do

if i, j are visible and ALp+I (pi) <_ KL and ARp (pi+l) < KR
then do begin

hourglass(i, j, locmin)
globmin MIN(globmin, locmin);

end;
end;

Next, we need a procedure hourglass(i, j, locmin) to solve the following problem:

Problem. Given an hourglass Hi,j, find x and y on i and j, respectively,
such that: (a) xy c_ Hi,i; (b) the area bounded by SPp+I (pi), pix, xy,
and ypy+l equals KL-ALp+ (p); and (c) the length ofxy is minimum.

First, we simplify the test of condition (b). For each hourglass Hi,i, define Cp+ (pi) as
the area ofthe region bounded by SPp+ (pi) and the segmentppy+1. Depth-first-search
traversal of the shortest path tree of P from vertex py+l produces all of the Cp+ (pi) in
linear time:

procedure convex area(v, s);
Begin
for all neighbors w of v do

if the path from s to w is a counterclockwise convex chain
then begin

:= +
convex area(s, w);

end;
End;

The test of condition (b) now reduces to determiningwhether the quadrilateral pixypy+l
has area KL ALp+I (pi) + Cp+ (pi), from now on referred to as K.
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Condition (a) is satisfied if and only if the closed halfplane to the left of the
contains all the vertices of SPp+ (pi) and the one to the right contains all the vertices of
SPp,+ (pj). This condition could produce a linear number of constraints. To decompose
the problem further, and thus reduce the number of constraints, we exploit the fact that
shortest paths are convex. First, trim edge i to create an edge i so that all of i is visible
from j. Next, subdivide i’ into elementary segments by merging Spj (i) and Spj+l (i). As
x moves fromp to Pi+I, anchorP+l (x) and/or anchorP (x) changes only when x moves
from one subinterval to the next. Thus, it is reasonable to refer to anchorp (1) and
anchorP+ (1). Consequently, we can reduce an arbitrary hourglass problem to a series
of problems defined on elementary hourglasses:

Problem. For an elementary segment I of i, find points x (xl,
and y (x2, y2) on I and j, respectively, such that (a) the anchorPJ (I)
and anchorP+ (I) do not lie in the same open halfspace defined by xy,
(b) the area of the quadrilateral pxypj+l equals K, and (c) length of
xy is minimum.

This is a continuous optimization problem, rather than a combinatorial one, which gen-
erates the following constraints, where p (k1,/1), pj+l (k2,/2) and (ai, b) repre-
sents the slope and v-intercept of the line containing edge i"
(1) area(pixypj+l) xlY2 x2Yl + x212 k2Y2 + k211 kll2 + klyl Xlll K,
(2) x lies on line containing i: Yl aixl + b,
(3) y lies on line containing j: Y2 ajx2 + bj.
Substitution of (2) and (3) in (1) produces constants Bi such that

BlXl + B2(4) xg.
Bxl + B"

Substitution of (2), (3), and (4) in the expression for the length of xy,

L v/((Xl x2)2 + (yl y2)2),

gives the length as the square root of a rational function of one variable zl. The domain
of z is restricted by the constraints that z must lie within the elementary segment I,
the point y lies on edge j, and the line through x and y must keep the anchorp (I) and
anchorP+ (I) on opposite sides. The length function L is the square root of a rational
function of xl. The degrees of the numerator and denominator of the rational function
permit analytical solution for finding the optimum in constant time, even in the restricted
domain. The global minimum for the original hourglass is the minimum of all the min-
ima obtained from the continuous problems on elementary hourglasses. Therefore, the
following theorem results.

THEOREM 3.1. For an hourglass H the minimum length separator problem can be
solved in 0(h time and space, where h is the number ofvertices of Hi.

Since the size of an hourglass Hj is in the worst case O(n), where n is the number
of vertices of polygon P, and since we call the hourglass algorithm at most O(n2) times,
the time complexity of the entire separator algorithm is at most O(na). We exploit the
linearity of the shortest path trees to improve that bound.

THEOREM 3.2. The minimum length area separator ofa simple polygon can be com-
puted in O(n2) time and O(n) space.

Proof. We have O(n) calls to shortest path algorithm for a total of O(n2) time. O(n)
time is spent computing the ALv(w). Finally, for a particular hourglass Hy, we spend

.Pi+O(s’ + j ). Thus the whole algorithm takes
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n n Pi+lO(E= E=l(S’ + 11

for any vertex v. I-1

which is clearly O(n2), since

n

Es =O(n)
k=l

An alternate proof of the theorem uses the following lemma, which is interesting in
its own right:

LEMMA 3.3. The sum of the sizes of all (open) hourglasses of a simple polygon P is
O(n2).

Proof. Let hij be the size of the hourglass defined by the visible edges and j and
let ad, bc the inner common tangent segments of the convex chains of the hourglass (see
Fig. 10). But

Pi ab + pj+ b + pjd,sj

(2) P cd + pi+lC + pa.8

P P hj(1) and (2) imply sj + s
Then

n n n n
Pj

i=l j=l i=l j=l

The last sum is O(n2), since

for any vertex v. q

n

sk O(n)
k=l

b

d

10i+1 pi

FIG. 10. Hourglass between edges and j and the inner common tangents ad and ba

The alternate algorithm works as follows. Find the shortest path maps from pj and
py+l, respectively. Merge Spj (i) and Spj/I (i) for every into a linear-sized subdivision
M. If x moves along an elementary segment ! of M, the anchors of x with respect to the
endpoints j remain unchanged. Thus we can unambiguously refer to anchorP (I) and
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anchorP+l (I). For each I ofM, perform the following simple test: If anchorP+ (I) <>
anchorP (I), then for every point x on I, x is visible from edge j; for each segment I solve
the continuous optimization problem discussed above. Repeat the same process for all
edges j.

We now generalize this result to splinegons.
THEOREM 3.4. The minimum length area separator ofa simple splinegon can be com-

puted in 0(n2) time and 0(n) space.
Proof. The hourglass problem for splinegons becomes somewhat more difficult,

since the anchor can be a curved segment, rather than a single vertex. Nonetheless,
it is possible to alter the constraints of the elementary hourglass problem to require that
a curved segment lie above a line rather than that a point lie above a line. The revised
problem can still be solved in constant time. For a particular fixed edge i of P we have
to scan all elementary segments I of the merged subdivision M. For each such segment
we have to solve a continuous optimization problem which takes O(1) time to solve.
Because of the linearity of the shortest path trees, we have O(n) elementary segments,
which implies that it takes O(n) time to find a separator xy when y lies on a fixed edge
i. Summing all over edges i we get an O(n2) time algorithm.

THEOREM 3.5. The minimum sum ofratios separatorofa simplepolygon Pofn vertices
can be computed in 0(n2) time and 0(n) space.

Proof. The minimum sum ofratios separator problem can be solved in a fashion simi-
lar to that used to solve the minimum-length separator problem. Anew, easily computed
parameter is needed: LPp+ (p) represents the length of the boundary of P from pj+l
to p in clockwise order. All of the constraints in the continuous optimization problem
remain unchanged, but we need to minimize a more complicated expression. The area
aL to the left of xy equals area(pixypj+l) + ALp+ (pi) Cpj+ (Pi). The perimeter PL
to the left of xy is LPp+ (p) + length(px) + length(ypj+l length(all polygon edges
on xy). Compute aR and PR comparably. We need to minimize (aL/p2L) + (aR/p2n).
The expression can be reduced to an optimization problem in two variables which can
be solved with classical methods. [:]

We can combine our method with Hershberger’s method for finding the visibility
graph of a simple polygon to improve our result to O(m) time, where m is the size of
the visibility graph of polygon P. In order to do that, we fix a particular edge j and find
the shortest path map from one of its endpoints, say, pj. Then starting from the other
endpoint py+l, we construct the shortest path map from p+l incrementally, as in [29].
In order to combine it with our method, at each step, update the appropriate areas and
solve the corresponding continuous optimization problem. Repeat the whole process
for every j.

THEOREM 3.6. The minimum length area separatorfor a simplepolygon can be solved
in O(m) time and O(n) space, where m is the size ofthe visibility graph ofthepolygon.

Using the same reasoning we can prove the following.
THEOREM 3.7. The minimumsum ofratios separatorofa simplepolygon Pofn vertices

can be computed in 0 m time and 0 n space.

4. Inscribed triangles. For three points z, g, z on the boundary of a simple polygon
P to define an inscribed triangle, it is necessary and sufficient that theybe pairwise visible.
If x, y, z lie on edges k, i, j, respectively, then the points are pairwise visible if and only
if xy, yz, and zx lie inside Hk,, Hj,, and Hk,j, respectively. Thus the boundary of the
triangle xyz is interior, both to P and to the union of the three hourglasses. Since P
is simple, the entire triangle must be interior to P. It is also contained in the polygon
Fi,j,k C_ P bounded by i, SPp+x (Pk), k, SPp+I (pj), j and SPp+x (pi).
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Pi+

x Pj+

FIG. 11. A fan-shapedpolygon F inside a simplepolygon P.

Fi,j,k is called afan-shapedpolygon with bases i, j, k (see Fig. 11). Fi,j,k is legal if and
only if the visible parts of each of its bases with respect to the two others have nonempty
intersections. A triangle T is inscribed in F,, if and only if T C_ F,, and the ver-
tices of T lie on the bases. Every triangle inscribed in a simple polygon P is also in-
scribed in a fan-shaped polygon F,, c_ P. Below we present a high-level description
of our algorithm for computing the maximum area/perimeter inscribed triangle, where
shortestpath(v) represents the procedure that computes the shortest path tree (map)
from vertex v, and fan(i, j, k, locmax) computes the maximum triangle inscribed in a
legal F,,.
globmax 0;
for i 1 to n do begin

shortestpath(pi); shortestpath(pi+l );
for j 1 to n do begin

shortestpath(pi shortestpath(pg+
for k 1 to n do begin

if Fi,i,k is legal (if edges i, j, k are pairwise visible)
thenfan(i,j,k, locmax);
globmax MAX(globmax, locmax)

end;
end;

end;

It remains to develop the procedure fan(i, j, k, locmax).
LEMMA 4.1. For afan-shapedpolygon Fi,j,k the maximum-area inscribed triangle with

vertices x, y, z on the bases, must have at least two sides tangent to the convex chains ofthe
fan.

Proof. By contradiction. Specifically, assume that neither xy nor xz is tangent to
the boundary of Fi,,k. Tangents from y and z to the chains SPp, (p+) and SPp+x (p),
respectively, intersect k at points v and w such that x must lie between them. Then it is
clear that either vyz or wyz must have area greater than or equal to the area of xyz (the
equality happens when k is parallel to yz) (see Fig. 12).
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"Pk+l
p

z

Pi+

y

FIG. 12. The maximum triangle has two sides tangent to the inward convex chains.

LEMMA 4.2. Assume we are given two line segments AB and CD. Let x be a point on
CD. Then the triangle xAB has maximumperimeter L when either x C or when x D.

Proof. The locus of points x such that triangle xAB has perimeter L is an ellipse
with loci A and B which contains CD but has at least one point of CD on its boundary.
Either C or D lies on the boundary.

LEMMA 4.3. For a fan-shapedpolygon, the maximum-perimeter inscribed triangle with
vertices on the bases must have at least two sides tangent to the convex chains ofthefan.

Proof. Bring tangents as we did in Lemma 4.1 and then apply Lemma 4.2.
Assume, without loss of generality, that the optimum triangle Axyz has xy tangent

to SPp,+I (pk), and xz tangent to SPp (pk+1). To find the optimum, trim edge k to create
a maximal edge k’, every point of which is visible from both i and j. If k’ is empty, then
no inscribed triangle exists. Perform comparable operations on edges i and j, creating
i’ and j’, respectively. Next, subdivide k’ by merging Spj+ (k), Spj (k), tp, (k), Sp, (k).
Call the resulting subdivision M. As x moves from p to p+i, anchorV’+(x) and/or
anchorV (x) changes onlywhen x moves from one subinterval to the next. Consequently,
we can reduce an arbitrary fan-shaped polygon problem to a series of problems defined
on simpler fan-shaped polygons.

Problem. For each interval K of k’, find points x E K, y E i, z j
such that (a) anchorP’+ (K) xy and anchorV (K) xz, (b) y and z
are mutually visible, and (c) area/perimeter of xyz is maximum.

To test condition (b), we must be able to detect possible intersections of yz with the
boundary of P, in particular with the convex chain SPp,+ (pj).l This process could still
be difficult, so we choose to decompose the problem further. Subdivide i’ according to
Sp (i) and subdivide j’ according to Spi+l (j). As y (respectively, z) moves from p to
p+ (respectively, from p to pj+ ) anchorV+ y (respectively, anchorV’ z ) changes
only when y (respectively, z) moves from one subinterval to the next. Let W be the
number of vertices of either Sp+ (p) or Sv, (p+). To each interval of i’ (respectively,
j’) assign a number called its rank, which corresponds to the position of its anchor in
SPy, (p+) (respectively, SPv+ (p)), assuming that the first position is 0.

1The segment yz cannot intersect chains SPp (Pk) and SPp+ (Pk), since both chains lie outside of the
convex angle yxz.



620 ELEFTERIOS A. MELISSARATOS AND DIANE L. SOUVAINE

Refine the subdivision of k’ further so that whenever z E K, y and z each have con-
stant rank. Let the rank of K equal the sum of those ranks. The algorithm is straight-
forward. If rank(K) < W, then do nothing. Since y, z are not visible from each other.
If rank(K) > W, solve Problem I; if rank(K) W solve Problem II.

Problem I. Given three nonintersecting line segments AB, CD, and
EF and two points p, q such that p (respectively, q) lies on AE and BF
(respectively, AC and BD), find s,t,u on AB,EF,CD with p (respec-
tively, q) on st (respectively, su), such that the area of stu is maximum.

Problem II. Add the constraint that the line through t and u should
always be above a constant point (z0, Y0).

Solutions to both problems can be computed analytically.
Solution of Problem I. The objective is to compute the coordinates of s, t and u.

Call the coordinates of these points zl, yl, z2,//2, and za,//3, respectively. Let (k, l)
(respectively, (k2,12)) be the coordinates of point p (respectively, q).

Points s, t, u lie on three different lines:

(1) y axl + b,
(2) y2 a2x2 + b2,
(3) y3 a3x3 +b3.

Segments st and su pass through points p and q, respectively:

(4)
(5)

Algebraic manipulation of equations 2, 3, 3, 5, 5 produces constants A and B such
that

(6) x2

(7) X3

A4 A2xl
Axl A3
B4 B2Xl
Bxi B3

The area of a triangle is given by

(8) A x3y2 x2y3 + xly3 x3yl -4-- x2yl xly2.

Substitution of the above equations into the last one produces a rational function of one
variable zl where the numerator is a polynomial of degree three and the denominator
is of degree two. The extrema can be computed using calculus: the derivative of this
function is a rational function where the numerator is of degree at most four, but the
roots of any algebraic equation on one variable up to degree four can be found in closed
form. The domain of variable xx is fixed by the facts (a) that s, t, u lie on AB, EF, CD,
respectively, and (b) that points k and are always on sides st and su, respectively. [q

Solution to Problem II. In addition to the equations above, we have the new con-
straint

(9) Yo < Y2 Y__.._L xo + xiy2 x2yi

X2 Xl X2 Xl
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If we express everything in terms of Z as we did before we get

(10)
A4 A:x(a2 al)Xl Ax A3 + (b2 alxo -Jr- yo)xl

Aa A2x bxo > O,-t- (a2xo b Yo) Ax A3

which is a rational function with the numerator a polynomial of degree two and the de-
nominator a polynomial of degree one. Therefore the zeros and the intervals of interest
can be computed analytically.

The perimeter optimization problem also generates two types of subproblem with
these same constraints, but a different, and more complicated, objective function. As
rewritten as a function of Zl, the roots of the first derivative cannot be found analytically;
one of the classical methods for root finding from numerical analysis must be used. We
assume that finding the roots of an equation by a numerical method takes O(1) time.

We conclude that the continuous rotation ofthe triangle zyz produced as z is moving
along the "legal" portion of AB can be discretized into a finite number of problems
discussed below, each of Which can be solved analytically in O(1) time.

LEMMA 4.4. The maximum inscribed triangle in a fan-shaped polygon can be found
..P,+I PJ), which is O(n), where n is the number of vertices of thein O(sPk + sPk+ + + s

fan-shapedpolygon.
Since we decompose the simple polygon into at most O(n) fan-shaped polygons,

computing the maximum inscribed triangle in the simple polygon uses at most O(n4)
time. Careful analysis produces a better bound.

THEOREM 4.5. The maximum triangle inscribed in a simplepolygon P can befound in
O(n) arithmetic operations, where n is the number ofvertices of P. The space required is

Proof. The total time spent in the shortest path computation is O(n3), since the
shortest path procedure is called O(n) times. Each if statement takes O(1) time, since
the "legality" of F,,k can be decided from the shortest path computation. According to

P+ Pi+ 8PkLemma 4.4, the procedure fan(i,j,k) takes O(s + s + sk + ). Thus the total
time spent on the fan-shaped polygons corresponding to all triples (i, j, k) of edges of P
is:

n -n x-n {sp .nt_ .qP+l .,p+ 8Pk n0(,=1/--,=1/--,k=l - + k + )), which is O(n3), since -,k=l Sk
O(n) for any vertex v of P [26]. l-1

An alternative way of proving the above bound is to prove the following combinato-
rial result of independent interest.

LEMMA 4.6. The sum ofthe sizes ofall legalfan-shapedpolygons with three bases ofa
simple polygon P is O(n3).

Proof Let fijk be the size of a legal 3-fan-shaped polygon defined by the edges i,
j, k of a simple polygon P. Consider all pairs of hourglasses defined by the edges i,
j, k. These hourglasses can be formulated by considering the common tangents of the
chains of the fan-shaped polygons. Let hij, hk, hik be the sizes of the corresponding
hourglasses. For our proof, Cp,pj+ will represent both the chain Cp,p+I and its length.
Consequently,

(1) hij pi+la + 1 + pjb + Cpip:i+,
(2) hik Pk+ld + 1 + pic + Cpp+,
(3) hkj Pj+lf + 1 + pke + Cpjpk+.

Summing up (1), (2), and (3) produces
hij d- hik d- hkj 3 + pi+la + pjb + Pk+ld + pic + Pj+lf + pke + fijk,
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which implies
(4) f < h +h + hg.

Then

i= j= k= i=1 j=l k=l

This last summation is O(n3), since according to Lemma 3.3,
n

E
i= =1

LEMMA 4.7. The sum of the sizes of all legal fan-shaped polygons with k bases of a
simplepolygon P is 0(nk ).

Proof. By induction on k.
The complexity of our method depends on two components: (a) shortest path com-

putation and (b) computation done in all fan-shaped polygons. At all times, either we
have computed the visible part of P from both edges i and j, or we are in the process of
computing it. In each of (a) and (b) we expend O(n3) time. Nowwe are going to see how
the Hershberger technique [29] of creating shortest paths incrementally can profitably
be combined,with our method of the previous section.

First, we define some terms and notation. Let i and j be two polygon edges. The
number of edges between and j as we move clockwise from i to j is called the distance
between i and j. Let D denote the symmetric difference of the shortest path maps from
the endpoints of edge i. Also let d be the part of D that intersects edge j.

Assuming that the shortest path map from vertex pl has already been computed
[26], Hershberger [29] shows that the shortest path map from p2 can be computed in-
crementally by scanning the boundary of P in counterclockwise order, starting from p
and going back to Pl, in time proportional to the symmetric difference of the two short-
est path maps D1. Consequently, he proves that the total number of differences of all
shortest path maps -]n__ IDOl is O(m), where m is the size of the visibility graph of P.
Additionally, at any moment his algorithm satisfies the following invariant: upon reach-
ing a particular point x on the boundary of P, the shortest path map from p within the
area of P to the left of SPpl (x) is known, and the shortest path map from p2 within the
area of P to the right of SPp. (x) is known.

We use these results as follows. Assume that edges i and j have distance d. Assume
also that we are given the shortest path maps from p+ and p+. Move from pj to
p clockwise, using Hershberger’s method to construct part of the shortest path map
from py using the shortest path map from py+. Then start scanning the boundary of
P from p clockwise up to p+. During this walk, we concurrently begin constructing
the shortest path map from p using the one from p+ and finishing the one from
using the one from p+. When we walk on edge k, we want to apply our method of
the previous section on fan-shaped polygon fy (see Fig. 13). In order to do that, we
need to know the elementary intervals for the continuous optimization problems, i.e.,
we need to know Sv+ (k), Sv (k), Sv (k), Sp,+ (k). But the walk we described above
will have produced these subdivisions. Specifically Sp (k) can be derived from Sp/ (k)
and Sp, (k) from Sp,/ (k). Furthermore, we need to check the visibility of y E i and
z E j using Sp (i) and Sp,+ (j). But since we are on edge k, which is "after" edge i
and "before" edge j, both Sp (i) and Sp,+ (j) are known. After a complete cycle on
the boundary, we have constructed the shortest path maps from p and pj. Then we
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can proceed by advancing both edges i and j counterclockwise and repeating the same
procedure. The above procedure suggests the following lemma.

Pk+

k

FIG. 13. Modifiedfan-shaped algorithm.

LEMMA 4.8. The time spent in shortestpath computationsforfan-shapedpolygons fi
when edges i and j have fixed distance is O(n + m).

Repeating the above algorithm for pairs and j of all possible distances 1,..., n
yields:

LEMMA 4.9. The time spentfor all shortestpath computations is O(n +nm).
The question that remains is whether it is possible to reduce the total cost of the

fan-shaped computations, i.e., the total number of continuous optimization problems
we have to solve.

According to Lemma 4.4 we know that the time spent in a fan-shaped polygon fjk
P+I Pis O(s + s+ + + s and all thes quantities sum up to O(n3), according to

Theorem 4.5. But IDOl -=1 d, and -]=1 IDOl O(m).
LEMMA 4.10. The maximum inscribed triangle in a fan-shapedpolygon can be found

in O(dk + dJk + d + d).
LEMMA 4.11. The total time spent in allfan-shapedpolygons ofapolygon P is O(nm),

where n, m is the number ofvertices and the size ofvisibility graph of P, respectively.
Proof. According to Lemma 4.10, the time spent in a fan-shaped polygon fik is

O(dik + dk + d + d). Summing over all fan-shaped polygons,we get

n n n
jZ: + + +

i=1 j=l k=l

nSince ’in=l ’j=l d- O(m), the above summation is O(mn).
THEOREM 4.12. The maximum triangle inscribed in a simplepolygon P can befound

in O(n2 + nm) arithmetic operations where n is the number of vertices of P and m is the
size ofthe visibility graph. The space required is O(n).

Unfortunately, the maximum area or perimeter triangle inscribed in a simple spline-
gon might not have two sides tangent to the chains of the fan-shaped splinegon, as was
true in the polygon case. In fact, we present a construction where none of the sides of
any maximum inscribed triangle is tangent to the fan-shaped polygon.
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Construction. Consider two circles (? and (? with common center O and radii R
and Rz, respectively, such that R < Rg.. Let zyz be an equilateral triangle inscribed in
(?z. Let A, B, C, D, E, Fbe the intersection points of (71 with the sides of/kzyz as shown
in Fig. 15. Let A’, B’ be points on C1 counterclockwise and clockwise, respectively, from
A, B. Similarly define points C’, D’, E’, F’, see Fig. 15. Define a convex curve segment
with one endpoint A’ the other endpoint B so that it lies entirely between (71 and C
and intersects C at a unique point z. Define similar curved segments with endpoints
C’, D’ and E’, F’. Define a concave curve segment between each pair of points (A’, F’),
(B’, C’), (D, E’) so that they do not intersect/Xzyz. The above six curved segments
(three convex and three concave) define a splinegon S that lies entirely inside circle
except for points z, y, z, which lie on the boundary of C.

Claim. /zyz is the maximum area triangle inscribed into S.
Proof. By contradiction. Assume there exists a /kabc such that area(/abc) >

area(Zkzyz). Then, at least one of the vertices a, b, c lies in the interior of C. But then
there exists at least one triangle T inscribed in (? such that area(Aabc) < area(AT). It
is well known, however, that a maximum area triangle inscribed in a circle is equilateral.
Thus area(/T) <_ area(/xyz), which implies that area(/abc) < area(/xyz). [3

In the polygon case, it was possible to reduce the number of triples of elementary
segments considered within a single fan-shaped polygon to linear in the size of that poly-
gon. In the splinegon case, all O(n3) triples of elementary segments must be considered.

THEOREM 4.13. The maximum area orperimeter triangle inscribed in a simple spline-
gon can befound in 0(n) time and 0(n) space.

Proof. Move point z along the legal part of k. Each interval of this subdivision
corresponds to specific anchors (although these anchors may be curved segments rather
than points) of the shortest paths from p, p+t, p, p+ to x. The line through
(zz) must have the anchors of z with respect to pi and pi+ (respectively, p and p+)
in opposite sides in order to guarantee visibility of z, (respectively, z, z). To check
the visibility of y and z, consider all pairs of segments on the subdivision of pipi+ and
PjPj+.

Each fan-shaped splinegon requires O((s+ + sPk + sPk + sPk+ )-P+ Sj
p time.

Since s < n, the total complexity is

n n n

i=1 j=l k=l

Since s’ < n, the above sum is O(n4).
This result is significant in that it is the first instance in which there is an apparent

asymptotic gap between polygon and splinegon solutions for the same problem.
We now move to the maximum constrained inscribed triangle problem.
LEMMA 4.14. The Maximum Inscribed Triangle with one ofits sides havinggiven length

has at least one ofthe nongiven length sides tangent to a fan-shapedpolygon.
Proof. Similar to that of Lemmas 4.1 and 4.3. [3

THEOREM 4.15. For a simplepolygon P ofn vertices, the Maximum Inscribed Triangle
with one ofits sides havinggiven length can befound in O(n3) time and O(n) space.

Proof. The algorithm for this problem uses techniques similar to those used to solve
the unconstrained problems. As in the case of maximum area inscribed triangle, edge k
is subdivided by the shortest path maps from the source points py+, py, p+x,p into ele-
mentary intervals such that for every point x in an elementary interval K, anchorp+ (x),
anchorp (x), anchorp+I (x), anchorp (x) remain unchanged. As we did before instead
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of anchorp’ (x) we will refer to anchorp’ (K). Assume that triangle vertices x, y, z lie on
edges k, i, j, respectively, and that yz is a non-fixed-length triangle side that remains tan-
gent to SPp+I (pi) (see Fig. 14). The initial position of y coincides with the closest point
to p which is visible from edge j. Rotate yz clockwise so that it remains always tangent
to SPp+I (pi). At any moment anchorP’(z) anchorp+ (y). As in the case of edge
k, both edges i and j are subdivided into elementary intervals of constant anchor. Thus
let I (respectively, J) be the elementary intervals where y (respectively, z) belong. For
every pair of elementary intervals I and J, consider all elementary intervals K of edge k.
For each such triple (I, J, K), solve the following continuous constant size optimization
problem in O(1) time.

Problem. Given three line segments K, I, J and five fixed points A, B, C, D, E,
compute the coordinates of points x (x,x:)on K, y (y, ye)on I, and z (z, z)
on J such that: (a) xy has constant length L, (b) x-- (respectively, k-) keeps A and
B (respectively, C and D) on opposite halfplanes, (c) contains E, and (d) the area
of xyz is maximized. (A, B, C, D represent anchorp’ (K), anchorp’+ (K), anchorp (K),
anchorP+ (K), respectively, and E represents anchorp’ (J) anchorP+ (I).)

Solution. Since points x, y, z lie on given lines, x2, y2, z2 are expressed in terms
of xl, yl, zl. Since yz passes through a given point E such that E anchorp’ (J)
anchorp+I (I), then z is expressed in terms of y. Since xy has length L, y can be
expressed in terms of xl. All of these substitutions produce a one-variable optimization
problem. Finally, we add the visibility constraints for the x, y, z described in part (b) of
the statement of the problem, generating four one-variable constraints.

Using the same notation as in the previous section, the number of elementary in-
tervals K is O(( p’+ P’ s s+k + Sk + + )) and the number of interval pairs (I, J) is
O(,siP+ + siP’), making the complexity for the fan-shaped polygon k + + +

Pis+ )(s+ + sj )). The complexity of the whole algorithm is

n n n
Pj+I Pi+ + + + + )))))

i=1 j=l k=l

P:

P

P,+I

Y pj+l

Y ,/

P

FIG. 14. Triangle side xy is ofconstant length and yz remains tangent to the convex chain from pj+l to pi.

Remark. For splinegons, as in the case ofthe maximum area inscribed triangle, we do
not have the tangency property of at least one edge of the constrained inscribed triangle.
It is not therefore hard to see that for a simple splinegon P of n vertices, the Maximum
Inscribed Triangle with one of its sides having given length can be solved in O(n4) time
and O(n) space.
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5. Minimum area concave quadrilateral. In this section, we present algorithms to
compute the minimum-area nondegenerate concave quadrilateral circumscribing a sim-
ple polygon P, if one exists. ABCD will always represent a concave quadrilateral where
(7 is the reflex vertex. We always seek nondegenerate quadrilaterals such that A,/3, (7, D
are distinct points and no three of them are collinear.2 CH(P) represents the convex
hull of a simple polygon P. Each simple polygonal or splinegonal region Q interior to
CH(P) but exterior to P is called a pocket of P. Each edge of CH(P) that is not an
edge of P is called apseudoedge of P. The following lemmas provide characterizations
of the minimum-area concave quadrilateral.

LEMMA 5.1. IfABCD is a minimum-area concave quadrilateral containing a simple
non-convexpolygon or splinegon P, then A, B, D are not in the interior of CH(P), with
each ofAB and AD is tangent to CH(P) atpoints k and l, respectively. (AB (respectively,
AD) may contain a whole edge of CH(P), notjust a single point k, (respectively, 1)). (See
Fig. 16.)

Proof. By definition CH(P) is the minimal convex set which contains P. That
/ABD is a convex object containing P, implies that CH(P) c_ /ABD. If either AB
or AD is not tangent to P, then B can be moved, reducing the area of both ABD and
ABCD.

LEMMA 5.2. The reflex vertex C, ofa minimum-area quadrilateral containing a simple
non-convex polygon P, lies inside the visibility polygon VQ ofsome pocket Q of P with
respect topseudoedge viwi.

Proof. It suffices to prove that C lies in some pocket Q of P. If that is true, then it
is clear that C lies in the visibility polygon of Q with respect to pseudoedge vw, since
both BC and DC intersect vw. Let ABCDbe a minimum nondegenerate quadrilateral
which contains P and assume C is not inside CH(P). (See Fig. 17.) Then at least one
of BC or CD contains no point of CH(P). Rotate that edge around C by a small angle
0 so that B or D, respectively, is closer to A. The new quadrilateral is smaller than the
original, producing a contradiction. [:1

LEMMA 5.3. Sides BC, DCare tangent to the boundary ofapocket Qi withpseudoedge
vw atpoints a, b distinctfrom C where a anchor" (C) and b anchorw (C).

Proof. Assume that C lies inside some pocket Q of P but that BC and DC are not
tangent to the pocket boundary. C is visible within Q from vw, which implies that the
shortest paths from v to C and from w to C inside Q are inward convex chains. Let
a and b be the anchors of these two shortest paths. Assume that BC and DC do not
pass through a and b, respectively. Let B (respectively, D ) be the ntersectons of Ca
and Cb wth AB and AD, respectively. ,Snce B (respectively, D ) s between A and B
(respectively, A and D), the area of AB CD’ is less than the area of ABCD. [3

LEMMA 5.4. IfABCD is a minimum-area concave quadrilateral containing a simple
polygon P, then the following hold:

(a) Thg midpoint ofAB (respectively, AD) lies on CH(P);
(b) The midpoint ofBC (respectively, DC) either lies on Q orit lies between two distinct

points oftangency on BC relative to

Proof
(a) According to Lemrna 5.1, AB is tangent to CH(P). Let m (respectively, n)

be the common point of AB and CH(P) closest to A (respectively, B). (Note
that m and n may be identical.) Assume that the midpoint of AB does not lie

2We exclude the collinear case, since this reduces in finding the minimum area triangle containing a convex
polygon, a problem solved in [37].

3The lemma does not necessarily hold for splinegons.



SHORTEST PATHS AND GEOMETRIC OPTIMIZATION 627

FIG. 15. A maximum area or perimeter triangle inscribed in a simple splinegon might not have two sides
tangent to the chains ofthefan-shaped splinegon, as was true in the polygon case.

A

B D

FIG. 16. The minimum-area concave quadrilateral containing P.
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c

D
FIG. 17. Reflex vertex C should lie in the interior of CH(P).

between m and n. Assume without loss of generality that An < riB. Then rotate
AB counterclockwise around n by a very small angle 0. Let A’B’ be the new po-
sition of AB. By a continuity argument, A’n < riB’ and thus area(/AnA’) <
area(/BnB’), producing a contradiction to the fact that the area of ABCD is
minimum. (See Fig. 18.)

(b) According to Lemma 5.3, BC is tangent to Qi. Let m (respectively, n) be the
common point of BC and Q closest to B (respectively, C). (Note that n and C
may be identical, or that m and n may be identical.) Assume that the midpoint
of BC does not lie between m and n. Assume without loss of generality that
Cm < roB. By rotating BC clockwise around m by an infinitesimal angle 0 to a
new position B’C’ and using the same continuity argument as in (a), we get that
the area of quadrilateral AB’C’D is larger than the area of ABCD, producing a
contradiction. (See Fig. 19.)

LEMMA 5.5. A nonconvex polygon P need not have a nondegenerate minimum-area
concave quadrilateral.

Proof. Consider the polygon P formed by taking a large equilateral triangle xtz of
side length L and cutting out a small equilateral notch from edge /z of side length e to
form a hexagon uvwxlz with reflex angle at v (see Fig. 20). Let ABCD represent a
minimum concave quadrilateral containing P with vertex C inside uvw, BC tangent to
P at w and CD tangent to P at u. Clearly quadrilateral vertex A should lie above line
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D
B’

FIG. 18. The midpoints ofAB and AD should lie on CH(P).

D
B

FIG. 19. The midpoint ofBC should lie between m and n.

yz. According to Lemma 5.4, vertex B (respectively, D) should lie in a half disk with
center vertex u (respectively, w) and radius e. By choosing e << L, the tangents from
B and D to the CH(P) cannot intersect above line yz. Thus a minimum-area concave
quadrilateral does not exist. [3
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x

FIG. 20. A case where an optimum nondegenerate quadrilateral does not exist.

This characterization of the optimum concave quadrilateral leads to the following
algorithm:

Compute CH(P) and let p the number of pockets.
Triangulate P and all its pockets Q, for i 1. .p.
For all pairs k, of vertices of CH(P) do

for i 1 to p do begin
Compute the visibility polygon VQi of Qi from pseudoedge viwi and the
shortest path maps inside VQi from both vi and wi [26].

Merge those maps [27] and label each region
(< 6 sides) with its anchors with respect to vi and wi.

For every region R, call pocket(a, b, k, l, i, R).
end.

Report the optimum.

The procedure pocket(a, b, k, l, i, R) must solve the following optimization problem:

Problem. Construct the minimum area concave quadrilateral ABCD
such that (a) AB and AD pass through given points k and l, respec-
tively, (b) the slope of the line through AB (respectively, AD) lies in
the interval defined by the slopes of the lines that contain the edges of
CH(P) adjacent to k (respectively, l), (c) CB and CD pass through a
and b respectively, and (d) C E R.

Solution. Let (al, a2), (bl, b2), (kl, k2), (/1,/2) be the coordinates of points a, b, k,
(as defined previously), respectively. Also let (x, yl), (x2, y2), (x3, y3), (xa, ya) be the

coordinates of the vertices of the quadrilateral A, B, C, D, respectively. Then the area
of the quadrilateral is given by

(11) AREA (xy2 x2y) + (x2ya x3y2) + (x3y,l xay3) + (x4y xy4).
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AB contains k:

(12)

BC contains a:

xlY2 x2Yl klY2 ky + k2xl k2x2.

(13)

CD contains b:

x3Y2 x2Y3 alY2 alY3 + a2x3 a2x2.

(14)

AD contains l:

x4Y3 x3Y4 blY3 by4 + b2x4 b2x3.

(15) x4Yl xlY4 llYl llY4 ’b 12x4 12Xl.

Substituting (12), (13), (14), and (15) into (11), we get

(16) AREA (l + (kl -+- al)y2 -I-- (bl al)y3 (/1 bl)y4

+ + + +

which is linear in terms of the unknown coordinates of A, B, C, D.
Thuswe have to solve a linear program in four variables which is subject to a constant

number of linear constraints. That problem can be solved in O(1) time. Thus, each pass
through the loop above takes O(n + k) time, where n is the size ofQ and k is the size
of the subdivision created by merging the shortest path maps from v and w. Thus, if nc is
the number of vertices of CH(P), np is the total number of vertices of all pockets of P,
and k is the sum of the merged subdivisions over all pockets, then we have the following
theorem

THEOREM 5.6. The minimum concave quadrilateral that contains a simplepolygon P
can be found either in O(n2 (np -+- k)) time and O(n + k) space or in 0 2 2(ncn) time and
O(n) space.

Proof. Computing the visibility polygon and the shortest paths within a pocket can be
done in O(n) time [26]. Two convex plane subdivisions $1 and S with m and n vertices,
respectively, can be merged in O(m + n + k) time and space, where k is the size of the
resultant subdivision. It should be clear that k can range from O(m + n) up to O(mn).

Instead of explicitly merging the two maps, however, we can take each pair (r, re),
where rl (respectively, r) is a region of the shortest path map from vi (respectively,
w), and calculate the intersection region explicitly. For each such intersection region,
call pocket(a, b, k, l, i, R). Since every region of the shortest path map is a triangle, the
intersection of two such regions has a constant number of sides. The space required is
the space to keep the two shortest path maps, i.e., linear.

The constraints of the linear program do not dictate that vertex C be reflex; the
interior angle at C is constrained merely to be greater than or equal to 180 degrees. Thus
our algorithm can return degenerate quadrilaterals as solutions. In computing the global
minima, we keep the minimum-valued quadrilateral of our local optima, degenerate or
otherwise. In cases of a tie, we give precedence to a nondegenerate quadrilateral. If
the total minimum is nondegenerate, it solves the global problem. If the total minimum
is degenerate, then there is no minimum strictly concave circumscribed quadrilateral
for P.
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Remark. In case of splinegons a similar technique is applicable. The difference
is that the elementary optimization problems are not linear programs anymore, since
the sides of the quadrilateral do not pass through constant points and Lemma 5.4 is no
longer applicable. Although these elementary continuous optimization problems have a
constant number of constraints and a constant number ofvariables, they are much more
complicated.

6. Contained triangles. The maximum area triangle T z11z contained in a simple
polygon P may have 0, 1, 2, or 3 vertices on the boundary of P. The case of 3 vertices of
the triangle on the boundary of P corresponds to the maximum-area inscribed triangle
problem solved in a previous section. We focus here on what we call the 0-case, 1-case,
and 2-case. To solve these three cases, we use the following lemma.

LEMMA 6.1. Let A and C (respectively, B and D) be two points on --z (respectively,
--11) such that segments AB and CD intersect inside the wedge defined by Oz and 0!1
at point E. Let FG be a line segment through E with F (respectively, G) between A and
C (respectively, D and B). The area of the triangle OFG is maximized when one of the
following holds: F A and G B; or F C and G D (see Fig. 21(a)).

Proof. Assume that the maximum occurs when F is between A and C. Assume that
FE < EG. We can rotate FG by a small angle 0 in position F G such that F E <
EG. That lmphes that the area of triangle EGG s greater than the area of tnan,gle
EFF, which in turn implies that the area of OFG IS less than the area of OF G, a
contradiction.

COROLLARY 6.2. Let 0 x and -y be two rays with common origin 0. Also let A and

B be two points on -x and 0 y, respectively, and let CAn be a convex chain as in Fig.
21(b). Let D (respectively, E) lie on OA (respectively, OB) such that 0 and CAn do not
lie on the same side ofthe line through D and E. Then the area oftriangle ODE becomes
maximum ifDE contains an edge ofthe convex chain CAn.

C
A B

x y x y

(a) (b)

FIG. 21. (a) FigureforLemma 6.1; (b) Figure for Corollary 6.2.
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(a) (b)

(c) (d)

FIG. 22. (a) O-case; (b) 1-case; (c) 2-case; (d) 3-case contained triangle.

Proof. Assume that DE does not contain any edge of CAn. Then either (a) the
intersection of DE and Can is one vertex of CAn or (b) it is the empty set. In the case
of (a) we have an instance of Lemma 6.1. In the case of (b) we can translate DE in a
direction perpendicular to itself until it intersects CAn and then apply Lemma 6.1.

LEMMA 6.3. Let T be a maximum area triangle. Then each edge ofT contains at least
two points ofthe boundary of P. Specifically, the following conditions hold (see Fig. 22): If
T is ofthe O-case, then each edge ofT contains at least two reflex vertices ofpolygon P; ifT
is ofthe 1-case with z on the boundary ofP, then yz touches at least two reflex vertices ofP
and zy and zz at least one; ifT is ofthe 2-case with y and z on edges and j, there exists at
least one edge k ofP such that i, j, k define a fan-shapedpolygon Fi,j,k D_ T.

Proof. Assume that there exists at least one side of the triangle xyz for which the
above argument is not true. Without loss of generality, assume yz is that edge. Extend
both xy and xz to the side of y and z, respectively, until they intersect the boundary of P.
Let v and w be the two intersection points. Consider the convex hull of the part of P that
is between v and w and inside the triangle xvw. Then applying the previous corollary,
we can move yz so that the area of xyz increases.

This characterization of the 0-, 1-, 2-case maximum area triangle contained in a
simple polygon suggests algorithms for finding these triangles.

0-case triangle algorithm. One algorithm would consider all triples of pairs of reflex
vertices i.e., O(n6) objects; check whether the corresponding triangle is contained in
P in O(logn) time using ray shooting [13] or [26]; and choose the largest one. This
brute force approach requires O(n6 log n) arithmetic operations. Another less naive
algorithm would fix two sides of the candidate triangle by choosing a couple of pairs
of reflex vertices (A, B) and (E, F), assuming that xy contains AB and xz contains EF,
and spend linear time to find the optimum position of yz, for a total of O(n5) operations.
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Using the linearity of shortest path trees inside simple polygons, we can reduce the
complexity by an order of magnitude (see Fig. 23). Fix a pair of reflex vertices C’ and D
with the characteristic that CD c P and all edges incident to C’ and D lie on the same
side of the line containing CD. Assume that side yz contains these vertices. Determine
in O(logn) time ([13] or [26]) the points G and H closest to C and D, respectively,
where the line through segment CD intersects the boundary of P. Let P’ represent the
subpolygon ofP that lies at the opposite side ofGH from the edges incident to C’ and D.
Since z must be visible from GH, the shortest paths from ( to z and from H to z inside
P must be inward convex chains containing segments AB and EF, respectively. That
implies AB (respectively, EF) are edges of the shortest path tree from G (respectively,
H) inside P’. Since the sizes of the shortest path trees are linear in the size of P’ and
therefore in the size of P, we need consider only pairs of the O(n) edges of the shortest
path tree from G and the O(n) edges of the shortest path tree from H, a total of O(n2)
objects.

G

H

A

FIG. 23. O-case contained triangle.

How can we test efficiently whether the chosen pair AB and EF of shortest path
tree edges forms a legal triangle with GH? Choose only those pairs AB such that (a)
the shortest paths from G to A and G to B are inward convex chains, (b) points y and
z do not lie in segment CD, and (c) segments Az and Bz lie inside P. We need the
comparable conditions for EF. Conditions (a) and (b) clearly can be checked in O(1)
time. One way to test condition (c) is to apply ray shooting inside P in O(log n) time.
Since AB and EF are shortest-path tree edges, however, constant time suffices. Define
el (respectively, e2) as the edge of the shortest path map from G which is adjacent to
vertex A (respectively, E) and collinear with AB (respectively, EF). If el and e2 both
exist and intersect, then the intersection point is a valid vertex z. Repeating the above
procedure for every one of the O(n2) pairs of reflex vertices C and D yields the following
lemma.

LEMMA 6.4. The O-case maximum triangle can be found in O(n4) time and O(n)
space.

1-case triangle algorithm. As in the 0-case algorithm, we fix a pair of reflex vertices
C and D (see Fig. 24). We again find points G and H as defined previously. We then
have to walk on the shortest path maps ofG and H along the boundary of P, as we did in
the inscribed triangle case of 4. Thus for a fixed pair of reflex vertices we spend, using
similar arguments, O(n) time and therefore a total O(na) for the whole problem.
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FIG. 24. 1-case contained triangle.

LEMMA 6.5. The 1-case maximum triangle can be found in O(na) time and O(n)
space.

2-case triangle algorithm. According to Lemma 6.3, triangle zVz lies in a fan-shaped
polygon where y (respectively, z) lies on edge i (respectively, j) (see Fig. 25). Subdivide
j (respectively, i) according to the shortest path maps from both p+, pi and p+ (p,
pj+l, and Pk, respectively). For each interval on the subdivision of edge i and each in-
terval of the subdivision of edge j, (a) check whether points y and z are visible, using
techniques developed in 4, (b) let a anchorp+ (z) and b anchorp (y). Then,
check whether SPp+ (a) and SPp (b) are inward convex. (c) Check whether the inter-
section x of the lines through segments yb and za lies "below" the line through edge k.
That guarantees that triangle xyz lies inside F,,k. (d) Solve the appropriate continuous
optimization problem. It should be clear that steps (a) through (d) take O(1) time.

P+

P
x

b

PJ

p+

Pi+l v

FIG. 25. 2-case contained triangle.

According to the above discussion, the time complexity per fan-shaped polygon is

O((s.’+1 + sj )(s + i )). Then summing over all fan-shaped polygons we get
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Given that the total shortest path computation takes O(r4) time and O(n) space,
we have the following lemma.

LEMMA 6.6. The 2-case maximum triangle can be found in O(n4) time and O(n)
space.

THEOREM 6.7. The maximum area triangle contained in a simplepolygon can befound
in 0 n4 time and 0 n space.

Unfortunately, solving this problem for splinegons seems complicated. All that we
know is that each side of the maximum area triangle contained in a simple splinegon
touches the splinegon boundary on at least one point. This constraint is not enough to
produce anything other than a "brute force" algorithm.

7. Conclusions. We solved various geometric optimization problems using shortest
paths within simple closed regions. There are several directions for further research.
One is the obvious task of improving the current time bounds and extending our results
in higher dimensions. Another question is whether shortest paths can be used in other
inclusion, enclosure, or separator problems, or, more interestingly, whether they can be
used in other classes of geometric optimization problems. A more exhaustive study of
optimization over curved objects would also be appropriate.
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the two anonymous referees and their many suggestions for improving the readability of
the paper.

REFERENCES

A. AGGARWAL,Lecture notes in computationalgeometry, MIT Research Seminar Series MIT/LCS/RSS
3, August, 1988.

[2] A. AGGARWAL, J. S. CHANG, AND C. K. YAP, Minimum area circumscribingpolygons, Visual Comput.,
1 (1985), pp. 112-117.

[3] A. AGGARWAL, M. KLAWE, S. MORAN, E SHOR, AND R. WILBER, Geometric applications to a matrix
searching algorithm, Algorithmica, 2 (1987), pp. 209-233.

[4] A. AGGARWALAND J. PARK, Notes on searching in multidimensional monotone arrays, in Proceedings
of the 29th IEEE Symposium on Foundations of Computer Science, 1988, pp. 497-512.

[5] J. E. BOYCE, D. P. DOBKIN, R. L. DRYSDALE, AND L. J. GUIBAS, Finding Extremal Polygons, SIAM J.
Comput., 14 (1985), pp. 134-147.

[6] R.O. BOURGINAND S. E. HowE,Algorithmsfor shortest curves in planar regions with curved boundary,
manuscript, 1989.

[7] R.D. BOURGIN, M. S. MARTIN,AND P. L. RENZ, Shortest curves in Jordan regions vary continuously with
the boundary, Adv. Math., to appear.

[8] R. D. BOURGIN AND P. L. RENZ, Shortest paths in simply connected regions in R2, Adv. Math., 76
(1989), pp. 260-295.

[9] J. S. CHANG AND C. K. YAP,A polynomial solution forpotato-peeling and otherpolygon inclusion and
enclosureproblems, Discrete Comput. Geom., 1 (1986), pp. 155-182.

[10] J. S. CHANG, Polygon optimization problems, Ph.D. thesis, Department of Computer Science, New
York University, New York, NY, 1986.

11] B. CHAZELLE, Triangulating a simplepolygon in linear time, Proceedings of the 31st IEEE Symposium
on Foundations of Computer Science, 1990, pp. 220-230.

[12] B. CHAZELLE AND O. DOBKIN, Intersection of convex objects in two and three dimensions, J. Assoc.
Comput. Mach., 34 (1987), pp. 1-27.

[13] B. CHAZELLEAND L. GUIBAS, Visibility and intersection problems in plane geometry, Discrete Comput.
Geom., 4 (1989), pp. 551-581.

14] E CHEW AND K. KEDEM, Placing the largest similar copy of a convex polygon amongpolygonal obsta-
cles, Proceedings of the Association of Computing Machinery, Symposium on Computational
Geometry, 1989, pp. 167-174.



SHORTEST PATHS AND GEOMETRIC OPTIMIZATION 637

[15] N. A. DEPANO, Polygon approximation with optimized polygonal enclosures: applications and algo-
rithms, Ph.D. thesis, Dept. of Computer Science, Johns Hopkins University, Baltimore, MD,
April 1988.

16] N.A. DEPANO, Y. KE, AND J. O’ROURKE, Finding largest inscribed equilateral triangles and squares, in
Proceedings of the Allerton Conference, 1987.

[17] D. DOBKIN AND L. SNYDER, On a general method for maximizing and minimizing among certain ge-
ometric problems, in Proceedings of the 20th IEEE Symposium on Foundations of Computer
Science, 1979, pp. 9-17.

[18] D. DOBYdN AND D. SOUVAINE, Computational geometry in a curved world, Algorithmica, 5 (1990), pp.
421-457.

[19] D. DOBKIN, D. SOUVAINE, AND C. VAN WYK, Decomposition and intersection ofsplinegons, Algorith-
mica, 3 (1988), pp. 473-485.

[20] H. EDELSBRUNNER, L. GUIBAS, AND G. STOLFI, Optimalpoint location in monotone subdivisions, SIAM
J. Comput., 15 (1986), pp. 317-340.

[21] R. FLEISCHER, K. MEHLHORN, G. ROTE, E. WELZL, AND C. YAP, On simultaneous inner and outer ap-
proximation ofshapes, in Proceedings of the 6th ACM Symposium on Computational Geometry,
June 1990, pp. 216-224.

[22] S. FORTUNE,A fast algorithm forpolygon containment by translation, Proceedings of the 13th Interna-
tional Colloquium on Automata, Languages and Programming 1985., pp. 189-198.

[23] A. FOURNIER AND O. Y. MONTUNO, Triangulating simple polygons and equivalent problems, ACM
Trans. Graphics, 3 (1984), pp. 153-174.

[24] M. GARE, D. JOHNSON, E PREPARATA, AND R. TARJAN, Triangulation of a simple polygon, Inform.
Process. Lett., 7 (1978), pp. 175-179.

[25] L. GUIBAS AND J. HERSHBERGER, Optimal shortestpath queries in a simple polygon, in Proceedings of
the 3rd ACM Symposium on Computational Geometry, 1987, pp. 50-63.

[26] L. GUIBAS, J. HERSHBERGER, D. LEVEN, M. SHARIR, AND R. TARJAN, Linear time algorithms for visi-
bility and shortest path problems inside triangulated simple polygons, Algorithmica, 2 (1987), pp.
209-233.

[27] L. GUIBAS AND R. SEIDEL, Computing convolutions via reciprocal search, Discrete Comput. Geom., 2
(1988), pp. 175-193.

[28] L. GUIBAS AND J. STOLFI, Primitives for the manipulation ofgeneral subdivisions and the computation
of l/’oronoi diagrams, ACM Trans. Graphics, 4 (1985), pp. 74-123.

[29] J. HERSHBERGER,An optimal visibility graph algorithm for triangulated simple polygons, Algorithmica,
4 (1989), pp. 141-155.

[30] V. KLEE AND M. LASKOWSKI, Finding the smallest triangles containing a given convexpolygon, J. Algo-
rithms, 6 (1985), pp. 359-375.

[31] D.T. LEEAND E P. PREPARATA, Euclidean shortestpaths in thepresence ofrectilinear barriers, Networks,
14 (1984), pp. 393-410.

[32] B. LISPER, Theory Netposting andfollowup communication, July, 1988.
[33] E.A. MELISSARATOS, Mesh generation and geometric optimization, Ph.D. thesis, in preparation, Rut-

gets University, New Brunswick, NJ, 1991.
[34] E.A. MELISSARATOS AND D. L. SOUVAINE, On solving geometric optimization problems using shortest

paths, in Proceedings of the 6th ACM Symposium on Computational Geometry, June 1990, pp.
350-359.

[35] .,Shortestpaths, visibility, and optimizationproblems inplanar curvilinear objects, in Proceedings
of the 2nd Canadian Conference on Computational Geometry, August 1990, pp. 337-342.

[36] J. D. MITFLEMAN AND D. L. SOUVAINE, Shortest area-bisector of a convex polygon, Technical Re-
port LCSR-TR-139, Laboratory for Computer Science Research, Rutgers University, New
Brunswick, NJ, November 1989.

[37] J. O’ ROURKE, A. AGGARWAL, S. MADDILA,AND M. BALDWIN,An optimal algorithmforfindingminimal
enclosing triangles, J. Algorithms, 7 (1986), pp. 258-269.

[38] M.H. OVERMARSAND J. vAN LEEUWEN,Maintenance ofconfigurations in theplane, J. Comput. System
Sci., 23 (1981), pp. 166-204.

[39] O. SCHWARZKOPF, U. FUCHS, G. ROTE, AND E. WELZL,Approximation ofconvexfigures bypairs ofrect-
angles, in Proceedings of the Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science 415, 1990, pp. 240-249.

[40] A. SHAFFER AND C. J. VAN WYK, Convex hulls ofpiecewise-smooth Jordan curves, J. Algorithms, 8
(1987), pp. 66-94.



638 ELEFTERIOS A. MELISSARATOS AND DIANE L. SOUVAINE

[41] D.L. SOUVAINE, Computational geometry in a curved world, Ph.D. thesis, Department of Computer
Science, Princeton University, Princeton, NJ, October, 1986.

[42] R. E.TARJAN AND C. VAN WYK, Triangulation ofa simple polygon, SIAM J. Comput., 17 (1988), pp.
143-178.



SIAM J. COMPUT.
Vol. 21, No. 4, pp. 639-654, August 1992

1992 Society for Industrial and Applied Mathematics

002

DYNAMIC TREE EMBEDDINGS IN BU’ITERFLIES AND HYPERCUBES*

F. T. LEIGHTON?, MARK J. NEWMAN,:, ABHIRAM G. RANADE, AND ERIC J. SCHWABE

Abstract. This paper presents simple randomized algorithms for dynamically embedding M-node binary
trees in either a butterfly or a hypercube network of N processors. These algorithms are dynamic in the
sense that the tree to be embedded may start as one node and grow by dynamically spawning children. The
nodes are incrementally embedded as they are spawned. Thus, the algorithm is especially suited for
maintaining dynamic tree structures like those in divide-and-conquer and branch-and-bound algorithms.

In the embeddings, the paper seeks to optimize the load on the processors of the network, the dilation
of the tree edges, and the congestion on the network edges, in order to satisfy the demands of load balancing,
process locality, and communication efficiency. The paper begins by presenting a simple level-by-level
scheme for dynamically embedding trees in a butterfly network, and by successive modifications. The
following results are obtained:

1. An embedding algorithm for the hypercube that achieves dilation and, with high probability, load
O((M/N)+log N).

2. An embedding algorithm for the butterfly that achieves dilation 2 and, with high probability, load
O((M/N)+log N).

3. An embedding algorithm for the hypercube that achieves dilation O(1) and, with high probability,
load O((M/N)+ 1) and congestion O((M/N)+ 1).

The third embedding simultaneously optimizes load and dilation to within constant factors, optimizing
congestion as well when M-- O(N). The first two embeddings are also optimal to within constant factors
when the tree to be embedded is large (i.e., M =I(N log N)).

In addition, this paper proves a lower bound of 11 (x/10g N) dilation for deterministic embedding
algorithms that achieve load O((M/N) + 1), which implies that any embedding algorithm that simultaneously
optimizes load and dilation must be randomized.

Key words, dynamic embeddings, binary trees, hypercube, butterfly network
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1. Introduction. Achieving high performance on a parallel computer requires the
satisfaction of two potentially conflicting requirements. First, the computational load
posed by the program should be evenly shared among all processors (load balancing).
Second, processes communicating frequently should be placed on processors that are
close (communication locality).

This problem has been studied abstractly as the problem of embedding a process
graph G in a processor graph H [2]-[7], 10]. The vertices of G are processes comprising
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the parallel program, with edges representing communication between processes. The
vertices of H are processors, and the edges represent communication channels. For
many computations, it is possible to predict G before execution. In such cases it is
useful to map the vertices of G into those of H so as to minimize certain parameters.
The first is the maximum load per processor, i.e., the maximum number of processes
placed on any processor. The second is the dilation, i.e., the maximum distance between
the images in H of pairs of processes that are neighbors in G. Another parameter
sometimes considered is the congestion of the embedding, i.e., the maximum number
of times an edge of H is "traced over" by paths corresponding to the edges of G.

This paper focuses on embedding arbitrary binary trees into butterfly and hyper-
cube networks. Trees arise naturally in many computations: divide-and-conquer
algorithms, branch-and-bound search [9], functional expression evaluation, and image
understanding (quad/oct trees). Bhatt, Chung, Leighton, and Rosenberg [3] showed
that every N-node binary tree could be embedded in an N-processor hypercube such
that each processor received a single tree node, and the maximum dilation was O(1).
Embedding trees into butterfly networks is harder, because the butterfly is much sparser
than the hypercube. Bhatt, Chung, Hong, Leighton, and Rosenberg [2] later showed
how to embed the complete binary tree with N nodes in a butterfly network with N
processors with constant dilation and load. The problem of embedding arbitrary trees
into butterfly networks was left open.

Tree-structured computations are often dynamic. As the computation progresses,
the tree may grow or shrink in a manner that may be impossible to predict beforehand.
Bhatt and Cai [1] proposed a dynamic version of the embedding problem. They
considered a process graph that is a binary tree that can grow during execution. At
each step any node of the tree that does not have two children can request to spawn
a child. The dynamic embedding problem is harder than the static one because newly
spawned children must be allocated to processors incrementally, without making
assumptions about how the tree will grow in the future. Further, the placement decision
must itselfbe implemented within the network in a distributed manner without accessing
global information. The paradigm proposed by Bhatt and Cai disallows process
migration; i.e., once a process is placed on a particular processor, it cannot be moved
subsequently. Obviously, allowing migration can potentially give better load balanc-
ing/dilation but can also be extremely expensive in practice.

Bhatt and Cai [1] presented a randomized algorithm for dynamically growing
trees with M vertices on an N processor binary hypercube: Each child process is
placed no farther than distance O(log log N) from its parent. Furthermore, with high
probability (independent ofthe shape ofthe tree) the algorithm assigns only O(M/N+
1) vertices to each processor. The congestion of the embedding was not determined
but is probably on the order of log N for some constant a.

1.1. SUMMARY OF RESULTS. We consider the problem of growing trees on but-
terfly and hypercube networks. Our framework is identical to that of Bhatt and Cai
1], although our growth algorithms are substantially simpler and have provably better

performance. We begin by describing a level-by-level strategy for embedding a binary
tree in a butterfly. Modifications to this scheme form the basis of all our embedding
algorithms. The first modification we introduce is the use of random flip bits, which

We use the phrase "Q is less than O(f) with high probability" to mean, "For every c there exists a
constant k independent of N such that the probability that Q exceeds kf is less than N-C.
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randomize the locations of tree nodes within a level of the butterfly. Analysis of the
behavior of these flip bits is sufficient to prove our first result.

THEOREM 1. An arbitrary binary tree T with M vertices can be dynamically grown
on an Nprocessor hypercube with dilation 1 such that with high probability the maximum
load per processor is O(M/N+ log N).

Note that this is optimal to within a constant factor whenever the tree T is large
(i.e., M=f(N log N)). For these large trees, it gives an optimal O(M/N) load, as
did Bhatt and Cai [1], while improving the dilation from O(log log N) to 1. Next we
present another modification of the scheme involving level balancingmin effect, we
stretch certain paths within the tree so that the number of tree nodes assigned to any
level of the butterfly is balanced. This modification leads to our next result, this time
for a butterfly.

THEOREM 2. An arbitrary binary tree T with M vertices can be dynamically grown
on an N processor butterfly network with dilation 2 such that with high probability the
maximum load per processor is at most O(M/N+ log N).

Again, this is optimal to within a constant factor when M f(N log N). This
result is a substantial improvement over previous work since not even good static
embeddings of arbitrary binary trees were previously known. Finally, we take advantage
of an embedding of the butterfly into the hypercube that embeds entire levels of the
butterfly to subcubes of the hypercube in order to develop a scheme for local redistribu-
tion of load within levels. This leads to an embedding algorithm for the hypercube
that simultaneously optimizes maximum load and dilation. In addition, the congestion
of the embedding is optimal if M O(N).

THEOREM 3. An arbitrary binary tree T with M vertices can be dynamically grown
on an N processor hypercube with constant dilation such that with high probability the
maximum load per processor is O(M/N+ 1) and the maximum congestion on any edge
is O(M/N+ 1).

It should be noted that although our theorems are phrased in terms of trees that
only grow, these embedding algorithms are also effective for dynamic trees that can
both grow and shrink at their leaves. Consider a binary tree T that grows and shrinks.
At each stage in the tree’s evolution, the probability space of possible embeddings of
the current form of the tree T’ is equivalent to the space of embeddings that would
have occurred had we simply grown the tree T’ by using the same algorithm. Therefore,
the same results hold for each step in the tree’s evolution (assuming, of course, that
the total number of steps in the tree’s evolution is bounded by a polynomial in N).

We also prove a lower bound for deterministic embedding algorithms for hyper-
cubes that shows that any deterministic algorithm that balances load must necessarily
have dilation f(/log N ). It follows that any embedding algorithm that simultaneously
optimizes load and dilation (to within constant factors) must be randomized. This
consequence also holds for the butterfly, since it is a subgraph of the hypercube [6].

1.2. OVERVIEW. The basic embedding algorithm is presented in 2, along with
the introduction of flip bits and the proof of Theorem 1. The level-balancing scheme
is introduced and analyzed in 3, along with the proof of Theorem 2. Improvements
to the hypercube embedding algorithm and the proof of Theorem 3 are given in 4.
Section 5 states and proves the lower bound for deterministic algorithms.

2. The basic growth algorithm. We use a butterfly network with n2 processors
organized as n levels, each consisting of 2 processors. Each processor in the butterfly
is assigned a unique label (1, c), where 0_-< < n, 0_-< c <2. Processors (l, ,) constitute
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the lth level. Processors (., c) constitute the cth column. Processor (l, c) is connected
to processors (l + 1 mod n, c) and to processor (l + 1 mod n, cO)2), where q) denotes
bitwise exclusive OR. Notice that level n 1 is connected to level 0, so that each column
of the butterfly wraps around to become a cycle.

2.1. PRELIMINARY SCHEME. We begin with a level-by-level strategy for growing
a tree on an N-node butterfly network.

In the cases in which we are ultimately interested in an embedding in a hypercube,
we will first embed the tree in a butterfly and then consider some embedding of the
butterfly in the hypercube. We place the root of the tree on processor (0, 0) in the
butterfly. This processor is connected to two processors in level 1, on which we place
the children of the root. These processors are in turn connected to four level-2
processors, which will in turn receive the children of the root’s children, and so on.
This strategy enables us to grow any n-level binary tree with dilation 1 and with at
most one tree vertex per butterfly processor. Trees with greater height are wrapped
around; i.e., level-n vertices are placed in butterfly level 0, level-n + 1 vertices in butterfly
level 1, and so on. The set of tree vertices that are mapped to level of the n-level
butterfly consists of those vertices in levels i, i+ n, i+2n.., of the tree; we refer to
this as the ith level set of the tree. There are two issues we need to consider:

1. Evenly distributing tree vertices within each level We would like the vertices
belonging to level set to be evenly distributed among the processors in the ith level
of the butterfly, i.e., to guarantee that no single processor in level receives too many
vertices.

2. Evenly distributing tree vertices among different butterfly levels. For example,
when embedding a complete binary tree of height h, level h 1 mod n of the butterfly
would receive all the leaves of the tree, or nearly half the total number of vertices.
Ideally, we would like the vertices to be divided evenly among all the levels of the
butterfly.

We will defer our consideration of the second issue until 3. First, a modification
of the basic scheme will help us achieve balance within a level.

2.2. FLIP BITS. A random flip bit is generated at each vertex of the tree to decide
where its children will be spawned. Consider a vertex v of the tree that has been placed
on some processor p in level of the butterfly. This node is connected to processors
q and r in level + 1 mod n, which will receive the children of v. The flip bit chosen
for vertex v decides whether the left child of v will be placed on q or on r. The right
child is then placed on the other processor. Note, of course, that it is not necessary
that v have two childrenmthe bit only determines where the children will be placed
if they are every spawned.

In 3 we will show that this ensures even distribution with each level. Intuitively,
each vertex is effectively placed by using a random path determined by the flip bits
chosen along its ancestors. For now, this modified scheme is sufficient to prove
Theorem 1.

THEOREM 1. An arbitrary binary tree T with M vertices can be grown dynamically
on an Nprocessor hypercube with dilation 1 such that with high probability the maximum
load per processor is O(M/N+ log N).

The theorem is immediate from the following lemma.
LEMMA 1. An arbitrary tree T with M vertices can be grown in a butterfly network

ofNprocessors such that each column in the butterfly receives no more than O(M/2 + n)
vertices with high probability.
Suppose this lemma were true. Then, by simulating the N n2n-node butterfly by

a 2"-node hypercube, where each node of the hypercube simulates an entire column
of the butterfly, we have an embedding algorithm for the hypercube that achieves
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dilation 1 and load O(M/N+ log N) with high probability. Thus, Lemma 1 is sufficient
to prove Theorem 1.

The general idea behind the proof of Lemma 1 is that a large number of vertices
will be placed in the same column in the butterfly only if the flip bits on the paths
leading to these vertices are chosen in a very specific (and therefore unlikely) manner.

A stagnant path p is a maximal path v(1), v(2), , v(1) in T with v(1) toward
the root such that all v(i) are placed in the same column v of the butterfly. Let the
leader of p be the nth ancestor of v(1), and let the trace of p be the set of n + l-1
vertices between the leader (inclusive) and v(l) (exclusive). If v(1) is in the first n
levels of the tree, then the leader of the path is defined to be the root of the tree.

Notice that there is a unique path in the butterfly from the leader of a stagnant
path p to vertex v(1). Thus, given the column in which the leader lies and the column
in which the path p lies, we can completely determine the flip bits chosen along the
trace of the path. The next observation is that the traces of distinct stagnant paths
mapped to the same column are distinct; i.e., the information gained from one trace
is different from that obtained in the other.

LEMMA 2. Let p and p’ be two distinct stagnant paths mapped to the same column
of the butterfly. Then their traces are vertex disjoint in the tree.

Proof. Contrary to the lemma, suppose that the lowest point in the tree at which
the traces intersect is vertex u. At vertex u, the two traces are mapped to the same
column of the butterfly. Likewise, the two stagnant paths are mapped to the same
column. The two children of u are mapped to different columns of the butterfly,
however, so that the traces must reconverge in some butterfly column between the
children of u and the beginnings of the two stagnant paths. However, the two paths
cannot meet again in any column until they have traversed all n levels of the butterfly.
Since the two stagnant paths are at a distance less than n from u, the traces cannot
reconverge in the butterfly before reaching them, and we have a contradiction. U

LEMMA 3. For any column v of the butterfly, there is at most one stagnant path
mapped to v such that v(1) is in the first n levels of the tree.

Proof. This lemma follows immediately from Lemma 2 because any two such
paths will have the same leader--the root of the tree.

Proof ofLemma 1. We shall count the number of different settings of the flip bits
that give rise to some column having at least C k(M/2n+ n) tree vertices. This can
be done as follows:

1. Let Co be the number of stagnant paths (1 -< Co -< C), and define/3 C/Co.
2. Choose the column: 2 choices.
3. Choose the endpoint of each path: () choices.
4. Choose the lengths of the paths: (CoCO) choices.
5. Choose the flip bits at all vertices in T except those in the Co traces. The total

number of flip bits is M, and the length of the jth trace is n +/- 1, except for the
possible case when one stagnant path has Vl in the first n levels of the tree, in which
case the length of its trace is /- 1. Thus, the total number of bits this step fixes is
M (n +/ 1) + n M (Co(n 1) + C) + n. Thus, the total number of choices is
2M-(Co(n-1)+C)+n.

First, we claim that the above choices completely determine all the flip bits. To
see this, consider the trace with its leader belonging to the smallest level in T, of all
traces. Clearly, the last step of the above procedure fixes the position of the leader.
This fixes all the bits in the trace, since the endpoint and the length of the trace are
known. The bits for the other traces are similarly determined.

The total number of ways of choosing all the bits is 2M. Summing over the C
possible values of Co, the probability that some column gets more than C vertices is
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at most

Co=, Co Co

<--22n
Co=, Co Co
c M(C + Co) e

Co=

c {2eM(Co)] c22" 2 k C2"2 ]Co=

N 2
2Co=

To go from the second line to the third we have used the inequality ()N (he r) .
Choosing k> 10e and noting that for any , (+ 1) N 5(2/), we can simplify the
above expression to

c (, 22nc 22,C C/2 -C/4 kn/4 N-k/822n 2-cI2 2- 2 2-
co= ’ -] c

3. Embedding in the butterfly. In this section we introduce a modification to the
embedding algorithm that ensures that with high probability the nodes of the binary
tree are distributed evenly among the levels of the butterfly. We then prove that the
flip bits described in the previous section are sufficient to distribute the tree nodes
evenly within each level.

3.1. A LEVEL-BALANCING TRANSFORMATION. We transform the tree T being
grown by selectively inseing dummy veices into some of its edges during the growth.
Even if some level originally has a dispropoionately large number of veices, the
newly introduced veices will help to even the distribution of the tree veices among
the levels.

The n-way level-balancing transformation is as follows. Define a veex of T to
be distinguished if it lies in level 0 mod n/3 of the tree.2 For each distinguished
veex v in T we pick a random number S(v) between 0 and n/3 called the stretch
count. We inse a single dummy veex in each of the edges that connect v to its
descendants in levels i+ 1 through i+S(v). Figure 1 illustrates the transformation.
Note that this transformation can be applied as the tree grows. Each node needs to
know only what level of the tree T it belongs to and the stretch count generated at its
nearest distinguished ancestor. This information is sufficient to decide whether or not
a dummy veex is inseed when a child is spawned.

The new tree B(T) that results is grown on the butterfly by using the procedure
described in } 2.2, which gives a dilation-1 embedding for B(T). This corresponds to
a dilation-2 embedding of T, since some of the edges in T were replaced by two edges
in B(T).

In what follows we may make references like "(mod x)" or "contribution of x messages" when x may
not be integral. Rounding these quantities to integers does not affect the correctness of the proof. For ease
of exposition, we shall not consider the issue.
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T o B(T)

FIG. 1. Level balancing a tree, n 6. The numerical labels indicate the stretch counts chosen at those
nodes. White nodes indicate dummy vertices.

3.2. ANALYSIS OF TREE BALANCING. We now show that the n-way level-
balancing transformation of 3.1 is sufficient to evenly distribute the tree vertices
among the levels in the butterfly. In particular, we show that for any tree T, no level
set in B(T) will contain a disproportionately large number of vertices. Since level
of the butterfly receives vertices from the ith level set of B(T), this implies that tree
vertices are uniformly distributed among the butterfly levels.

LEMMA 4. For an arbitrary binary tree T, the n-way level-balancing transformation
yields a tree B(T) such that with high probability the total number of vertices in the ith
level set of B(T) is at most O(M/ n + 2n).

We will prove the following slightly modified (but equivalent) version. Define the
ith level set triple of a tree to be the set of vertices from level sets i, + n/3, and + 2n/3.
Define a partition of T into 3 zones as follows (Fig. 2). Zone 0 consists of vertices in
levels kn through kn + n/3-1. Zone 1 consists of vertices in levels kn + n/3 through
kn + 2n/3 1. Zone 2 consists of vertices in levels kn + 2n/3 through (k + 1)n 1. Each
zone consists of a number of trees of maximum height n/3. We will show that no level

FIG. 2. Subdivision into zones, and a forest f.
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set triple of B(T) will receive more than O(M/n) vertices from any zone of T, with
high probability. Lemma 4 follows because there are only 3 zones and the number of
vertices in a level set triple upper bounds the number of vertices in a level set.

The key observation is that each zone can be partitioned into a set of forests fl,
f,_,...,f that contribute independently to level set triple i, for any i. We illustrate the
partitioning for zone 1. Eachf consists of all trees from zone 1 between levels kn + n/3
and kn + 2n/3-1 that have a common ancestor rj at level kn for some fixed k. Other
zones are partitioned similarly.

LEMMA 5. Let X denote the number of zone 1 vertices from a forest f placed in
level set triple of B(T). Then all variables X are mutually independent, and E(X)=
3M/n, where M is the number of vertices in f.

Proof. Let the variable Y denote the level set triple into which the roots of the
trees in f are placed. By definition, these roots are all placed in the level set triple
given by the level set triple of rj plus S(r), mod n/3. Since the stretch counts of the

r’s are uniformly selected from [0, n/3] and are mutually independent, it follows that
the Y’s are also uniformly selected from [0, n/3] and are mutually independent. Since

X is completely determined by Y and the stretch counts chosen at the roots of trees
in f, it follows that the X are mutually independent and that E(X)= 3M/n. [q

Similarly, this lemma holds for any other zone of the tree T, except for the first
section of zone 0, which contains the vertices in levels 0... n/3-1. However, this
segment of the tree contains at most 2n/3-1 nodes, which will be mapped one-to-one
to nodes of the butterfly.

To prove Lemma 4 we use the following lemma, which extends a result of Hoettding
(see Lemma 9) to bound from above the probability that the sum of a set of independent
random variables exceeds its mean by a given constant factor.

LEMMA 6. Let X1,..., X, be independent random variables in the range 0,..., V
with E[Xi] [Ulio Let X , X, and let tx tx E[X]. Then for any constant ce,

Pr[X->x]_-<exp -c-
Proof Since the Xi’s are independent, we have

E e’X I-I E e’X, I] Pr [xi A e t.
A

This expectation is maximized when only the events [X 0] and [X V] have
positive probability. Suppose there were some value x, not equal to 0 or V, such that
Pr [Xi x] 6 > 0. Then by the convexity of e ’x’, changing Pr [Xi x] to 0 and setting
Pr [Xi x- 1] Pr [Xi x + 1] 6/2 would increase the expectation of e tx,. It follows
that in order to maximize the expectation, the two endpoints of the interval must be
the only events with positive probability. If we use Markov’s inequality to put an upper
bound on Pr [X V], then

E[etX]<-[1-/z+(-). V

= l+v(e -1)

N exp ( -1)

Nexp v(e -1)
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Using Markov’s inequality again, we obtain for any constant a,

Pr [X > a/x] Pr [e ’x >- e’]

exp - -1)

etc

This quantity is minimized at In a/V, where

/x (a In a-a+ 1)Pr [X _-> a/x] exp --Note that in the last inequality we have weakened the result in order to achieve
a simpler expression. The only important characteristic of the expression in a is that
it is monotonically increasing, so that we can make the bound on the probability as
small as desired by choosing a sufficiently large a. We could improve the constants in
our algorithms by using the previous expression as the final result. [3

Proof of Lemma 4. The X are independent random variables, each with mean
3M/n, where M is the number of vertices in f. Clearly, no X can contribute more
than 22n/3 vertices, since the forest is part of a tree of height no more than 2n/3, and
the mean of X Y M-< 3M/n. Therefore, by Lemma 6, we have for any constant a

Pr [X_-> 3M/n] <- exp -a n22,/3

As long as M >-n222"/3, which will be the case for any M fl(N), this quantity
is smaller than N-k for some constant k, which can be made as large as desired by
choosing a sufficiently large. The lemma follows. [3

3.3. EFFECTIVENESS OF FLIP BITS. We now show that, given the effectiveness of
the level-balancing algorithm, the flip bits suffice to distribute the tree nodes within
the levels of the butterfly.

LEMMA 7. Let Wi denote the total number of vertices in level set in an arbitrary
binary tree T. When T is grown on a butterfly with n levels, no processor from level
receives more than O( W/2" + n) vertices with high probability, for all i.

In other words, whenever V f(n2"), each of the 2" processors in level will
receive roughly the same number of tree vertices.

The key to the proof is the observation that the vertices placed on a processor
can be attributed to a large number of mutually independent sources. To see this,
partition T into subtrees T1, T2,... where each subtree is rooted at some vertex in
level kn + and consists of all the descendants of that vertex between levels kn + + 1
and kn + + n (see Fig. 3).

LEMMA 8. At most one level-n vertex from each subtree T will be placed on any
processor p on level of the butterfly. The probability of a vertex from T being placed on
processor p is wj/2", where wj denotes the number of vertices, in level n of tree T.
Furthermore, the contributions of the different subtrees to p are mutually independent.

Proof Any tree T can have at most 2 vertices at level n, and the growth algorithm
guarantees that these will be placed on distinct processors within a single level. Thus,
we know that at most one vertex from a tree T will be placed on a given processor p
in level of the butterfly.
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FIG. 3. The tree T and its partition, 1, n 2.

It follows from the above that the number of vertices from T placed on p is a
random variable with value either 0 or 1. The probability that any given vertex from
level n of T will be placed on p is 1/2", so the expectation of this random variable
is wj/2. Since the value of the random variable can only be 0 or 1, wj/2 must be the
probability that it is 1. Thus, the probability of a vertex from T being placed on p is

W/2".
The independence between different subtrees follows because the flip bits in each

subtree are picked independently. El
To complete the proof of Lemma 7, we need the following lemma (stated here

without proof) from Hoeffding [8].
LEMMA 9 (Hoeffding). If we have L independent Bernoulli trials with respective

probabilities Pl PL, with Lp Y Pi and m >= Lp + 1 an integer, the probability of at
least m successess is at most B( m, L, p), where B( m, L, p)<= Lpe/m)m.

Proof of Lemma 7. The number of vertices placed at a processor is the sum of
independent random variables corresponding to each tree T;. The expected number
of vertices is Y wj/2" W/2". The probability that some processor receives more than
k(W/2" + n) vertices is at most (using Lemma 9)

(k(n+ W/2"))-k("+k%/2")G(k/e)_k,eW/2

Thus, the probability that one of the 2 processors in any of the n levels receives
more than k(W/2" + n) vertices is at most

n2"(k/e)-’’ <= N-klgk/k,

for some constant kl. The exponent can be made smaller than any desired constant
by choosing k sufficiently large. [3

THEOREM 2. An arbitrary binary tree T with M vertices can be grown dynamically
on an N processor butterfly network with dilation 2 such that with high probability the
maximum load per processor is at most O(M/N+ log N).

Proof By Lemma 4, with high probability we have W O(M/n+2) for all i,
and by Lemma 7, with high probability no processor in level will receive more than
O(W/2"+ n) vertices. Therefore, with high probability at most O(M/N+log N)
vertices are mapped to any processor. El
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4. An improved hypercube embedding. The butterfly can be embedded in the
hypercube with dilation 2 such that each level of the butterfly is a subcube of the
hypercube. Therefore, we can have the hypercube simulate any embedding algorithm
for the butterfly, with a unique 2"-node subcube simulating each level. We will take
advantage of this by using a scheme that has each level (subcube) receiving at most
O(M/n+2") tree nodes and by developing a method for local distribution within
these subcubes that will reduce the load on each individual processor while maintaining
low congestion. We begin with some preliminaries.

4.1. EMBEDDING THE BUTTERFLY AND STAR COVERS. Let G(x)be the Grey code
value of the binary string x, defined by

G(Xlog X Xlog Xlog ) Xlog -11’’" X2( Xl,

For any bit string x, G(x) and G((x + 1) mod n) differ in exactly one bit position.
For an integer i, let bin (i) be the binary representation of i. The embedding that maps
butterfly processor Vl to node G(bin (/))lbin (v) of the hypercube has dilation 2 and
maps each level of the butterfly to a distinct 2"-node subcube of the hypercube. Also,
note that within each level l, if v and vk differ in exactly one bit, then there is a
hypercube edge between the embedded locations of the nodes (l, v) and (l, vk).

For any node x of a 2"-node hypercube, we define the full star centered at x to
be the set of nodes consisting of x along with the n nodes adjacent to x. The existence
of perfect one-error-correcting codes implies that when n 2" 1, for some integer rn
there exists a collection of 2"/(n + 1) full stars such that every node of the hypercube
belongs to precisely one star in the collection.

Suppose n is not of this form. Consider the largest n’ such that n ’-< n and n’ is
of the form n’= 2m- 1; thus, n’>= n/2. We can partition the hypercube into subcubes
of 2"’ nodes and cover each of these with full stars. This star cover perfectly covers
the nodes of the 2"-node hypercube. Each of the 0(2"/n) stars in the star cover consists
of a node x and some subset of O(n) (in this case, at least n/2) of its neighbors.

Choose a star cover for a 2"-node hypercube, and duplicate this cover in each
subcube of the N(=n2")-node hypercube that corresponds to a level of the butterfly.
This collection of stars yields a star cover of the N-node hypercube; call it c.

4.2. MODIFYING THE EMBEDDING ALGORITHM. Our discussion ofthe hypercube
algorithm has two parts:

1. We describe a modified algorithm for embedding in the butterfly that, when
simulated on a hypercube, maps at most O(M/2"+ n) tree nodes to any star in the
cover , with high probability.

2. We show how to deterministically redistribute the load within a star of the
hypercube among its nodes in such a way that each node receives O(M/N+ 1) tree
nodes, the dilation remains constant, and the resulting congestion is O(M/N+ 1).

We begin by showing how to modify the butterfly embedding algorithm given in
the previous section so that when it is simulated on the hypercube, the amount of load
assigned to any star in the cover c is balanced.

We will modify our embedding algorithm as follows. Use the embedding algorithm
from 3, but where previously we placed the children of a tree node v B(T) that
was embedded in level into level + 1, choosing their locations by a random flip bit,
we will now place the first child of v into level + 2, using a pair of flip bits to determine
its position within the level and placing the second child (if it exists) at the location
in that level determined by complementing both flip bits. It is clear that this will
increase dilation by a factor of two.
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Since we are embedding the level-balanced tree B(T), we know that, with high
probability, each level set of the tree contains O(M/n+2n) nodes. As in Lemma 5,
we observe that the vertices placed in a single star come from many mutually indepen-
dent sources.

Partition B(T) into subtrees T1, T2... in such a way that the root of each subtree
is embedded at level l+ 2 in the butterfly (or level l+ 1 if n is odd) and each subtree
contains the descendants of its root down to the nodes embedded at level in the
butterfly.

LEMMA 10. Consider an arbitrary star S in c, contained in the subcube simulating
level of the butterfly. Then, at most two vertices from each subtree can be placed on
processors in S. Furthermore, the contributions of each subtree to S are mutually
independent.

Proof. Any subtree can have at most 2n/2 vertices placed in level of the butterfly,
and these will necessarily be placed at distinct locations within the level. Suppose that
three vertices from the same subtree were mapped to the star S. Since the flip bits are
chosen in pairs, any pair of these vertices must be mapped to locations that differ in
an even number of bits; since they are all mapped to the same star, any pair of them
must differ in exactly two bit positions. Consider the paths to each of these three
vertices from their lowest common ancestor; call this vertex x. Clearly, two of the
vertices must be descendants of one child of x, and one must be a descendant of the
other. The vertex (call it y) that is the lone descendant of one of the children of x
now differs from both ofthe other two vertices in two bit positions that are not corrected
elsewhere in the tree. However, at some point the paths of the other two vertices
diverge (since they are placed on different processors in level l), and y’s path cannot
duplicate the flip bits on both paths simultaneously. Therefore, y differs from one of
the other two vertices, in at least four bit positions, contradicting the supposition that
all three vertices were in the same star in level/. Therefore, at most two vertices from
the same subtree can be placed in the star S.

The independence between different subtrees follows from the fact that the flip
bits are picked independently in each subtree.

LEMMA 11. We can embed an arbitrary binary tree T with M nodes into an N-node
hypercube such that, with high probability, no star in the cover c receives more than
0(M/2 + n) tree nodes.

Proof. Consider an arbitrary star S in level from the cover . Let Xi be the
number of tree nodes from subtree T that are assigned to processors in S. The Xi are
independent random variables, each with maximum value 2 (from Lemma 10) and
mean O(mn/2n), where m is the number of leaves of the subtree T. It follows that
the mean of X=X is O(Wn/2"), where W is the size of level set of the tree.
Since we are balancing levels by embedding the tree B(T), we have with high probability
Wt O(M/n + 2"), so that the mean of X is less than c(M/2 + n) for some constant
c > 0. Thus, as we did in the proof of Lemma 4, we can apply Lemma 6 and conclude
that with high probability no star in receives more than O(M/2"+n) tree
nodes.

4.3. REr)ISTRIBtJTING LOAf) WITqIN STARS. With high probability, each star in
the cover has at most O(M/2"+ n) tree nodes assigned to its O(n) nodes. From this
point on, we will assume that this is the case, and we would like to redistribute the
O(M/2"+ n) load on each star evenly among the O(n) nodes of the star, using the
hypercube edges connecting butterfly nodes within the same level, so that two conditions
hold:

1. Each node gets at most O(M/N+ 1) load.
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2. We can choose paths of constant length between the redistributed locations
of adjacent tree nodes so that the congestion on any hypercube edge is at most
O(M/N/I).

If these two conditions can be achieved by a redistribution scheme that runs
dynamically as the tree is embedded, then we have an embedding algorithm that, with
high probability, achieves load O(M/N/ 1), dilation O(1), and congestion O(M/N/
1)--simultaneously optimizing load and dilation to within constant factors. In addition,
the congestion will be optimal if M O(N).

Place an O(M/N/ 1) upper limit (with the choice of constant depending on the
constant in Lemma 11 and the number of elements in each star) on the number of tree
nodes that can be assigned to a single node. All additional load is sent to some other
node in the star that has room. It is clear that we have sufficient capacity over each
star to handle the load and that we can maintain constant dilation, since any pair of
nodes in the star are at a distance of at most two from each other. In addition, we will
have maximum load O(M/N+ 1) at each node ofthe hypercube. Note that this method
is not the same as allowing process migration--each tree node is redistributed before
it is embedded into the hypercube. Once the node’s redistributed location is determined,
it is embedded there permanently.

To keep the congestion low, we must choose the path between the final (redis-
tributed) locations of adjacent tree nodes u and v carefully. The first step is to choose
paths from each node’s original embedded location to its redistributed location. Clearly,
if a node being redistributed from v to v in the star centered at v were always to
choose the path vi- v- vj, then the congestion along some of the edges of the star
might be as high as the load of the original embedding--O(M/2 + n). Instead, when
we redistribute one tree node from node v to node v in the star centered at v in the
hypercube (load coming from or going to the center is redistributed directly), we will
choose the path v - v i - v rather than through the center of the star.

LEMMA 12. If all nodes being redistributed among points of the star centered at v
choose paths of the form v - v - v rather than paths through the center of the star,
then the resulting congestion on edges between nodes in a single butterfly level due to this
redistribution is O(M/N+ 1).

Proof. For each star in the cover, consider the corresponding extended star, which
consists of the star centered at v plus all vertices v such that both v and v are in
the star. Then the edges in the extended star consist precisely of those paths along
which load can be redistributed in the star centered at v, and each of these edges is
used by only one path between a pair of nodes in the star. Therefore, since each node
in the star ends up with load O(M/N/ 1), the total congestion on each edge due to
redistribution within that star is also O(M/N+ 1). All that remains is to observe that
any edge in the hypercube is in at most two extended stars. Thus, the total congestion
it receives from redistribution is O(M/N+ 1). [3

We are still not quite finished, however. We must demonstrate how to select a
path in the hypercube between the redistributed locations of adjacent tree nodes u
and v. If we were to choose the simplest path between their redistributed locations,
moving first from the redistributed location of u to its original location and then to
the original location of v and on to its redistributed location, the congestion of the
embedding along the edges of the butterfly could still be as high as the load of the
embedding before redistribution--O(M/2n+n). To reduce the congestion of
O(M/N+ 1), we must choose the paths more carefully.

Let be the level of the butterfly to which u is mapped; then v is mapped to level
+ 2. Furthermore, their positions within their respective butterfly levels differ in at
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most two bit positions (before the redistribution just described). We consider here the
case in which both u and v are both initially mapped and redistributed to some point
of a star rather than the center. When one or both of them are mapped or redistributed
to the center of a star, the argument is even simpler.

Let x and y be the centers of the stars to which u and v, respectively, are mapped.
Let p and q be the dimensions within the star to which u is mapped and redistributed,
and likewise r and s for v. Let fl, f2 be the flip bits selected when v is embedded as
a child of u. We then define the path from u, which is redistributed from xp to xq in
level l, and v, which is redistributed from yr to yS in level /+2, as follows (this
procedure is illustrated in Fig. 4):

\ q

Y p

FIG. 4. The path chosen between redistributed node locations. The dashed lines indicate the path determined
by the flip bits, before redistribution. Thefirst pair ofdirected edges also shows this choice offlip bits. The second
pair undoes the redistribution at level I. The last pair balances the load at level + 2.

1. Move from level to level + 1 to level + 2 along the edges determined by the
flip bits fl, f2.

2. Flip the bits in positions p, then q, in effect undoing the redistribution of u
that was performed in level /. We are now at y r, the original location of v before
redistribution.

3. Flip the bits in positions s, then r. This takes us to yS, the redistributed location
of v in its star in level + 2.

To show that the congestion is O(M!N+ 1) in this case, it suffices to show two
things: first, that the congestion along each edge of the butterfly from paths between
levels is O(M/N+ 1); second, that the congestion along each hypercube edge connect-
ing nodes within a butterfly level due to redistribution is O(M/N+ 1).

Consider an arbitrary butterfly edge. There are at most two nodes of the butterfly
that, when choosing the paths to their descendants, can use that edge. Since after
redistribution each of these nodes has load O(M!N+ 1) (this is the reason why we
start the paths at the redistributed locations), the congestion along the edge being
considered can also be at most O(M!N+ 1).

The congestion on hypercube edges connecting butterfly nodes within a level has
two sources: (1) the redistribution of the nodes embedded to that level, and (2) undoing
the redistribution of the parents of the nodes embedded to that level.
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It is immediate from Lemma 12 that the total congestion from the first source
does not exceed O(M/N+ 1). We can partition the congestion derived from the second
source into four sets according to the flip bits chosen along the paths from the parents
of the nodes in the level we are considering. Each fixed setting of flip bits determines
a bijective map of the nodes and, therefore, of the hypercube edges between butterfly
nodes in the level, from two levels above to the current level. The congestion on any
edge from undoing the redistribution of parents equals the congestion on its preimage
from the original redistribution. The congestion derived from each of the four sets is
therefore O(M/N+ 1), so the total congestion derived from undoing the redistributions
is also O(M/N+ 1). It follows that the entire congestion on any edge is O(M/N+ 1).

The existence of this algorithm suffices to prove the following theorem.
TI-IEOREM 3. An arbitrary binary tree T with M vertices can be dynamically grown

on an N processor hypercube with constant dilation such that with high probability the
maximum load is O(M/N+ 1) and the congestion is O(M/N+ 1).

5. A lower bound for deterministic algorithms. In this section we prove that any
deterministic algorithm for dynamically embedding an M-node binary tree in an
N-node hypercube (M >= N) that maintains maximum load cM/N must have not only
maximum but also average dilation f(v/log N/c2). It follows that any deterministic
embedding algorithm that achieves O(M/N+ 1) load must necessarily result in embed-
dings with dilation 12(V’log N) for some binary trees. Thus, any embedding algorithm
that simultaneously optimizes maximum load and dilation to within constant factors
must be randomized.

THEOREM 4. Any deterministic algorithm for dynamically embedding binary trees
in an N-node hypercube that achieves load cM/Nfor a tree with M (>=N) nodes must
have average edge length 12(x/log N/ c2).

Proof. Let cM/N be the load maintained by the embedding algorithm when
embedding an M-node binary tree. Define the size of a node in the hypercube to be
the number of l’s in the n-bit string associated with the node. Partition the hypercube
into 6c blocks, each block corresponding to some range of node sizes and containing
N/6c nodes. Since there are at most O(N/x/log N) nodes of any size, each block
must contain at least 12(x/log Nc) different sizes. This means that any two nodes that
are in nonadjacent blocks are at distance f(x/log N! c) from each other.

Choose an arbitrary M-> N, and grow a path of M/2 nodes, starting at the root.
At this point, some block must contain M!12c tree nodes; choose such a block. We
will continue growing the tree from the M/12c nodes in the chosen block. Grow paths
from each of these tree nodes simultaneously, stopping each path’s growth when it
reaches a hypercube node that is neither in the chosen block nor in a block adjacent
to it. The total number of nodes in the chosen block and adjacent blocks is at most
N/2c; since the algorithm maintains load cM!N, this set of nodes contains at most
(cM/N)(N/2c) M/2 tree nodes. It follows that the total length of the M/12c paths
grown is at most M/2, so the tree being considered has at most M nodes.

Now we can calculate the average edge length. Since each of the M/12c paths
connects a node in the chosen block to a node in some nonadjacent block, the total
edge length in these paths is at least (M/12c) f(x/log Nc) f(MV’log Nc). Since
the entire tree contains at most M edges, it follows that the average edge length of
the embedding is O(v/log NC2).

6. Remarks. The embedding in 4 achieves dilation at most 12, assuming that
we do not specifically embed the nodes that are inserted as part of our level-balancing
transformation but rather connect their parents’ locations directly to their childrens’.
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One edge of T corresponds to at most 2 edges of B(T), each of which corresponds
to 2 butterfly edges. In the embedding of the butterfly into the hypercube, each butterfly
edge corresponds to 2 edges of the hypercube. The redistribution algorithm adds at
most 4 edges to the resulting path, for a total of 12 hypercube edges. We can easily
reduce this to 10 without increasing the load or congestion by modifying the level-
balancing scheme from 3 and the strategy for selecting flip bits in 4, and we expect
that there is room for further improvement.

Natural extensions of the embedding algorithms described in this paper work for
binary trees that can grow and shrink from the top as well as from the bottom. Formally,
this means that as well as allowing any leaf to delete itself and any node with fewer
than two children to spawn another child, we (1) allow the root of the tree to spawn
a new parent, with the old root as its only child, and (2) allow the root of the tree to
delete itself if it has only one childmthis child then becomes the new root of the tree.
Minor changes in the arguments in 2, 3, and 4 suffice to show that these algorithms
perform just as well on this problem as the original algorithms did for the case of
growth and shrinkage only at the leaves. We also expect that our techniques can be
made to work for arbitrary trees of small degree and that they may prove useful for
finding embeddings in other networks, such as the shuffle-exchange graph.

7. Acknowledgments. We would like to thank Umesh Vazirani for suggesting the
level-balancing transformation and John Hartman for carrying out simulations that
bolstered our initial intuitions.
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Abstract. This paper considers restrictions on Boolean circuits and uses them to obtain new uniform
circuit characterizations of nondeterministic space and time classes. It also obtains characterizations of
counting classes based on nondeterministic time bounded computations on the arithmetic circuit model. It
is shown how the notion of semi-unboundedness unifies the definitions of many natural complexity classes.
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1. Introduction. Uniform Boolean circuits have provided a very useful framework
to study some of the important issues that arise in Turing machine based complexity
theory. Close connections have been established between complexity classes based on
uniform circuits and those based on the machine model [2], [5], [6], [11], [12], [14].
In one direction, complexity classes defined by the circuit model have been character-
ized by the machine model. NC is a well-known example of such a complexity class;
it was defined by the uniform Boolean circuit model [11] and has been characterized
by using the alternating Turing machine model by Ruzzo [14]. In the other direction,
traditional complexity classes based on the machine model have been characterized
by the circuit model. The definition of the class P using Boolean circuits [8], [12] is
probably the first such result. Other results of this nature are the characterizations in
the circuit model of the classes AC [16] and LOGCFL [18]. The results by Ruzzo
[14] also make it possible to obtain circuit characterizations of complexity classes
defined by using alternating Turing machines. The work reported here extends these
results to characterize classes defined by nondeterministic Turing machines.

1.1. OVERVIEW. In the first part of this paper, we consider restrictions of Boolean
circuits and use them to characterize nondeterministic space and time classes. This
includes a characterization of nondeterministic time classes on the semi-unbounded
fan-in circuit model. Semi-unbounded fan-in circuits, which are Boolean circuits in
which the OR gates are allowed arbitrary fan-in and the AND gates have bounded
fan-in, have been previously used to define the class LOGCFL [18]. We define skew
circuits as Boolean circuits in which all but one input of every AND gate are circuit
inputs and use them to characterize nondeterministic space and time classes. Nondeter-
ministic space is defined in terms of the size of such circuits, and nondeterministic
time is shown to correspond to the depth of these circuits. This should be contrasted
with the well-known correspondences between deterministic time and Boolean circuit
size [12] and between nondeterministic space and Boolean circuit depth [2].

In the second part of the paper, we use the monotone arithmetic circuit model to
characterize counting classes based on nondeterministic time bounded computations.
Monotone arithmetic circuits are arithmetic circuits over the domain of nonnegative

* Received by the editors June 26, 1989; accepted for publication (in revised form) July 22, 1991. This
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integers that use only the addition and multiplication operations. An interesting
consequence of this characterization is the definition of the well-known counting class
#P [17] as the set of functions computed by uniform families of monotone arithmetic
circuits that have polynomial depth and polynomial degree. The degree measure here
refers to the algebraic degree of the polynomial associated with the circuit.

It would be appropriate to mention some interesting consequences of the charac-
terization results presented here.

The circuit characterizations of NP presented here are, to our knowledge, the
first uniform circuit characterizations of this important complexity class. Of particular
interest is the definition of NP as the class of languages accepted by uniform families
of semi-unbounded fan-in circuits of exponential size and log depth. This provides a
framework to study some interesting questions about the class NP. Recently, Borodin
et al. [3] proved that if a language is accepted by a family of semi-unbounded fan-in
circuits of size Z(n) and depth D(n), then its complement is accepted by a family of
semi-unbounded fan-in circuits of size polynomial in Z(n) and depth O(D(n)+
log Z(n)). Their result does not apply directly to NP, since it only shows that CO-NP
is accepted by semi-unbounded fan-in circuits of exponential size and polynomial
depth. The relevant question here is whether the classes accepted by size Z(n) and
depth o(log Z(n)) semi-unbounded fan-in circuits are closed under complement. It is
known that the classes accepted by polynomial size and o(log n) depth semi-unbounded
fan-in circuits are not closed under complement [18]. Another complexity question
pertaining to NP that can be phrased in this model is its relationship with the other
classes definable using semi-unbounded fan-in circuits. A candidate class for com-
parison is the class LOGCFL. It is known that LOGCFL can be characterized as the
class of languages accepted by uniform families of polynomial size and log depth
semi-unbounded fan-in circuits [18]. Therefore, the separation between NP and
LOGCFL now becomes a question of the relative power of exponential size and
polynomial size semi-unbounded fan-in circuits of logarithmic depth.

The skew Boolean circuits provide a model to rephrase many of the famous
separation questions among complexity classes. Thus the relationship between P and
NLOG translates into the question of the relative power of polynomial size Boolean
circuits and polynomial size skew Boolean circuits. The P versus PSPACE question
becomes one of comparing the relative power of polynomial size Boolean circuits and
exponential size skew Boolean circuits. As another interesting example, the NP versus
PSPACE question can be phrased as the question about polynomial depth for skew
Boolean circuits versus polynomial depth for general Boolean circuits.

The arithmetic characterization of #P presented here is the first alternative
characterization of this class. It enables us to rephrase the famous open question about
the relationship between #P and NP in terms of the relative power of arithmetic and
Boolean circuits. It also touches on the power of arithmetic circuits over monotone
arithmetic circuits.

These characterizations also make it possible to identify appropriate circuit
value problems that are complete for each of these complexity classes.

The semi-unbounded fan-in circuit model seems useful to capture the definitions
of many nondeterministic complexity classes (see Table 1).

This paper is organized as follows. Section 1.2 contains some preliminary
definitions. Boolean circuit characterizations of nondeterministic space and time classes
are in 2. Some characterizations of nondeterministic time that follow as simple
consequences of known results are presented in 3. A monotone arithmetic circuit
characterization of counting classes based on nondeterministic time is presented in 4.
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1.2. PRELIMINARIES.
Boolean circuits. A Boolean circuit Gn with n inputs is a finite acyclic directed

graph with vertices having indegree zero or at least two and labeled as follows. Vertices
of indegree zero are labeled from the set {0, 1, Xl, x2, , xn, El, 22, , }. All other
vertices (also called gates) are labeled either AND or OR. It should be noted that not
including negation gates in the definition of a Boolean circuit is done with no loss of
generality [7]. Vertices with outdegree zero are called outputs. The evaluation of G
on inputs of length n is defined in the standard way. Typically, only circuits with one
output vertex will be considered. This makes it convenient to consider circuits as
language acceptors.

The size C(G) of a circuit G is the number of edges in Gn. The depth of a vertex
v in a circuit is the length of a longest path from any input to v. The depth of a circuit
is the depth of its output vertex.

The language L, accepted by a Boolean circuit G, is the set of all length n strings
on which G, evaluates to one. A family of circuits is a sequence {G, ln O, 1, 2,...},
where the nth circuit Gn has n inputs. The language L accepted by a family {Gn} of
circuits is defined as follows: L U,__>0 Ln, where L, is the language accepted by the
nth member G, of the family.

Skew Boolean circuits. Let G be a Boolean circuit. An AND gate v in G is said to
be a skew gate if it has at most one input that is not an input of G. Without loss of
generality, we will assume that all but one of its inputs are inputs to the circuit G. We
will refer to the input of v that is not an input to G as a nonskew input of v. The
circuit G is said to be a skew circuit if all AND gates in it are skew gates. A family
{ G,} of Boolean circuits is said to be a skew circuit family if all its members are skew
circuits.

Note: One can define skewness with respect to OR gates also, but we will not
pursue that in this paper.

Semi-unbounded fan-in Boolean circuits. A family of Boolean circuits is said to
have semi-unbounded fan-in if there exists a constant c > 0 such that for any circuit
in the family, the OR gates in the circuit can have unbounded fan-in and all the AND
gates have fan-in at most c.

Semi-unbounded alternating Turing machines. An alternating Turing machine is
semi-unbounded if there are no two consecutive universal configurations along any
path in the computation tree of the machine. Without loss of generality, we will assume
that every universal configuration of a semi-unbounded alternating Turing machine
has exactly two existential configurations as immediate successors.

Uniformity. We will use the following notion of uniformity, called Uo-uniformity,
defined by Ruzzo 14]. Define the direct connection language Loc of a family of Boolean
circuits to be the set of strings of the form (n, g, y) such that either (i) g and y are
gate names and y is an input of the gate g, or (ii) g is a gate name and y is the type
of the gate g; that is, y is one of AND or OR or an input to G, or its negation. A family
{Gn} of Boolean circuits of size C(n) is said to be uniform if the corresponding direct
connection language can be recognized by a deterministic Turing machine in time
O(logC(n)).

For the space characterization results in 2, it would have been sufficient to
consider log-space uniformity, defined by Borodin and by Cook [4]. However, a stronger
uniformity condition is needed for the time characterization results to avoid the
possibility of having a uniformity machine that is more powerful than the class being
characterized. Such would be the case, for instance, in Theorem 7 if we had used
log-space uniformity, since NTIME (T(n)) DSPACE (T(1)(n)).
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Accepting subtrees [19]. The notion of an accepting subtree of a Boolean circuit
given an input on which it evaluates to one is analogous to the notion of accepting
subtrees of machines.

Let B be a Boolean circuit, and let T(B) be its tree equivalent. (The tree equivalent
of a graph is obtained by replicating vertices whose outdegree is greater than one until
the resulting graph is a tree.) Let x be an input on which B evaluates to one. An
accepting subtree H of the circuit B on input x is a subtree of T(B) defined as follows:

H includes the output gate,
for any AND gate v included in H, all the immediate predecessors of v in T(B)

are included as its immediate predecessors in H,
for any OR gate v included in H, exactly one immediate predecessor of v in

T(B) is included as its only immediate predecessor in H, and
any input vertex of T(B) included in H has value one as determined by the

input x.
It is easy to verify the fact that the circuit B evaluates to one given the input x if

and only if there is an accepting subtree of T(B) on input x.
Tree size [19]. The tree size measure for Boolean circuits can now be defined

analogous to the tree size measure for alternating Turing machines 14].
The circuit Bn is said to have tree size Z(n) if, for every input x accepted by B,,

there exists an accepting subtree with at most Z(n) vertices.
Degree [15]. We define the degree of a circuit to be the algebraic degree of the

polynomial computed by the circuit. Thus, the constants have degree zero, the circuit
inputs have degree one, the degree of an OR vertex is the maximum of the degrees of
its inputs, and the degree of an AND vertex is the sum of the degrees of its inputs.

The following lemma [18] establishes a relationship between the degree and tree
size measures for Boolean circuits.

LEMMA 1. Let D(n), Z(n), and d(n) be the degree, tree size, and depth, respectively,
of a Boolean circuit B,. Then,

Z(n)<=D(n)d(n).

Proof. The results to be proved also holds when the Boolean circuits considered
have unbounded fan-in. Let x be an input accepted by the circuit B. By hypothesis,
there is an accepting subtree H of B of size at most Z(n). Let v be any vertex in H.
Then the lemma follows from the claim below. The claim itself is proved by induction
on depth.

Claim. Let Z(v) be the number of vertices in the subtree of H rooted at v, D(v)
be the degree of v, and d (v) be the depth of v. Then,

Z(v)<-D(v)d(v).

2. Characterizations of space and time classes. This section contains the charac-
terizations of nondeterministic space and time classes in terms of skew circuits and
semi-unbounded fan-in circuits. Theorem 6 relates simultaneous space and time
bounded nondeterministic classes to simultaneous size and depth bounded skew
circuits. In this respect, it is similar to the result of Ruzzo 14] relating simultaneous
space and time bounded alternating classes to simultaneous size and depth bounded
circuits. However, the correspondence between the time and depth bounds in Theorem
6 is only within a polynomial, as opposed to the correspondence within a constant
factor between circuit depth and alternating time shown by Ruzzo 14].

In the proof of Lemma 3 below, we choose to use the alternating Turing machine
model instead of directly constructing a semi-unbounded fan-in circuit corresponding
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tO a skew circuit. This is done to simplify the proof by using known simulation
techniques. It also provides a new characterization of nondeterministic time on the
alternating Turing machine model (see Theorem 9). The correspondence between the
machine and circuit models will be established through a sequence of lemmas.

LEMMA 2. For S(n) f(log n), T(n) O(n), and S(n) <-_ T(n),
NSPACE,TIME (S(n), T(n))_ Uniform Skew Circuit SIZE,DEPTH (2(s("), T(n)).

Proof Let L be accepted by a nondeterministic Turing machine M in S(n) space
and T(n) time. The construction of a circuit family { G, } that accepts the same language
as M can be accomplished by standard techniques [ 14], 18]. For the sake of complete-
ness, we will outline below the construction of Gn, the nth member of this family.

The configurations of M can be classified into two types" existential and read.
We will assume that M is deterministic while reading inputs.

For 0-< t_-< T(n) and a configuration c of M using space S(n), there is a gate in
the circuit in one of the following forms: t, c] or t, c, i] or t, c, i, b], where 0 _-< _-< n
is an integer and b is either zero or one. The first component in a gate name is used
to avoid cycles in the circuit. The type of a gate of the form t, c] ([ t, c, i], [ t, c, i, b])
is OR (OR, AND, respectively).

Let ci be the initial configuration of M. The output gate is [0, c].
The inputs of a gate are constructed as follows. Consider a gate t, c] corresponding

to a nonread configuration c of the machine. If t+ 1> T(n), it has only one input,
namely, the constant zero. Otherwise, its inputs are constructed from the set D of all
configurations reachable by M in one move from c. There will be one input correspond-
ing to each d D. For any d D, if d uses space > S(n), then the corresponding input
is the constant zero. For all other d D, there are two cases. If d is an existential
configuration, the corresponding input is the gate + 1, d] and its inputs are construc-
ted recursively. If d is a read configuration in which M reads the ith symbol, the
corresponding input is an OR gate [t/ 1, d, i] with two inputs" [t+ 1, d, i, 0] and
/ 1, d, i, 1]. The gate / 1, d, i, 0] is an AND gate with two inputs" NOT Xi, where xi

is the ith input, and the gate + 2, e], where e is the configuration to which M moves
from the read configuration d if the ith input read has value zero. The inputs of the
gate [t / 2, e] are constructed recursively. The gate [t / 1, d, i, 1] is constructed in an
analogous fashion.

It is clear from the construction of G, above that it is a skew circuit. The only
AND gates constructed correspond to the read configurations of M. It is easy to show
that {G} accepts the same language as M. The size of the resulting circuit is 2 (s(")).
Its depth is T(n).

It can be verified that the direct connection language of {G,} can be recognized
by a deterministic Turing machine using O(S(n)) time, thus showing that the circuit
family {G,,} is uniform fq

LEMMA 3. For S(n) =f(log n), T(n)=f(n), and S(n) <- T(n),
Uniform Skew Circuit SIZE,DEPTH (2(s(n, T(n))_

Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH (2(s(, log T(n)).

Proof. Let {G} be a uniform family of skew circuits with the given size and depth
bounds. Then {G,} has tree size polynomial in T(n). An alternating Turing machine
M that simulates G on an input x of length n can be constructed as in the simulation
by Ruzzo 13] of a space and tree size bounded alternating Turing machine by a space
and time bounded alternating Turing machine. The machine M is semi-bounded and
uses space O(S(n)), alternations O(log T(n)), and time T(l(n). Let the time used
by M be T’(n) T(n) for some constant a >= 1. Furthermore, M is in a normal form
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such that only one input symbol is read along any path of the machine’s computation
tree. A uniform family {Hn} of semi-unbounded fan-in circuits, with size 2 sCn)) and
depth O(log T(n)), that accepts the same language as M can be constructed by adapting
known techniques [18]. The basic idea of the construction is to make as inputs to an
OR (AND) gate all nonexistential (nonuniversal) configurations ofM reachable through
only existential (universal) configurations.

We will outline the construction of the nth member Hn of this family. The
configurations of M are assumed to be one of the following three types: existential,
universal, and read.

Let D(n)= [log2 T’(n)].
Gates in the circuit H, are all of the form [c] or [d’] or [c, d] or [s, c, d] or

[s, c, d, e], where O<-s<=D(n) and c, d, and e are all configurations of M. The output
gate of H. is ro], where r0 is the initial configuration of M. In general, the type of a
gate of the form [c] is OR (AND) if the type of the configuration c is existential
(respectively, universal). Given a gate [c], its inputs are defined as follows.

Case 1. [c] is an OR gate. Its inputs are gates [c, d] for all configurations d that
are not existential. Each of the gates c, d is an AND gate and it has two inputs [0, c, d
and [d’] defined as follows.

The gate [0, c, d] is the output of a D(n) depth semi-unbounded fan-in circuit
that checks that in M the configuration d is reachable from the configuration c by
using only existential configurations of M. The following is a description of such a
reachability circuit [18].

Given a gate [s, c, d] with 0<-_ s <-D(n), the goal is to describe a subcircuit of
which this gate is the output, such that the subcircuit checks that c is reachable from
d in G. by using a path of at most 2Dn)-s OR gates (see also the construction by
Borodin [2]).

If d is an immediate predecessor of c in G,, then [s, c, d] is the constant one.
Otherwise, if s + 1 D(n), then [s, c, d] is the constant zero. Otherwise, the gate [s, c, d]
is an OR gate. Its inputs are gates [s / 1, c, d, e] for all OR gates e in Gn. Each of the
gates [s + 1, c, d, e] is an AND gate, and it has the two inputs [s + 1, c, e] and Is / 1, e, d].
These two subcircuits are constructed recursively.

The gate [d’] is an OR gate with a single input [d] defined as follows. Suppose
d is a read configuration with a, on its index tape. Then [d] is the ith input to H,
if a 1, and [d] is the complement of the ith input to H if a- 0. If d is not a read
configuration, then [d] is an AND gate. Its inputs are constructed recursively.

Case 2. [c] is an AND gate. Let dl, d2 be the existential configurations of M that
immediately succeed the configuration c. The inputs to [c] are the OR gates [dl] and
[d2]. The inputs to these two OR gates are constructed recursively.

The circuit H, has size 2s)) and depth O(log T(n)). Note that the OR gates in

H. may have exponential fan-in, whereas the fan-in of the AND gates is bounded by
a constant. It is easy to show that Gn and H. accept the same language. It is also
straightforward to check that the direct connection language for the circuit family (H)
can be recognized by a deterministic Turing machine in time O(S(n)). 1

LEMMA 4. For S(n) l(log n), T(n) fl(n), and S(n) <- T(n),
Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH (2s)), log T(n))_

NSPACE,TIME (S(n) log T(n), Tl)(n)).
Proof This follows from the simulation of semi-unbounded fan-in circuits by

nondeterministic auxiliary pushdown automata by Venkateswaran [18]. In this case,
we are interested in the space and time used in the simulation.
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Let L be accepted by {G,}, a uniform family of semi-unbounded fan-in circuits
with size 2(s(") and depth O(log T(n)). Given x of length n, a nondeterministic
machine M checks whether the circuit evaluates to one on x by doing a depth-first
evaluation. The machine M maintains a stack to do the circuit evaluation.
M begins the simulation with the output gate ro. Given a gate v and its type, M

checks that v evaluates to one on x as follows. Let C(v) denote the configuration of
M as it begins checking the gate v.

Case 1. v is an OR gate. M existentially guesses one of its true inputs u and its
type and verifies with the uniformity machine that the guesses are correct. It then
recursively checks that the gate u evaluates to one.

Case 2. v is an AND gate. Then it has a constant number, say k, inputs. M
existentially guesses these inputs, say, Vl," , vk, and their types and verifies with the
uniformity machine that the guesses are correct. M then pushes the gates v2,’" ", vk
onto the stack. A gate’s type is also pushed onto the stack with the gate. M then
recursively checks that Vl evaluates to one.

Case 3. v is an input to the circuit. If its value is zero, M rejects. Suppose v has
value one. M makes its final pop move and accepts if the stack is empty. Otherwise,
M pops a gate u and its type from the stack and recursively checks that u evaluates
to one.

For correctness, it can be shown by induction that the output ro of the circuit Gn
evaluates to one on input x if and only if M accepts starting from C(ro) and an empty
stack 18].

Consider the space used by M on input x L of length n. In checking a gate v,
M must remember the gate v and its type. If v is an OR gate, M needs space to record
information pertaining to a true input of v. This uses space O(S(n)). The space used
for the gate v can be reused at the next level of recursion. If v is an AND gate, the
information pertaining to all but one of its inputs is stored in the stack. This uses space
O(S(n)). However, since the depth of the circuit is bounded by O(log T(n)), the stack
may have O(log T(n)) such pieces of information, using altogether O(S(n) log T(n))
space. The uniformity machine uses O(S(n)) space. Therefore, the total space used
in the simulation by M is O(S(n) log T(n)).

For the time bound of M, we first note that any accepting subtree of the circuit
will have size T(l)(n). The machine M, in verifying whether G, accepts its input,
traverses such an accepting tree in a depth-first fashion, visiting every vertex at most
twice. For each node visited, M uses time O(S(n)) to guess the information pertaining
to the node and time O(S(n)) to invoke the uniformity machine to verify its guesses.
Recall that the uniformity machine is a deterministic machine using time O(S(n)).
Since S(n)<= T(n), the total time used by M is T(1)(n). []

In the proof of Lemma 4 above, the space used for the stack can be completely
avoided if the circuits being simulated are skew circuits. This observation leads
immediately to the following lemma:

LEMMA 5. For S(n) =(log n), T(n)=l(n), and S(n) <- T(n),

Uniform Skew Circuit SIZE,DEPTH (2(s(", T(1)(n))_
NSPACE,TIME (S(n),r(l(n)).

Lemmas 2 and 5 yield the following theorem:
THEOREM 6. For S(n) =12(log n), T(n)=f(n), and S(n) <- T(n),

NSPACE,TIME (S(n), Tl)(n))
Uniform Skew Circuit SIZE,DEPTH (2 (sn)), T(1)(n)).
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The following characterizations of nondeterministic time using skew circuits and
semi-unbounded fan-in circuits are now immediate from Lemmas 2, 3, and 4.

THEOREM 7. For T(n)=f(n), the following complexity classes are equal:
1. NTIME (T(l)(n)).
2. Uniform Skew Circuit DEPTH (T(l)(n)).
3. Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH (2(r(n)), log T(n)).
As interesting consequences of Theorems 6 and 7, we obtain the following Boolean

circuit characterizations of the classes NLOG, PSPACE, and NP.
COROLLARY 8.
1. NLOG Uniform Skew Circuit SIZE (n(1)).
2. PSPACE Uniform Skew Circuit SIZE (2n).
3. NP= Uniform Skew Circuit DEPTH (nl).

nO(l)4. NP= Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH (2 log n).

3. Other characterizations of nondeterministic time. This section contains some
characterizations of nondeterministic time that follow as simple consequences ofknown
results. We will consider only bounded fan-in Boolean circuits in this section. Perhaps
the most interesting of the characterizations here is the one using the depth and degree
measures for Boolean circuits. This suggests the characterization results in 4 of
counting classes on the basis of nondeterministic time bounded computations.

Ruzzo [13] showed that nondeterministic time T(n) is the class of languages
accepted by alternating Turing machines simultaneously using space O(T(n)) and tree
size O(T(n)). Combined with the simulation by Ruzzo [13] of space and tree size
bounded alternating Turing machines by space and time-bounded alternating Turing
machines (used in the proof of Lemma 3), this provides a new characterization of
nondeterministic time bounded classes on the alternating Turing machine model. The
close relationship between Boolean circuits and alternating Turing machines [14] also
leads to another Boolean circuit characterization of nondeterministic time in terms of
size and tree size. Finally, the correspondence between degree and tree size for Boolean
circuits (see Lemma 1) yields yet another Boolean circuit characterization of these
classes in terms of degree and depth resources.

We will summarize these three characterizations in Theorem 9 below. The proof
of this theorem can be reconstructed from the results mentioned.

THEOREM 9. For T(n) O(n), the following complexity classes are equal:
1. NTIME (T(1)(n)).
2. Semi-Unbounded ATIME,ALTERNATIONS (T(l(n), log T(n)).
3. Uniform Circuit SIZE,TREESIZE (2r"(n), Tl(n)).
4. Uniform Circuit DEPTH,DEGREE (T(n), Tl(n)).
Thus, for instance, NP has the following characterization in terms of degree and

depth of Boolean circuits"
COROLLARY 10. NP= Uniform Circuit DEPTH,DEGREE (0 (1), n(i)).
The Boolean circuit characterization of NP in Corollary 10 should be contrasted

with the following bounded fan-in Boolean circuit characterization of PSPACE [2],
[14]"

PSPACE Uniform Circuit DEPTH (n1)

Uniform Circuit DEPTH,DEGREE (n o(1), 2no’).
Constant depth circuits. Before concluding this section, we mention another

definition of NP using constant depth unbounded fan-in circuits. We will show this
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by exhibiting a uniform family of constant depth Boolean circuits for the conjunctive
normal form satisfiability problem.

Let SAT denote the language consisting of all strings that are (reasonable) encod-
ings of satisfiable conjunctive normal form formulas. Let all length r strings in SAT
encode satisfiable formulas that have n variables and rn clauses. The rth member Gr
of a uniform circuit family {Gr} that accepts SAT is described below (see Fig. 1).

The output of Gr is an OR gate labeled [0, n, m]. This gate evaluates to one on
input x if and only if the formula encoded by x is satisfiable.

The OR gate [0, n, m] has as inputs AND gates labeled 1, n, m, j] for 0 <_-j <_- 2 1.
An AND gate 1, n, m, j evaluates to one if and only if the input formula evaluates to
one when the variables in the formula are assigned bit values from the integer j.

Each AND gate labeled [1, n, re, j] has as inputs OR gates labeled [2, n, re, j, k]
for 1 =< k-< m. An OR gate [2, n, m, j, k] evaluates to one if and only if the kth clause
in the input formula evaluates to one when the variables in the formula are assigned
bit values from the integer j.

The inputs of an OR gate labeled [2, n,m,j,k] are OR gates labeled
[3, n, re, j, k, p] for 1 _-< p -<_ n. An OR gate [3, n, m,j, k, p] is the output of a subcircuit
that evaluates to one if and only if the pth variable occurs in the kth clause as a
positive (negative) literal and the pth bit of j is one (respectively, zero). If the pth
variable does not occur in clause k, then a gate of the form [3, n, m,j, k, p] evaluates
to zero.

The family of Boolean circuits have size O(m2n) and constant depth. The OR

gates have fan-in at most 2 and the AND gates have fan-in at most m. It can be verified
that the direct connection language for {Gr} can be recognized by a deterministic

FIG. 1. Constant depth unbounded fan-in circuits for CNF satisfiability.
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Turing machine in polynomial time, thus showing that this is a uniform family of
circuits.

4. Monotone arithmetic circuits and counting classes. This section contains the
characterizations of counting classes based on nondeterministic time bounded computa-
tions on the monotone arithmetic circuit model. A monotone arithmetic circuit is an
arithmetic circuit that uses only the addition and multiplication operators and whose
inputs are nonnegative integers. We will also characterize these classes in terms of the
number of accepting subtrees in the Boolean circuit model. As corollaries, we obtain
characterizations of the class #P on these models.

4.1. DEFINITIONS. It will be convenient to consider Boolean circuits in which
every AND gate has exactly two inputs.

Monotone arithmetic circuits. These are defined just as Boolean circuits, except
that the gates compute the sum and product of their inputs instead of computing the
OR and AND functions. Although the results in this section, especially Lemma 13, can
be strengthened to handle n-bit nonnegative integers as inputs to the circuit, it suffices
to consider only single-bit inputs.

We will denote a gate computing the sum (product) of its inputs as a PLUS

(respectively, MULT) gate.
Uniformity. We will slightly modify the definition of uniformity in 1.2 to do a

parsimonious simulation in Lemma 15.
Define the direct connection language of a family {Gn} of Boolean circuits to be

the set of strings of the form (n, g, y, p) such that either (i) g is an OR gate and y is
an input of g or (ii) g is an AND gate and y is a left (right) input of g if p is L
(respectively, R) or (iii) g is a gate name and y is the type of the gate g. A family
{Gn} of Boolean circuits of size C(n) is said to be uniform if the corresponding direct
connection language can be recognized by a deterministic Turing machine in time
O(logC(n)).

The uniformity condition for monotone arithmetic circuits is defined exactly as
for Boolean circuits with PLUS (MULT) gates replaced for OR (respectively, AND) gates.

Degree. The degree measure for monotone arithmetic circuits is defined analogous
to Boolean circuits (see 1.2). Thus, the constants have degree zero, the circuit inputs
have degree one, the degree of a PLUS vertex is the maximum of the degree of its
inputs, and the degree of a MULT vertex is the sum of the degrees of its inputs.

Notations. Let W denote the set of natural numbers.
A function f: {0, 1}*- W is in #Uniform Circuit SIZE,DEPTH, DEGREE (Z(n),

d (n), D(n)) if and only if there exists a uniform family { G,} of Boolean circuits of
size O(Z(n)), depth O(d(n)), and degree O(D(n)) such that for all strings x of length
n, f(x) is the number of accepting subtrees of G on input x.

The other counting classes are defined in a similar fashion.
4.2. THE CHARACTERIZATION RESULTS. The following fact can be used to set up

a correspondence between Boolean and monotone arithmetic circuits. The proof of
this fact is a direct consequence of the definition of an accepting subtree of a Boolean
circuit (see 1.2).

FACT 11. Let B be a Boolean circuit that evaluates to one on input x. Given x
as an input, the number of accepting subtrees of B rooted at an OR (AND) gate v is the
sum (respectively, product) of the number of accepting subtrees ofB rooted at the inputs
ofv. [q

It may be noted that Lemmas 12, 13, and 14 below are stronger statements than
needed to prove the main results of this section, namely, Lemma 15 and Theorem 17.
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LEMMA 12. Let B be a Boolean circuit of size Z, depth d, and degree D. Then
there exists an arithmetic circuit A of size Z, depth d, and degree D such that B has
p accepting subtrees on an input x on which it evaluates to one if and only ifA has value
p on input x.

Proof sketch. Given a Boolean circuit B, let the arithmetic circuit A be obtained
by replacing all the OR (AND) gates of B by PLUS (respectively, MULa’) gates. Then the
conclusion follows by using Fact 11. []

LEMMA 13. Let A be a monotone arithmetic circuit of size Z, depth d, and degree
D with n inputs from {0, 1}. Then there exists a Boolean circuit B of size Z, depth d, and
degree D such that A has value p ifand only ifB has p accepting subtrees given this input.

Proof sketch. Given a monotone arithmetic circuit A, the Boolean circuit B is
obtained from A by replacing all PLUS (MULT) gates by OR (respectively, AND) gates.
The proof follows by a simple inductive argument. [3

The circuits involved in Lemmas 12 and 13 can be made uniform, thereby showing
the following correspondence between monotone arithmetic circuits and Boolean
circuits.

LEMMA 14. For Z(n), D(n) f(n),
#Uniform Circuit SIZE,DEPTH,DEGREE (Z(1)(n), d(n), D(n))

Uniform Monotone Arithmetic Circuit SIZE, DEPTH,
DEGREE (Z(1)(n), d(n), D(n)).

Lemma 15 below establishes the correspondence between the number of accepting
paths in nondeterministic Turing machines and the number of accepting subtrees of
Boolean circuits.

LEMMA 15. For T(n) (n),
#NTIME (T(1)(n))--#Uniform Circuit DEPTH,DEGREE (T((n), T((n)).

Proof Let M be a nondeterministic Turing machine that runs in time T(n). By
Theorem 7, there exists a uniform family {B,} of O(T(n)) depth bounded skew circuits
that accepts the same language as M. The degree of B, is O(T(n)). This is due to the
fact that the degree of a depth d skew circuit cannot exceed d. Any accepting subtree
of Bn, given an input on which it evaluates to one, is a completely skewed binary tree.
We claim that M has p accepting paths on an input x of length n if and only if Bn
has p accepting subtrees.

To simplify the proof, we will assume that M is deterministic while reading its
inputs and that the immediate successor of a read configuration is an existential
configuration.

Let x be an input of length n accepted by M. Then Bn evaluates to one on x. We
will show that there is a bijective function that maps the accepting paths in the
computation tree of M on input x with the accepting subtrees of B, on input x.

Let p be an accepting path of M on input x. The starting vertex of p is labeled
by the initial configuration ci of M. Consider the following subtree A(p) of B, on
input x. The root of A(p) is the output gate [0, ci] of Bn. In general, the construction
proceeds as follows. For the tth vertex of p labeled with an existential configuration
c, pick the corresponding gate [t, c] of B,. The configuration d that immediately
succeeds c along p is either an existential configuration or a read configuration. If d
is an existential configuration, pick as the input of the gate It, c] its input labeled
It + 1, d]. Suppose d is a read configuration in which M reads the ith input symbol
and moves to an existential configuration e(f) if the ith input is zero (respectively,
one). Consider the case when the ith input symbol is zero. (The construction in the
case when the ith input symbol is one is analogous.) Then d has the configuration e



666 H. VENKATESWARAN

as its immediate successor along p. Pick the gate [t + 1, d, i] as the input of the gate
t, c], the AND gate + 1, d, i, 0] as the input of + 1, d, i], and the gate + 2, e] as

the input of the gate + 1, d, i, 0]. It is easy to see that A(p) is an accepting subtree
of B, on input x.

The mapping described above from accepting paths of M on input x to accepting
subtrees of B, on input x is well defined. We will now argue that it is also a bijective
function.

Suppose p and q are two distinct accepting paths of M on input x. Let A(p) and
A(q) be the corresponding subtrees defined by the above mapping. Now, p and q both
have the same start vertex, namely, the one labeled with the initial configuration ci.
Let the initial common segment of p and q have vertices. Let the tth vertex be labeled
by the configuration c. Then c must be an existential configuration. The corresponding
gates in A(p) and A(q) are labeled by It, c]. Since the immediate successor of c in p
is different from that of c in q, the input of the gate It, c] in A(p) is different from
that of It, c] in A(q).

Suppose A is an accepting subtree of Bn on input x of length n. We claim that
there is an accepting path p of M on input x such that A is the image of p as defined
by the mapping above. The path p is constructed as follows. The starting vertex of p
is labeled with the initial configuration ci. Let t, c] be a vertex in A where c corresponds
to an existential configuration of M on input x. There are two cases.

Case 1. Suppose the gate It+ 1, d] is included in A as the input of the gate
[t, c]. Then d is an existential configuration and it is an immediate successor of the
configuration c of M. Since A is an accepting subtree on input x, the gate It + 1, d]
evaluates to one on input x. It follows that d is an accepting configuration of M
on input x. Include a vertex labeled d as the immediate successor of the vertex labeled
c along p.

Case 2. Suppose the gate It+ 1, d, i] is included in A as the input of the gate
t, c]. Then d is a read configuration that is an immediate successor of c. If + 1, d, i, 0]

([ + 1, d, i, 1]) is the input of It + 1, d, i] that is included in A, the ith input symbol
must be zero (respectively, one). Consider the case when the ith input symbol is zero.
(The case when the ith input symbol is one is analogous.) Let the input of [ + 1, d, i, 0]
included in A be the gate + 2, e]. Then include the vertex labeled d as the immediate
successor of c and the vertex labeled e as the immediate successor of d along p. It is
easy to verify that p is an accepting path of M on input x and A is an image of p
defined by the above mapping.

Conversely, let {Bn} be a uniform family of Boolean circuits of depth Tl)(n)
and degree Tl(n). Let M be a nondeterministic Turing machine that simulates B,
on an input x of length n in a depth-first fashion, as in the proof of Lemma 4. The
one difference here is the need to ensure that the simulation of an AnD gate maintains
the correspondence between the number of accepting paths of the machine and the
number of accepting subtrees of the circuit. Let C(v) denote the configuration of M
as it begins checking the gate v.

In simulating an AND gate v, M does the following. It guesses the right input, say
v2, of v, verifies with the uniformity machine that the guess is correct, and pushes v2
onto the stack. It then guesses the left input, say vl, of v, verifies with the uniformity
machine that the guess is correct, and verifies that va evaluates to one. This will
guarantee that there is a single accepting path segment from the configuration C(v)
to the configuration C(va).

Then it follows, from the claim below, that M has p accepting paths on x if and
only if B, has p accepting subtrees on input x.
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CLAIM. Let v be a vertex in Bn that evaluates to one on input x. If M begins its
simulation at v, it has p accepting paths rooted at C v ifand only if there are p accepting
subtrees of Bn rooted at v.

Proof of the claim. This is by induction on the depth d (v) of the vertex v.
The claim is clearly true for an input vertex v with value one.
Suppose v is an OR gate that evaluates to one on x. Let Vl," -, v, be its inputs.

Let 1 _-< q-< m of these inputs, say vii, VIE,’’’, Viq, evaluate to one on input x. The
machine M, in checking whether v evaluates to one, existentially chooses one of these
q inputs. Thus, the number of accepting paths rooted at C(v) is given by the sum of
the number of accepting paths rooted at C(Vil), C(vi2),"" ", C(viq). By induction
hypothesis, this sum is equal to the sum of the accepting subtrees rooted at
vii, vi2,’", Viq. Since this is equal to the number of accepting subtrees of B, rooted
at v, the claim follows. [3

Suppose v is an AND gate that evaluates to one on x. Let Vl and v2 be its inputs.
By construction, the number of accepting paths rooted at C(v) is equal to the number
of accepting paths rooted at C(Vl). That is, if M begins its simulation with the gate
v, there is a single accepting path segment from C(v) to C(vl). Thus, the number of
accepting paths rooted at C(v) is the same as the number of accepting paths rooted
at C(vl). The machine M, in verifying v, traverses an accepting subtree of Bn rooted
at Vl. It then pops the vertex v2. Hence, there is a vertex labeled C(v2) along every
accepting path of M rooted at C(v). Therefore, the number of accepting paths rooted
at C(v) is the product of the number of accepting path segments from C(v) to C(v)
and the number of accepting paths rooted at C(v:z). By induction hypothesis, the
number of accepting path segments from C(vl) to C(v2) is the number of accepting
subtrees rooted at Vl of B,, and the number of accepting paths rooted at C(v2) is the
number of accepting subtrees of B, rooted at v2. It follows that the number of accepting
paths rooted at C(v) is the number of accepting subtrees rooted at v of B,.

By Lemma 1, the tree size of B, is T((n). Since B, has size at most exponential
in T (n), it follows, as in the simulation ofLemma 4, that M uses time T(1 (n). [3

In Lemma 15 we could have used semi-unbounded fan-in circuits instead of
bounded fan-in circuits to obtain the following result"

THEOREM 16. For T(n) fl(n),
#NTIME (T(l(n))

#Uniform Semi-Unbounded Fan-in Circuit

SIZE,DEPTH,DEGREE (2r((, T(l(n), T(l(n)).
Lemmas 14 and 15 together imply the following theorem"
THEOREM 17. For T( n (n ),

#NTIME (T(l(n))
Uniform Monotone Arithmetic Circuit DEPTH,DEGREE (T(X(n), T(l(n)).

As a special case of the above theorem, we obtain the following new characteriz-
ation of the important counting class # P"

COROLLARY 18.

#P Uniform Monotone Arithmetic Circuit DEPTH,DEGREE (n1 n<l)
4.3. SOME CONSEQUENCES. In this section, we will examine some consequences

of the results in 4.2.
Unique SAT. The unique SAT problem is defined as follows [10]" Given an

instance of SAT, does it have a unique solution? As another interesting corollary of
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Theorem 17, we can identify an arithmetic circuit value problem that is equivalent to
the unique SAT problem.

Let M be a fixed uniformity machine for a family {G,} of monotone arithmetic
circuits of polynomial depth and polynomial degree. Given as input n and an n-bit
vector x, the MCVP1 problem is to determine whether the circuit G, evaluates to one
on input x.

COROLLARY 19. There is a log space transformation from unique SAT to MCVP1
and vice versa.

New NP-complete problems. Theorem 17 suggests a new arithmetic circuit value
problem that is complete for NP. Let M be a fixed uniformity machine for a family
{G,} of monotone arithmetic circuits of polynomial depth and polynomial degree.
Given as input n and an n-bit vector x, the MCVP problem is to determine whether
the circuit G. evaluates to a nonzero value on input x.

PROPOSITION 20. The MCVP problem is NP complete.
Characterizing #PSPACE by using monotone arithmetic circuits. By using the

known characterization of Boolean circuit depth by alternating time 14], the following
analogue of Lemma 15 can be proven with the techniques in the proof of that lemma:

LEMMA 21. For T(n) l)(log n),

#ATIME (T(1)(n)) #Uniform Circuit DEPTH (T(l)(n)).

Combined with Lemma 14 and the result by Ladner [9] that #PSPACE=
#ATIME (nl), Lemma 21 implies the following theorem:

THEOREM 22.

#PSPACE Uniform Monotone Arithmetic Circuit DEPTH (nl)).

It should be noted here that Bertoni et al. [1] also characterized #PSPACE as
the class of functions computed by polynomial time random access machines with the
operations of addition, integer subtraction, multiplication, and integer division.

5. Conclusion. This work provides a circuit framework in which some well-known
open problems of complexity theory can be studied. We considered two constraints
on the Boolean circuit model, namely, skewness and semi-unboundedness, and we
used this model to define nondeterministic space and time complexity classes. We also
considered monotone arithmetic circuits to define counting classes based on nondeter-
ministic time.

The known uniform Boolean circuit characterizations of classes between LOGCFL
and PSPACE are summarized in Table 1 (the definitions of the classes LOGCFL and

TABLE
Circuit definitions of complexity classes.

Class OR fan-in AND fan-in Size Depth Degree

LOGCFL n (X)/bounded n (1)/bounded n o(x)

n() bounded n() log n
AC n() n (1) n() log n

P n ()/bounded n (1)/bounded n o()

NP 2 n(l) bounded 2n(1) log n
o(1)o()

2" /bounded 2" /bounded 2 "(’) n()
o0)

PSPACE 2" /bounded 2n(1)/bounded 2
0(1)o(1)

2 /bounded 2 /bounded 2") n()

nO(l)

nO(l)
2 "o(1)
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P in this table use log space uniformity). It should not be too difficult to construct
entries for classes above PSPACE.

As a consequence of these characterizations, we can define for each of these
complexity classes a Boolean circuit value problem that is a natural complete problem
for the class. For example, the following circuit value problem is NP-complete. Let M
be a fixed uniformity machine for a family {G,} of Boolean circuits of polynomial
depth and polynomial degree. Given as input n and an n-bit vector x, the problem is
to determine whether the circuit Gn evaluates to one on input x.

We will conclude with a few remarks about the relevance of the semi-unbounded-
ness notion for questions in complexity theory. From Table 1, it can be seen that many
of the well-known space and time complexity classes have definitions in terms of
semi-unbounded fan-in circuits. For instance, the following are definitions of some
well-known classes using the semi-unbounded fan-in circuit model:

LOGCFL Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH (n o(1, log n);

n();P Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH (n(l,

NP- Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH (2"(’ log n)"

PSPACE Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH (2n(,n o()).
One can define an analogue of the polynomial time hierarchy by using semi-

unbounded alternating Turing machines. Then, by Theorem 9, NP is the class of
languages accepted by polynomial time semi-unbounded alternating Turing machines
using O(log n) alterations. This is interesting because it shows that with the constraint
of semi-unboundedness O(log n) alternations are in NP, whereas without this con-
straint, even constant alternations are not known to be in NP.
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AN OPTIMAL ALGORITHM FOR INTERSECTING THREE-DIMENSIONAL
CONVEX POLYHEDRA*
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Abstract. This paper describes a linear-time algorithm for computing the intersection of two convex

polyhedra in 3-space. Applications of this result to computing intersections, convex hulls, and Voronoi
diagrams are also given.
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1. Introduction. Given two convex polyhedra in 3-space, how fast can we compute
their intersection? Over a decade ago, Muller and Preparata [22] gave the first efficient
solution to this problem by reducing it to a combination of intersection detection and
convex hull computation. Another route was followed in 1984 by Hertel et al., who
solved the problem by using space sweep [16]. In both cases, a running time of
(R)(n log n) was achieved, where n is the combined number of vertices in the two
polyhedra. Resolving the true complexity of the problem, however, remained elusive.

The different but related problem of detecting whether two convex polyhedra
intersect, by using preprocessing, was studied by Chazelle and Dobkin [5], Dobkin
and Munro [9], and Dobkin and Kirkpatrick [6]. More germane to our concerns here
is the off-line version of the detection problem. Dobkin and Kirkpatrick [7] have shown
that detecting whether two convex polyhedra intersect can be done in a linear number
of operations. By stating the problem as a linear program over three variables, other
linear-time algorithms originate in the works of Megiddo [19] and Dyer 10]. Previous
results also include an efficient algorithm for intersecting two polyhedra, one of which
is convex (Mehlhorn and Simon [21]). Optimal solutions for intersecting convex
polygons are given in Shamos and Hoey [27] and O’Rourke et al. [23]. For additional
background material on polyhedral intersections, the reader should consult Edelsbrun-
ner [11], Mehlhorn [20], and Preparata and Shamos [25].

Our main result is an algorithm for constructing the intersection between two
convex polyhedra in linear time. The algorithm does not use any complicated data
structure and seems a good candidate for practical implementation. As is customary,
our result assumes that the input conforms with any one of the standard (linear-time
equivalent) polyhedral representations given in the literature [3], [15], [22]. This is
not a minor point, because nonstandard representations can easily make the problem
more difficult. (For example, think how much more difficult the problem would be if
we were given only the vertices without any other facial information.) From our
algorithm for pairwise intersections we immediately derive an efficient method for
intersecting k convex polyhedra. The complexity of the algorithm is O(n log k), where
n is the total number of vertices, which is provably optimal. Other applications include
merging Voronoi diagrams in two dimensions and computing convex hulls in 3-space.

2. Polyhedra and shields. At the heart of Dobkin and Kirkpatrick’s detection [6]
and separation algorithms [7] is an ingenious hierarchical representation of a convex
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polyhedron. Further applications of that versatile data structure have been given in
[12], [21]. The representation can be seen as a specialization of Kirkpatrick’s point
location structure [18]. A convex polyhedron P of n vertices is made the first element
of a descending chain of O(log n) nested convex polyhedra, such that the last one has
a constant number of vertices and the others differ from their immediate predecessors
by shelling off small, disjoint polyhedral cones. We need to go further and modify this
hierarchy of polyhedra in several ways.

First, we represent the set of nested polyhedra as a single geometric object, namely,
a simplicial cell complex, so we can walk freely from one to the next. In this context,
walking means being able to trace a polygonal curve in 3-space within the hierarchy
in time proportional to the size of the curve (i.e., its number of vertices) and the number
of cells (counting multiplicities) crossed by the curve. Thus, if a curve lies inside P
and connects two points on the boundary, we can go from one endpoint to the other
while keeping track of where we are within the hierarchy, all of this in time proportional
to the size of the curve and the number of cells crossed. If the curve is a straight-line
segment, then because of convexity the time becomes O(log n).

This data structure is still insufficient for our purposes, because sometimes we
will need to follow a curve that leaves P and later re-enters the polyhedron from the
outside. To trace the curve after we leave P we need a hierarchy for the "outside" of
P as well. Unfortunately, the outside of a convex polyhedron is not convex, so we
cannot apply the Dobkin-Kirkpatrick construction verbatim. Instead, we switch to
dual space because the set of planes that avoid P gets mapped to a convex polyhedron.
So, we now have two nested sequences of O(log n) polyhedra, one fitting inside P
and the other fitting inside its dual. The resulting data structure is called the shield of
P: It consists of a primal part, which allows us to navigate inside P, and a dual part,
which, we hope, allows us excursions outside. The latter is true, but in an indirect
way. Indeed, to trace a curve that connects two points on the boundary of P and lies
outside the polyhedron is still not very easy. But, instead, consider a finite sequence
of planes, all of which lie outside P, except for the first and last ones, which are tangent
to P. We can visualize this sequence mechanically by starting with the first plane and
pivoting along the appropriate line to get to the second plane, and so on, until we
reach the position of the last plane. Dually, this motion corresponds to the traversal
of a polygonal curve inside the dual of P that connects two points on the boundary
(namely, the duals of the first and last planes in the sequence). Because of the dual
hierarchy we are thus able to trace this curve, which, in primal space, means "tracing"
the corresponding sequence of planes. These operations will allow us to navigate inside
and outside P and discover the points where we leave and re-enter the polyhedron.
The navigation inside P follows polygonal curves, while the one outside P follows
sequences of pivoting planes.

As it turns out, we cannot afford to keep the full contents of the hierachies: Only
their outermost layers can be used. Thus, we discard all but a constant number, say
k, of the nested polyhedra. The result is a geometric structure that we call the k-shield
of P. Intuitively, we cannot afford to traverse either hierarchy all the way across because
we would pay a factor of log n time in doing so, and this overhead would result in an
O(n log n)-time intersection algorithm. Of course, we are now missing so much
information that navigating in a k-shield is rather difficult. However, we can use a
well-tuned form of recursion to get around this problem.

Informally, the linear algorithm works as follows: We check that both input
polyhedra P and Q have a point in common and we compute their k-shields, for some
appropriate constant k. Then we begin to traverse the edges of one of the polyhedra,
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say P, and while doing so we keep track of where we are in the primal part of the
k-shield of Q (assuming that we start somewhere inside Q). This is called broadcasting
from P. As long as we navigate inside Q we can use the primal part of its k-shield to
guide us. When we reach portions of the boundary of P that lie outside Q, however,
we must switch to dual space and use the dual part of the shield to guide the navigation.
A transition from primal to dual space is called a mutation" It involves changing the
mode of navigation from one that traces a polygonal curve within a shield to one that
follows a sequence of pivoting planes or, equivalently, one that traces a polygonal
curve in the dual part of the shield. Unfortunately, a mutation cannot be carried out
instantaneously and requires a little bit of geometric work.

A yet more serious difficulty is what to do when we reach the last layer L in either
one of the hierarchies of Q, say the primal one, and we need to go deeper to carry on
the navigation. Recall that most of the inner layers of the shield have been removed
and, thus, tracing a polygonal curve all across the hierarchy is not possible. When this
happens we call upon the intersection algorithm recursively with P and L as input
and thus discover, in this indirect manner, the tracing pattern along L. In other words,
we use recursion to palliate the lack of inner layers. What makes this idea work is that
as we do so we also switch from a broadcasting from P to a broadcasting from L. This
switching trick is actually the key to breaking the n log n barrier. Indeed, this leads
to a recurrence on the running time T(n) of the form T(n)=4T(n/5)+ O(n), which
solves to linear.

An interesting side effect is that because we operate in both primal and dual
spaces, the algorithm ends up computing the intersection, as well as the convex hull,
of the two input polyhedra. Actually, we keep switching between these two tasks in a
co-routine-like fashion. Although the algorithm is not particularly complicated, proving
its correctness requires a certain amount of thoroughness in investigating the topology
of several convex polyhedra. The fact that polyhedral boundaries are not smooth
manifolds further complicates the analysis but also makes it more interesting.

A. BACKGROUND. We begin with some geometric terminology. Given X
_
Rd,

the closure (respectively, interior) of X is denoted cl X (respectively, int X). The
frontier of X is defined as cl X fqcl (Rd\x), or as cl X f’)cl (A\X) if the relative
topology of some A

_
X is understood. The unit d-sphere and the open unit d-ball

are denoted Sd and Od, respectively. A disjoint union of k-faces (subsets of Ed
homeomorphic to ok), for k 0, , d, is called a d-dimensional cell complex if, given
any two faces f and g, the intersection of clf and cl g is either a union of faces or the
empty set. A cell complex is called simplicial (or triangulation) if each face is the
interior of a simplex (in the relative topology of its affine closure).

We take a rather general view of a polyhedron as any subset of 3-space that is
locally a cone with a compact base [26]. Given a point p 3 and a subset C c 3, we
say that the points ap + (1-a)q, for all q C and 0-< a-< 1, form a cone pC if for
each point of pC distinct from p, the choice of q is unique. A subset P of 3 is called
a polyhedron if each point p P has a cone neighborhood pC, whose base C is compact.
We use the term boundary to refer to the frontier of a polyhedron P and denote it 0P.
It is not hard to see that a polyhedron is a locally finite union of simplices and, hence,
is piecewise linear. It need not be a manifold, however. An example of a valid
polyhedron is shown in Fig. 2.1. An open halfplane 7r is a polyhedron but, because
of the compactness condition, ceases to be one as soon as we include one point on its
frontier. Adding the entire frontier is fine, however.

We need this level of generality because we will sometimes be dealing with rather
convoluted shapes. As it turns out, however, most of our time will be spent with convex
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FIG. 2.1. Example of a valid polyhedron.

polyhedra, for which a more global (but slightly restrictive) definition is preferable
11]. A convex polyhedron is a nonempty intersection of a finite number of closed

halfspaces. It is called a convex polytope if it is bounded. For technical convenience,
we will restrict our discussion to convex polytopes, but it is easy to generalize it to
the unbounded case. We assume that the boundary of a convex polytope P is facially
structured as a two-dimensional cell complex with a minimal set of vertices. This last
requirement means that a vertex (0-face) must be the intersection of three or more
bounding planes (i.e., planes that delimit the defining halfspaces), but an edge (1-face)
need not lie in the intersection of two distinct bounding planes. This assumption allows
us to triangulate cgP and still have a convex polytope; on the other hand, it forbids
the facets (2-faces) incident upon any given vertex from being all coplanar. For storing
two- and three-dimensional cell complexes we shall assume the representations of
Baumgart [3], Muller and Preparata [22], or Guibas and Stolfi [15] and of Dobkin
and Laszlo [8], respectively, or any other data structures that allow us to navigate at
ease between adjacent cells. Such representations will be called standard.

To conclude this laundry list of assumptions and definitions, we introduce a
well-known duality between points and planes, namely, the polarity , which maps
any point p (a, 3, y) distinct from the origin O to the plane of equation ax +y+ yz
1: (p) is the plane normal to Op that lies at a distance 1/lOpl from the origin on the
same side as p. Given a convex polytope P, whose interior contains the origin, the
dual of P is the set of planes whose dual points lie in P. Forming the union of all
these planes and taking the closure of the complement defines a convex polytope,
which is called the dual polytope of P and is denoted P. If the polytope P has no
coplanar facets (e.g., no triangulation has been forced upon its boundary), then each
vertex, edge, and facet of P corresponds respectively to a unique facet, edge, and
vertex of its dual polytope, and the correspondence is involutory. Given a standard
representation of a convex polytope P, it is elementary to compute a standard rep-
resentation of. P in linear time, supplemented with pointers between each k-face of
P and its dual (2-k)-face. Note that if the origin is not interior to P, then instead of
a single polytope we obtain one or two unbounded polyhedra in 3-space.

Central to the Muller-Preparata method [22] is the use of the fact that convex
hulls and intersections play dual roles. Indeed, if the origin lies in the interior of two
convex polytopes P and Q, then the convex hull of P and Q is the dual polytope
of P f) Q. In other words, identifying the binary operation intersection in primal space
with the binary operation convex hull in dual space yields the following commutative
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diagram:

PCI Q (P Q) Hull (P Q)
Unlike the Muller-Preparata approach, which commutes through the diagram only
once, our algorithm will spend most of its time traveling back and forth between primal
and dual spaces.

B. SHIELDING A CONVEX POLYTOPE. We open this discussion with a variant of
the Dobkin-Kirkpatrick construction. Let P be a convex polytope of n vertices with
nonempty interior. We assume that its boundary has been triangulated, which is easy
to ensure in linear time. Recall that the degree of a vertex refers to its number of
incident edges. We select a maximal independent set of constant-degree vertices: (i)
Pick any vertex of degree at most 8, and mark it along with all its adjacent vertices;
(ii) iterate on this process, always making sure to pick unmarked vertices. Termination
occurs when we run out of unmarked vertices of degree at most 8. Because the number
of edges is at most 3n-6, we find that the sum of all vertex degrees does not exceed
6n- 12. Since every vertex has degree at least 3, the number m of vertices of degree
at most 8 satisfies 9(n- m)<-6n 12-3m, and hence m >- n/2. Therefore, at least n/18
vertices will be selected in this process. As shown in Edelsbrunner 11], we can actually
do better by considering vertices in order of nondecreasing degree. This allows us to
find an independent set of at least n/7 vertices of degree at most 12. In both cases,
the time for selecting the desired vertices is linear.

Around each selected vertex v, we perform some local surgery by removing v and
its "umbrella" of incident faces and recomputing the convex hull of P (Fig. 2.2). Since
v has degree at most 12, this shelling operation can be done in constant time. Note
that because of the independence of the selected set of vertices, the order in which
vertices are "popped out" does not matter. In O(n) time we thus will have (i) removed
all selected vertices and their incident faces, (ii) computed the new convex hull P1,
and (iii) triangulated its boundary. We easily verify that P1 is a valid convex polytope;
in particular, each of its vertices lies on at least three distinct bounding planes. We

FIG. 2.2. Removing v and its "umbrella" of incident faces.
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can now repeat this process with respect to P1 and define a sequence of nested convex
polytopes Po P1 ’’" P, where (i) Po-- P, (ii) P has constant size, and (iii) each
cl (Pi\Pi+l) is a collection of three-dimensional cones whose interiors are disjoint. If
the interior of P1 is empty, then at most two vertices were popped out and P has at
most 12 + 2 vertices. To avoid any difficulty, we do not bother with P1 and set c 0
whenever P has at most 14 vertices. We use the same criterion to terminate the iteration.

Our next step is to compute a triangulation of P that is compatible with all the
nested polytopes. This might be awkward to do during the shelling phase, because we
may inherit the "wrong" triangulation from outer polytopes and create tetrahedra with
empty interiors (Fig. 2.3). The difficulty is that a facet incident upon a popped-out
vertex v of Pi might still contribute a portion of a facet of Pi+l. A simple fix is to
retriangulate inside out. Assume that P has been given a triangulation compatible with
P+I,""", P. Each cone of cl (P-I\Pi) can be triangulated directly by connecting its
apex to the triangulation of its base provided by Pi. This will lead to a compatible
triangulation of P in O(n) time. Note that the resulting triangulation of aP might be
different from the one we started with.

FIG. 2.3. Inheriting the wrong triangulation.

There is nothing startlingly novel here. The only slight twist from the Dobkin-
Kirkpatrick construction is to transform the nested sequence into a three-dimensional
triangulation. This will allow us to discover P from various angles by traversing it
along straight lines, shooting rays through it, and in general exploring its geometry
from within. Unfortunately, we also need to approximate P from the outside. What
is unfortunate about this is that the complement of P is not convex, so we cannot play
the same game over. Its dual polytope is convex, however, so it might just be the right
time to jump into dual space.

After ensuring that no two facets are coplanar, by removing edges if necessary,
we choose an origin O in the interior of P and we form its dual polytope P. Then
we triangulate aP and submit P to the in-growing process described above. This
results in a sequence of nested convex polytopes P= rio lII D’’’ D lift, where ri
has constant size. The triangulation of Po\int P is the primal shield of P; its counterpart
between rio and li is called the dual shield. Unless specified otherwise, the term
"shield" refers to both its primal and dual parts. Given any integer k such that
0_-< k <_-min {a, fl}, the triangulations of Po\int Pk and rio\int rig form the k-shield of
P. Primal and dual k-shields are defined in the obvious way. All logarithms below are
to the base 2.
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LEMMA 2.1. Let P be a convex polytope with nonempty interior, and let m be its
total number of vertices and bounding planes. The shield ofP can be constructed in O(m
time. The total number of vertices and bounding planes in each Pk (and Hk) is at most

3(1 1/7)km. The total number of nested polytopes is less than 9 log m + O(1).
Proof Let Vk and fk be the number of vertices and bounding planes in Pk,

respectively. The reason for dealing with mk Vk +fk is that this quantity is invariant
under duality. Since the boundary of a convex polytope has Euler characteristic 2 and
every facet has at least three incident edges, we derive fk <= 2Vk--4. Each pass in the
algorithm removes at least one-seventh of the vertices; therefore, (i) the preprocessing
is linear and (ii) mk -<3(1 1/7)kVo--4. [3

C. NAVIGATING THROUGH A SHIELD. The usefulness of a shield owes to its being
both an approximation scheme and a cell complex. Indeed, it gives us a "two-way"
sequence of approximations for P, through which we can easily navigate and "discover"
the boundary of P from any desired angle. This assumes that we use a proper
representation, such as the Dobkin-Laszlo structure [8]. Without getting into the details
of the data structure, let us just say that from each tetrahedron of a shield we can gain
access to any of its four incident facets in constant time. Conversely, any facet leads
us directly to its two incident tetrahedra. Also, the tetrahedra and facets incident upon
an edge are accessible in cyclical order around the edge.

Let us consider a simple operation, such as being given a ray with a starting
point in a tetrahedron of, say, the primal shield of P, and being asked to traverse the
primal shield along . In general, the ray will cut through a sequence of cells alternating
between tetrahedra and triangles. When this is the case, there is no difficulty in
discovering the sequences of cuts on the fly, at a cost of O(1) per cut. Let us call a
facet of the primal shield primitive if it lies on the boundary of one of the nested
polytopes. Since the popped-out cones are bounded by primitive triangles, the ray Y
cannot cut more than a constant number of nonprimitive triangles in a row. Con-
sequently, the total size of the cutting sequence is proportional to the number of
primitive triangles intersected by the ray. A minor difficulty arises when the ray cuts
through an edge or a vertex of the shield. In the case of an edge we are faced with
two candidate triangles to be visited next. We can break ties by making arbitrary
navigational conventions. For example, we might agree always to choose the triangle
that is (locally) highest (or leftmost if there are several highest ones). We can also
submit the ray to a symbolic perturbationsee Edelsbrunner and Mficke [13] and
Yap [28]. Note that we can easily generalize the mode of traversal to polygonal lines
embedded in 3-space. The following summarizes our discussion.

LEMMA 2.2. The complexity oftraversing the primal (respectively, dual) shield along
a polygonal line in three dimensions, knowing the starting cell, is proportional to the
complexity of the polygonal line plus the number of nested polytopes Pi (respectively, H)
whose boundaries are cut during the traversal (counting multiplicities).

3. Intersecting two convex polytopes. We begin with a brief discussion of what
makes the problem not so easy. We can assume that we have a point O inside both
convex polytopes P and Q, since such a witness (if any) can be discovered in linear
time [7], [10], [19]. What remains to be done is in some sense merging P and Q.
Imagine a sphere centered at O, on which OP and oQ are centrally projected. This
gives us two spherical subdivisions Sp and So. Merging the two subdivisions would
do the job, but this might cause a quadratic blowup. The next "smartest" move might
appear to be locating each vertex of Sp in So and vice versa, which we can do in
O(n log n)time, where n is the total number ofvertices in P and Q [18]. Unfortunately,
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it is easy to prove that this complexity is optimal. Clearly, we are still seeking too
much information, and the subdivisions Sp and So appear essentially worthless. So,
let us bring shields into the picture. How about locating each vertex of P (respectively,
Q) in the primal shield of Q (respectively, P)? Such information might be a good
start from which to launch our intersecting attack. But actually this is still asking too
much: Indeed, it can be proven that locating the vertices of P in the primal shield of
Q requires [l(n log log n) time in the worst case. All these attempts fail because we
are working too far from the boundaries of P and Q and thus are giving free rein to
our adversary. Pairwise intersections of convex polytopes possess a rich geometric
structure into which we have yet to tap seriously. The time has come for a closer look
at the geometry of the intersection problem.

A. BROADCASTING. We devote this section to defining the notion of broadcasting
and showing that it is the essential operation in computing the intersection of two
polytopes (Lemma 3.1). Let us restate our assumptions: P and Q are two convex
polytopes with a total of n vertices, and their interiors contain the origin O. To simplify
our discussion, we shall assume that P and Q have no two coplanar facets and are in
general position relative to each other: No facet (respectively, edge) of one is coplanar
(respectively, colinear) with a facet (respectively, edge) of the other, no vertex of one
lies on the boundary of the other, etc. To borrow a clich6, relaxing these assumptions
is tedious but not difficult.

Assume that the boundaries of P and Q have been triangulated by inheritance
from their primal shields. Since the two polytopes are convex and contain the origin
in their interiors, the boundary E=O(PU Q) is the graph of max (f, g), where f and
g are continuous functions S2 -> R+. It follows that E is homeomorphic to S2. Let us
now color OP blue and oQ red. (We apologize to the reader for not using a more
evocative terminology: If it is any help for future reference, P and the first letter of
"blue" sound somewhat alike.) Points that are both blue and red are said to be purple.
The facets of E become monochromatic polygons. Beware: Some of them may be of
nonconstant size, nonconvex, and even perforated. However, can still be regarded
as a two-dimensional cell complex. Of particular interest to us are the connected
components of OP (3 oQ. These are disjoint, purple, simple cycles in the facial graph
of, which we call laces, removing all the laces from creates relatively open polyhedral
surfaces, called regions (white and dotted areas in Fig. 3.1).

Regions and laces partition into maximal monochromatic connected subsets.
Assume for the time being that E has at least one lace. Then the closure of a region

FIG. 3.1. Creation of regions by removing all the laces from ,.
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R is a (topological) manifold with boundary, which is homeomorphic to S2 perforated
by k_-> 1 disjoint copies of O2. Unlike some of the sets we will encounter later, this is
a rather friendly one: It is an orientable bounded surface, its number of boundary
components is k, and its Euler characteristic is 2- k. The boundary of the manifold is
also the frontier of R in the relative topology of Z: By extension, we call it the boundary
of R. The k connected components of the boundary are called the bounding laces of
the region. Note that each lace of Z bounds exactly two regions (of opposite color).
A region R, being a monochromatic component of the graph max {f, g}, is paired with
a homeomorphic component R of the graph min {f, g}: This component has the
opposite color of the region R and is called its co-region (dotted area in Fig. 3.2m
boundaries are left untriangulated for clarity). Here are more formal definitions of all
these concepts.

FIG. 3.2. Co-region of R (dotted area).

DEFINITIONS. A lace is a connected component ofOP oQ. A region is a connected
component of O(PU Q)\(oPoQ). A co-region is a connected component of O(Pf-)
Q)\(oPoQ).

We are now ready to define the notion of broadcasting. A broadcaster is an
algorithm that takes as input a vertex v on a lace and a color c and returns at least
one vertex on each of the laces bounding the unique c-colored region incident upon
v. Each vertex of a lace is determined by the intersection of a facet of P (or Q) and
an edge of Q (or P): It is understood that this correspondence should be provided in
full by the broadcaster. Suppose without loss of generality that the broadcaster is given
the color red as input. Then one solution for the broadcaster is to traverse the relevant
co-region on the boundary of P and keep track of the current location in the primal
shield of Q until all the desired laces have been reached. In that case we say that the
broadcasting is anchored to P. As we shall see, there is another, slightly more compli-
cated solution, which is to stay anchored to Q and traverse the relevant portion of its
boundary while tracing the navigation in the dual shield of P. In all cases the term
anchor refers to the polytope on whose boundary the traversal takes place, the other
polytope providing the guiding shield.

LEMMA 3.1. Ifa broadcaster is available, it is sufficient to know a vertex ofone lace
of (or to know that there is no lace) in order to compute the entire intersection of P
and Q while incurring only linear overhead on top of the broadcasting time.

Proof If has no lace, just knowing this fact will be enough for us to compute
P CI Q in linear time, by checking whether a vertex v of P lies inside or outside Q.
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Indeed, P f’l Q P (respectively, P fq Q Q) if and only if v 6 Q (respectively, v Q).
Suppose now that E has at least one lace. They key observation is that if the regions
of E are to be made into the nodes of a graph, with arcs connecting nodes whose
associated regions are bounded by a common lace, then the graph in question will be
connected. Therefore, starting from the vertex given to us by the input, a standard
graph traversal algorithm will allow us to discover a vertex for each lace of Z. Since
the facets of P and Q are triangles, it is elementary to compute an entire lace in time
linear in its size by tracing it from one of its vertices. Once we know all the laces in
full, we can easily compute P f-) Q in linear time by marking the laces in both OP and
oQ and exploring the facets of the co-regions.

B. AN INTERSECTION ALGORITHM BASED ON CO-ANCHORED NAVIGATION. To
illustrate the utility of broadcasting further and bring out some of its main features,
we describe an O(n log n) time algorithm for intersecting P and Q that relies on a
symmetric form of broadcasting, one where the anchoring alternates between P and
Q (hence the term co-anchored). The idea is to stay glued to the boundary of P fq Q
and confine our traversals to co-regions. In one broadcast we are anchored to P; that
is, we navigate across the primal shield of Q while exploring a co-region in OP. The
next time around, roles are reversed and we find ourselves broadcasting across the
primal shield of P while being anchored to Q. Dual shields are never used. For this
reason co-anchored navigation relies solely on what we call primal broadcasting.

Co-anchored navigation is simple, but it leaves us little room for improvement.
Later we will develop a more complex but more promising form of navigation in which
we always remain anchored to the same polytope. This requires keeping track of where
we are within the primal shield of Q while we lie inside Q (primal broadcasting) and
where we are in the dual shield of Q when we navigate outside Q (dual broadcasting).
This also necessitates the use of mutations, the transition operation we mentioned
earlier. Briefly, the reason why this more complicated form of navigation is preferable
is that by always remaining anchored to the same polytope, we remain free to choose
the anchor, whereas, before, the choice of anchors was dictated by the color of the
co-regions. This added freedom is the key to being able to balance costs between the
two polytopes and achieve linear time.

Let us now describe the simpler, co-anchored form of navigation that, as we said,
relies exclusively on primal broadcasting. Given a vertex v of a certain lace y of E,
let R be the red region of E incident upon v and let R be its co-region. Suppose now
that the broadcaster is given the vertex v and the color red as input. Its goal is to find
vertices on all the laces y, yl," ", yl of R. First of all, we (the broadcaster) can easily
compute the entire lace y by tracing the connected component of oPt-loG passing
through v. Since the boundaries are triangulated, the computation is linear in the size
of y.

Now we must reach out to all the other laces yi. Our strategy relies on the fact
that the closure of a co-region is an edge-connected bounded surface (meaning that
the vertices and edges form a connected graph). This seemingly obvious fact should
not be taken for granted, because it does not necessarily hold for the closure of a
region. In Fig. 3.3, for example, the dotted area represents a region facet that is
biconnected and therefore is not edge-connected. So we must prove our claim. Suppose
that two vertices of E in the closure of a co-region R cannot be joined by a path of
edges in cl R c. Then, either one of these vertices can be separated from the other by
a simple closed curve that lies entirely in cl R but does not cut across any edge or
vertex. It easily follows that this curve must lie in a single facet f of cl R and that f
is perforated. A local analysis of the perforation reveals that f contains two points p
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FIG. 3.3. Region facet (dotted area) that is biconnected and therefore is not edge-connected.

and q such that pq P f’)Q. This contradicts the convexity of P f3 Q and proves our
claim.

Observe that cl R has vertices in gPgQ as well as possibly in cgP\oQ (we
previously assumed that R is red). The main difference is that the latter vertices are
known ahead of time, whereas the former (the lace vertices) are discovered during the
broadcast. Using standard graph traversal techniques, we can reach the vertices of all
the yi’s from v. The only problem is that whenever we visit an edge of P that crosses
the boundary of Q, we need to know about it. The solution is to keep trackmat all
times during the broadcastmof where we are in the primal shield of Q. This means
computing the intersections of the visited edges of P with the facets of the primal
shield of Q. It follows trivially from Lemmas 2.1 and 2.2 that the broadcast will take
O(p log n) time, where p denotes the number of edges in cl R c. Obviously, we shall
exchange the roles of P and Q if the color blue is given as input to the broadcaster.
To summarize, the cost of all the broadcasts will be proportional, up to a logarithmic
factor, to the size of all the co-regions. This gives us a total broadcasting time of
O(n log n).

We will now be in a position to apply Lemma 3.1 and compute the entire
intersection of P and Q as soon as we know one lace vertex. To do this, we take an
arbitrary starting vertex v of P and check whether it lies inside Q. If the answer is yes,
we pursue the search and locate v in the primal shield of Q. From there, we start a
regular broadcast-like routine, which involves traversing aP and keeping track of where
we are in the primal shield of Q at all times. Either we will reach the boundary of Q
and, hence, a vertex of a lace, or we won’t. In the latter case, we know that P f-) Q P.
If v lies outside Q, on the other hand, we locate the point w Ov f3 aQ in the primal
shield of P. Let z be one of the vertices incident upon the unique (simplicial) face of
Q that contains w. Let us traverse the primal shield of P along the oriented segment
wz. If we do not exit P (or if w z) we are just back to the previous case, with the
roles of P and Q reversed. If we do leave P, however, the exit point belongs to a lace
and therefore is a valid starting vertex (or it lies on an edge incident upon one). In
view of Lemmas 2.1, 2.2, and 3.1, we now have an intersection algorithm with O(n log n)
running time.

C. A TOPOLOGICAL EXCtJRSION. Before we can switch to single-anchored naviga-
tion and describe dual broadcasting, we must further explicate the relationship between
polytopes and their duals. This section introduces the notions of belts, bracelets, and
co-dual regions, on which dual broadcasting is founded. This introduction might be a
little tedious, but it is indispensable for a proper understanding of why the intersection
algorithm actually works.
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Everything we said of P and Q (e.g., laces, regions, co-regions) applies just the
same to P and Q. In the following, E will designate the analog of E vis-a-vis
P U Q; that is, E O(P t3 Q). We assume that the boundaries of all four polytopes
P, P, Q, Q have been triangulated in accordance with their shields (and, hence, may
have coplanar facets). Correspondence between a polytope X and its dual is ensured
by the usual pointers between a k-face and its dual (2-k)-face. This concerns the
state of faces prior to boundary triangulation. With the introduction of simplicial faces,
however, this representation must be slightly amended. Let us distinguish between the
old faces of X (before triangulation of cgX) and the new ones. Note that some of them,
vertices in particular, are both old and new. Each vertex of X points to any one of
the new facets to which it is dual, and each new facet points to its unique dual vertex.
Each old edge of X points to the unique old edge of X that is dual to it. Each. new
edge e points to the four old edges of X that are both adjacent to e and incident upon
the old facet where e lies. It is a simple exercise to set up all these pointers in linear
time. An attractive aspect of this representation is that, given a new facet abc of X,
we can gain constant time access not only to its dual vertex v, but also to three new
facets of X that are dual to a, b, and c, respectively, and incident upon v (Fig. 3.4).

FIG 3.4. Relationship between polytopes and their duals.

Belts. We will show that the laces of E can be individually "covered" by disjoint
belts that dualize to laces of E. Let us color yellow all the faces of the convex hull H
of P t_J Q that are faces of neither P nor Q. A maximal connected subset of yellow
faces is a polyhedron (in our definition), which we call a belt of E. Formally, we define
belts and co-belts as follows:

DEFINITIONS. Let H be the convex hull of P U Q. A belt is a connected component
of (cgH)\c(P Q). A co-belt is a connected component of c(Pt_J Q)\OH.

Note that belts and co-belts are relatively open. To be able to say more about
them, we define the envelope of a polyhedron X (in a slightly nonstandard manner)
as the set of planes 7r such that (i) the affine closure of X f3 7r has dimension at least
1 and (ii) X lies entirely in either one of the closed halfspaces defined by r. It easily
follows from the incidence-preserving properties of a polarity that the envelope of a
belt B dualizes to a lace B of E. More specifically, as we walk along the lace B, a
certain plane or(x) rolls around the belt in a continuous fashion as x goes around S1.
Therefore, B is a simple cycle of simplicial facets and edges (and no vertices),
to, eo,’", tin, era, where each facet ti is incident upon the two edges ei and ei_l
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(mod m+ 1). It follows that a belt is topologically equivalent to an open annulus
Six (0, 1). Its frontier consists of two monochromatic connected components: One of
them, denoted be, is blue, and the other, b,, is red. Let us look at these components
more closely. We may restrict ourselves to one of them, say be.

In general, b will be a simple closed polygonal curve, but unfortunately this might
not always be the case. Indeed, consider an old (i.e., untriangulated) facet f of P
that contributes at least one edge to the lace B. It is certainly possible for B to come
in and out of f repeatedly, as is shown in Fig. 3.5 (where f is the horizontal face of
the lower polyhedron). To translate this into the language of belts, let Uo,’’ ", Uk be
the cycle of edges of b encountered while visiting to,’", t, in that order. Iden-
tifications of the form ui uj might occur. The topological type of a belt enforces two
important restrictions on the allowable identification patterns. First, three or more
edges cannot be identified together. Second, in any subcycle ui, uj, Uk, U we cannot
have both ui uk and u u, which means that the identifications form a parenthesis
system. Of course, we might have vertex identifications only and no edge identifications
at all. It might even be the case that b consists of a single vertex, which will happen
if B lies entirely in a single facet of Pmsee the top vertex in Fig. 3.6. The only
reason that b is not always topologically equivalent to S is that the boundaries of P
and Q are not smooth. If they were, then bc would actually be diffeomorphic to S.
Thus, ifwe look at 0P and 0Q as limit sets ofsmooth 2-manifolds, it appears immediately
that bc is a simple closed curve that may have been pinched and collapsed along
vertices and edges according to a parenthesis system. A traversal of such a curve is

FIG. 3.5. B may come in and out off repeatedly.

A similar situation occurs in the merge step of Preparata and Hong’s convex hull algorithm [24],
which is also discussed in detail in Edelsbrunner [11].
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FIG. 3.6. A case in which b consists of a single vertex.

shown in Fig. 3.7: The curve can be obtained from a circle by pinching it and gluing
it at various places.

Observe that two distinct laces cannot share vertices or edges, but they can pass
through the same (old) facet of P or Q. This implies that although two belts cannot
share a common edge or facet, their frontiers might have vertices and edges in common
(recall that a belt does not contain its frontier). This fact will require that special
measures be added to the intersection algorithm.

FIG. 3.7. Traversal of a simple closed curve that has been pinched and collapsed along vertices and edges
according to a parenthesis system.
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Bracelets. The space between the boundary of the convex hull H and the polytopes
P and Q consists of disjoint donut-like objects, which are called bracelets.

DEFINITION. Let H be the convex hull of P t_J Q. A bracelet is the closure of a
connected component of H\(P U Q).
A different perspective on belts and bracelets comes from looking at E and 0H as

the graphs of two continuous functions, respectively, q and b:S2,- R+. Removing
the kernel of- from S2 leave,s relatively open connected components S1, $2," ,
and each belt B is the graph of $ s restriction to some distinct domain Si. By analogy,
the graph of q’s restriction to Si is the co-belt B of B. Belts and co-belts are
homeomorphic and have the same frontiers. Therefore, the closure of B U B is
the frontier of a compact polyhedron , which is a bracelet of E: Its interior is homeo-
morphic to an open filled torus De x S1. A bracelet is the closure of a connected com-
ponent of H\(P Q), and its belt is the relative interior of the intersection of that
component with OH. One should not hastily conclude that a bracelet is always
topologically equivalent to a filled torus. It can actually assume rather contrived
shapes, because as the frontiers b and bm might cause (homeomorphically) multiple
point identifications along nonnull homologous paths on the torus. This might give
us a filled torus pinched at various places or, as in Fig. 3.6, a closed 3-ball pinched at
a pair of antipodal points. Note that general position alone cannot prevent this type
of pathology.

Again, let be and bm be the frontier components of B. Since E is locally blue
(respectively, red) around b (respectively, bm), we can define the maximal blue
(respectively, red) connected subset B (respectively, Bin) of B whose closure contains

bc (respectively, bm). We claim that Be and B,, are joined together along a single lace.
To prove this claim, let y B\(Be B,) and suppose, by contradiction, that ), contains
a point p of a color different from purple, say, red. Let C be the maximal connected
red subset of B that contains p (the dotted region containing p in Fig. 3.8). The
closure of C does not intersect b or bm; therefore, C is a full region of E (and not
just the portion of a region that lies within B). Figure 3.8 shows E with the white
area denoting B and with C in the middle: It is bordered by red (i.e., dotted) material
on one side and blue (i.e., hatched) material on the other. Like every region, C contains
a point in 0H. To see why, consider a plane 7r supporting a facet of its co-region, and
let 7r

+ be the open halfspace bounded by r that does not contain the origin. Since P
lies entirely outside r+, we have r+ oQ C; therefore, the point of r+ 71 oQ farthest
away from r is a vertex of Q in C (3 OH. But this contradicts our previous observation
that the portion of the bracelet that lies in OH is confined to the closure of its belt.
Consequently, y is a purple curve whose removal from B creates two monochromatic
surfaces of opposite color, each homeomorphic to an open annulus. It follows
that y is homeomorphic to S and therefore is a lace of E. Thus, we have shown
that 0 is the disjoint union of B, b, B, y, B,,, and bin. In general, the removal
of any one of these six sets makes 0 homeomorphic to an annulus (open for the
lower-case sets, closed for the upper-case ones). But one should not count on it.
Removing the belt or the co-belt makes 0 equivalent to a closed 2-disk with usually
one open perforation, but with possibly zero (Fig. 3.6) or an arbitrarily large number
of them.

Dual bracelets and co-dual regions. Each belt of E is associated with a unique lace
of . Since this is true in dual space as well, this association is bijective. Therefore,
the envelope of a belt B of any bracelet of E dualizes to the lace y* of a bracelet

of E, whose belt B* has for an envelope the dual of the lace y of . If A and fl
map a bracelet to its lace and belt, respectively, we can extend the commutative diagram
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FIG. 3.8. The maximal connected red subset ofB that containsp (dotted region containingp is afull region.

of 2.A as follows"

By carefully rolling a plane around the boundary of in the appropriate manner, we
trace the entire boundary of in dual space. (The rolling has to be "appropriate"
in the sense that the passage from a belt to the co-belt and the passage across the lace
must cut through the bracelet instead oftracing its envelope.) Obviously, the association
between and is involutory. For all these good reasons, we call the dual
bracelet of . Note that a lace alone does not provide sufficient information to
reconstruct its associated belt in dual space. One needs to add the planes supporting
the facets incident to it. Another subtle point is that although the envelope of a belt
in primal space is dual to a lace in dual space, the facial structures of these objects
may not be in bijection. The reason is that all facets have been triangulated. As a
result, a belt in primal (respectively, dual) space might end up being facially less
"refined" than its corresponding lace in dual (respectively, primal) space. This will
complicate our algorithm a little because of the ensuing loss of information incurred
when switching to dual space.

We are now in a position to establish the most useful connection between the
input polytopes and their duals, namely, a bijection between the regions of E and
those of . This can be seen as a further extension of the commutative diagram. As
usual, we must use caution, however, because of the nonsmoothness of polyhedral
boundaries. Every bounding lace of a region is covered by a band (a co-belt) whose
frontier usually consists of two simple closed curves: Figure 3.9 shows four laces (the
thick black rings) surrounded by their co-belts. As we saw earlier, things might not be
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FIG. 3.9. Four laces (thick black rings) surrounded by their co-belts.

nearly as simple. Let R be a blue region of X and let 1," ", 1 be the bracelets of
its bounding laces. Since the corresponding co-belts B,. ., B are pairwise disjoint,
the set K R\ 1<<_i<=1B is a connected subset of 0Hmthe dotted area in Fig. 3.9. If
again we think of P and Q as limit sets of infinite sequences of isotopic smooth
manifolds, we can interpret K as a deformation retract of a copy of cl D2 with zero,
one, or several open perforations (Fig. 3.10). Thus, any two planes supporting H at
points of K can be brought together by continuous rolling around H without ever
leaving contact with K. This proves that among the laces of the dual bracelets
1, ..., , any two can be connected by a blue path in a co-region of X. An
immediate consequence is that the laces of 1, bound a common red region
of X. Since the argument is involutory, the region in question must be entirely bounded
by these laces. For this reason it is only natural to call it the co-dual region R of R
(the prefix "co" is a reminder that it is really its co-region that is dual to R). Again,
this map is involutory and, of course, consistent with the bijection previously defined
between laces in primal and dual spaces.

FIG. 3.10. Interpretation ofK as a deformation retract of a copy of cl D with four open perforations.
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Unlike k-faces, which become (2-k)-faces in dual space, or, for that matter,
laces and belts, the type "bracelet" (respectively, "region") is invariant under duality
(respectively, co-duality). The best illustration of this comes from the self-dual case,
where Q= P (Fig. 3.6). In that remarkable situation, dual bracelets and co-dual
regions remain invariant; Only their colors change! The following lemma summarizes
most of our discussion so far.

LEMMA 3.2. The interior of a bracelet J of E is homeomorphic to an open filled
torus. Its boundary contains exactly one belt and one lace of ,, which are homeomorphic
to S x (0, 1) and S, respectively. With is associated a unique dual bracelet of ,:
The dual of the envelope of the belt of J is the lace of; conversely, the dual of the
lace of is the envelope of the belt of. Also, to each region R corresponds a unique
co-dual region R of E of opposite color, and the bracelets of their bounding laces are
dual to each other.

D. DUAL BROADCASTING. As we said earlier, our goal is to break the symmetry
between P and Q provided by co-anchored navigation. This will oblige the broadcaster
to alternate between two modes of operation: primal and dual. The motivation for this
move is to leave us the choice of anchor. Suppose once and for all that P is the anchor.
(How to choose the right anchor will be discussed later.) Using the previous notation,
what shall the broadcaster do if presented with the input pair (v, red)? Since we mean
to let the boundary of P lead the search, this is the easy case where primal broadcasting
through Q can be used ( 3.B).

Assume now that the input is of the form (v, blue), where v is a vertex of a lace
y, and let R be the blue region to be explored. Traversing R entails leaving the polytope
Q altogether. As usual, if 3’ is the only lace of R and we know that for a fact, everything
is easy. But what if we have other laces y, , y ? The difficulty is not to traverse R
per se, but to tell when we might be re-entering Q and hitting upon vertices of
Primal shields are useless at this point, and we must turn to the dual shield of Q for
help. Dual broadcasting from a lace of to another one will be accomplished in three
stages:

1. Starting from the belt of Z associated with the starting lace, navigate in dual
space to the lace of its bracelet.

2. Primal broadcast through Q in dual space.
3. Starting from the belt of E associated with a (dual space) lace newly discovered,

navigate to the lace of its bracelet.
Either of the tasks performed in steps 1 and 3 is called a mutation: We are given a
vertex on a lace of a bracelet , and we must find one vertex on the lace of the dual
bracelet of . Note that from the algorithm description a mutation involves navigating
from a belt to its associated lace and not the other way around. One might think that
reversing the process is just dualizing it and, hence, is computationally equivalent.
That is not quite true. The subtlety here relates to our previous remark about belts
being facially less refined than the laces of their dual bracelets. As a result, navigating
toward belts can be more difficult than toward laces (albeit still doable). We now
describe an efficient implementation of a mutation. It consists of two parts: First we
move to dual space, then we navigate around the boundary of the dual bracelet from
somewhere on its belt to some place on its lace.

Goingfrom the lace to its dual belt. To mutate from the lace of a bracelet of
to the lace of its dual bracelet , our first action is to collect some relevant information
from the input vertex v. As we indicated earlier, a vertex of a lace is never given by
itself, but along with the new facet of P (or Q) and the new edge of Q (or P) upon
which it is in contact. General position ensures that v is incident upon a constant
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number of faces, so we can easily get two (new) facets, one in OP and the other in
oQ, whose intersection contributes one edge e of the lace of . By duality, these two
facets specify an edge ab of the belt of . Note that each facet contributes at least
one of its own vertices to the bracelet: Which one can be determined in constant time
by local examination. Dualizing these chosen vertices gives old facets fa, fb that, locally
around a and b, lie on the boundary of . Note that these facets need not lie entirely
in 0. For example, in Fig. 3.11, the two (intersecting) triangles shown on the left
dualize to the two vertices a and b shown on the right. The two vertices in primal
space from which the arrows emanate point to their dual facets fa, fb, both of which
extend beyond the dual bracelet. Instead of computing these old facets, which might
be large, we retrieve one new facet within f (respectively, fb) that is incident upon a
(respectively, b) These are the hatched triangles in Fig. 3.11. Recall that we added a
special provision to the correspondence between a polytope and its dual to make this
possible in constant time.

Climbing down around the dual bracelet from its belt to its lace. We are now in
possession of an edge ab of the belt of and a simplicial facet A (respectively, B)
incident upon a (respectively, b) that contributes a facet to (but might not be one
itself). Let P* (respectively, Q*) be the intersection of P (respectively, Q) with the
plane 7r passing through O, a, b, and let H* be the convex hull of P* and Q*. Note
that, in general, H* is not the intersection of r with the convex hull of Pt_J Q.
Because the origin lies in the interior of both P* and Q* and neither polygon contains
the other, the curves OP* and oQ* must intersect. Furthermore, the closure * of the
connected component of H*\(P*t_J Q*) that contains the edge ab is the two-
dimensional equivalent of a bracelet (Fig. 3.12): It is simple to analyze, so we will
assume its basic properties. The edge ab is the "belt" of * (more appropriately called
a bridge) and its "lace" is the point p= *N0*N0*. Using standard techniques,
we can compute p by a simultaneous traversal of OP* and oQ* starting from a and b.
With a bit of care, we can find p in time proportional to the number of vertices in *.

Of course, this assumes that we have full knowledge of P* and Q*. But we do
not, and we do not wish to. Since the boundaries of P and Q have been triangulated,
however, it is easy to go from one edge to an adjacent one in constant time and thus
achieve the same effect. To obtain the starting edge may require a little extra work,
since A (respectively, B) might not intersect zr (recall that a facet does not contain its
incident vertices). But we know that A (respectively, B) lies in 0 locally around a

FIG. 3.11. Two intersecting triangles (left) dualize to vertices a and b (right).
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o0

FIG. 3.12. Two-dimensional equivalent of a bracelet.

(respectively, b). Therefore, beginning at A (respectively, B), we can go around the
cyclical order of new faces around a (respectively, b) until we find one that intersects
r. If we are careful to go in the right direction, this preliminary work should involve
looking only at new faces of P and Q that contribute to the boundary of . Once
we have p, we also know two simplicial facets whose intersection contributes an edge
to the desired lace, so the mutation is over. The total running time is at most proportional
to the size of the dual bracelet.

LEMMA 3.3. Mutatingfrom a lace ofa bracelet can be performed in time proportional
to the number of edges in its dual bracelet.

The lemma gives us all the ammunition we need to primal broadcast through Q.
By definition, this will reveal to us one vertex for each lace bounding the co-dual
region of R. By virtue of Lemma 3.2, mutating back from each lace bounding R will
finally take us to the remaining laces of R and complete our dual broadcasting routine.
Thus, to summarize, dual broadcasting is effected in a three-step sequence: (1) mutate
to dual space, (2) primal broadcast in dual space, and (3) mutate back to primal space.
One should appreciate that dual broadcasting is more than simply primal broadcasting
in dual space. Another basic observation is that the input to a primal broadcast need
not be a vertex of a lace: Any nonlace vertex v in a co-region of (respectively, E)
will work just as well, as long as we know the location of v in the primal (respectively,
dual) shield of Q. This might be handy when looking for a starting vertex.

What is the cost of broadcasting as a whole? Let K (respectively, K’) be the
maximum number of nested polytopes in the primal (respectively, dual) shield of Q
whose boundaries are cut by a single (old or new) edge of P (respectively, P). It
follows from Lemma 2.2 that the broadcasting time will be O(( + ’+ 1)n), not
counting mutations. But from Lemma 3.3 the cost of all mutations is at most proportional
to the number of edges in E and E, which is O(n). In light of Lemmas 2.1 and 3.1,
we can draw the following conclusions:

LEMMA 3.4. Given a starting vertex, we can compute the intersection ofP and Q in
time O(n+ n+ ’n), where (respectively, ’) is the maximum number of nested
polytopes in the primal (respectively, dual) shield of Q whose boundaries are cut by a
single edge of P (respectively, P).

What is a valid starting vertex in the context of the lemma? Any vertex on a lace
of or 5: will do, as will any vertex of P (respectively, P) that lies in the primal
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(respectively, dual) shield of Q and has been located in it. It is not difficult to compute
a starting vertex in linear time. Therefore, we could package our findings into yet
another O(n log n) algorithm for intersecting two convex polyhedra of size n. But we
can do better than that. To begin with, we must trade our full shields for k-shields.

E. USING PARTIAL SHIELDS. The only data structure we shall need is the k-shield
of Q, where k is a fixed constant to be determined later. Let Q Qo Q1 " Qk
and Q Q= Q =. = Q, be the sequences of nested polytopes provided by, respec-
tively, the primal and dual parts of the k-shield. Suppose that the intersections P fq Qk
and P fq Q, are fully available. We will show that we can emulate primal broadcasting
through Q and Q, even though we have only a portion of the shield at our disposal.
Let us discuss the case of P and Qk, with the understanding that the same applies to
P and Q,. Assume that both the boundaries and the interiors of P and Qk intersect.
Then, the entire theory ofregions, co-regions, laces, belts, and bracelets applies verbatim
to the surface O(PU Qk). Since the intersection of P and Qk is available, we can
precornpute all primal broadcasting through Qk anchored to P. We do this by marking
the (new) facets of P and Qk that contribute an edge to a lace of O(P tA Qk). Also, for
each region of O(P t_J Qk), we link together representative vertices of its bounding laces
into a circular list. In this way, we are able to primal broadcast from any vertex of a
lace in 0(P tA Qk) by tracing the lace in question until we hit a representative vertex.
From there, we jump to all the other laces bounding the desired region in time
proportional to their number. This gives us the capability to primal broadcast through
the polytope Q with P as anchor, even though we might know only the outer layers
of its primal shield. Obviously, the same trick can be used for primal broadcasting
in dual space. Note that mutations are not affected by this change. The advantage
of this new scenario is to place an upper bound of k on the values of K and K’ in
Lemma 3.4.

What now qualifies as a starting vertex? As usual, any vertex on a lace of E or
will do. Another valid situation is a vertex of P (respectively, P) that lies in the

(possibly disconnected) set Q\Qk (respectively, Q\Q,), along with its location in the
primal (respectively, dual) part of the k-shield of Q. Finally, any intersection between
OQk (respectively, OQ’k) and an edge of P (respectively, P) and its location in the
k-shield would form an appropriate starting vertex. Note that we do not extend this
qualification to just any point in P fq OQk or P fq OQ’k because these points might not
be reached by any broadcast. Indeed, primal broadcasting anchored to P involves
traversing the edges of P and not its facets. Thus, there could be a nonempty intersection
between OP and OQk, even though no edge of P intersects Qk. In that case, the primal
broadcast would never make contact with Qk, so, obviously, no point of OQk should
serve as a valid starting vertex.

The intersection algorithm.
1. Check whether the interiors of P and Q intersect and conclude immediately

if they do not, using the information provided by the Dobkin-Kirkpatrick algorithm.
Else, pick a point O in the interior of both P and Q, and compute their dual polytopes
P and Q.

2. Unless the anchor has already been chosen, declare P the anchor and compute
the k-shield of Q. Let Qk (respectively, Q,) be the innermost polytope in the primal
(respectively, dual) part of the k-shield.

3. Compute P fq Qk and P Q, recursively (the boundary case where any of the
polytopes involved has constant size can be handled directly in linear time). Crucial
point: Make Qk and Q, the anchors in the recursive calls.

4. If P Qk P, return P as the intersection of P and Q, and stop. IfP f’) Q, P,
return Q as the intersection of P and Q, and stop.
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5. If the interiors and boundaries of P (respectively, P) and Qk (respectively,
Q,) intersect, then precompute all primal broadcasting through Qk (respectively, Q,)
anchored to P (respectively, P).

6. Compute a starting vertex (see below).
7. Launch a broadcast from the starting vertex and pursue it until all the laces of

0(P (3 Q) have been found.
8. Use the laces to compute P f-I Q explicitly.
A few comments about the algorithm are in order. Step 1 uses the Iinear time

algorithm of Dobkin and Kirkpatrick [7]. If there is no intersection, the algorithm will
say so and report the two closest points in P and Q. If P and Q intersect only at their
boundaries (which, incidentally, is against our general position assumption), the
Dobkin-Kirkpatrick method will still allow us to compute the full intersection in linear
time. If we have a full-fledged intersection, however, the method will return a point
interior to both polytopes. The dual polytopes of P and Q are easily computed in
linear time. In step 2, we declare either one of the two polytopes, say, P, the anchor,
unless we are responding to a recursive call, in which case the choice of anchor is
forced upon us. From Lemma 2.1, the k-shield of Q can be computed in linear time.
Step 3 consists of two recursive calls. As the analysis will show, switching anchors is
a crucial feature of the algorithm. Failure to do so would jeopardize the linearity of
the algorithm. Step 4 takes care of two trivial terminating cases. In step 5, we build
the shortcuts, if any, provided by P 0 Qk and P Q,.

Step 6 determines a starting vertex. If the boundaries of P and Qk intersect, we
pick a starting vertex among the vertices of OP OQk that emanate from an edge of P
(if any). Then we locate the vertex in question in the primal part of the k-shield of
Q. If this does not work, we try the same operation in dual space. Namely, if the
boundaries of P and Q, intersect, we pick a starting vertex among the vertices of
OP (qOQ’k that emanate from an edge of P (if any). Then we locate the vertex in
question in the dual part of the k-shield of Q. If this also fails, then because of step
4 we know that the skeleton (i.e., set of vertices and edges) of P (respectively, P)
lies entirely outside Qk (respectively, Q,). Therefore, we pick a vertex v of P and
check whether it lies in Q. If it does, then it must be sandwiched between Q and Qk,
so we can locate v in the primal part of the k-shield and make it the starting vertex.
Otherwise, let f be a facet of P incident upon v. If the plane passing through f does
not intersect Q, then its dual is a vertex of P in Q\Q, and therefore qualifies as a
starting vertex. Otherwise, computing the intersection allows us to identify a point w
in oQ\P or oP fq oQ. The cross section of P and Q by the plane passing through O, v, w
consists oftwo convex polygons whose boundaries intersect. Any boundary intersection
qualifies as a starting vertex. So, in all cases, finding a starting vertex (step 6) takes
linear time. With such a vertex in hand, Lemma 3.4 tells us how to compute the
intersection of P and Q. Figure 3.13 attempts to illustrate the main phases of the
algorithm in two dimensions. The polytope P is the nonconvex (sorry about that) blob
wiggling across the primal part of the k-shield of Q (which itself, obviously, should
not be made of disjoint rings...).

Complexity analysis. Put m =p / q, where p (respectively, q) is the total number
ofvertices and bounding planes in P (respectively, Q), and let T(p, q) be the worst-case
running time of the algorithm. If either p O(1) or q O(1), then, trivially, T(p, q)
O(p/ q). From Lemmas 2.1 and 3.4 we derive the general relation

T(p, q)= 2T(p, 3(1 1/7)kq)+ O(p+ q).
This recurrence alone is rather ominous looking. However, the trick of switching
anchors at each recursive call will now pay off. Indeed, the recurrence can be more
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Primal broadcast in
dual space + recursion

Primal broadcast
in primal space

Recursion

Mutation

FIG. 3.13. A bird’s-eye view of the algorithm.

accurately expressed as

T(p, q)= 2T’(p, 3(1 1/7)kq)+ O(p+ q)

and

T’(p, q)=2T(3(1--1/7)kp, q)+O(p+q),

which, after substitution, yields

T(p, q)= 4T(3(1 1/7)kp, 3(1 1/7)kq)+ O(p+ q)

or, more simply,

T*(m) =4T*(m/5)+ O(m),

where T*(m) T(m, m) and k 18. We have T*(m) O(m), and thus ends our search
for a linear time algorithm for intersecting two convex polyhedra.

Reflecting back on the algorithm, it is interesting to observe that switching anchors
at each recursive call makes all the difference. The process can be regarded as a form
of branching dovetailing. A second observation is that, in the end, all the laces in both
E and E will have been fully computed (or at least this can be easily ensured at no
extra asymptotic cost). Since the laces of E dualize to the belts of E, we get the convex
hull of P and Q as a bonus. Of course, another method is to compute the intersection
of the dual polytopes and dualize back. If P and Q are disjoint, then we can use the
Preparata-Hong linear time wrapping routine. In all cases, therefore, we are able to
compute the convex hull of two convex polytopes in linear time.

THEOREM 3.5. It is possible to compute the intersection (and the convex hull) of
two three-dimensional convex polyhedra in linear time. It is assumed that the polyhedra
are given in standard representation.

4. Miscellaneous applications. The intersection algorithm can be put to use for
improving or simplif.ving the solutions to a number of geometric problems. These
applications are all very simple, so we keep our discussion to a minimum.
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A. INTERSECTING SEVERAL CONVEX POLYHEDRA. Consider the problem of com-
puting the common intersection of k convex polyhedra P1," ", Pk, given in standard
representation. We can do this in optimal O(n log k) time, where n is the total number
of vertices among the k polytopes. We use a straightforward scheme, borrowed from
multi-way merging" Put the polyhedra in bijection with the leaves of a complete binary
tree, and compute intersections in an order consistent with the tree. The O(n log k)
running time of this algorithm is worst-case optimal even in two dimensions, because
we can reduce any k-way merge to polygon intersection. To see this, consider a
collection of k sorted lists L1,’’’, Lk with distinct elements. Form the polygons
P1,’’’, Pk, where Pi is the unbounded polygon defined by the intersection of the
halfplanes y >-xj(2x-xj): Pi is bounded by the tangents to the parabola y--x2 at the
points (xj, x), forj 1, , m, where Li (xl,. , x,). Now, observe that the bound-
ary of the polygon P=Cl<__i__<k P contains all the points in {(X, X2)[X<__i<__k Li}.
Therefore, the merged sequence of all the k lists can be read off by going around the
boundary of P. To obtain the desired lower bound, we form k lists of size m n/k
and observe that they can be merged in M (-,,.-."-,,-k) ways, where m rn. The lower
bound follows from the fact that log M l)(n log k) and by-now standard algebraic
decision-tree arguments [25].

B. CONVEX I-ItJLLS. Bentley and Shamos [4] have shown how to take advantage
of certain point distributions to obtain linear expected-time algorithms for computing
convex hulls. The idea is to use divide-and-conquer by splitting the input set in a fixed
manner (independent of the point set itself) and build the convex hull bottom-up. For
their method to work efficiently, the merge step must be capable of computing the
convex hull oftwo (possibly intersecting) convex polytopes reasonably fast. As observed
by Seidel [11], we can use the Preparata-Hong algorithm for that purpose and get
linear expected complexity for a wide class of point distributions. Using Theorem 3.5
widens that class. Specifically, any distribution for which the average size of the convex
hull of a random set of n points is O(n/log+ n) will trivially yield a linear expected-
time complexity.

C. MERGING VORONOI DIAGRAMS. Kirkpatrick [17] has shown that two planar
Voronoi diagrams can be "merged" in linear time. His algorithm is ingenious but
somewhat complicated. Standard reductions cause the same result to fall straight out
of Theorem 3.5. The problem is this: Given two sets of n points in the plane with their
respective Voronoi diagrams, compute the diagram of their union. By using a reduction
due to Edelsbrunner and Seidel 11 ], 14], we compute a Voronoi diagram of n points
by intersecting n halfspaces. Let h(p) denote the closed halfspace bounded below by
the tangent to the paraboloid z x+y at the point whose xy projection is p. The
Voronoi diagram ofp, , Pn is the xy projection of the two-dimensional cell complex
formed by the boundary ofthe convex polyhedron fq __<=<, h (pi). Thus, merging Voronoi
diagrams becomes a special case of intersecting two convex polyhedra. Applications
include computing the Voronoi diagram of a polygon (Kirkpatrick [17]) and of the
vertices of a convex polygon (Aggarwal et al. [1]).

5. Conclusions. Our main result is a linear-time algorithm for intersecting two
convex polyhedra in 3-space. Whether the algorithm lends itself to efficient and robust
implementations remains to be seen. In practice the recursion might be stopped after
only a few steps, when the polytopes are small enough that we can use more naive
methods. One advantage of this algorithm is that it does not use any dynamic data
structure. Except for the work needed to build the shields, all other activity is purely
pointer chasing through a three-dimensional cell complex. It is likely that adding
randomization might lead to certain simplifications. Looking into this possibility might
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be worthwhile. One must live with the fact, however, that intersecting even two
tetrahedra is difficult to implement correctly, so the goal of an intersection algorithm
that is truly simple to implement might be elusive. An outstanding open problem is
that of intersecting two nonconvex polyhedra efficiently. The problem of intersecting
arbitrarily placed triangles in 3-space has been investigated by Aronov and Sharir [2].
How much we can gain by having collections of faces structured into the boundaries
of simple polyhedra is an intriguing open question.

Acknowledgments. I wish to thank Herbert Edelsbrunner, David Kirkpatrick, and
Chee Yap for helpful conversations. I also thank the referees for their help in improving
the presentation of the results.
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Abstract. Queues, stacks, and tapes are basic concepts that have direct applications in compiler design
and the general design of algorithms. Whereas stacks (pushdown store or last-in-first-out storage) have been
thoroughly investigated and are well understood, this is much less the case for queues (first-in-first-out stor-
age). In this paper a comprehensive study comparing queues to stacks and tapes (off-line and with a one-way
input tape) is presented. The techniques used rely on Kolmogorov complexity. In particular, one queue and
one tape (or stack) are incomparable:

(1) Simulating one stack (and hence one tape) by one queue requires f(n4/a/logn) time in both the
deterministic and the nondeterministic cases. A corollary of this lower bound states that for this model of
one-queue machines, nondeterministic linear time is not closed under complement.

(2) Simulating one queue by one tape requires f(n2) time in the deterministic case and requires
fft(n4/a/(log n)2/3) in the nondeterministic case.

The paper further compares the relative power between different numbers of queues:
(3) Simulating two queues (or two tapes) by one queue requires f(n2) time in the deterministic case, and

f(n2/(log2 n log log n)) in the nondeterministic case. The deterministic bound is tight. The nondeterminis-
tic one is almost tight. The upper bounds for queues are also obtained.

Key words, abstract storage unit, multi-queue machines, multi-tape machines, on-line simulation, lower
bounds, upper bounds, Kolmogorov complexity

AMS(MOS) subject classifications. 68Q05, 68Q30

1. Introduction. It has been known for over 20 years that all multi-tape Turing ma-
chines can be simulated on line by two-tape Turing machines in time O(n log n) [HS66]
and by one-tape Turing machines in time O(n2). Since then, many other models ef
computation have been introduced and compared [Aan74], [DGPR84], [HS65], [HS66],
[HU79], [KOS79], [LS81], [MSS87], [PSS81], [Pau82], [Vit85]. In addition to different
storage mechanisms, real-time, on-line, and off-line machines have been studied. An on-
line simulation essentially simulates step-by-step each move of the simulated machine.
In this paper we consider off-line machines, for which an answer is given only after the
entire input has been read. There is no need to simulate the moves of the machine; it
only matters that the right answer is given. We also use the one-way input convention,
which states that the machine has a one-way input tape. As usual, the machines have a
finite control and access to some storage.

The relative power of stacks and tapes is more or less well known. For example,
for the nondeterministic case, we know that 1 stack < 1 tape < 2 stacks < 3 stacks k
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stacks k tapes, where A < B means that B can simulate A in linear time, but A cannot
simulate B in linear time. In most of the cases, close lower and upper bounds are known
for the simulation [Maa85], [Li85b], [Li88], [LV88], [Vit84b].

In this paper we give a complete characterization of (off-line, one-way input) queue
machines. The main theorems show that one-queue machines are incomparable to one-
stack or one-tape machines, both deterministically and nondeterministically. One corol-
lary of our nondeterministic lower bound is that for our model of one-queue machines,
nondeterministic linear time is not closed under complement. We also compare the rel-
ative power of machines having different numbers of queues. The current knowledge of
upper and lower bounds for the simulation between queues and tapes is roughly sum-
marized in Figs. 1, 2, and 3. Figure 1 contains results that were previously known. The
results of Fig. 2 are covered in 2. Notice that all the bounds in Fig. 2 are valid also for
simulating one stack or two stacks. The results of Fig. 3 are covered in 3.

upper bound

lower bound

deterministic

O(n

(in [HS651)

C (n
(in [LV881)

nondeterministic

(in [Li881)

f(na/3/log2/3 n)
(in [LV88] or [LiS5a])

FIG. 1. Simulating one queue by one tape.

deterministic nondeterministic

upper bound O(n9) O(n)
lower bound (n4/3/log n) (n4/3/log n)

FIG. 2. Simulating one tape, one stack, or two stacks, by one queue.

upper bound

lower bound

deterministic

O(n

f(n2)

nondeterministic

O(n2)
f(n2/log2 n log log n)

FIG. 3. Simulating two queues by one queue.

We use Kolmogorov complexity techniques [So164], [Ko165], [Cha77], together with
some new techniques to enable us to deal with queues to prove the theorems. The Kol-
mogorov complexity K(x) of a string x is the length of the shortest program printing the
string x. By a simple counting argument, we know that for at least half of the strings x of
each length, If(x) > Ix]. These strings are called incompressible or If random. For com-
pleteness, we recall the notions of Kolmogorov complexity of binary strings and those of
self-delimiting descriptions (see, e.g., [PSS81], [LV88]). Fix an effective coding C of all
Turing machines as binary strings, such that no code is a prefix of any other code. Denote
the code of Turing machine M by C(M). The Kolmogorov complexity with respect to
C of a binary string x, denoted Ifc(x), is the length of the smallest binary string C(T)y
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such that T started on input V halts with output z. The crucial fact one uses is that for
any fixed effective enumerations 6’ and D, for all z [Kc(z) KD(Z)[ < c, with c a con-
stant depending only on C’ and D (but not on z). Thus, up to an additive constant, the
Kolmogorov complexity is independent of the particular effective enumeration chosen,
which allows us to drop the subscript. With some abuse of notation, the sequel equal-
ities and inequalities involving Kolmogorov complexity will always be assumed to hold
up to an additive constant only. To be able to differentiate between parts of V such that
T is able to use different parts for different purposes (can compute an r-ary function),
we need the notion of self-delimiting descriptions. If a ala2...an is a string of O’s
and l’s, then al0ae0. 0a,1 is a self-delimiting description of twice the original length.
More efficiently, if b b... b, is the length of (z in binary, then the self-delimiting de-
scription of b concatenated with a is also a self-delimiting description of a, this time of
length n + 2 log n instead of 2n. For example, 1000011101 is the self-delimiting version
of 1101.

2. The queue machine model. We will first describe more formally the model and
the notation we use for queue machines.

A queue machine has a one-way input tape with the input head initially positioned
at the beginning of the input string. For storage it uses a queue. The rear of the queue
contains the first symbols pushed (and not popped). The front contains the last symbols
pushed. The machine can. access only one symbol at the rear of the queue.

One step of the queue machine consists of all the following. According to the old
state and the contents of the cells scanned on the input and on the queue, the machine

1. reads an empty or nonempty symbol from the input,
2. pops an empty or nonempty symbol from the queue,
3. pushes an empty or nonempty symbol on the queue,
4. changes state.

Let hi, be the read-only head on the one-way input tape. We identify the queue
with a tape with two heads hr and ho. The queue machine is implemented as follows
on the tape representation. The initial state and the state transitions are the same. The
head hr is a read-only, one-way head on the tape. The head ho is a write-only, one-way
head on the tape. One step of the queue machine is implemented as follows:

1. the input head hi, behaves the same way as on the original queue machine;
2. if a nonempty symbol is written (pushed) on the queue, then ho writes the sym-

bol in the currently scanned cell and moves to the right adjacent cell (if an empty
symbol is written, then ho does not move);

3. if a nonempty symbol is read (popped) from the queue, then h moves to the
right adjacent cell (if an empty symbol is read, then h does not move);

4. the change of state occurs as in the original machine.
Without loss of generality, we assume that the machine uses a binary alphabet on

the queue and accepts by empty queue.
Let hk(t) denote the position of head k E {in, r, w} at time t on its respective tape.

Let cx, ce,..., c, be the individual cells on the input tape. Let d, de,.., be the individual
cells on the queue. We sometimes use hk(t) to denote the cell at that position.

The contents of the tape from h(t) through ho(t) I inclusive is called the actual
queue at time t, or Queue(t). The length of Queue(t), denoted lQueue(t)l, is ho(t)-h(t).
We say that cells d and dj are contiguous on Queue(t) if h(t) < j < ho(t) and j i + 1,
or if i + 1 ho(t) and j hr(t) (that is, the cells at opposite ends of the queue are also
considered contiguous).
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3. Simulating one tape by one queue.

3.1. Upper bound. Our upper bound is straightforward. It is for simulating any
fixed number of stacks, but since two stacks can simulate one tape in real time, our upper
bound applies to tapes as well.

THEOREM 3.1. For anyfixed k, one queue can simulate k stacks in O(n2) timefor both
deterministic and nondeterministic machines.

Proof. Simulate the k stacks by coding them sequentially onto the queue such that
the top of each stack comes first. In front of each stack top, put a marker to indicate the
separation between the stacks.

Each operation (push or pop on one stack) can be done in O(n) time by scanning
the entire queue and performing the local transformation after the appropriate marker.
Scanning is done by successively transferring the symbols from one end of the queue
to the other end. The total time is then in O(n2). This simulation can be made for
deterministic or nondeterministic machines.

3.2. Lower bound. In this section, we show that it takes )(n4/3/log n) time for
a nondeterministic one-queue machine with a one-way input to recognize the language
L {w#w1 w E {0, 1}* }. The proof also provides the same lower bound for the set
of palindromes.

Because L can be recognized in linear time by a deterministic one-stack machine (a
deterministic pushdown automaton), we can conclude that it takes f(n4/3/log n) time
for a nondeterministic one-queue machine to simulate a deterministic one-stack ma-
chine.

The intuition behind the proof is that while the queue machine reads w, it has to
store all the information in some sequential way on the queue. It turns out to be impos-
sible to check the stored form of w for correspondence with wR while the latter string is
read from the input tape, so wR must be stored in some sequential way as well. Using
crossing sequence arguments, we show that whatever way the information is stored, the
machine is forced to scan the queue many times. This repeated scanning then implies
the lower bound on simulation time.

THEOREM 3.2. A nondeterministic one-queue machine with a one-way input tape re-
quires (n4/3/ log n) time to accept the language L {ww w {0, 1}* .2

Remark. This holds both for the worst-case time and the average time, when the
average is taken over all strings in L. Notice that the straightforward algorithm to accept
L with a queue has a linear average time when the average is taken over all strings, since
most strings can be discovered not to be in the language quickly.

Proof. Let Q be a one-queue machine that accepts L. We show that Q will make
2(n4/3/log n) steps before accepting any string x#x for incompressible strings x of
size n. Since the size of the input is 2n + 1, this will provide the wanted lower bound for
L. Since at least half the strings of each length are incompressible, this also provides the
claimed average time lower bound.

Let x be an incompressible string of length n. We separate x into two blocks: x
x0, with Ix01 [n/2J. Let m [nl/3/4] and p [n/2m]. We further separate into
m blocks of size p or p + 1: xlx2... Xm.

2Herewe use the stronger version off where T(n) E f(f(n)) if there are positive constants c and n0 such
that for all n > no, T(n) > cf(n). Notice that there is no string of even length in the language. To be strict, we
show that the time is in (n4/3/ log n n is odd). With a slightly modified language, {x#xR} t.J {x##xR},
we could prove it for all n.
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We look at any fixed accepting computation of the machine on input x#xn. Let
be the time step when hn entersbe the time step when hn enters the block xj. Let ty

the block xn. If z is a substring of x, then z’ denotes the corresponding substring of xn

CLAIM 3.3. Ift < t < t’ then IQueue(t)l >_ n/2 O(logn).
Proof. Let tl < t < t’o. Let lQueue(t)l s. The string x can be reconstructed by

using the following information: a description of this discussion and of Q in O(1) bits,
the string Queue(t) of length s, the string of length [n/2], the state q(t) of the machine
in O(1) bits, and h,(t) in < log n + 2 bits. All items are encoded as self-delimiting
strings. The total number of bits required for this description is s + n/2 + O(log n).

To reconstruct x from this information, run Q with all possible candidate strings
y substituted for x0. Single out the strings y for which there is a time step for which
Queue(t), h(t), and q(t) correspond. Among those y, the machine should accept only
if y x0; otherwise, it would accept the string xoc#cnyn L by behaving like the
computation on x#xn up to time t and like the computation on yc#cnyn after time t.

Because x is incompressible, we know that K(x) >_ n, so it must be that our program
reconstructing x has size > n. Thus, we have s + n/2 + O(log n) > n, from which the
claim follows.

The machine Q needs to remember what it reads on the input and code it in some
way on the queue or compare it with what is already on the queue. What can be written
on the queue is determined by the current state, the input, and the rear of the queue.
The input can be compared with the rear of the queue. These intuitive ideas motivate
the following definitions of influence.

DEFINITION 3.4. An input cell c directly influences a cell d if h, scans c while
writes in dy (that is, ho(t) j, hw(t + 1) j + 1, and h(t) i).

DEFINITION 3.5. A cell d backward influences a cell dj if ho is or moves onto d
when hr moves onto dy (that is, hr(t 1) j 1, h(t) j and ho(t) i).

DEFINITION 3.6. A cell di forward influences a cell dy if h scans di while ho writes
in d (that is, h(t) j, ho(t + 1) j + 1 and h(t) i).

(See Fig. 4 for an example of direct influence and Fig. 5 for an example of backward
and forward influence.)

Input tape and position of hn at various times.

Queue tape and position of ho at various times.

FIG. 4. Direct influence relation.
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Queue tape and position of hr at various times.

/l\\ \\ I\\ \\ \\\

Queue tape and position of h at various times.

FIG. 5. Forward (----) and backward ( --,) influence relation.

DEFINITION 3.7. The influence relation among the tape cells is the transitive closure
of the forward influence relation union the transitive closure of the backward influence
relation. In other words, a cell di influences a cell dj if there is a chain of forward influ-
ences or a chain of backward influences from di to dj.

An input cell ci influences a cell d if ci directly influences a tape cell that influences

A block of cells influences a cell if and only if at least one of the cells in the block
influences it. A block of cells is influenced by a block of cells if at least one cell of the first
block is influenced by the second block. Figure 6 illustrates the concept. The influence
relation will allow us to talk about where information can be stored on the queue or
which information from the queue can be compared with the input.

Block of cells on input tape.

Queue tape and influenced blocks of cells.

FIG. 6. Blocks on the queue influenced by a block on the input.

It is worth stating a few facts about the influence relations. Each tape cell is directly
influenced by exactly one input cell. It is also forward and backward influenced by exactly
one tape cell. The cells directly influenced by a contiguous block of input cells form a
contiguous block. This holds also for forward and backward influence.

The sequence of blocks influenced by a block of input cells will be used with the
crossing sequence around the blocks. Crossing sequences for queue machines need a
special definition.
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DEFINITION 3.8. Apartial configuration of the machine at some time t is the state
of the machine at that time, the position of all the heads on their respective tape, the
contents of the cells h(t), h(t), and the contents of the cells immediately preceding
those two cells.

DEFINITION 3.9. The crossing sequence (c.s.) associated with a cell d is the partial
configuration at the time t when h goes from cell d to cell d+ (that is, h(t 1) d
and h(t) d+) plus the partial configuration at the time when ho goes from d to

d+t. Since using more than n tape cells would take too much time, we may assume
that each head position can be described in O(log n) bits.

The crossing sequence around a region d... d is the c.s. associated with d_ con-
catenated with the one associated with d.

The crossing sequence around a list of regions is the concatenation of the c.s. around
each of the regions.

Intuitively, for a deterministic computation, changing a block of input will change
only the influenced regions, provided that the change does not alter the crossing se-
quence around the influenced regions. For a nondeterministic computation, the situa-
tion is a little more delicate, but the idea is the same. We need the backward influence
to be able to deal with nondeterministic computations. A nondeterministic machine can
guess the input on the queue and start the computation before the input head even moves
once. A change in an input block will have "backward effects" on that computation.

For every computation path, there is a backward computation path consisting of all
the configurations in reverse order. Moreover, there is a queue machine Q’ that has
as accepting computation paths all the backward accepting computations of Q. Just ex-
change the role of the read and write heads: h’(t) h(t) and h’(t) ho(t). For
the computation, the time and the heads go backwards. The influence definition was
designed such that the forward influence on the tape for Q corresponds to the backward
influence for Q’ and vice versa. The region influenced by a block of tape cells will be
the same for Q and Q’. The blocks of cells influenced by a block of input cells will dif-
fer slightly, because the direct influence will be directed at a different part of the tape.
However, this does not affect the proof.

In the following, a cycle 0.(t) is a half-open interval (of time) [t, i) such that h(i)
ho(t) if/ > t or such that h(t) ho() if < t (backward cycle). Given a time r, we
will be interested in nonoverlapping contiguous cycles 0.1 (rx), 0.2(r), starting at time
T1, such that 0.1(T1) [7"1,7"2), 0"2(7"2) [T2, T3), and so on. In what follows, whenever
we count cycles, the start time r either will be specified or will be clear from context
and we will count the successive nonoverlapping contiguous cycles, as induced by the
computation of Q. Backward cycles could alternatively be defined by using backward
computations. Notice that the blocks of cells influenced by a block of input cells form a
sequence of blocks, one block for each cycle.

CLAIM 3.10. For any t, if > t is fewer than s cycles away from t, then each cell in
Queze( is influenced by at most s input cells in Yc#c.

Proof. Let the chain of cycles starting from 7" t be 0" (7"1), 0"(7"2),"" ". The proof
is by induction on the indices s. No cell in Qeue(7"t) is influenced by any input cell in
:#:n. During 0"1, each cell written is influenced by exactly one input cell. Suppose the
claim is true for cycles 0"1 through 0"_. During the cycle 0"(7"), each cell written is
influenced by one new input cell (possibly) and by each input cell that influences the cell
scanned by h. This adds up to at most s input cells.

DEFINITION 3.11. For each i, we say that zi is a valid block if Queue(t’o) contains a
cell that is influenced by neither zi nor zi’.
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Informally, zi is valid if each of zi and zi’ is read within one cycle. Indeed, if zi is not
read within one cycle, then zi directly influences all of Queue(ti) and hence influences
every cell of the tape by transitivity, including every cell of Queue(t’o), where t is the
time when bin leaves z.

Next, we need to show that valid blocks exist. We need the existence of only one
valid block, but, in fact, the majority of blocks are valid.

CLAIM 3.12. If there is no valid block, then Q rakes f(n4/3) time.

Proof. Pick a cell d on Queue(t’o). Suppose there is no valid block. This means that
for all i, d is influenced by either z or xn. It means that d is influenced by at least m
different cells. By Claim 3.10, we know that then the machine makes at least rn- 1 cycles
from tl to t. By Claim 3.3, the queue has length at least n/2 O(log n) for each cycle,
so the algorithm will take at least (m 1)(n/2 O(log n)) E (n4/3).

In the following, we may assume there is at least one valid block. The next two claims
explain why a valid block is a part of the input that has been coded sequentially on the
queue.

CLAIM 3.13. For each valid block xj, any two cells in xj influence disjoint sets ofcells
on the queue. Moreover, cells in z also influence disjoint sets ofcells on the queue. However,
some cells on the queue can be influenced by both a cell of zj and a cell of

must be read within one cycle. WithinProof. If zi is a valid block, each of zi and zi
one cycle, each cell written into is influenced by at most one cell of :c. This property will
be preserved by transitivity throughout the successive cycles, either backward or forward.
The same situation arises for

CLAIM 3.14. For any time t, the regions influenced by the sequence of cells of a valid
block zj form a contiguous ordered sequence on Queue(t). (The same statement holdsfor

Proof. This can be seen with a similar argument as in the previous claim.
For our valid block zi, both zi and z’ have been coded sequentially on the queue.

Now we have to show that it takes f(n4/3/log n) time to check z’ z1. Intuitively,
we can check only a constant number of bits of z’ at each cycle. Each cycle takes as
much time as the size of the queue at that time. The strategy is to show that the size of
the queue cannot decrease too much at each cycle, for each of the forward and back-
ward computations. Then, showing that many cycles are required will provide the lower
bound.

CLAIM 3.15. If > t_ is fewer than s cycles awayfrom t_ and t < ti is fewer than
s cycles before ti, then Queue(t)l + Queue()] >_ n2/3 O(s log n).

Proof. Let x be a valid block, i > 0. Let xi uv, where u and v are strings of equal
size (1).

If there is a time T such that hn(T) v’ and hr(T) is influenced by v, then choose
y u, otherwise, choose y v. In both cases, for all t, if hn(t) y’, hr(t) is not
influenced by y. This is immediate from Claim 3.14 for the case y v. For the case
y u, let - be such that hn(T) v’ and h(T) is influenced by v. Let d be a cell on

By Claim 3.14, the region influenced by y u isQueue(T) not influenced by x or x.
after d and the region influenced by y’ u’ is before d (refer to Figs. 7 and 8). The
regions cannot intersect.

As a consequence of our choice of y, we have that the regions influenced by y and
by y’ are disjoint.
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FIG. 7. Influence ofxi uv on Queue(T).

hr
FIG. 8. Influence ofx v’u’ on Queue(T).

Let t and/ be as in the statement of the claim. Let 5: be the string x for which y is
deleted. The size of y is about n2/3:

lyl > p/2- 1 Ln/2mJ[2-1 2n/’4"
2

1 E n2/3 -O(1).

The size of n lyl n n2/3 + 0(1).
Let S be the set of cells influenced by y. We show below that x can be computed

from , t, , the position of y in 5:, the crossing sequence around S from time t to time, Queue(t), and Queue(. If each item is encoded as self-delimiting, this description
takes n n2/3 -F O(s log(n)) + IQueue(t)l / IQueue(l bits. Because K(x) > n, it then
follows that Queue(t)l + Queue(t)l >_ n2/a -O(s log(n)).

We compute y with the information provided in the following way. For all binary
strings z of equal length as y, let xz be the string x for which z has been substituted for
y. Run Q on all strings xzC/:xn until one that matches the description is found. By
construction, z y matches the description. Leading to a contradiction, suppose z y
matches the description as well. Let Cu be the accepting computation on x#xn and C
the accepting computation on Xz#Xnz that matches the description. Then, by cutting
and pasting the two computations we can construct a legal computation of Q on x:#:xn.
Let S be the set of cells influenced by z in Cz. Because the crossing sequence includes
the position of all heads, the regions in S and in S occupy the same absolute positions
on the queue. Let tu be the time when hi, leaves y. We can compose the accepting
computation as follows. Use any of the two computations up to time t. At this time, we
will have Queue(t).

From time t to tu, we are dealing with backward influence. If ho is scanning a cell of
S, then hr is scanning either a cell of S or a cell immediately before it. If ho is scanning
a cell not in S, then h is also scanning a cell not in S or immediately before it. Since
the cell before the region has been included in the c.s., it is possible to follow Cy when
ho is in S and C when ho is out of S. Notice that hin cannot scan a cell of y while ho
is writing a cell out of S because of the direct influence. Moreover, hin cannot scan a
cell of z while ho writes a cell of S because that cell would be influenced by both y and
z, which cannot happen by our choice of y.

From time ty to time ,we are dealing with forward influence. Follow C when h is
not in S and follow Cu when h is in S.
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At time , the queue will correspond with the queue in both computations. Just com-
plete the computation following any of C’y or Cz. This gives an accepting computation
for a string L, which is a contradiction.

CLAIM 3.16. The machine makes f(n4/3/ log n) steps before ti or after t_1.

Proof. Let T be the time Q accepts. Both Queue(O) and Queue(T) are of length 0.
By the previous claim, ]Queue(O)l + IQueue(T)l > nu/a O(s logn). Let IQueue(O)l +
Queue(T)l > nz/a -cs log n. This means Q makes at least nZ/a/(c log n) cycles for some
constant c. At least ng/3/(2clog n) of those cycles will have a queue of size fl(n2/a), by
the previous claim. This makes a total of f(n4/a/log n) steps.

COROLLARY 3.17. For off-line one-way-input one-queue machines, nondeterministic
linear time is not closed under complement.

Proof. The complement of the palindrome language used in the proof of Theorem
3.2 can be accepted in nondeterministic linear time. This can be seen as follows. If
the string is of the form wl#w2, where Iw] Iwl, nondeterministically go and read
position i of wx for which there is a discrepancy. While doing that, push i symbols on the
queue. Then nondeterministically go and read the corresponding position of w:. Verify
the position by using the number of symbols pushed on the queue.

Other cases can be checked in deterministic linear time. Finding which case applies
can be made by a nondeterministic initial move. This concludes the proof of Theorem
3.2.

4. More queues versus fewer queues. In this section we study the power of queue
machines with different numbers of queues. We first provide some straightforward up-
per bounds: Two queues work as well as k queues in the nondeterministic case. This
motivates our research focusing on small numbers of queues. One queue can simulate
k queues in quadratic time, deterministically or nondeterministically. We then provide
tight, or almost tight, lower bounds for our simulations mentioned above.

4.1. Upper bounds.
THEOREM 4.1. Two stacks can simulate one queue in linear time, for both deterministic

and nondeterministic machines.
Proof. We design a machine P with two stacks pdl, pd2. To simulate a queue, every

time a symbol is pushed into the queue, P pushes the same symbol into pdl. If a symbol
is taken from the queue, then P pops a symbol from pd2 if pd2 is not empty. If pd2 is
empty, then P first unloads the entire contents of pdl into pd2 and then pops the top
symbol from pd2. At the end of the input, P accepts if and only if the one-queue machine
accepts.

THEOREM 4.2. Two queues can nondeterministically simulate k queuesfor anyfixed k
in linear time.

Proof. This theorem follows from the method used by Book and Greibach [BG70] to
nondeterministically simulate k tapes by two tapes in linear time. For the sake of com-
pleteness, we will describe the idea. The two-queue machine guesses the computation of
the k-queue machine and puts this guess on one queue in the form IDa, ID:, ..-, where
IDi contains the state of the k queue machine and the k + i queue symbols scanned by
the k queue heads and the input head at step i. First, check that the state in each ID
is consistent with the previous ID and check the correctness of the guessed input sym-
bol in each ID by scanning the ID’s and moving the input head when necessary. Then,
scan the ID’s again k times, each time simulating one of the k queues of the simulated
machine on the other queue. This simulation takes O((k + 1)n) O(n) time.

THEOREM 4.3. Three stacks can nondeterministically simulate k queues in linear time.
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Proof. Combine the ideas from the above two theorems; i.e., guess the computation
of the k-queue machine as before, and put the guess into one stack. Save this guess
also to another stack (but put a marker on the top). Then simulate a queue and check
the correctness of the guess. (The simulation needs two stacks; one of the stacks has
the guessed computation saved in the bottom.) After simulating one queue, retrieve the
guessed contents; again put it into two stacks. Repeat this process for each queue. [:]

Remark. It is a folklore fact, and easily verified, that one-queue machines accept
precisely the r.e. languages. In contrast, one-stack machines accept only CFEs. Hence,
one queue is better than one stack. However, when we have more stacks, more stacks
seem to be better than queues because they are more efficient. It was proved in [HM81]
that four stacks can simulate a queue in real time.

THEOREM 4.4. One queue can simulate k queues in quadratic time, both deterministi-
cally and nondeterministically.

Proof. This is similar to the simulation of k tapes by one tape by Hartmanis and
Stearns [HS65] (see [HU79, p. 292]). [3

This also relates to the interesting problem ofwhether two heads (on one tape) are
better than two tapes (each with one single head). Vitinyi [Vit84a] showed that two
tapes cannot simulate a queue in real time if at least one of the tape heads is within O(n)
cells from the start cell at all times. We saw that two stacks can simulate a queue in linear
time and four stacks can do this in real time. It would be interesting to know whether
two or three stacks can do this in real time. The question of how to deterministically
simulate k queues by two queues in O(n2) time, like the Hennie-Stearns simulation in
the tape case [HS66], remains open.

4.2. Lower bounds. We now prove optimal lower bounds for the above simula-
tions. Let L be the following language.

bob b2h23h2 b_ 3bk#bobo t’2t’lt’3 ’2i’i "2i+ lb(k-1)/2bk
4 3 4k4k3 k4 4 b3b4bob(k+l)/22(k+a)/2a b2imod(k+l) (2i+l)mod(k+l)’’" b-lbb a"

0,...,

all have format $x$, where x {0, 1}*
k is odd, and a {0, 1}* }.

When we prove the lower bound, all the will have the same length. The string
between the first & and second & can be obtained by copying bob1.., bk three times:

bobl bk #bobs... bk bobs.., bk,

and then adding one more copy of bob1"" bk by inserting block b after 2i blocks, starting
from #b0 in above. The superscripts on the bi’s are used only to facilitate later discus-
sions. L can be considered as a modified version of a language used in [Maa85]. We have
added a string a on both ends. The purpose of a is to prevent the queue from shrinking,
since if we choose a to be a long K-random string, then before the second a is read the
size of the queue has to be at least about lal. We have to prevent the queue from shrink-
ing because otherwise the crossing sequence argument would not work. In addition to
the techniques in [Maa85], and [LV88], we will need the techniques introduced in this
paper to treat queues.

An alternative way to describe the language L is as follows. Let y and z be sequences
ofblocks inwhich each block is ofform $u$, where u E {0, 1 }*. Define intermingle(y)
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z if (1) the blocks of z in positions i 2 (rood 3) form the string y (zzzhz8
ylyzya’’ ") and (2) the remaining blocks of z form the string

Then, L {a&y#intermingle(y)&a y contains an even number of blocks}.
THEOREM 4.5. Simulating a deterministic two-queue machine with a one-way input

tape by a nondeterministic one-queue machine with a one-way input tape requires
(n2/log2n log log n) time.

Proof. We will show that the L just defined requires f(n2/log2n log log n) time on a
nondeterministic one-queue machine. Since L can be trivially accepted by a determinis-
tic two-queue machine in linear time, the theorem will follow.

Now, aiming at a contradiction, assume that a one-queue machine M accepts L in
time T(n), which is not in f(n2/log2n log log n). Without loss of generality, we assume
that M has a binary queue alphabet and that M accepts with a final state and an empty
queue. We use the same notation and definitions as in the previous section, e.g., Queue,
IQueue(t) I, h, h, ho, cycles, and crossing sequence.

Choose a large n and a large enough C such that C >> IMI / c and all the sub-
sequent formulas make sense, where IMI is the number of bits needed to describe M
and c is a constant given in Claim 4.9, which follows. Choose an incompressible string
X e {0, 1}2’, g(z) >_ IZl. Let X Z’Z", where IX’I IX"I n. Divide Z" into
k + 1 n/(C log log n) equal parts, X" XoXl..’xk, where each xi is Cloglog n long.
Considerawordw L, wherea-X, =xforl_<j_< 4, and0 < i <_ k. Fixa
shortest accepting path P of M on w. We will show that M takes 2(n2/log2n log log n)
time on P. Since n is linearly related to the size of the input, this will provide the lower
bound in the theorem.

Consider only the path P. Let g(n) C5 log2 n log log n. Let t be the time when
h, reaches the first &, t be the time h, reaches the second &, and t# be the time when
hn reaches #.

CLAIM 4.6. IQueue(t)l >_ n O(log n) for every t <_ t <_ t.
Proof. The proof of this claim is the same as that of Claim 3.3 and is omitted.
CLAIM 4.7. The number ofcyclesfrom time ts to t’ is less than n/g(n).
Proof. This follows directly from the previous claim. Each cycle is of length f(n)

and hence takes f(n) time. If M requires at least n/g(n) cycles from t to t:, then M
used f(nz/logzn log log n) time, which is a contradiction.

For each time t, we say that a substring s of the input w is mapped into a set S of
cells on Queue(t) if all the cells influenced by s on Queue(t) are in S.

CLAIM 4.8. Let k’ k/2 n/g(n). At time t#, Queue(t#) can bepartitioned into two
segments, S (t#) and S2(t#), such that k’ b s, say b

1 "", bik,, are mapped into $1 (t#)
and k’ other b’s, say b

3
., bjk,, are mapped into S2(t#).

Proof. Consider any cell co on the Queue(t#). By the nature of the queue and Claim
4.7, at most m n/g(n) b’s can influence co at t# because M made no more than m
cycles on the queue fromt to t#. Hence, for any partition of Queue(t#) into two parts,
S (t#) and Sz(t#), there can be at most 2m b blocks, each influencing both S (t#) and
S2(t#). Each of the rest of the k + 1 2m b blocks either influences only S(t#) or
influences only Sz (t#). It is now trivial to build S and Sz by moving the border cell by
cell until the claim is satisfied.

Now, let S (t#) and S(t#) be as specified in the previous claim. At any time t, let

3Here, as in the previous section, the language does not have a string of each length. The proof provides
an input that causes the machine to take a long time for each length that has at least one string in the language.
To produce a hard string for each length, just add a finite padding in the definition ofthe language; for example,
allow markers to repeat up to four or five times.



THE POWER OF THE QUEUE 709

Sl(t) be the part of Queue(t) influenced by S(t#) and let S2(t) be the complementary
region on Queue(t). Let Sx be the set of all cells on the tape influenced by S(t#) and
$2 be the other cells.

The next claim is a simple generalization of a theorem proved in [Maa85, Thm. 3.1].
The proof of the claim is a simple reworking of the Maass proof and is hence omitted.

CLAIM 4.9. Let S be a sequence of numbers from 0,..., k, where k 2 for some
1. Assume that every number b {0,..., k} is somewhere in S adjacent to the numbers
2b (mod k + 1) and 2b (mod k + 1) + 1. Then, for every partition of {0,..., k} into
two sets G and R such that [GI, IRI > k/4, there are at least k/(c log k) (for some fixed c)
elements ofG that occur somewhere in S adjacent to a numberfrom R.

A k/v/log k upper bound corresponding to the lower bound in this claim is contained
in [Li88]. A more general, but weaker, upper bound can be found in [Kla84].

Remark 4.1. For each word w L, the sequence of the subscripts of the substrings
(in the order they appear) in w between the # sign and the second & satisfies the re-
quirements in Claim 4.9. For example, given k, such a sequence is formed by inserting i
after 2ith number, i 0, 1,..., k, in the following sequence:

O, 1,2,...,k, 0, 1,2,-..,k.

Therefore, each number is adjacent to 2i (mod k + 1), and 2i + 1 (mod k + 1). In
what follows we will also say that a pair of bi blocks are adjacent if their subscripts are
adjacent in the above sequence.

CLAIM 4.10. At time t’, the bi’s between #and the second & are mapped into Queue(t’)
in the following way: either

1. a set, S1, of k/(3clogk) bj s, which belong to {bJl,... ,bjk,}, are mapped into

Sl (t); or
2. a set, , ofk/ (3c log k) bi s, which belong to {bZI "", bik, }, are mapped into S(t’),

where c << C is the small constant in Claim 4.9.
Proof. By Claim 4.7, from time t# to t, M makes fewer than n/g(n) cycles. Hence,

ho can alternate between $1 and S fewer than 2n/g(n) times. Each time ho alternates
between S1 and S, ho can map at most one adjacent pair of b{ blocks into both S1 (t)
and Sz(t’). All other pairs are each mapped totally into S1 (t) or totally into S(t).
There are O(k) such pairs in L.

Combining Claim 4.8, Claim 4.9, and Remark 4.1, we know that there are at least
k/c log k-n/(C5 log2 n log log n) pairs of blocks such that each of these pairs contains
a component belonging to G {b ,.--, b, } and another component belonging to R
{/)1.3, "’, b, }. Most of these pairs, except n/g(n) of them by the previous paragraph,
are mapped either totally into S1 (t) or totally into S(t’). Hence, either (1) or (2)
must be true.

Without loss of generality, assume that (1) of Claim 4.10 is true.
CLAIM 4.11. Let t,a be the time M accepts. [Queue(t,a)l O. Then there exists a

time t < tl < tend such that [Queue(tl)l < n/(C5 logn) and from t to t M made
fewer than n/(C5 log n log log n) cycles.

Proof. Otherwise M spends f(n2/(log2 n log log n)) time, a contradiction.
CLAIM 4.12. There also exists a time to <_ ts such that [Queue(to)[ <_ n/(C5 log n)

andfrom to to t M madefewer than n/(C5 log n log log n) cycles.
Proof. Note that by Claim 4.6 [Queue(ts)l > n O(log n). Thus, we can choose to

to be the last time step before ts such that [Queue(to)[ <_ n/(C5 logn). Hence, if the
claim is not true, M would spend (n2/(log2 n log log n)) time, a contradiction.
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By Claim 4.7 the number of cycles M made from ts to t is less than n/9(n). By
Claims 4.11 and 4.12 M made at most n/(C5 log n log logn) cycles from time t to tl
and from time to to t. Hence, the length of the crossing sequence at the boundary of
$1 and $2 from t to tl is shorter than n/C4 log n log log n. For every j, if a b E 1 for
some k, then b is mapped into $2 by Claim 4.10.

Now we describe a program that reconstructs X with less than IXl information.
The program uses Queue(to), Queue(t1), the crossing sequence around $1, the string
X where the b blocks have been deleted, and the relative position of those b blocks.

Consider every Y such that IYI IXl and Y a Y0"’ for some y0" y.
1. Check if Y is the same as X at positions other than those places occupied by

b3k. E1.

2. If (1) is true, then construct the input wy the same way w was constructed except
with xi replaced by yi for i 0, 1,..., k.

3. Copy the contents of Queue(to) on the queue. Then simulate M from to to
t such that hr never goes into $9.. Whenever hr reaches the border of Sz it
compares the current ID with the corresponding one in the crossing sequence.
If they match, then Mjumps over S and, starting from the next ID on the other
side of S, M continues until time tl. At time tl, compare the actual queue with
what it is supposed to be. Accept Y if everything worked correctly.

4. This computation will accept if and only if Y X. If it is not the case, we could
compose an accepting computation on M for the string where the bJ blocks
correspond to those in Y and the other bj blocks correspond to those in X.
This can be done in a way very similar to what was done in Claim 3.15. The
details are omitted here.

The information we used in this program is only the following:
1. X 1, plus the information to describe the relative locations of b) 1 in X.

This would require at most

IXl- Illlbl + 0(111 log(k/lll)) 2n -IllCloglogn + O(111 loglogn)

<_ 2n- ([SllCloglogn)/2

< 2n n/C2 log n,

where in the first line the second term is for the bj’s in $1, the third term is for
the information to describe the relative positions of b SI" To represent Sll
elements of {0, 1,.-., k}, sort the elements, determine the sequence of their
differences, and use a self-delimiting encoding of the natural numbers to write
each difference. The final encoding has approximately O(ISI[ log(k/[Sl)) bits
(see, for example, [LV88], [Lou84], [Eli75]).

2. Description of the crossing sequence, of length less than n/(Ca log n log log n),
around $2. Again by the above efficient encoding method, this requires at most
n/(C3 log n) bits. The detail of this encoding can be found in [LV88]. The idea
is as follows: Each item in the c.s. is (state of M, bin’S position). Trivial encoding
of n/(C4 log n log log n) long c.s. needs n/(C log log n) bits. However, we can
use the above method and encode only the differences of hn’S positions and
thus use fewer than n/(C3 log n) bits.

3. Description of the contents of S at times to and tl. But, for i 0, 1
IQueue(t)l <_ n/(C5 logn).

4. Extra O(log n) bits to describe the program discussed above.
The total is less than 2n n/(Clogn). Therefore, K(X) < IX], a contradiction. [3
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COROLLARY. Simulating two deterministic tapes by one nondeterministic queue re-
quires )(n2/log2 n log log n).

Proof. L can also be accepted by a two-tape Turing machine in linear time. [3

THEOREM 4.13. To simulate two deterministic queues by one deterministic queue re-
quires ft n2) time.

Proofidea. Define a language L1 as follows (a,x, y E (0, 1}*).

L1
Xp

{a&xl$x2$’’’$xk#y$’’’$Yl(lil,lJl)(li2,1J)’’’(lis,1iS)
yq; (p=i+...+it, q=jl+...+jt) andl<_t<_s}.

L1 can be accepted by a deterministic two-queue machine in linear time. Using the
techniques in the above theorem and in [LV88], where it is proved that one deterministic
Turing machine tape requires square time for this language, it can be shown that L
requires f(n) for a one-queue deterministic machine. We omit the proof. [q
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MAXIMUM SIZE OF A DYNAMIC DATA STRUCTURE: HASHING WITH LAZY
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Abstract. The dynamic data structure management technique called hashing with lazy deletion (HwLD)
is studied. A table managed under HwLD is built by a sequence of insertions and deletions of items. When
hashing with lazy deletions, one does not delete items as soon as possible but keeps more items in the data
structure than would be the case with immediate-deletion strategies. This deferral allows the use of a simpler
deletion algorithm, leading to a lower overhead--in space and timenfor the HwLD implementation. It is of
interest to know how much extra space is used by HwLD. This paper investigates the maximum size and the
excess space used by HwLD, under general probabilistic assumptions, by using the methodology of queueing
theory. In particular, for the Poisson arrivals and general lifetime distribution of items, the excess space does
not exceed the number of buckets in HwLD. As a byproduct of the analysis, the limiting distribution of the
maximum queue length in an MIG[c queueing system is also derived. The results generalize previous work
in this area.

Key words, dynamic dictionary storage, hashing with lazy deletion, maximum queue length, MIGIo
queue

AMS(MOS) subject classifications. 60K30, 68A50

1. Introduction. The purpose of this paper is to present a thorough analysis ofhash-
ing with lazy deletion (HwLD) in a general probabilistic framework. An item arrives at
a hashing table and needs to be stored for some period (the item’s lifetime). Different
probability models for arrival and lifetimes are discussed later. We always assume that
the assignment of items to the H buckets of the hashing table is uniform: That is, each
item has probability 1/H to select each bucket, independent for different items and in-
dependent of the arrival and lifetimes.

The strategy of HwLD was proposed by Van Wyk and Vitter [22]. The principle of
HwLD is very simple: An item in a bucket is not deleted as soon as possible (i.e., when
its lifetime expires). Instead, the item is removed at the first arrival to the item’s bucket
after the item’s expiration time. The point is that algorithms that delete items as soon
as possible may have unacceptably high overhead, even though they require less storage
space for the items themselves. In other words, there is a tradeoff between the time
overhead incurred by immediate deletions and the space overhead that accrues if the
time overhead is kept small. For more details concerning HwLD and its applications the
reader is referred to [16]-[18], [22].

A natural problem is to examine how much storage space HwLD requires and to
compare it with the storage space of a standard hashing strategy that we shall call hash-
ing with immediate deletion (HwlD). A particularly intriguing problem is to estimate
the amount of excess space used by HwLD. Let UH(t) and NH(t) denote the number
of items at time t in a table with H buckets, used for HwLD and HwlD, respectively;
think of this notation as a mnemonic for the "used" and "needed" amounts of space.
The term "table size" will be conventionally used to denote either of these quantities.
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Let Wn(t) Un(t) Nrz(t) be the space that the HwLD wastes at time t. We in-
vestigate the (expected) instantaneous difference E[Wn(t)] and the difference between
E max0<t<T UH(t) and E max0<t<7" Nl(t). These two differences are called the (ex-
pected) "wasted space" and "excess space," respectively. Also, there is interest in eval-
uating ma,x0<t<T Nn(t) and rnax0<t<7, UH(t) themselves. To motivate this further we
noteafter Van Wyk and Vitter [22]that Nn(t) can. be interpreted as the number
of "live" items at time t, regardless of the hashing strategy implementation. In other
words, Nn(t) is the minimum space requirement for any algorithm that maintains Nil(t)
items in the data structure at time t. For such problems the quantity max0<t<7, Nn(t)
is a lower bound on the space requirement, and max0<t<7, UH(t) is the correspond-
ing space used by hashing with lazy deletion. We shall show that both display simi-
lar growth with respect to the traffic intensity and time. Furthermore, the difference
max0<t<7’ Utt(t) ma,x0<t<7, Nn(t) will be shown to be small in a sense we detail later.
Hence, the HwLD strategy can be said to be near optimal in terms of storage-space re-
quirements [22] and very attractive in terms of time complexity because of its low over-
head cost. We study these and some related questions in this paper (cf. also [2]).

Although this paper adopts a queueing-theoretical approach, its approach differs
from the traditional queueing analyses in some important aspects. Our look at the prob-
lem resembles that by Morrison, Shepp, and Van Wyk [16]; that is, we first consider a
model suitable for a single bucket, and then we analyze the complete model, involving
a (finite) number of such buckets. We use a natural sample-path approach that readily
gives answers concerning the average wasted space problem in HwLD. To study the excess
spacewe have to evaluate the maximum queue length in GIIGIc queueing systems, and
we prove some new results concerning this maximum. In passing, we note that although
we consider only hashing tables, the evaluation of maximum queue lengths might be
useful for the analysis of several other data structures. Our methodology can be applied
in studying dynamics of data structures that share some features with queues, namely,
structures that are built during a sequence of insertions and deletions [9], [14], [15]. We
mention here dictionaries, linear lists, stacks, priority queues, and symbol tables [3].

The literature on HwLD is rather scanty. As mentioned previously, HwLD was
introduced by Van Wyk and Vitter [22]. Under exponential/exponential interarrival/life-
times assumptions (MIMI model) they proved that EU(t) ENd(t) H. For the
same model, Morrison, Shepp, and Van Wyk [16] estimated numerically the distribution
of max0<t<7, UH(t), and from these numerical analyses they conjectured that the dif-
ference E{max0<t<7, Urn(t)} E{max0<t<a N(t)} o(n). In two recent papers
Mathieu and Vitter [17], [18] proved this conjecture for an MIGI model by using an
interesting (and rather complicated) probabilistic approach. In addition, [18] establishes
the rate of growth for the maximum queue length in an MIGIo model. Some prelimi-
nary results concerning HwLD are also presented in Szpankowski [21]. Our results pro-
vide generalizations in various directions. First, we investigate the most general GIIGI
model and obtain basic results in this setting. In particular, we show how they differ from
the MIGI model. We prove--as conjectured--that indeed EUt(t) ENn(t) H
in the MIGIc model of HwLD (see also [18]) but not in the GIIMIc model (Theorem
1). Next we consider the maximum table size under HwLD and prove that in general

1A typical single queueing model is that of GIIGIc, where the first G stands for general (arbitrary) interar-
rival time distribution of items (customers), the second G denotes the general (arbitrary) lifetime distribution,
and the final c represents the number of servers. When an I is atfaxedto the first G it signifies that the inter-
arrival duration distribution is sampled independently each time. Finally, MIGIc denotes the specialization
in which the arrival time process is Poisson with rate ,k, and GIIMic denotes the specialization in which the
lifetime distribution is exponential (#), with an infinite number of servers [13].
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maxl<k<, UH(Tk) O(1Og n), where T is the arrival time for the kth item, and in par-
ticular for MIGIo (see also [18]) max<<, UH(T) logn/loglogn (Theorem 2).
Finally, we deal with the excess space and prove that in the MIGI model of HwLD,
Pr{maxl<<, UH(Tk) maxx<k<, NH(T) > n + 2} 0 as n [Theorem 3(i)].
To derive this result we need to obtain sharp asymptotics for the distribution of the max-
imum queue length in an MIGI queue (Theorem 6), which seems to be a new result.
We have also one result on the excess space for the general model without any probabil-
ity assumptions on arrival and lifetimes. For large H and npolynomially large in H, we
show that Pr{max0<k<n UH(Tk) maxo<k<n NH(Tk) n + O(v/n log n)} o(1) for
large n [Theorem 3(ii)].

The paper is organized as follows. In the next section we formulate a probabilistic
model of HwLD and state our results. Section 3 contains the proofs of those results
that deal with the maximum size. These proofs require us to investigate the asymptotic
distribution of the maximum queue length in a queueing system with an infinite number
of servers. Finally, in 4 we sketch future research directions that aim to get a more
realistic approach to the maximum size of dynamic data structures.

2. Statement ofresults. We consider a table managed underHwLDwith H buckets.
Items arrive at arbitrary times 0 < TX < T < .... Let r/(t) represent the number
of arrivals up to time t. An arriving item selects one out of the H buckets at random
(with uniform probability) and joins the items assigned to this bucket. The kth item has
a lifetime (required storage time) Sk > 0. Under HwID, the kth item is removed at
time T + Sk. Let NH(t) be the total number of items in the hash table at time t under
HwlD, and let N( (t) be the number in bucket i. Under the HwLD scheme with the
same arrival and lifetimes, let UH(t) be the total number of items in the hash table at

time t and let U (t) be the number in bucket i. Let WH(t) UH(t) NH(t) denote
the wasted space.

From the verbal description of HwLD and Fig. 1, we see the following sample path
relationship in each bucket i and at each time t:

(2.1) U) (t) N [ (’)kT4(t)-) + 1,

where T
() denotes the time of the last arrival to bucket i before time t. Note that,

strictly speaking, (2.1) holds only after the first arrival of a customer to the queue. Thus,
N(i) [ (i)
H T(t)--. denotes the number of items in bucket i with unexpired lifetimes immedi-

ately before the time of the last arrival to bucket i before t (i.e., the number seen by that
arrival). Summing over buckets,

H

u.(t) (’)
T(t)--) + H.

i--1

Equations (2.1) and (2.2) are similarly restricted: (2.2) holds only after every bucket has
had an arrival. Thus, (2.2) expresses the number UH(t) of items used by HwLD in terms
of the queue-length processesN (t) in individual buckets with immediate deletion.

So far we have made no assumptions about the arrival and lifetimes, and in this
generality we have only one result [Theorem 3(ii)]. For the other results we introduce
probabilistic models for the arrival and lifetimes. In the GIlG[oe model the interarrival
times (k Tk Tk--1 are assumed to be strictly positive independent and identically dis-
tributed (i.i.d.) random variables with mean l/A, and the lifetimes Sk are also assumed
to be strictly positive i.i.d, with mean 1/#. Let p A/# denote the traffic intensity.
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Queue
Length __U_(t)._ lazy deletion

N(t) immediate deletion

L[ w{,)!

time

FIG. 1. Relationship between NH (t) and UH (t;) in a single bucket.

We state our results for the stationary versions of these processes. An alternative
is to assume the table starts empty. The results about asymptotic maxima [Theorem 2
and Theorem 3(i)] are unchanged, whereas Theorem 1 would hold with NH and UH
interpreted as the limit (t ) in distribution of NH(t) and UH(t). Note that this limit
exists under weak technical assumptions using regeneration arguments [11].

It is important to note that the processes N() (t) are in general dependent as the
bucket i varies (and similarly for U()(t)). The MIGIo model is an exception: by the
"independent sampling" property of the Poisson arrival process, what happens in differ-
ent buckets is independent.

Nowwe are ready to present our results concerning HwLD. We concentrate on com-
paring it with HwlD.

THEOREM 1 (STATIONARY DISTRIBUTIONAND MOMENTSOFTHETABLE CONTENT).
Consider the stationary GI[GIc model ofHwLD. Let UH and NH be the limiting random
vadablesfor UH(t) and NH(t). Let N() (T()-) denote the number ofitems seen in bucket
i by an item arriving in bucket i in the corresponding immediate deletion model

(i) In the GIIGIc model,

(2.3a) Pr{UH k + H} Pr Z N(i) (T(i)--) k k >_ 0
i:1

and

(2.3b) EUH H(1 + EN(i)(T(i)-)) for any fixed i.

(ii) In the MIGIo model, UH H and NH each have Poisson (p) distribution; that is,

pk
(2.Zc) Pr{UH k + H} e-p- k > O.

k!’
So, in particular,

(2.3d) EUH ENH + H,
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(2.3e) varUH vaxNH.

(iii) In the GIIMI model,

(2.3f) EUH
I A*(Iz) ENH + H,
p 1- A*(IZ)

where A* (#) Ee-’ and is the interaval time.
Remark. Note that (2.30 implies that (2.3d) does not in general hold for non-Poisson

arrival processes.
Proof. Part (i) is immediate from (2.2). For (ii), NH has the stationary distribution

of the MIGI queue, which is well known to be Poisson (p). Applying (2.1) to bucket
i and using the PASTA2 property, we see that U(i) 1 has Poisson (p/H) distribution.
Summing over buckets (and using independence between buckets) gives (2.3c), which
immediately implies (2.3d, 2.3e). This was also obtained in [18] in a rather different and
more complicated manner.

To prove (iii), note that in the GIIMIoc queue ENH p [23, p. 348]. So, in view of
(2.3b), what we need to show is

A*(Iz)/HEN(i)(T(i)-)
1 A*(IZ)"

Now the immediate-deletion process in the given bucket is the GIIMI queue with a
different interarrival time, say . Let A* (u) Ee-. A standard computation [23, p.
348] (conditioning on all previous arrival times) gives the probability-generating function
(pgf) of N() (T()--)"

EzN(*) (r()-) exp
/i.,

log z
1

In particular,

EN()(T()-)
1 A* (/z)

Now, is a sum of a geometrically distributed number of interarrival times j"

G

j=l

P(G g) H-l(1 l/H)g-l, g>l,

and a brief calculation gives

A*(Iz)/H
1 A*(/z)(1 l/H)"

Substituting this into the previous formula leads to the desired equation, completing the
proof of Theorem 1. [3

2pASTA stands forPoissonArrivals Sees TimeAverage, and this implies that the time-stationary distribution
of the queue length is the same as the customer-stationary distribution, that is, as seen by an arriving customer.
More details can be found in [23], mainly in 5.16.
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Our main results concern the maximum table size over long time intervals. Note
that the time of attainment of the maximum (for either Nn(t) or Un(t)) must occur
immediately after some arrival. Thus, we can state Theorems 2 and 3 in terms ofmaxima
seen at arrival times, and the results remain true also ifwe interpret the maxima as taken
over the entire corresponding time intervals--up to a difference ofone, since in the latter
case the arrival is counted as well.

The first result of this type defines the order of growth with time of the maximum
occupancy of the table using HwLD. The proof is given in 3. To review some standard
notation, an bn means a,/bn 1, and for random variables Xn 0 in probability
(pr.) means Pr{IX, > e} 0 as n c for any fixed e > 0. The symbol [xJ denotes
the largest integer smaller than or equal to x.

THEOREM 2 (MAXIMUM SIZE OFA TABLEUNDER HwLD). (i) Foran MIGIo model
ofHwLD, suppose the lifetime S satisfies ES log2 S < oe. Then,

(2.4a) Pr{[an] + 1 _< max U(r) <_ [an] + 1 + H} 1 as n ee,
l<k<n

where {an } is a particular sequence defined below, which satisfies an log n/log log n.

(ii) Fora GIlGIoe modelofHwLDthemaximum table size satisfies max1<k<, UH(Tk
O(1Og n) in probability; precisely, as n oe

1
max UH(Tk) 0 (pr.),(2.4b)

log n l<k<n

provided the lifetime S satisfies Pr{S > x} O(e-)for some/ > O.
Remark. Part (i) implies that maxl<k<, UH(T) logn/loglogn (pr.) (also ob-

tained in [18]). It is plausible that the conclusion maxl<k<n UH(T) c log n/log log n
(pr.), for some c > 0, also holds for the GIIGIoe model under weak assumptions on
interarrival and service times.

The next finding is our strongest result, and it estimates the excess space that HwLD
requires in order to accommodate the same arrival process as HwlD. This result resolves
some open problems posed in [22] and [16]. It also says that under fairly general assump-
tions HwLD is near optimal. Indeed, we prove the following.

THEOREM 3 (LIMITING EXCESS SPACE). (i) In the stationary MIGIoe modelofHwLD,
as n --. oe

(2.5a) Pr{ max UH(Tk) max NH(Tk) > H + 2} --* 0,
l<k<n l<k<n

provided the lifetime S satisfies ES logz S < oe.
(ii) Consider HwLD with arbitrary (i.e., no probabilistic assumptions) arrival and life-

times. Then for n, H > 2, and b > H,

<k<n l<k<n 2b 2H

HI2

IfH is large and n is at most polynomially large in H, then the bound on the difference is
n +O(v/nlogn). Inparticular, Pr{max0<<n UH(T) max0<k<n NH(T) > H+ (2 +
e)v/H log n} o(1), for any e > O.

In summary, our results indicate that HwLD should provide a very attractive alter-
native solution for hashing implementations. In particular, under fairly general prob-
abilistic assumptions, the average storage space required by HwLD is not much larger
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than for ordinary HwlD (Theorem 1). We would assume this observation to hold for
a wider range of probabilistic models than those for which we could construct a proof.
Furthermore, with very high probability, the excess space incurred by lazy deletion is rel-
atively small compared with the space requirements of HwlD (Theorem 3). Although
it increases with the lifetime of the system, the rate of growth O(x/log n) is reassuringly
moderate. Since HwLD allows us to use data structures that have low space overhead,
we are led to the conclusion that HwLD is essentially optimal in terms of space and time
complexity. Note, however, that with small probability something may still go wrong
with HwLD. Indeed, it is not difficult to create realizations in which the arrival and life-
time processes interact to have time points at which the wasted space, i.e., the difference
UH(t) NH(t) assumes arbitrarily large values.

Finally, one usually interprets n - asymptotics as approximations for large finite
n. The results we report here sometimes need a more precise statement about the rela-
tion between the parameters. For example, some results would require n to be "super-
exponentially large in p" for the approximation to be valid. In such a case the asymptotic
results have limited practical importance. We shall comment on this difficulty and sug-
gest an alternative approach for its resolution in our concluding remarks in 4.

3. Analysis of the maximum size. In this section we prove Theorems 2 and 3 stated
above. Both theorems deal with the maximum size of a table under HwLD. In the course
of deriving these results we present some new findings concerning an asymptotic distri-
bution of the maximum queue length in an MlGIoc queue (Theorem 6).

3.1. Maximum size of HwLD. To obtain the required bounds on the table size
under HwLD, the following lemma, corollary, and theorem show progressively tighter
bounds on the maxima of sequences of identically distributed random variables. Lemma
4 and its Corollary 5 are a direct consequence of Anderson’s findings [5], but we bring
them here for convenience of reference.

LEMMA 4. Let X1, X2, be identically distributed discrete, possibly dependent ran-
dom variables with common marginal distribution function F(
belongs to the set Af ofnonnegative integers. We denote M, =_ maxl<k<, Xk.

(i) Let

(3.1) F(z) < 1 for

and assume a function y(z, b) exists, such thatfor anypositive integer b EAf+ the distribu-
tion function F z satisfies

(3.2)
1 F(b + x)
1- F(x)

g(x’b)’

where lim g(x, b) 0 (that is, the distribution ofXi has a superexponential tail). Also,
let a be the smallest solution ofthe following characteristic equation

(3.3) nil F(an)] 1.

Then,

(3.4) Pr{Mn > /a,J + 1 + b} O(g(an, b))

3Since the distribution function is only piecewise continuous with jumps at the integers, (3.3) may not be
satisfiable for any n. We define then a "solution" of (3.3) by embedding the discrete random variables in a
continuous version with a distribution that coincides with F(x) at the integers. Following [5], let G(x)
1 F(x), h(n) log G(n), and hc(x) h( [xJ + (x [xJ )(h( [x/+ 1) h([x/)). Then the continuous
complementary distribution Gc(x) exp[-hc(x)] is the functionwe use; an is the solution ofGo(an) 1In.
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In other words, Mn < [anJ + 1 (pr.).
(ii) If X1, X2, Xn are independent random variables satisfying the above hypothe-

ses, then

(3.5a) Pr{M < x} exp(-n[1 F(x)]) --, 0 as n, x -- o
and

(3.5b) Pr{Mn La.J + I or La.J} 1 O(g(an, 1)) --+ 1 as -- cx3,

where a, solves (3.3).
Proof.
(i) Equation (3.4) follows directly from Boole’s inequality and the superexponen-

tiality assumption (3.2); namely, for b E A/"+

Pr{Mn >_ [anJ + b + 1} _< n. [1 F(La, + b + 1)] O(g(an, b)) -- 0

when an cxz, which follows from (3.1) and (3.2). This sequence {an } is the one used
in the formulation of Theorem 2.

(ii) Let G(x) 1 F(x). Equation (3.5a) follows immediately from the observation
that Pr{Mn < x} Fn(x) and developing it as

Pr{Mn < x} e-nG() e-riG(z) (e-nG()(1/2+G(x)/3+’’’) 1).

It can be seen that either of the two factors on the right-hand side vanishes as z or n
increases.

For (3.5b) we note that since Mn assumes integer values only, we may write

Pr{Mn < JanJ} Pr{Mn < [anJ -} <_ Pr{Mn < an -}

for some 0 < e < i whether a is integer or not. Then from relation (3.5a) we have for
n large enough, where Go(z) is a continuous version of G(z) (see footnote 3),

Pr{Mn < [anJ} < exp{-nGc(an e)} exp {_Go(an-e)}Cc(an)

Since for Gc(x) the analogue of equation (3.2) holds for any b > 0, the last argument in
braces is unbounded as n o, and hence

Pr{Mn < [an]} o(1).

This, together with part (i), imply the result. [3

As a direct consequence of the above we show the following corollary concerning
the maximum of the Poisson process.

COROLLARY 5.
(i) Let (Xk; k > 1} be (possibly dependent) Poisson (p) variables. Let l(n) be a ran-

dom sequencepossibly dependent on the {Xk }, with I(n)/n c (pr.) as n , for some
finite c > O. Then there exists (an increasing) sequence Zn satisfying thefollowing:

Pr{ max Xk<xn}l.
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(ii) If {Xk, k >_ 1} are i.i.d. Poisson (p) distributed random variables, thenfor large enough
integers a and n

(3.6a) Pr(<k<nmaxX < a) exp(-ne-ppa/a!) --- 0 as n, a oo,

and

(3.6b) Pr ( <k<maxX [aJ + 1 or ta J } x 1 as n ---, oo.

For large n the sequence {a, } satisfies

(3.6c) an
log n p

log(log n p) log p
log n

log log n’

where a, is defined as the smallest solution ofthe equation

(3.7a) n
7(an, P)

1.

In the above, -y(x,p) ff tX-le-tdt is the incomplete gamma function and F(x)
7(x, oo) is the gammafunction 1].

Remark. By using the property P(X > x) P(X x) we can specify the sequence
in (3.6b) in an alternative way. Namely, (3.6b) holds with [anJ replaced by any integer-
valued sequence a, satisfying

ne-Opa’+2/(an + 2)! -- 0 and ne-Pp

and an "--+ 00.

Proof. Part (i) follows from the same arguments as in the proof of Theorem 3.2
in Berman [6] (see also [5, pp. 109-111], [10, Chap. 6.2]). In particular, by using the
partition arguments of [6] for any e > 0, we obtain Pr{maxl<k<z(,0 X > x,} < 2e +
nc(1 + e)Pr{X > x,}, as in the proof of Lemma 4(i). Putting Xn /a/,c + 2, with
a given by (3.6c), we establish part (i).

For part (ii), equation (3.6a) is immediate from (3.5a) on observing that Pr{X >
x} Pr{X x} as x oo (because of superexponentiality ofthe Poisson distribution).
Equation (3.6b) is identical to (3.5b), and for the value of a, one needs only to notice
that the tail of the Poisson distribution can be computed as (cf. [8]).

1 F(x) Pr{X _> x} Z. . r(x)

For an asymptotic solution of (3.7a) we follow [1, p. 262] and approximate the incomplete
gamma function as "y(x, p) ,. F(x)e-Pp/F(x + 1). Hence, for large n (3.7a) reduces to

e-ppa,
n.

+ 1)

Applying Stirling’s formula to the above, one finds

an e-p r
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This equation can be solved for large n by asymptotic bootstrapping, and this leads to
equation (3.6c). Finally, the evaluation of the function 9(z, 1) from Lemma 4 gives
9(z, 1) pz!/(z + 1)! p/z, and this gives (3.6b).

To prove Theorem 2(i) and Theorem 3(i) we need sharp asymptotic estimates for the
maximum queue length in an MIG[o queue. Recall that the queue length in MIGIo has
the stationary Poisson (p) distribution; however, the dependence of queue sizes at dif-
ferent times precludes the simple-minded use of Corollary 5. Note also that the queue-
length process in not Markov. We shall prove the following theorem and show that it,
together with Theorem 3(i), directly implies Theorem 2(i).

THEOREM 6. Let Xt be the queue length in the stationary MIGIo queue. Then, uni-
formly in to,

(3.8a) Pr sup Xt <_ a} -exp(-toAe-ppa/a!) 0 as a -- cx, t<_to

Now, letXk_ be the queue length Xtjust before the arrival time Tk. Then, with the sequence
an thatprovides the solution to (3.7a) wefind

(3.8b) Pr{max<k<nXk_=[anJ+lor[anJ}---l asn-ocx,

provided the lifetime S satisfies ES log S < .
Remark. One could reformulate (3.8b) to refer to a maximum on a time interval T.

This would lead to a similar right-hand side with an replaced by aLT
Proof. Consider first relation (3.8a). Fix an integer a. Call a time t with Xt_

a and Xt a + 1 an upcrossing time. Classify items in the queue as "cleared" or "un-
cleared" according to the following rules: (i) Each new arrival is "uncleared." (ii) When-
ever the number of "uncleared" items increases to a+ 1, all these a/ 1 items are declared
"cleared" (call such a time a clearing time). There is a stationary version of this process,
and for this stationary version define Xt total number of items at time t and X’
number of uncleared items at time t.

Of course, Xt by itself is the MIGIo queue. Also, (X) by itself can be regarded as
the process that behaves like the MIGI queue with the following modification: When
an arrival makes the queue length equal to a / 1, all items in storage are removed. The
purpose of the joint construction is to obtain the following property: (iii) The set of
clearing times for X’ is a subset of the set of upcrossing times for Xt. To see why, let t
be a clearing time and let to be the last time before t that the queue was empty. Then
Xt X on to < t < t, so t is an upcrossing time for Xt.

Write q(a) for the chance that a typical upcrossing time of X is a clearing time of
X*. Then

rate of clearings of X’ 1 a!
q(a)

rate of upcrossings of Xt EoT+ ie-p

where Ta+l denotes the first hitting time

Ta+ min{t Xt a + 1}

for the MIGI process and E0 (and later Pro) indicates quantities that refer to a process
started at state 0 (i.e., empty). By (iii), q(a) < 1. The key fact, proved in the Appendix
by a different argument, is the following lemma.
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LEMMA 7. Provided ES log S < , we have q(a) i as a o.
Because the MIG[o queue regenerates at state 0, a standard argument [12] gives

an exponential limit distribution for hitting times:

Pr0{Ta+l > sEoTa+I} e-8 as a oc, uniformly in s.

This implies that the point process of clearing times of X*, with time normalized by
EoT+x, converges (as a oc) to a Poisson point process of rate 1. Lemma 7 now im-
plies that the point process of upcrossings of the stationary queue Xt undergoes the same
convergence. In particular, the (rescaled) time of the first upcrossing of Xt converges in
distribution to the time of the first event of the Poisson process:

Pr{Ta+l > sEoT+I} e- as a , uniformly in s

(which differs from the previous assertion, because it concerns the queue started with
the stationary queue-size distribution rather than a queue started empty). The unifor-
mity in (3.9) and below is a consequence of the elementary fact that, in the context of
convergence of distribution functions to a continuous distribution function, pointwise
convergence implies uniform convergence.

Defining s s(a, to) by
a

we can restate (3.9) as

S --t0Ae-ppa

Pr{T+I > 8EoTa_t_I} exp(-toAe-Pp/a!) 0 as a -- cx, uniformly in to.

Now sEoT+l to by Lemma 7, so

Pr{Ta+ > to} exp(-toAe-Pp/a!) 0 as a oc, uniformly in to.

But this gives (3.8a), since the events {Ta+l > to} and {mazt<to Xt <_ a} are the same,
provided X0 < a.

Equation (3.8b) is an immediate result of (3.8a) and the definition of a, [cf. (3.7)],
since it provides for Pr{M, > /a,/- 1} 1 and Pr{M, < ka,J + 2}--, 1.

The rest of this subsection is devoted to the proof of Theorem 2(ii) regarding the
size of HwLD under the GI[GI model. Our result will follow easily from the following
estimate of the tail of the queue length in a GIIGI queue.

LEMMA 8. In the stationary GllGIoc queue, let N be the number ofcustomers seen by
an arriving customer. Then

Pr{N > n} o(cn) as n oc, for every c > 0

provided the lifetime S satisfies Pr{S > x} O(e-/x) for some > O.
Proof Consider the stationary queue, conditioned on an arrival at time TO 0. The

nprevious arrivals were at times (--T,--T,...), where T, -]= , and the are the
interarrival times. Write G(x) Pr{S > x}, where S is the lifetime. The distribution of
N, the number of customers seen by the arriving customer at time 0, when the previous
arrival times are given, can be described as follows:

For given (T, T2, .), N is distributed as
i--1

where the Ai are independent and Pr{Ai} G(Ti).
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(Here A is the event that the customer who arrived at time -r is still present at time
0.)

Now fix to > 0. Split N as N + N, where N is the part of the sum 1A, over
those i with r < to and where N is the part of the sum 1A, over those i with r > to.
Obviously,

N <_ N1 max{n: Tn < tO},

and N6 has distribution described as follows:

For given (T1, T2,...), N is distributed as E 1A,,
i=N1+

where the A are independent with Pr{A} G(T).

Now, the process (Tgl+i tO; i > 1) is just a delayed version of the renewal process
(T;i >_ 0). (Delayed means there is not necessarily an arrival at time 0.) By using the
natural coupling between this delayed process and the undelayed renewal process and
th6 fact that G(.) is decreasing, we can represent N <_ N2, where N2 has distribution
described as follows:

For given (TO, T, T2,...), N2 is distributed as E 1A,
i--0

where the A are independent with Pr{A} G(to + Ti).

Thus, N < N + N2, and we analyze these terms separately.
We first show

(3.10a) Pr{N1 > n} o(c’) as n cx, for every c > 0.

Indeed, given a, consider K sufficiently large that Pr{ < to < c/2. Such a K exists
because Pr{ > 0} 1. Then, as n cx

Pr{N1 >_ n} Pr Ei <_ to < Prn-K{ < to/K} o(2Pr{ _< to/K}),
where the inequality above is a simple consequence of the fact that at most K of the ’s
can exceed folK. This implies assertion (3.10a).

Now consider N2. A standard method (see, e.g., the discussion of large deviations in
[7, 1.9]) of obtaining exponentially small tail bounds on an r.v. is by studying the moment
generating function. In particular, we can use the general inequality Pr{X _> a} _<
E[g(X)]/g(a), which holds for any nondecreasing function g(.). Set g(x) exp(x);
then Eg(X) is the moment generating function of X. The idea of the following proof
is to show that Eg(N2) O(1), and then Pr{N2 > n} O(exp(-(to)n)) for some
(t0) as to .

By hypothesis about the lifetime distribution, there exist A < oc and/3 > 0 such
that

G(x) < Ae-x for all x.

Choose -y < such that

(3.10b) 7Ee-z < 7- 1.
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LEMMA 9. For all sufficiently small 0 > O,

E exp 0 e-’ _< exp(O’).
i=0

Proof. See the Appendix. [3

Consider now > 0. Then,
(3.10c)
E exp(N21To, TI,...) I-Iio(1 + (e 1)G(to + Ti)) <_ I-[i=0(1 + (e 1)Ae-te--’)

_< exp((e 1)Ae-t -oe-" )"

Now it is straightforward to find a function such that (to) --, c as to ---, and also
such that

O(to) (e(t) 1)Ae-t 0.

Taking expectations over the arrival times in (3.10c) and applying Lemma 9,

E exp((t0)N ) _< exp(0(t0)- ).

We have from the moment generating function approach, as n ---, ,
Pr{N >_ n} O(exp(-(to)n)).

Recall N < N1 + N2. Putting a exp(-(t0)) in (3.10a),

Pr{N >_ 2n} _< Pr{N _> + Pr{N _> n} O(exp(-(to)n)),

as n . This establishes Lemma 8, because (t0) c. [3

Returning to the proof of Theorem 2(ii), consider UH(t), where the number H of
buckets is a fixed constant. By (2.2), for any 1 < i < H with k < n,

UH(Tk) <__ H max N)’(Tj()).
<_j <_n

Hence, Pr{UH(Tk) > n} o(an) as well. It follows easily that Pr{maxl<k<n UH(Tk) >
an} n. o(aa"), for any a > 0. Pick a, logs n, for arbitrary 0 < a < 1, to find
Pr{maxl<k<, UH(Tk) > logs n} n. o(1/n) o(1). This proves (2.4b), since a can
be arbitrary small.

3.2. Limiting excess space. We now turn our attention to the evaluation of the
excess space. We first prove Theorem 3(i) for a stationary MIGI model of HwLD and
then Theorem 3(ii) for arbitrary arrivals and lifetimes.

For an M[G[ model of HwLD, let UH(T--) denote the table size just before the
kth arrival. By PASTA, we see that UH(Tk--) H is distributed as UH(O) H, which by
Theorem l(ii) has the Poisson (p) distribution for each k. By applying Corollary 5(i), we
see

(3.11) Pr { max UH(Tk--) an +1 + H}l<k<n

where a, satisfies (3.7). Now NH(t) is the MIGI queue length process, and Theorem 6
provides sharp asymptotics for the maximum queue length in such a queue. Comparing
(3.11) with (3.8b), one immediately obtains (2.5a) of Theorem 3(i).
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Finally, we leave the realm of queueing models to prove Theorem 3(ii), which con-
cerns the case of arbitrary deterministic arrival and departure times. First imagine the
hashing table is empty at time 0. There are arrivals at arbitrary times 0 < T1 < 7"2’’- < T,

with departures at arbitrary times k > Tk. Fix n. The process NH(t) and the maximum
N* max<, NH(T) are deterministic. The onlyprobabilistic element is the choice of
bucket on arrival. We first argue that the general case can be reduced to a certain special
case. Regard the arrival times and assignments to buckets as fixed, but make the follow-
ing modifications. First, put N* items in the table at time 0, but make them all depart
before rl. Then repeat the following procedure: If there is some departure at some time
r/< r that causes NH(rl) N* 2, then choose the first such r/and delay the departure
until a time immediately after the first arrival T > /at which NH(T) N*. (If there is
no such time T, then the item stays forever.)

It is easy to show that after a finite number of such changes, there will be no such
departure time r/. We are then in the special case where NH(rI-) N* 1 and where
arrivals and departures alternate, so that NH(t) alternates between N* 1 and N* up
until time T. The point is that delaying an item’s departure cannot decrease any UH(t).
Theorem 3(ii) concerns an upper bound for max<, UH(r) in terms of N*. Going from
the general case to the special case can only increase the former quantity and leaves N*
unchanged. Therefore, it suffices to consider the special case.

Fix a time t just after an arrival, and look backwards in time from t. Let X be the
bucket that contained the ith-from-last departing item (before t). Let Y be the bucket
that contained the ith-from-last arriving item (before t). Write f(i) j to mean that the
ith-from-last departure was the jth-from-last arrival. Then f(i) > by the alternation
property. Let Bt be the number of excess items at time t. Such an item is one that was,
say, the ith departure before t but has not yet been removed by subsequent arrivals. This
requires

Xi is different from all of Y1, Y/.

Thus, Bt is exactly the number of i’s for which this holds. The next lemma abstracts the
structure of Bt. Theorem 3(ii) follows by applying this lemma to B UH(Tk) N*,
summing over k 1,..., n, and appealing to Boole’s inequality.

LEMMA 10. Let f { 1, 2, 3,...} { 1, 2, 3,...} be a one-to-onefunction with f >
i. Let (Y;i > 1) be independent, uniform on { 1,..., H}. Let Xi Yf(o. Let Ai be the
event

Xi is differentfrom all of Y1, Y.
Let B be the counting r.v. B ’> 1A,. Then, for b > H,

Pr{B>b}<2(H+b)b/2(2b 2H

Proof The proof uses the following martingale-type bound, which we prove first.
A good modern reference for martingales and a fields is [7, Chap. 4]. The martingale
Mn we use is the "multiplicative" analogue of the usual "additive" martingale associated
with a sequence of events, the latter appearing, e.g., in [7, Thm. 4.4.10].

LEMMA 11. Let Ai be events adapted to increasing cr fields (), > 1. Let B
Ei>I 1A,. Then

Pr{B > b} < 2,/inf z-bEDz
Vz>l
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where

Dz H E(zlA’I’T’i--)= H(1 + (Z- 1)Pr{Ait’i_})
i>1 i>1

where we have used the conditional version ofthe expansion Ez1A 1 + (z 1)Pr{A}.
Proof of Lemma 11. It is enough to prove the bound for fixed z > 1 such that

EDz < c. Write M0 1,

M, z’=l 1A, E(zlA’ 19’i--1),
i=1

n>l.

Then {M,} is a positive martingale. By the martingale convergence theorem [7, Cor.
4.2.11], M, converges a.s. to some limit r.v. M, and EMo < EMo 1. Plainly, M
"ought to be" equal to zn/Dz, and this is verified by noting that the denominator in the
definition of M, is increasing in n and converges a.s. to the a.s. finite limit D. Thus, we
have proved

(3.12) E(zn/D) < 1.

Thus,

Pr{B > b} _<

<

Pr{D>a}+Pr{B_>b, Dz<a} for anya>0

ED/a + Pr{zS/Dz >_ z/a} <_ ED/a + a/z by (3.12)
2V/z-bED putting a v/zbED.

We evaluate now the required infimum. Let -i be the a field generated by (Y; j <
i + 1) and (Xj; j < i). Then,

Pr{A[’_}-- V/H,

where V is the number of values not taken by Y1,..., Y. So for z > 1, the quantity D
is

(3.13) Dz_ii(l+(z_l)V/H)<exp(Z_li>oH E )V>_o

Now we can rewrite

H

(3.14) EV k,
i>0 k=l

where r/k is the waiting time for the process V to go from k to k 1. The r.v.’s r/k are
independent with (different) geometric distributions

Pr{?k u} (1 k/H)’- k/H, u>l.

(This is just the elementary argument for the classical coupon collector’s problem with
equally likely coupons.) The associated generating function may be written as

( )_1H(I_ 0-1(3.15) EOTM 1- 101 <
H

H-k
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Combining (3.13)-(3.15) gives

(ED)-I>- H 1---- 1-exp
H

k=l

Now, 1 -(1 e-) _> 1 a for a, > 0, and so each term in the product is
_> 1 (z 1). This gives

ED _< (2-z)-H, 1 < z < 2,

and by Lemma 11 we obtain

Pr{B _> b} _< 2V/l<z<2inf z-b(2- z) -H.

Elementary calculus gives the exact infimum at z 2b/(b+ H). Since the proof requires
z > 1, the lemma only holds for b > H. Theorem 30) indicates that lower values of b
are not interesting anyway.

4. Concluding remarks. Our main results of this paper concern hashing with lazy
deletion. In particular, we assessed the average wasted space, the (maximum) excess
space, the maximum space required by HwLD, etc. Our approach in 3 can be ex-
tended to evaluate data structures, such as lists, dictionaries, stacks, priority queues,
and sweepline structures for geometry and VLSI [20].

There is an important conceptual difficulty buried beneath our asymptotics. Con-
sider again a single MIGIo with the queue length denoted by N(t) and the arrival rate
by p. Consider the behavior of the maximum MT(p) max0<t<T N(t). Having in mind
the application to computer storage and VLSI, it is natural to suppose that p is at least
moderately large. Theorem 6 says

MT(p)
log T

as T --, oc, p fixed.
log log T

It is natural to interpret this as establishing an approximation

log T
(4.1) MT(p) for T large.

log log T

However, substituting T eo would give MT(p) p/log p, which is absurd because,
trivially, EMT(p) >_ p. Thus, if p 100, then e100 arrivals is not large enough for the
asymptotics to be valid! [In fact, a little more analysis shows that the approximation (4.1)
is valid asymptotically as T, p c ifand only if T increases superexponentially fast in
p.]

For practical applications it is much more sensible to consider T as being at most
polynomially large in p. Classical queueing theory has apparently paid no attention to
polynomial-time maxima. Mathieu and Vitter [17], [18] have initiated that type of anal-
ysis for HwLD. We have also obtained some results of this nature, which we may present
in a forthcoming paper. Let us mention one result for the MIG[oe queue, stronger than
those in [17], [18]. Qualitatively, the idea is that for large p, the standardized process
Y(t) =_ (N(t) p)/pl/Z behaves like the standardized Ornstein-Uhlenbeck process. So,
appealing to the known asymptotic behavior of the Ornstein-Uhlenbeck process, it is
easy to get a heuristic approximation in the spirit of [4], [14]:

(4.2) Pr{(MT(p) 0)/01/2
_

b} exp(-Tb(b)), b > 1,
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where (.) is the Standard Normal density function. Proving rigorously the sharp result
asserted in (4.2) seems difficult for technical reasons: The usual formalization by weak
convergence of processes gives this result only for T T(p) oc slowly with p. On the
other hand, a crude consequence of (4.2) is

MT(p) p + p/2(1/T),

where (.) is the inverse function of x(x), x > 1. The first term in the expansion of
(1/T) is v/2 log T. Thus, (4.2) would imply the muchweaker result: For T polynomially
large in p,

MT(p) p+ p/2(V/21ogT + o(1)).

This weaker result can be proved rigorously, under some additional assumptions.

Appendix.

A. Proof of Lernma 7. Lemma 7 asserted that q(a) 1 as a , where
q(a) is the chance that a typical upcrossing time of Xt is a clearing time of X’. Call
an upcrossing of Xt at t special if no item present at time t was present at the previous
upcrossing. Clearly, a special upcrossing time is a clearing time for X, so it suffices to
prove

q (a) chance that a typical upcrossing is not special 0 as a o.

It is conceptually easier to reverse time and consider downcrossings from a / 1 to a. A
downcrossing at t is special if and only if all the items present at t have departed before
the next downcrossing. Thus, a sufficient condition for a downcrossing, at t 0 without
loss of generality, to be special is that the queue length does not return to a / i before
the time L, at which every item present at time 0 has departed. So

q (a) < Pr{Xt a / 1 for some t < L},

where Pr denotes probabilities for the stationary process conditional on there being a
downcrossing from a / i to a at time 0.

Write

x, x,+ + xi-, t>0,

where Xt+ denotes items in storage at time t that arrived after time 0 and Xt-- denotes
items in storage at time t that arrived before time 0. We see that, under Pr,

(i) Xt+ is the MIGIo queue length process, started at 0;
(ii) (a- X/-) is the Poisson counting process of rate O(t) Pr{S > t}, conditioned

on the total number of events equaling a.
Now q’ (a) is further bounded by the sum of the following three probabilities.

(A.la) Pr, {Xt a + 1 for some t < to },

(A.lb) Pr{Xt+ > b(t)for some t >_ to},

(A.lc) Pr{Xt- _> a + 1 b(t) for some to _< t < L},
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where to and b(t), t > 0 are arbitrary.
Now it is easy to see that a X- o as a c with t fixed, and it follows that,

for fixed to, the probability in (A.la) tends to 0 as a c.
Next, if ci is a nondecreasing integer-valued sequence with its continuous expan-

sion c(t) 21ogt/loglogt, then (using easy Poisson tail estimates) Pr{Xi > ci}
o(i-2+), e > 0. This leads to an estimate for the stationary process X:

Pr{Xi < ci for all sufficiently large i} 1.

Let Ai be the number of arrivals during the interval [i, i + 1]. Since the (Ai) are inde-
pendent Poissons, Corollary 5 shows

for all sufficiently large i} 1Pr{Ai <_ ci

BecauseXt <X+Aoni<t<i+l, wefor suitable increasing integer-valued c
deduce

Pr{Xt>b(t) forsomet>t0}0 as t0,

where b(t) c( ltJ + c’( [tJ 3 log t/log log t. (In fact, a more careful argument shows
"3" could be replaced by "2.") Thus, the quantity in (A.lb) tends to 0 as to o, because
X+ is just the MIGIc process started empty, and so we can take Xt+ < Xt.

We are left with the problem of bounding (A.lc): Precisely, it suffices to prove

(A.2) lim lim sup Pr+ {Xt-- > a + 1 b(t) for some to < t < L} 0.
t0 --OO a---o

Since X/- > i for t < L, we may rewrite the probability as

Pr{X/- > max(l, a + 1- b(t))for some t >_ to}.

Consider the inverse function b-l(m) inf{t b(t) > m}. Since X/- is decreasing in t,
it suffices to check the inequality for t of the form b-1 (m), and the preceding probability
becomes

Pr+ {X--l(m) > a + 1 m for some b(to) <_ m <_ a} < EXLI()
a+l-m

m=5(to)

We now quote a standard fact. Let Nt be a Poisson counting process on 0 < t < o
with rate O(t) and such that f O(s)ds < c. Then,

E(UtlUoo a) a O(s)ds O(s)ds.

This follows from the fact [19, exercise 2.24a] that, conditional on No a, the positions
of these a points are distributed as the positions of a points chosen independent from
the distribution with distribution function F(t) f O(s)ds/f O(s)ds. By (ii) above,
we can apply this fact to Nt X[- to get

1oa- a O(s)ds O(s)ds

//oa O(s)ds O(s)ds aE(S- t)+/ES.
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Thus, the proof of (A.2) reduces to the proof of

a

lim lim sup
0 O a---4cx3

m’-b($o)
a+l-m

E(S-b-(m))+ =0.

Splitting the sum at a/2, we see it is enough to prove

E(S- b-(m))+ <
m=l

aloga E(S-b-l(a/2))+ ---0 asa--*cxz.

But these are simple consequences of the fact

log b-1 (m) 1/2m log m,
together with the inequality

E(S c)+ <
ESlg2 S

,c>l.
log2 c

This completes the proof of Lemma 7.

B. Proof of Lemma 9. Lemma 9 asserted that for all sufficiently small 0 > 0,

Eexp 0 e-r’ < exp(07).
i=0

Write Qn i0 exp(--flTi). Then we have the recursion

Qn+l d_d= 1 + e-Qn,

in which and Q, are taken independent. Consider some 00 > 0. If we can show, by
induction on n, that

E exp(0Q,) _< exp(0’7) for all 0 < 0 <_ 00,

then the Lemma 9 follows by letting n . If the above holds for n, then

Eexp(0Q,+l) eEexp(Oe-eQ,) by our recurrence

< eEexp(0e-e’7) by induction assumption.

To make the induction go through, we require this to be bounded by exp(0’7), and this
rearranges to the requirement

(A.3) E exp(0(e-"7 (’7- 1))) < 1, 0 < 0 < 00.

But this fact (for some 00) follows from the choice of’ in relation (3.10b), which implies
that the derivative at 0 0 of the left-hand side of (A.3) is negative.
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COMPLETE PROBLEMS AND STRONG POLYNOMIAL REDUCIBILITIES*

K. GANESAN AND STEVEN HOMEPt

Abstract. A set A is m-reducible to a set B if and only if there is a polynomial-time computable function

f such that for all x, a E A f(z) E/3. A set (7 is m-complete for a class $’ if C S and all sets in A’ are
m-reducible to C. One-reducibility and one-completeness can be defined by requiring f to be one-one. Two
sets A and/3 are p-isomorphic if the function f can be taken one-to-one, onto, and polynomially invertible. In
this paper it is shown that all the m-complete sets are one-one complete for DTIME(2(n)), NTIME(2(n)),
and the class of recursively enumerable sets. Further, all the sets complete for NTIME(2(n)) under 1-L (or
two-way DFA) reductions are p-isomorphic. All the m-complete sets for DTIME(2(n)) are p-isomorphic if
and only if all the m-complete sets for DTIME(2pIy) are p-isomorphic.

Key words, complexity classes, polynomial reductions, completeness
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1. Introduction. This paper studies intrinsic properties of complete problems for
a variety of complexity classes. Complete problems are central to complexity theory
and are ubiquitous in both the theory and the important examples. The most important
and most thoroughly studied complete sets are the NP-complete problems. Their study
makes up a major body of research in concrete complexity theory, one aspect of which
has concerned the structural properties of these sets. In particular, the isomorphism
conjecture of Berman and Hartmanis [BH77], which states that all the NP-complete sets
are polynomial-time isomorphic, has been important in this study. It has provided the
impetus for a large body of research in structural complexity theory over the past decade.

Although the conjecture is still far from being settled, there have recently been a
number of results exploring some of its generalizations and extensions. They can be in-
terpreted as indicating what the eventual outcome of the conjecture may be and what
methods may be used to attack it. The generalizations bear upon the structure of com-
plete sets for other complexity classes and for different effective reducibilities. Recent
important work in this area includes that of Ko, Long, and Du [KLD87] relating the ex-
istence of one-way functions to the isomorphism conjecture for exponential time com-
plete sets; the research of Kurtz, Mahaney, and Royer [KMR88] on generalizations of
the isomorphism conjecture to larger complexity classes; and the work of Joseph and
Young [JY85] and Watanabe [Wat85] on the structure of possible counter-examples to
the isomorphism conjecture and its generalizations.

This paper contributes to several aspects of this study. First, we compare complete
sets for the most common strong polynomial-time reducibilities, polynomial many-one
( < ) and polynomial one-one ( < ) reducibility. We carry this out for a number of
well-studied complexity classes. Second, we consider the consequences of these results
for the isomorphism conjecture for several often studied complexity classes as well as for
the class of recursively enumerable (RE) sets. Our approach comes from the well-known
result of Myhill [Rog67] stating that all the RE complete sets are recursively isomorphic.
This result was the progenitor of the research of Berman and Hartmanis and of their
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ported in part by National Security Agency grant MDA904-87-H-2003 and by National Science Foundation
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conjecture. Myhill’s Theorem is proved in two parts. All the RE many-one complete
sets are shown to be one-one complete. Then, all the one-one complete sets are proved
to be recursively isomorphic.

Turning to the polynomial-time analog for NP sets, the equivalence between many-
one and one-one completeness for polynomial-time reducibility is not known. For de-
terministic linear exponential-time (E) complete sets, Berman [Ber77] proved that any
polynomial-time many-one complete set is polynomial-time one-one complete. In 3,
we present a new and extremely simple proof of this theorem. We also prove a "transfer
theorem" that says that the isomorphism conjecture holds for E if and only if it holds
for DTIME(2ply). This is the first result of this kind, and it would be most interesting
if similar results could be proved for nondeterministic classes as well.

This same question concerning the strong polynomial reducibilities has been open
for all nondeterministic classes and, in particular, for complete sets for nondeterministic
linear exponential-time (NE)class. In 4, we settle this question by showing that any NE
many-one complete set is also one-one complete. Our theorem applies to larger non-
deterministic complexity classes and a similar proof applies to RE sets that are complete
with respect to many-one polynomial-time reducibility (a result originally due to Dowd
[Dow82]).

As we work toward the possible polynomial-time isomorphism of complete sets for
these classes, the next question is whether these one-one reductions can be made length
increasing or at least polynomially honest. Intuitively, a reduction is polynomially honest
if the size of the output is within a polynomial of the size of the input (a precise definition
is given in the next section). A simple lemma proves that if there is a polynomially honest
reduction then there is one that is length increasing. Berman’s previously mentioned
result showed that for E, all complete sets are one-one length increasing equivalent.
We do not have such a result for NE or other nondeterministic classes, or for RE, but
we do show that the reduction we construct can be forced to be exponentially honest.
Polynomial honesty remains an interesting open question.

Returning now to isomorphism questions, we exhibit some progress. We show that
our results for NE apply to some limited classes of complete sets and prove polyno-
mial isomorphism for these classes. For effective reducibilities there are very few results
proving the isomorphism of all complete sets. The best known results of this type were
produced by Allender [All88]. He proved that all sets complete for deterministic lin-
ear exponential class under one-way logspace (or under two-way DFA) reductions are
polynomial-time isomorphic. We can apply our proof techniques for NE to show that for
the same reductions, complete sets for NE (or many other larger nondeterministic time
classes) are polynomial-time isomorphic. These are the first nondeterministic complete
classes for which isomorphism is known.

2. Preliminaries. We assume that the reader is familiar with the usual notions of
Turing machines and complexity classes, such as P, NP, E, and NE. For further details
refer to [HU79].

We will consider languages to be subsets of E*, where E {0, 1}. For a string
w E E*, let Iwl be its length. We assume the standard total ordering < on strings of
E* such that strings of smaller size precede strings of larger size, and strings of the same
length are ordered lexicographically. For a set A, let A denote the complement of A. Let
A/" denote the set of natural numbers. We do not distinguish between E* and A/" as there
is abijectionbetween them. For allz ands/, let (z, /) (z + /) (z + /+ 1)/2 + z. (.,.)
is a standard pairing function that maps A/" x Af onto iV’. Note that [(x, y)[ is O(Ixl / [y[).

A set A ispolynornial-time many-one reducible to a set B (denoted A <v B) if and
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only if there exists a polynomial-time computable function f such that for all z, z E
A f(z) B. A and 13 arepolynomial-time many-one equivalent (denoted A = B)
if and only if A <Pm B and 13 <Pm A. An m-degree is an equivalence class under the
relation =P. A set C’ is m-complete for a class of sets S if and only if C’ S and every
set in S is polynomial-time many-one reducible to C.

A set A is polynomial-time one-one reducible to a set B (denoted A< B) if and
only if there exists a polynomial-time computable one-one function f such that for all
z, z A : f(z) B. We say that A is polynomial-time one-one, length-increasing
reducible to a set B (denoted A <_t B) if A < B and for all x, If(x)l > Ixl. Two
sets A and B are one-one(li) equivalent if either A B or each one is reducible to the
other by a one--one(li) reduction. A one-one(li) degree is an equivalence class under
the relation of one-one(li) equivalence. A set C is one-one-complete for a class of sets
S if and only if C S and every set in S is one-one reducible to C. A set C is one-
one-li-complete for a class of sets S if and only if C E S and every set in S is one-one,
length-increasing reducible to C. All reductions studied in this paper are computable in
polynomial time unless mentioned otherwise.

A function f is polynomially honest if and only if for some polynomial g, for all
x, g(If(x)l) >_ Ixl. A function f is said to be exponentially honest iffor all x, 21f(x)l > Ixl.

A set A in some complexity class S is said to be polynomially (exponentially) honest
complete if every set in S is reducible to A by a many-one polynomially (exponentially)
honest function f.

A function f is said to be strongly invertible if there exists a polynomial-time Turing
machine that on input y in the range of f prints out all the elements x such that f(x) y.

A function f is p-invertible if and only if there exists a polynomial-time computable
function g such that, for all x, g(f(x)) x. A function f is a p-isomorphism if and only if

f is computable in polynomial time, one-one, onto, and p-invertible. We say A and B are
polynomial-time isomorphic (denoted A P B) if and only if for some p-isomorphism
f, f(A) B.

A polynomial-time computable function p is said to be apaddingfunction for a set
A if (x, y) x A p((x, y)) A. The padding function is said to be invertible if there
exists a polynomial-time computable function q such that Vx, y q(p((x, y))) (x, y).

A function f is a one-way function if and only if f is computable in polynomial time,
f is one-one, is polynomially honest, and is not polynomial-time invertible. We define

E U TIME[2’],
NE U NTIME[2’],

DTIME(2ply) U TIME[2n],
NTIME(2ply) U NTIME[2].

All of these classes have complete sets. In fact, they have a one-one, length increas-
ing, invertible complete set that has a one--one, length increasing and invertible padding
function. A straightforward padding argument shows that a set that is m-complete for
E is also m-complete for DTIME(2poy) and a set that is m-complete for NE is also
m-complete for NTIME(2poly). In addition to the above notations, we will use PF to
denote the class of functions computable in polynomial time.

Let ()N be an acceptable numbering of the partial recursive functions based
on a coding of deterministic, multiple-tape Turing machines. By standard results in the
literature, there is a Kleene function T hi, x, n.[(x) if Turing machine i on input x
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halts within n steps; 0 otherwise] that is computable in time polynomial in lil, Izl, and
n. For each i, let fi )x.[T(j,x,k. Ixllglg(k))], where i (j,k). Clearly, for each
i, fi E PF and every function in PF appears in this enumeration. Thus, it follows that
(fi)eN is an enumeration of PE It is not difficult to see that f (x) can also be computed
in time 2(lil+lxl) as mentioned in [KMR88].

PROPOSITION 1. The function Ai, x.T(j,x,k Iz[lglg(k)) is computable in time
20((lil/log(Ixl))).

Proof First, note that given i and x, the predominant complexity comes from the
running time of the machine j. Clearly, ]k < lil and hence k < 21il. Let z k

[xllglg(k). Then, z < 2’’. Ix[ g(lil). Thus, log(z) < Iil / log(lil)" log(Ix[) < [i[ /
Ii1" log(Ixl) _< (1il + log(Ixl)) 2. Hence, z < 2(lil/lg(ll))2. Given i and x, we can com-
pute j and k in polynomial time. The index of the machine that computes the function
T is fixed. The running time of T is bounded by 2((lil/lg(ll))). Since simulation can
be done in square of the running time, fi (x) can be effectively computed from i and x in
20((lil/lg(Ixl))2) time.

3. Deterministic exponential time sets. In his Ph.D. thesis, Berman [Ber77] proved
that all the m-complete sets for E are one-one, length-increasing complete. A more re-
cent, simpler proof has been given by Watanabe [Wat85]. Our methods yield a still more
direct construction that applies to [.Jc TIME(2c’’1/k) for any k > 0, E, and larger classes
that are closed under complementation. For simplicity we will present the result only
for E. Its proof points the way to the new results for nondeterministic classes presented
in the next section.

THEOREM 1. All m-complete sets for E are one-one-li equivalent.
Proofi Let A be any given m-complete set in E and let K be any other arbitrary set

in E. It is enough to show that K<_ A.
Fix an enumeration (fi)ieN of PF functions such that Ai, x.fi(x) is computable in

time 2(11/11).
We construct a set M in E such that a reduction, say, fj from M to A, is one-one-li

on {j} N. In addition, the set M is constructed so that the function g(x) (j, x) will
be a reduction from K to M. The required one-one-li reduction from K to A is then
f(x) fj (g(x)).

The following program describes the set M.
(1) input (i, x
(2) iflfi((i,x))
(3) then accept (i, x) if and only if fi((i, x)) A.
(4) else if y < x such that fi ((i, x)) fi ((i, Y))
(5) then accept (i, x) if and only if y f K.
(6) else accept (i, x) if and only if x K.
LEMMA 1. M is in E.
Proof One simply checks that the time bound for the program M on input (i, x) is

< 2.1 (i, x)l for some constant c.
LEMMA 2. Iffj is a reductionfrom M to A, then fj is one-one-li on {j} N. Moreover,

g(x) (j, x) is a reduction from K to M.
Proofi If fy is not length increasing, it is not a reduction from M to A because of

Step 3 of the algorithm. Therefore, fg has to be length increasing. Suppose fj is not one-
one. Let x2 be the least element such that for some xl < x2, fy ((j, xa)) fj ((j, xl)).
By the definition of M, (j, x) E M :> x K and (j, x2) M : Xl K. Thus, fj
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cannot be a reduction from M to A, which is a contradiction. Hence, f is one-one-li
on {j} x N. Note that (j, z) E M if and only if z E K from the way M is defined. The
elements ofthe form
is a reduction from K to M.

LEMMA 3. K <-u A.
Proof. Define f(z) fj(t(z)). Clearly, t is one-one-li. Since fj is one-one-li on the

range of g, f is one-one-li. Further, f is computable in polynomial time. It is immediate
that f is a reduction from K to A.

As mentioned earlier, the above theorem holds for t3cTIME(2c’’l/k for any k. This
is because of the fact that any set A that is m-complete for this class is also m-complete
for DTIME(2plY). Hence, there would be a reduction from the set M constructed in
the theorem to the set A. Note that it is sufficient for the set M constructed to be in
DTIME(2PlY).

Berman and Hartmanis [BH77] have shown that any two sets that are one-one,
length increasing, and invertible equivalent are p-isomorphic. Since all many-one com-
plete sets for E are one-one, length increasing complete, they are all p-isomorphic to
each other unless one-way functions exist.

Although we cannot settle the isomorphism question for exponential-time classes,
we prove that the answer is the same for E and DTIME(2PlY). Our proof here uses
Theorem 1.

THEOREM 2. All m-complete setsfor DTIME(2ply) are p-isomorphic ifand only ifall
m-complete setsfor E arep-isomorphic.

Proof. = This is immediate from the fact that every m-complete set for E is also
m-complete for DTIME(2ply).

" Suppose that not all ofthe m-complete sets for DTIME(2ply) are p-isomorphic.
We will show that not all m-complete sets for E are p-isomorphic. Let Kbe any one-one,
length increasing, invertible complete set for E that has a one-one, length-increasing
padding function/9. Since any set m-complete forE is also m-complete for DTIME(2PlY),
K is m-complete for DTIME(2PlY). Let X be an m-complete set for DTIME(2poly)
such that K 7P X. Let f be any one-one-li reduction from K to X. If f is invertible
in polynomial-time, then K and X would be p-isomorphic. Hence, f has to be one-way.
Since K and X are not p-isomorphic, V/one-one-li, invertible, either /(K) f(K) is an
infinite set or (K) f(K) is an infinite set._ (Proof: _Suppose not. Let k be the length of
the largest element in ((K) f(K))t_J (9((K)) f((K))). Then, t’(z) 9(S(z, 0k)) is
a one-one, length-increasing, and invertible reduction from K to X. This would imply
that KP X.)

Next, we construct a set M m-complete for E such that K 7P M thus proving the
theorem. The following program describes the set M.

(1) input
(2) if f(z)
(3) then accept /if and only if z K. (This makes M m-complete)
(4) else
(5) if i < Il such that i is the least index that is not yet canceled and
(6) f(z) for some z < /{Note that f cannot satisfy this condition}
(7) then accept
(8) else reject
We claim that there is no one-one-li,invertible function t that reduces K to M. First

note that f(K)

_
M and f(K)

_
M. This immediately cancels each function such

that t(K) f(K) spills into f(K) or such that t(K) f(K) spills into f(K). Thus, the
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only one-one-li,invertible functions left to cancel are those that have an infinite number
of "free" strings in at least one of 9(K) f(K) or g(R) f(R). But, these functions
would be eventually canceled in Step 7 of the above algorithm. Thus, it is clear that every
index corresponding to a 1-1,1i, invertible function which is a potential reduction from K
to M, will eventually get canceled because of the choice of f. Let n. Clearly, Steps
2 and 3 can be computed in time 2(’0. For Steps 5-8, weneed to store the list of indices
of length < n that have been satisfied during the previous stages. The space needed for
storing this list is bounded by 2(’). The time needed to simulate all the previous stages
and construct this list is also bounded by 200 as there are only 2(’0 previous stages
and each stage needs time at most 2(’). Hence, the set constructed is in E.

Even though the above result is stated for E and DTIME(2poy), it holds for higher
deterministic classes as well.

4. Nondeterministic exponential time sets. Attention is now turned to nondeter-
ministic subrecursive classes. First, we consider the nondeterministic class NE and show
that many-one complete sets for this class are one-one complete. This result is new and
settles a longstanding open problem. Our method is essentially the same but somewhat
more delicate because the setM constructed in the proofmust itselfbe in NTIME(2PlY).
In fact, our method will apply to any nondeterministic time class larger than NE and also
to [.J NTIME(2’/) for any k > 0.

THEOREM 3. All m-complete setsfor NE are one-one exponentially honest equivalent.
Proof Let A be any given m-complete set for NE and let K be any arbitrary set in

NE. It is sufficient to show that K is one-one exponentially honest reducible to A.
Let f, f2, be an enumeration of all polynomial-time computable functions, such

that Ai, x.fi(x) can be computed in time 20((lil+lg(Ixl))9) as in Proposition 1.
Let M be the set of pairs accepted by the following procedure.
(1) input (i, z)
(2) if21A((i,x))l <
(3) then accept (i, x) if and only if f ((i, x)) A
(4) if2y < x such that fi((i,y)) fi((i,x))
(5) then if 21ul < Ixl then accept (i, x) if and only if y K.
(6) else reject (i,
(7) else accept (i, z) if either (a) or (b) holds.
(8) (a) y > z such that I1 < and f ((i, z)) fi ((i, y))
(9) (b) x K
LEMMA 4. M is in NTIME(2poly).
Proof Let c and d be constants such that the running time of K is bounded by 2’ll

and the running time of A is bounded by 2a’ll. Let us compute the time required for M
on input (i,x). Note that computing f((i,x)) takes time at most 20((lil+lg(l(i,x) I))),
which is 2((l(i,x) I)). If 21J’,((i, x))l < I(i,x)l, the membership of f((i,x)) in A can be

decided deterministically in time 2(((i, x))). Since there are only 2(11) strings y that
are lexicographically less than x, the condition in Step 4 of the algorithm can be com-

puted in time 2(1(i, x)I). If 211 < Ixl, we can decide if y K deterministically in time
2: < 211. Thus, Steps 5 and 6 can be done in time 2(11). In Step 8, we can guess
a string y that is at most of length 211 and compute f((i, y)) in time 20(lil+lg(l(i, Y) I)z),
which is 2((lil+lxl)). Thus the set M is in NTIME(2PlY).

Any m-complete set for NE is also m-complete for NTIME(2PY), so there is a
reduction from M to A.
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LEMMA 5. Let fj be any reductionfrom M to .4. Then f(x) fj (j, x) is a one-one
exponentially honest reduction from K to A.

Proof. It is clear from the definition that the reduction f has to be exponentially
honest, otherwise it cannot be a reduction because of diagonalization in Steps 2 and 3.
Assume f is not one-one. Let xz be the least element such that for some xx < x,
f(xl) f(x2). There are two cases.

Case 1. 2111 < Ix21" In this case, (j, xl E M if and only if Xl E K. (j, x2/
M if and only if z K. So, fj cannot be a reduction from M to A. Contradiction.

Case 2. 2111 > Iz21. In this case, (j,z) M and (j, a:2) M. Again, fj cannot be
a reduction from M to A. Contradiction.

Hence, f is one-one. Having proved that f is one-one, we can easily verify that f is
a reduction from K to A.

The next proposition shows that any significant improvement to the exponential hon-
esty would imply the existence of length-increasing reductions. It is not new, but it is a
useful general fact (see [You83]). It is stated here for NE but applies more generally to
many other classes, including NP and RE.

PROPOSITION 2. Any one-one polynomially honest complete NE set is also one-one,
length-increasing complete.

Proof Let A be any one-one, polynomially honest complete NE set. Let K be any
standard one-one, length-increasing complete set for NE that has a one--one, length-
increasing padding function p. Suppose f is a polynomially honest reduction from K to
A. Since f is honest, there exists some k such that z, If(z)l > Iz[. Define d(z)
zl0Ixl. Then, d is one-one and computable in polynomial-time. Also, Id(z)l > Izl
We now define h(z) f(p((z, d(z)))), which is the required one-one, length-increasing
reduction from K to A. The function h is length-increasing since,

Ih()l- If(p((,d()>))l > Ip((,d()))l/ > Id()l/ > (11)1/

h is clearly one-one and polynomial-time computable.
THEOREM 4. IfP UP, then all m-complete sets for E are p-isomorphic. IfP NP,

then all m-complete sets for NE are p-isomorphic.
Proof If P UP, then one-way functions do not exist. So, all m-complete sets for E

are one-one-li,invertible equivalent and hence p-isomorphic. If P NP, then E NE.
Also, one-way functions do not exist. So, all m-complete sets for E NE are one-one,
length-increasing, invertible equivalent and hence p-isomorphic.

Next, we consider the question of what natural subclasses of the NE-complete sets
include only sets p-isomorphic to standard m-complete sets. Allender [A1188] has stud-
ied 1-L [HIM78] and two-way DFA [Sto74] reductions for various complexity classes.
In particular, he has proven that all sets m-complete for E under 1-L (two-way DFA)
reductions are p-isomorphic. These questions were left open for the class NE. We will
answer these questions affirmatively for NE.

DEFINITION 1. A function f is said to be in the class 1-L of functions if f can be
computed by a Turing machine with a one-way read only input tape with end markers,
a one-way write only output tape and a read-write work tape which is initially set to all
blanks such that for all inputs z, at most [log Izlq cells of the work tape are ever visited.

DEFINITION 2. A function f is said to be in the class two-way DFA of functions if
f can be computed by a DFA that has a two-way input tape with end markers and a
one-way left-to-right write-only output tape..

THEOREM 5. All sets completefor NE under 1-L reductions are p-isomorphic.
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Proof. LetAbe any complete set for NE under 1-L reductions. Allender [Al188] has
shown that all sets complete for NE under 1-L reductions are complete under length-
increasing, strongly invertible many--one polynomial time reductions. Given a 1-L com-
plete set A, we can construct a set M in NTIME(2ply), as in the proof of Theorem 3,
such that any reduction from M to A is one-one on {j} x A/’. Since A is complete NE
under length-increasing, strongly invertible many-one reductions, A is also complete for
NTIME(2poy). Hence, there exists a many-one, length-increasing, and strongly invert-
ible polynomial reduction from M to A. Following the ideas of the proof of Theorem 3,
we can then obtain a one-one, length-increasing, and invertible reduction from K to A.
Thus A is one-one-li,invertible complete and hence KP A.

THEOREM 6. Allsets completeforNEundertwo-way DFAreductions arep-isomorphic.
Proof. First, note that the set of two-way DFA functions is a subset of linear-time

computable functions. Also, two-way DFA reductions that are one-one can be proved
to be linear honest. This can be proved using "crossing sequence" argument. Let f be
any one-one function that is computable by a two-way DFA with q states. Suppose, f is
not linear honest, then for some input z, q(q + 1)If(z)[ < Izl, Since the length of the
output is so small compared to the length of the input, we can find two positions b and c
such that there is no output produced when the machine is visiting any position between
b and c and the crossing sequence at b is same as the crossing sequence at c. Let z
zvw where v is the substring appearing between positions b and c. Then, it is clear that
f(z) f(zvvw) f(zvvvw) ..... Thus f is not one-one. Further, it is known that
every honest two-way DFA computable function is polynomial-time invertible [A1185, p.
54].

The proof is similar to the proof of Theorem 3. We can delete Steps 2 and 3 of the
algorithm which are used to diagonalize against functions that are not exponential hon-
est. We can enumerate all linear-time computable functions with ith function running
in time lil lzl / lil. We can then use a universal function for computing fi(z) in time
2(ll+g(Ixl)). This will enable Step 8 of our algorithm to be done in 2(ll+lxl) steps.
All other steps can also be performed in 2(11+11) steps. Thus, the set M constructed
in the proofwould be in NE. Since A is complete under two-way DFA reductions, there
would be a two-way DFA reduction fj from M to A. This reduction would be one-one
on {j} x A/’. This reduction gives us a one-one two-way DFA reduction f(z) fj
from K to A. Using the observations about one-one two-way DFA reductions, the re-
duction f will be linear honest and hence invertible. In otherwords, A is one-one, honest
(and, hence, length-increasing), invertible complete. Hence, KP A.

5. Recursively enumerable sets. Finally, we consider RE sets. Although they are
less central to complexity theory, they have been more thoroughly studied than subre-
cursive classes and their structure is well understood. Because of this, it might be hoped
that powerful methods developed in recursion theory could be used in understanding
the structure of complete RE sets with respect to polynomial reductions. If so, some
progress might be expected in this setting. A well-known manuscript of Dowd [Dow82]
contains the theorem stating that a set that is m-complete for RE sets is also one-one-
complete. Dowd’s proof involves a nontrivial application of the recursion theorem, as
given in that manuscript. We present here a much simpler proof here which avoids the
use of the recursion theorem. Our proof is easily extended to show that the one-one
complete set is, in fact, exponentially honest complete.

Let O1, 2, O3,. be an enumeration of all Turing machines. Define

K {xlx ,I,} and Ko {(x,y)lY ,I,}.
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The following propositions are used later in this section. Their proofs are straight-
forward.

PROPOSITION 3. Ko has a one-one, length-increasing and invertiblepaddingfunction.
PROPOSITION 4. K and Ko are one-one, length-increasing complete for RE. In fact,

they arepolynomial-time isomorphic.
THEOREM 7. IrA is a polynomial-time many-one complete setfor the class ofRE sets,

thenA ispolynomial-time one-one complete.
Proof. Let fl, f2,.., be any enumeration of all polynomial-time computable func-

tions. Consider the RE set M that is the set of pairs accepted by the following machine.
(1) input (i, z)
(2) ifSy < x such that fi((i,x))= fi((i,y))
(3) then reject (i, x).
(4) else accept (i, x) if either (a) or (b) holds.
(5) (a) x e K
(6) (b) y > x such that ((i, x)) ((i, y))
Let fj be any m-reduction from M to A. Define f(x) fj((j,x)). We claim that

f is a one-one reduction from K to A. Assume not. Let x2 be the least element such
that for some xl < x2, fj ((j, x)) fj ((j, x2)). By definition of M, (j, x) would be
in M and (j, x2) would be in M. Therefore, fj cannot be a reduction from M to A.
Contradiction. Hence, f is one-one. Since f is one-one, only Step 5 will be executed on
elements of the form (j, x). Thus, f is a reduction from K to A.

THEOREM 8. LetA be any m-complete set for RE. Then A is one-one, exponentially
honest complete.

Proof. By Theorem 7, A is one-one complete. Let f be a one-one reduction from
K0 to A. Let q((i, y)) be a function that takes an index i of some machine, a pad y,
and returns an index of machine i padded with y. q is one-one, length-increasing and
polynomial-time computable. Define f as follows:

f((i,x)) max{f((q((i, 1)), x)), f((q((i, 2)),x)),. f((q((i, I<i,x>l>),x))}.

Given two different pairs p and p2, f(p) f(p2) since they are maximums of
two disjoint sets. Thus, f is one-one. Clearly, f is a reduction from K0 to A. Also,
If((, ))1 >_ log(l(i, )1), since f((i,z)) is the maximum of I(, z/I many distinct strings.
Hence, f is exponentially honest. This implies that A is one-one, exponentially honest
complete.

6. Open problems. We have presented a simple general method of proving that
many-one complete sets are one-one complete. However, many interesting open ques-
tions remain.

For nondeterministic classes or for RE sets, it is not known how to increase the
honesty of reductions to complete sets past exponential honesty. By Proposition 2, if
we could show that one--one complete sets for these classes are polynomially honest
complete, then they would be length increasing complete. So far, we have been unable
to show the polynomially honest completeness, although we believe it is true.

Decreasing the complexity of the classes to which our results apply is also of interest.
For deterministic classes, it is not known if our results can be made to apply to subexpo-
nential classes that are closed under complement, for example, PSPACE. Of course, of
central interest is the same problem for NP-complete sets.
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Abstract. Kadin [SIAM J. Comput., 17 (1988), pp. 1263-1282] showed that if the polynomial hierarchy
(PH) has infinitely many levels, then for all k, pSAT[k] C pSAT[k+1]. This paper extends Kadin’s technique
and shows that a proper query hierarchy is not an exclusive property of NP complete sets. In fact, for any
A E NP lw3, if PH has infinitely many levels, then pA[k] C pA[k+l]. Moreover, for the case of parallel
queries, pAil[k+1] is not even contained in pSATII[k]. These same techniques can be used to explore some
other questions about query hierarchies. For example, if there exists any A such that pA[2] pSAT[1], then
PH collapses to A3P.
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1. Introduction. Soon after the Boolean hierarchy (BH) was defined, the field of
computational complexity theory experienced an exciting period when many hierarchies
previously believed to be proper were shown to have collapsed [5]. These collapses led
many to wonder if BH might also collapse. However, Kadin [6] brought some respect
to the Boolean hierarchy by showing that if BH collapses, then so does the polynomial
hierarchy (PH). Thus, if the polynomial hierarchy has infinitely many levels, then so
would the Boolean hierarchy and the intertwined query hierarchies.

The Boolean hierarchy and the query hierarchy (QH) are built on top of SAT and
SAT. These hierarchies are contained in the AP level of the polynomial hierarchy, and
their basic properties have been fully explored [1], [2],[6], [13]. BH is defined by combin-
ing SAT and SAT with logical "and" and "or." QH is defined by allowing any polynomial
time computable combination of SAT and SAT.

In this paper we look at hierarchies built on top of arbitrary sets in NP. We want to
know when these hierarchies are proper and how they relate to BH and QH. We study
these questions in the setting ofSch6ning’s high-low sets and produce results about these
hierarchies similar to those already known about BH and QH. In particular, we conclude
thaf if a set is high and the query hierarchy over this set collapses, then PH collapses.
We also show that if PH is infinite, then bounded query hierarchies built from many
languages in NP are also proper. (By "many," we mean all sets in NP low3.) We
interpret this as evidence that a proper QH is not an exclusive property of NP-hard
sets. To demonstrate this claim, we show that if PH is infinite, then we can construct a
language B in NP so that for all k, pB[k+l] pSAT[k]. Moreover, this language B is not
a high set, so it is not hard for NP in any sense (e.g., it is not NP-hard under many-one,
Turing, or strong nondeterministic reductions).

2. The Boolean hierarchy and the query hierarchy. In this section, we define the
Boolean and Query Hierarchies and summarize some previous work in this area. This
is neither a complete nor a chronological summary. We encourage the reader to consult
the literature for completeness [1], [2], [3],[6], [13].

We assume that the reader is familiar with P, NP, PH, and oracle Turing machines.
We quickly define some familiar notation and concepts. For any language A, we write
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A=n for the set of strings in A of length n. Recall that a set S issparse if ]lz-- is bounded
by a polynomial. Apaddedprefix of a string z is a string w such that Iwl Izl, zo #
and V is a prefix of z. A set S is self-p-printable if there is a polynomial time oracle Turing
machine Ds that prints out S=’ on input 1’. All self-p-printable sets are sparse. A set
A is closed under padded prefixes if w E A whenever z E A and w is a padded prefix of
z. If a set is sparse and closed under padded prefixes, it is self-p-printable.

We now define the parallel query hierarchy (QHII). This hierarchy is defined by
restricting a pSAX machine’s access to the SAT oracle in two ways. First, the number
of queries is limited to a constant (i.e., it does not depend on input length). Second, all
the queries must be made at the same time. We allow the P-base machine to do some
computation to determine what the queries are, but we do not allow the query_ strings
to depend on the results (oracle answers) of previous queries. We write pSAXll[k] for the
class of languages accepted by polynomial time Turing machines that make at most k
parallel queries to SAT on input strings of any length. Of course,

pSATII[1] C pSATII[2] C... C pSATII[k] C PSATII[k+I] C....

This nested sequence has the upward collapsing property in the sense that if pSATII [k]

pSATll[k+l], then the entire parallel query hierarchy (QHII [.Jj=l pSATII[J]) is contained

in pSATll[k]. If PH has infinitely many levels, then QHII does, too [6]"

pSATI[[1] C pSATI[[2] C C pSATII[k] C pSATII[k+I] C

When we remove the parallel query restriction from PSAwll[k] and allow subsequent
queries to depend on answers to previous queries, we obtain the serial query hierar-
chy. We write pSAW[k] for the class of languages accepted by polynomial time Turing
machines that ask at most k serial queries to SAT for input strings of any length and QH
for Uj=l pSAT[j]. Beigel [1] showed by a clever binary search routine (the mind change
technique) that

pSATII[2k--1] pSAT[k].

Thus, the levels of QH are simply levels of QHII that are exponentially far apart. Serial
queries are generally considered more natural and relevant than parallel queries, but the
finer structure of QHII makes it more amenable to analysis.

Next, we examine the Boolean hierarchy [2]. Like PH, each level ofBH is composed
of two complementary language classes BHk and co-BHk, such that

co-BHk { L IL e BHk }.

BH is defined inductively, starting with NP and building up with unions and intersec-
tions, as follows:

BH1 d_ef NP,

BH2k d_ef { L1 Cl --2 L1 @ BH2k-I and L2 @ NP },

BH2k+I d__ef { L U L2 LI BH2k and L2 E NP }.

The levels of BH are interlaced, much like PH:

BHk C_ BHk+I ffl co-BHk+l C_ BHk+I,

co-BHk C_ BHk+ CI co-BHk+l C_ co-BHk+l.
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BH also has the upward-collapsing property:

BHk co-BHk ==* BH BHk fq co-BHk.

Many results in this area depend on the fact that BH and QHII are intertwined [1], [2]:

BHk co-BHk C_ pSATII[k] C_ BHk+ f3 co-BHk+l C_ pSATII[k+].

Clearly BH is a proper hierarchy if and only if QHII is a proper hierarchy. Kadin showed
that ifBH collapses, then PH collapses. His proofdepends on the structure ofthe canon-
ical complete languages for the levels ofBH. For BH2 and BHa these complete languages
are:

SATASAT de=f { (F, F2) F e SAT and F2 e SAT },

(SATASAT)VSAT de=f { (F,F2, F3) I(F,F2) SATASAT or F3 SAT }.

3. ttigh and low sets. SchSning [10] defined the high and low hierarchies for NP to
classify sets between P and NP. Very roughly, the high-low classification measures the
amount of information an NP language (acting as an oracle) can give to a E machine.
If A E NP, then for all k

kP C P,A
__

P,SAT p
k k k+l’

If EkP’A "-’kP’SAT, then one might say that the oracle A tells the base machine a
P,Alotmas much as SAT does. If E k then one could say that A does not tell the

E base machine anything that it could not compute itself. In the first case we call A a
high set, and in the latter we call it a low set. More formally, we define

highk def= { A A NP and vP’A 5-P’SAT
"-’k ""k

P,A1OWk d___ef { A[A NP and k }"

Clearly, 1OWk C_ 1OWk+l and highk C_ highk+1. However, the high and low hierarchies
are not known to have the familiar upward collapsing behavior. For example, it is not
known whether low2 Iowa would imply that low2 low4.

Sch6ning also defined a refinement of the low hierarchy [11],

AP,AIowk def{ A IA. NP and A "-’k )"

These classes lie between the levels of the low hierarchy,

low0 C_ lOWl C_ lOWl C_ low2 C_ low2 C_ Iowa C_ Iowa

and allow a finer classification of language classes in the low hierarchy. In this paper, we
will pay special attention to the class Iowa.

High and low sets have many interesting properties. Some are briefly mentioned
here. Again, we ask the reader to consult the literature for the proofs [7], [9]-[12].

(1) lowk highk PH c_
(2) If PH is infinite, then I NP ’Vk[I .h..___ighk and 1 9 lowk].
(3) If S is sparse and S NP, then S low2.
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(4) If A E NP and for some sparse set S, A E pS, then A Iowa.
(5) R c_ BPP fqNP c_ low2.
(6) high0 { A A is --< PT -complete for NP }.
(7) low0 P.
(8) low1 NP fq co-NP.
(9) Graph Isomorphism Iowa.
4. Main theorem. The three hierarchies QH, QHII, and BH are built on top of SAT

and SAT. We now consider analogous query hierarchies built on top of an arbitrary
set in NP. For any set A NP we can consider the classes pall[k] and pa[k], defined
analogously to pSATll[k] and pSAT[k]. We immediately have

pall[k] C: pail[k+1], pA[k] C: pA[k+ll and pall[k] C pA[kl.

However, in general, we do not know how to repeat Beigel’s mind change technique, so
we can only relate parallel and serial queries loosely:

pall[k] C pA[k] C PAIl[2a-1]

The serial query hierarchy over an arbitrary set has the upward-collapsing property, too.
That is,

pA[k+l] pA[k] === ,j > k, pA[j] pA[k].

However, it is not known if the corresponding property holds for the parallel query hi-
erarchy over A. Because of these difficulties, we do not attempt to define a Boolean
hierarchy based on A NP. Instead, we define Boolean languages analogous to the
canonical complete languages for BHk and co-BHk.

DEFINITION 4.1. For each language A we define a sequence of Boolean languages

BL(A) d__ef A,

BL2k(A) df { (Xl,""" ,X2k) (Xl,"" ,X2k-1) e BL2k-1 (A) and X2k e " },

SL2k+l(A) d_ef { (x,... ,X2k+) (x,... ,X2k) e SL2k(A)or X2k+ e A },

co-BL (A) d_ef,
co-SL2k(A) d_ef { (x,..., x2k) (xl,’’’, X2k-) e co-SL2k_ (A) or x2k e A },

co-BL2k+ (A) df { (Xl,... ,X2k+) (x,’" ,X2k) co-SL2k(A) and x2k+ }.

Note that BL2(SAT) SATASAT and BL3(SAT) (SATASAT)VSAT. In the
general case, BLk(SAT) is _<P -complete for BHk and co-BLk(SAT) is _<Pm -complete
for co-BHk. Clearly, BLk(A) e pAl][k] and co-BLk(A) e pAl][k]. Therefore, there is some
interaction between the Boolean languages over A and the query hierarchies
over A.

With all these definitions in place we can pose some questions that were originally
posed for SAT. For example, we would like to knowwhat happens ifPAll[k] pall[k+], if
pA[k] pA[k+l], or if BL(A) <Pm co-BL(A). Also, we would like to know the relation-
ship between queries to SAT and queries to A. We know pall[k] C_ pSATII[k], but what is
the relationship between pall[k] and pSATll[k-tl? Instead of asking "Is one query to SAT
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as powerful as two?" we ask, "Is one query to SAT as powerful as two queries to some
other oracle?" The following theorem answers some of these questions.

THEOREM 4.2. IfA, B E NP and BLk(A)<Pm co-BLk(B), then A lwa.
We prove this theorem in two parts. Lemma 4.3 is a rather technical lemma and

follows the same lines as Kadin’s original proofthat BLk(SAT) <Pm co-BLk (SAT) implies
PH c_ AaP. We relegate the proof of Lemma 4.3 to the next section.

LEMMA 4.3. IfB NP and BLk(A)_<Pm co-BLk (B), then there exists a self-p-pntable
set S A such that NPs. (N.B. In Lemma 4.3, we do not assume A NP.)

LEMMA 4.4. If A NP and there exists a self-p-printable set S APa such that -NPs, then A l’--owa.
Proof. If NPs, then NPa C_ NPs. (To answer a query to A, the NPs ma-

chine runs the NP algorithm for A and the NPs algorithm for in parallel. One of the
algorithms will be correct.) Therefore, we have

PNPNPA c PNPNPs

by replacing the NPA oracle with an NPS oracle. However, S e A3P and is self-p-
printable, so a A3P machine can write down an initial segment of S that includes all
queries to S in a A’s computation. (The length of this initial segment is bounded by
a polynomial.) Since A3P consists of a P-base machine and an NPNP oracle, the P-base
machine (with the help of the NPNP oracle) can write down this initial segment and send
it with subsequent oracle queries to NPNP. With this extra advice, the NPNP oracle does
not need to consult an S oracle, so

Therefore, A E Iowa.
The theorem gives us a sufficient technical condition for a set to be in Iowa. The

following corollary clarifies the picture somewhat.
COROLLARY 4.5. Let A be any language in NP. Ifone ofthefollowing conditions holds,

then A Iowa.
(1) pA[2l E pSAT[ll.
(2) pAIl[k+l] C_ pSAWll[k] for some k >_ 1.

(3) pAIl[k+l] pall[k] for some k >_ 1.

(4) pA[k+l] pA[k] for some k >_ 1.

Proof. To prove Part 1, assume pA[2l C_ pSAW[l]. Then, BL(A)_<Pm co-BL(SAT)
because BL2(A) e pail[2], pail[2] C_ pal2] C_ pSAW[] C co-BH2, and co-BL2 (SAT) is

<-Pm -complete for co-BH2. Thus, by the theorem, A 1-’-ow3.
To prove Part 2, assume that pAli[k+] C_ pSAWll[k]. Then

BLk+(A) e pAIl[k+l] C_ pSAWll[k] C_ co-BHk+l.

Since co-BLk+l (SAT) is <Pm -complete for co-BHk+l, there exists a many-one reduction
from BLk+I(A) to co-BLk+l (SAT). Again, by the theorem, A E low3. Part 3 follows
from Part 2, since pall[k+] pall[k] implies pAIl[k+] C_ pSATIl[k].

To show Part 4, note that pA[k+l] pa[k] implies PA[2] C_ pA[k] because the whole
queryh.__._ierarchy over A collapses. Thus, PAIl[2] c_ pa[2] c_ pa[k] C_ PAI112-1]. Then,
A low3 follows from Part 3.
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Parts 3 and 4 of Corollary 4.5 state that if the parallel or serial query hierarchy over
A collapses, then A is not very hard. Part 2 says that if a set A is not in Iowa, then not only
is the parallel query hierarchy over A proper, but it also rises in lock step with QHII (see
Fig. 1). For NP-hard sets, we can relate Theorem 4.2 to the collapse ofPH. In particular,
if the query hierarchy over an NP <PT -complete set collapses, then PH collapses to AaP.

pSATtI[3]

pallia]

pall[21

.4 A

P

FIG. 1. Let A be an incomplete set in NP 1OWa.
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COROLLARY 4.6. If A e highj for some j and one of the following holds, then PH is

finite.
(1) pA[2] C_ pSAT[1].
(2) pAIl[k+l] C_ pSAWll[k] for some k > 1.

(3) pAIl[k+l] pall[k] for some k > 1.

(4) pa[k+l] patti for some k > 1.

Proof. Let i max(3,j). By Corollary 4.5, A E lo-a c_ lowi, so EP EP’A.
However, A E highj c_ highi means EP,A Ep+I. Thus, EP EP,A Ep+ and
PH c_

The next corollary generalizes Kadin’s result for SAT and answers the question "Is
one query to SAT as powerful as two queries to some other oracle?"

COROLLARY 4.7. Ifthere exists A such that pA[2] pSAT[], then PH C_ AaP.
Proof. Suppose that pale] pSAT[1], then A pa[2] pSAT[1]. Thus, we know

that A<Pm SAT SAT via some polynomial time function g, since SAT @ SAT is <Pm-
complete for pSAT[l, where X (R) Y is defined by

x@yde=f{OxlxeX}U{ lylveY }.

We split A into two sets,

A0 { x x A and g(x) OF for some F },

A1 { x x E A and g(x) 1F for some F }.

Clearly, A0 NP and A1 co-NP. Now let C A0 @ A1. One can easily see that
C NP and that pa[k] pC[k] for all k. So, pC[el pal2] pSAT[1]. However,
SAT pC[el implies C is Turing complete for NP. Thus, C is a high0 set. Then, by the
proof of Corollary 4.6, Part 1, pC[2] C_ pSAT[I] implies PH collapses to AP. [3

We can generalize Corollary 4.7 for parallel queries.
COROLLARY 4.8. Ifthere exists any set A such that pall[r] pSgTIl[k], and r > k > O,

then PH c_ AaP.
Proof. Since r > k, we have pAIl[k+l] C_ pall[r] pSATIl[k] C co-BHk+. Therefore,

BLk+I(A) < co-BLk+I(SAT). Then by Lemma 4.3 there is a self-p-printable sparse set

S E A" such that NPS. Since, pail[k+1] pail[k+1] C_ co-BHk+l, repeating the
argument for yields S’ such that A NPS’. Thus,

NPA c NPss’.
However, pall[r] pSATIl[k] implies SAT pA, SO, NPsAT C NPA. Thus,

PNPNPsAT C C C PNPNPpNPNPA pNpNpSS’
Therefore, PH c_ AaP. [3

Corollaries 4.7 and 4.8 say that if PH is infinite, then there is no way to split queries
to SAT into exact portions. For example, there would not be a set A where 3 parallel
queries to A is exactly 2 parallel queries tO. SAT. However, we still do not know if there
can be sets B such that pBIl[e] pSAWll[31. If we can show that such sets do not exist
(under certain hypotheses), then we can put forward the thesis that parallel queries to
SAT are "atomic" or indivisible in some sense.
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Nowwe return to queries to sets in NP. In the next two corollaries, we explore tech-
nical conditions that allow us to strengthen the results about the serial query hierarchies.

COROLLARY 4.9. If A NP Iowa, then there exist B NP such that A<P 13,
pa pn andfor all k, Pn[k+] pSAW[k].

Proof. Note that if Pn pA then A and B are in the same high or low level. So, this

corollary also says that for every high and low level above Iowa, there is a set B whose
serial query hierarchy rises in lock step with the sedal query hierarchy for SAT.

To prove this lemma, we need to mimic Beigel’s mind change technique for sets
other than SAT, which has some special properties that make the technique work.

DEFINITION 4.10.

ORz(C) { (x,y) x e C or y e C },

AND2(C) { (x, y) x e C and y e C },

(where "2" in the subscript means binary).
SAT is a special set because ORe(SAT) <Pm SAT and ANDe(SAT) <Pm SAT. By

going over Beigel’s mind change proof [1], [4], one can show that if a set C NP has
the property that OR2(C)_<Pm C and AND2(C)_< C, then PCI112-] pC[k].

Now we modify A slightly, so that it has the desired properties. Let B be the set
of tuples of the form (F, x,..., x,) such that F is a Boolean formula over n variables
y,..., y without negation, and when y is evaluated as "x e A", F evaluates to 1. For
example, if al, a2 G A and a3, a4 A, then:

(y A Y2, al, a2) B, (y A Y2, a, a3) B,

Clearly, B is in NP and A_<P B. Also, B NP 103, because pB pA. Moreover,
OR2(B)_<P B and AND2(B)_<Pm B, so Psll[e-] pS[k]. NOW if pS[+] C_ pSAW[k],
we know that

BL2(B) PBII[2] c_ PBIl[2k+-l] pB[k+l]
_

pSAW[k] pSAWll[2k--1] C_ co-BH2.

Thus, BL2(B) <Pm co-BL2(SAT) which contradicts the assumption that B lw3.
We can say more about the existence of incomplete sets whose serial query hierar-

chies rise in lock step with QH. (Note that it may be the case that none of the sets in
NP low3 are incomplete. They may all be Turing complete for NP or complete for NP
in some other sense. However, in this case PH is finite.)

COROLLARY 4.11. Ifthepolynomial hierarchy is infinite, then there exists a set B NP
B[k+l] SAT[k]such thatfor all k, P = P but B is not high.

Proof. If PH is infinite, then by a Ladner-like delayed diagonalization [8], [9] we
can construct a set I NP that is neither high nor low (I stands for intermediate). In
particular, I low3, so using Corollary 4.9 we can obtain a set B such that for all k,
pB[k+l] pSAW[k]. Since pB pI, B is intermediate if and only if I is intermediate.
Therefore, B is not high.

Note that if B is not high, then B is not NP-hard under many-one, Turing, strong
nondeterministic or other assorted reductions. In particular B is not Turing complete
for NP so SAT pB. So, Corollary 4.11 says that the serial query hierarchy over/3 rises
in lock step with QH but never captures SAT.
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5. Proof ofLemma 4.3.
LEMMA 4.3. IfB E NP and BLk(A)<Pm co-BLk (B), then there exists a self-p-printable

set S AP3 such that - NPS.
Proof First, note that we do not assume A NP. However, the assumption that

BLk(A) <Pm co-BLk(B) implies that A e pNP, since

A<_PmBL(A), BL(A)<_Pmco-BL(B) and co-BL(B) pNP.

Therefore, by the closure of eiPunder -<Pro reductions, A E pNP.
Now we prove this lemma by producing a A3P program that on input 1’ generates

a finite set T, with < kn elements. Furthermore, every string in T, will have length n.
The set produced, S I.J> Tn’ will have the specified properties. The main part of
the program is a loop that is iterated for values of i from 0 up to k 1. Each iteration
produces either the desired Tn or a "reduction" from BLk_i(A) to co-BLk_i(B) for
strings of length n.

In the following discussion, we let g be the polynomial time function that reduces
BLk(A) to co-BLk(B) and let j k i. We also use the following notational devices:

DEFINITION 5.1. Let (Xl,’’" ,Xk) be any k-tuple. When the individual strings in
the tuple are not significant, we will substitute - for (x,-.., x). Also, we write ,n for
(x,..., xl), the reversal of the tuple. Finally, we will use {0, 1}"xk to denote the set of
k-tuples of strings of length m.

DEFINITION 5.2. We will write 7rj for the jth projection function, and 7r(,j) for the
function that selects the ith through jth elements of a k-tuple. For example,

7rj(Xl,’’" ,Xk) Xj, and 7f(i,j)(Xl,... ,Xk) (xi,’’’ ,xj).

We maintain the following loop invariant to assist our proof. Before each iteration,
we have ’= (Zl,-.. ,zi) e {0, 1}nxi such that for all (Xl,... ,xj) e {0, 1}nj,

Z e BLi(A) 7r(1,j)og(’, 2’) e co-BLj(B).

This loop invariant holds trivially for i 0, since g is a reduction from BLk(A) to
co-BLk(B). The body of the loop is given in Fig. 2. Note that the loop terminates
either at Step 1 or at Step 5.

Nowwe show how to construct T,. There are two cases. IfA =n 0, then we put
in T,. Note that we can easily check if = 0 with a II2P question, because A E pNp.
If A =’ 0, then we start the loop described in Fig. 2 with i 0. When the loop
terminates, we put Zl,-.., zi and all their padded prefixes in T,. We still have to prove
two claims. First, we must show that the loop invariant holds from iteration to iteration.
Also, we need to show that =’ NPT".

CLAIM 1. Suppose that in some iteration i we reach Step 5. From the loop invariant
of the ith loop iteration, we know that ’ (Xl,..- ,xj) {0, 1}nj and

e BLj(A) 7r(1,j)og(:, 2’) e co-SLy(B).

Let g (u,..., u) 7r(,)og(., "). Then,

" E eLi(A) : 7 co-nLj(B).

Now, let Z, (x,..., xj_i) and 7 (u,..., uj_). Ifj is even, then bythe definition
of BLj(A) and co-BL (B) we have

ZBLj_(A) and xj 7co-BLj_I(B) or uj EB.
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(1) if i k 1, then write down 2’ (Zl,..., zi) and exit the loop.
(2) Compile a function h- {0, 1}’xj {0, 1}* defined by h(8) 7rjog(8, ,R).
(3) Ask the NPNP oracle,

"VX =n, ;t (Xl, , Xj--1) {0, 1}’(j-1), h(:g’, x) E B?"

(It is important to note here that the question above can be answered by an
NPNP oracle because A E pNP.)

(4) If the oracle answers yes, then write down ’ (zx,..., zi) and exit the loop.
(5) If the oracle answers no, then there exists an z E A =n such that

V" e {0,1}nx(j-1), h(:’,x) B.

By using binary search and the NPNP oracle, find the lexically smallest such x
and write it down. Finally, let Zi+l := x, 5’ @1,’" ,Zi+l/, i := i + 1 and
advance to the next iteration.

FIG. 2. The body ofthe loop.

Now, fix x to be the lexically smallest x found in Step 5. We know that x A and
uj h(2’, x) B, so we are left with

’ e BLj-I(A) z’ e co-BLj_l (B).

Since g’ 7r(1,j_l)og(t,x, zi,’’’, zl), this is exactly the loop invariant for the (i + 1)th
iteration when we define Z+l to be x.

In the other case, if j is odd, we have

" e BLj_I(A) or xj e A ’ e co-BLj_I(B) and u e ,
or (by negating both sides of the if and only if)

" BLj_I(A) and xj g’ co-BL_I (B) or uj B.

Fixing xy to be the minimal x found in Step 5, we have

" BLj_I (A) zT’ co-BLj_l (B)

or (by negating both sides of the if and only if)

" e BLj_I(A) if’ e co-BLj_I(B).

Again, this is the loop invariant for the next iteration. Thus, in both cases we manage to
maintain the loop invariant.

CLAIM 2. We need to show that =n NpTn. There are two cases to consider.
Case 1. If the loop terminated with i k 1, then ’- (zl,-.., zk-l/and from the

loop invariant we know that for all x {0, 1}n and

x e BLI(A) 7r(1,1)og(x, "/) e co-BL1 (B).

However, BLI(A) A and co-BLI(B) B, so we really have

x A 7flog(x, 5’n) G B
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or (by negating both sides of the if and only if)

x A rog(x, ’) e B.

To check if x =’ an NPT machine simply queries T to find 2’, computes u

zrog(x, and accepts if and only if u B.
Case 2. If the loop terminated with i < k 1, then 2’ (Zl,..., zi). We want to

show that

X e =n t= (Xl,’’" ,Xj--1) e {0, 1}nx(j-1), h(’,x) e B,

where j k i and h(g) rog(g, a). Since the loop terminated in Step 4, the NPNP

oracle must have answered yes to the question:

’Wx e =n , (x,...,xj_) e {0, 1}nx(/-1), h(Z’,x) e B?"

erefore, we obtain one direction of the if and only if

(1) x e =n t= (Xl,’’" ,Xj--1) e {0, 1}nx(j-1), h(’,x) e B,

Moreover, we ow from the loop invariant that VZ (Xl,..., Xj_l} e {0, 1}x(-),

(’, x) e BLi(A) r(,)og(Z’, x, a) e cBLi(B).

Again, let g (u,. ., ui) r(,j)og(’, x, a) and let g’ (u, , uj-1). Ifj is even,
then we ow from the definition of BLj (A) and cBL(B) that

Z’BL_(A) and x g’cBL_(B) or uB.
If j is odd, we get

Z’eBL_(A) or xA g’cBLi_(B) and ui.
Note that ui h(Z, x) and that in either case ui B implies x e A. Therefore, we
obtain the other direction of the if and only if

(2) ’= (Xl,""" ,Xj--1) e {0, 1}x(-), h(Z’, x) e B x e .
Combining the implications in (1) and (2), we have

e e e B,

is relationship allows us to compute= with an NPT machine. To check if x
=, an NPT machine queries T to find (Zl,..., zi), guesses ’ (xx,..., X_l)
and accepts if and only if ryog(’,x,) B.

In summaw, we constructed S A length by length (i.e., S T). Each T
has at most kn strings, and all the strings in T are of length n. so, each T is closed
under prees, so S is self-p-printable. Finally, e NPS because the following NPs

program determines if x A:
(1) t x n.

(2) If S, then A= . Reject x.
(3) Print out the strings z,..., zi in S=n. t j k i.

(4) If i k 1, compute u flog(x,) and accept if and only if u B.
(5) Ifi < k-l, accept x if and only if 2Z {0, 1}nx(j-1), jog(Xl,’’’ ,X,,X,n)

B.
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6. Conclusion. In this paper we have shown that except for the sets in Iowa, sets in
NP yield proper query hierarchies. In fact, assuming that PH is infinite, there even exist
incomplete sets that produce proper query hierarchies.

Many questions remain. For example, we know that query hierarchies over sets
in. P always collapse. We also know that for any A E NP N co-NP there exists B E
NP N co-NP such that A<Pm B and the query hierarchy over B collapses. Are there sets
in NP co-NP that have proper query hierarchies? What about sets between lowa and
NP co-NP? Are their query hierarchies proper? Many interesting sub-classes of NP
are contained in this region, including sparse sets in NP, NP P/poly, R and BPP NP.
Canwe show that any ofthese sets have proper or collapsing hierarchies? Also, we would
like to strengthen the results for serial query hierarchies. We know that AND2(A)_<Pm A
and OR2(A)_<Pm A is a sufficient condition. We know that this condition holds for all <-Pm
complete sets, all sets in P, and Graph Isomorphism. Primes remains the only candidate
for a natural language that does not have this property.

Acknowledgments. The author would like to thank his advisor, Juris Hartmanis,
for guidance and support, Jim Kadin for invaluable discussions and for suggesting nice
open questions, Wei Li and Desh Ranjan for keeping the author on his toes, Georges
Lauri for proofreading the paper, and Christine Piatko for lending him a red pen during
a time of great need.

REFERENCES

[1] R. BEIGEL, Bounded queries to SAT and the Boolean hierarchy, Theoret. Comput. Sci., 84 (1991), pp.
199-223.

[2] J. CAI, T. GUNDERMANN, J. HARTMANIS, L. HEMACHANDRA, V. SEWELSON, K. WAGNER, AND G.
WECHSUNG, The Boolean hierarchy I: Structuralproperties, SIAM J. Comput., 17 (1988), pp. 1232-
1252.

[3] R. CHANG AND J. KADIN, The Boolean hierarchy and the polynomial hierarchy: a closer connection, in
Proceedings of the 5th Structure in Complexity Theory Conference, Computer Society Press of the
IEEE, July 1990, pp. 169-178.

[4] ,On computing Boolean connectives ofcharacteristicfunctions, Tech. Report TR 90-1118, Cornell
Department of Computer Science, May 1990; Math. Systems Theory, to appear.

[5] J. HARTMANIS, Collapsing hierarchies, Bull. European Association Theoret. Comput. Sci., 33 (1987), pp.
26-39.

[6] J. KADIN, The polynomial time hierarchy collapses if the Boolean hierarchy collapses, SIAM J. Comput.,
17 (1988), pp. 1263-1282.

[7] K. KO AND U. SCHNING, On circuit size complexity and the low hierarchy for NP, SIAM J. Comput., 14
(1985), pp. 41-51.

[8] R. LADNER, On the structure ofpolynomial time reducibility, J. Assoc. Comput. Mach., 22 (1975), pp.
155-171.

[9] U. SCHONING,A uniform approach to obtain diagonal sets in complexity classes, Theoret. Comput. Sci., 18
(1982), pp. 95-103.

[10] .,A low and a high hierarchy in NP, J. Comput. System Sci., 27 (1983), pp. 14-28.
[11] ., Complexity and Structure, Lecture Notes in Computer Science, 211, Springer-Verlag, Berlin,

New York, 1985.
[12] ,Graph isomorphism is in the low hierarchy, in Proc. 4th Sympos. Theoret. Aspects ofComput. Sci.,

247, in Lecture Notes in Computer Science, Springer-Verlag, Berlin, New York, 1987, pp. 114-124.
[13] K. WAGNER, Bounded query computations, in Proceedings of the 3rd Structure in Complexity Theory

Conference, Computer Society Press of the IEEE, June 1988, pp. 260-277.



SIAM J. COMPU’E
Vol. 21, No. 4, pp. 755-780, August 1992

1992 Society for Industrial and Applied Mathematics
009

AN OPTIMAL PARALLEL ALGORITHM FOR FORMULA EVALUATION*

s. BUSSf, S. COOKt, A. GUPTA, AND V. PAMACHANDtAN
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1. Introduction. In this paper we consider the parallel complexity of the Boolean
and arithmetic formula-value problems. The Boolean formula-value problem is that of
determining the truth value of an infix Boolean formula (with connectives {A, V,-})
given the truth assignments of the variables in the formula. Since it is easy to substi-
tute values for the variables, we can reduce this problem to that of solving the Boolean
sentence-value problem (BSVP), i.e., the Boolean formula-value problem restricted to
the case in which the formula contains constants and operators, but no variables. The
goal is to obtain a bounded fan-in Boolean circuit of small depth that solves the BSVP for
all inputs of a given size. We assume that each gate takes unit time for its computation
and that there is no propagation delay along wires. This is the standard circuit model
(see, e.g., [sa76], [co85], [kr90]). In this model the time taken by a circuit to compute the
values of its outputs when given values to its inputs is equal to the depth of the circuit.
Hence, a circuit of small depth corresponds to a computation that can be performed
quickly in parallel.

A natural extension to the Boolean formula-value problem is the problem of evalu-
ating an arithmetic formula over a more general algebra. In this paper we consider this
problem over semi-rings, rings, and fields. The problem is basically the same as BSVP
given an arithmetic formula over an algebra and the value ofeach variable in the formula,
determine the value of the formula. We use the arithmetic-Boolean circuits of von zur
Gathen [jg86] as our model, and we use the corresponding arithmetic complexity theory.
Once again, the goal is to obtain a circuit of small depth that solves this problem for all
inputs of a given depth. We assume that each arithmetic gate has unit delay, so that the
time required by the circuit to perform a computation is equal to its depth.

An additional property that we desire in the family of circuits we construct is that
it be uniform, i.e., that a description of the circuit for evaluating formulas of size n can
be obtained easily when the value of n is known; the family is logspace uniform if the
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description of the nth circuit can be provided by a deterministic Turing machine oper-
ating in space O(log n). The class NCk for k >_ 2 is the class of problems that have
a logspace-uniform family of circuits of depth O(logk n) and polynomial size, where n
is the size of the input; for NC a stronger notion of uniformity is usually used [ru81].
The class NC is the class of problems that have a logspace-uniform family of circuits of
polylog depth and polynomial size; this class is generally considered to characterize the
class of problems with feasible parallel algorithms. Let P be the class of problems solv-
able in sequential polynomial time. An important open question in parallel complexity
theory is whether NC equals P or whether NC equals P. For more on parallel circuit
complexity see, e.g., [co85], [kr90], [ru81].

Simple fan-in arguments show that any circuit for formula evaluation must have
depth at least logarithmic in the size of the formula. Early work on BSVP was done by
Spira [sp71], who showed that any sentence of size n can be restructured into a formula
of depth O(log n) and size O(n2). Brent [br74] used a restructured circuit of logarithmic
depth and linear size to evaluate a given arithmetic formula. These results gave hope
of obtaining a logarithmic-depth circuit for formula evaluation by finding a logarithmic-
depth circuit for performing the appropriate restructuring. However, direct implemen-
tation of these algorithms seems to require 9t(log2 n) depth for the restructuring. This
result placed BSVP in NC.

The BSVP can be shown to be in NCz through the use of other techniques. Lynch
[ly77] showed that parenthesised context-free languages can be recognized in determin-
istic log space (LOGSPACE). Since the set of true Boolean sentences is an instance of
these languages, this immediately implied the same space bound for BSVP. The result of
Borodin [bo77], that LOGSPACE c_ NC, once again placed this problem in NC. The
logarithmic-time tree-contraction algorithm of Miller and Reif [mr85] for arithmetic ex-
pression evaluation on a PRAM again translates into an NC2 algorithm on arithmetic
circuits.

The first sub-NC algorithm for BSVP was devised by Cook and Gupta [gu85]
and independently by Ramachandran [ra86]. Their circuit family for the problem was
log space uniform and had a depth of O(log n log log n), and this gave new hope that
the problem had an NC algorithm. Cook and Gupta also showed that parenthesis
context-free grammars can be recognized in depth O(log n log log n), while Ramachan-
dran showed that arithmetic formulas over semi-rings can be evaluated within the same
time bound.

Recently, Buss [bu87] devised an alternating log-time algorithm for both BSVP and
the recognition problem for parenthesis context-free grammars. Since alternating log
time is equivalent to NC [ru81] under a strong notion of uniformity, this finally settled
the question ofwhether BSVP is in NC1. Buss’s algorithm was based on converting the
sentence into PLOF form (post-fix longer operand first) and then playing a two-person
game on it. The game simulated the evaluation of the sentence and could be played in
log-time on an alternating Turing machine. Buss also showed that his result is optimal
in a very strong sense--he showed that BSVP is complete for alternating log-time under
reductions from any level of the log-time hierarchy.

Dymond [dy88] extended Buss’s result for parenthesis grammars to show that all
input-driven languages can be recognized in NC1. His technique generalizes the game
described by Buss.

Very recently, Muller and Preparata [mp88] devised log-depth circuits to solve for-
mula evaluation for semi-rings. Their approach is based on using a universal evaluator
to evaluate an infix formula where, for each operator, the longer operand occurs before
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the shorter.
There are a number of reasons why the formula-value problem is interesting. The

BSVP is the analogue of the circuit-value problem for which each gate has fan-out 1.
The circuit-value problem is log space complete for P and hence is not in NC unless P
equals NC. The BSVP, on the other hand, is clearly in NC and is, therefore, a natural
candidate for an NCl-complete problem. Also, propositional formulas are fundamental
concepts in logic, and the complexity of evaluating them is of interest.

In this paper, we present a simple NC algorithm for BSVP that incorporates Buss’s
original ideas into a two-person pebbling game similar to that introduced by Dymond and
Tompa [dt85]. This algorithm is designed to give insight into the mechanism of Buss’s
algorithm. We show that our result is optimal by proving that the problem is complete for
NC under AC reductions. We then proceed to use our evaluation technique to place
the general arithmetic-formula evaluation problem over rings, fields, and semi-rings in
arithmetic NCx.

This paper is organized as follows. The relevant background is given in 2. In 3 we
describe an NC algorithm that translates Boolean sentences into PLOF sentences. In
4 an NC algorithm for the PLOF sentence-value problem is given. This finishes the
proof that BSVP is in NC. Some completeness results for BSVP are given in 5. In 6
we generalize the technique of 4 to obtain an arithmetic NC algorithm for arithmetic-
formula evaluation (over rings, fields, and semi-rings).

2. Background.

2.1. Boolean circuit complexity. All unreferenced material in this section is
from [co85], and we refer the reader to that paper for a more in-depth discussion of
Boolean circuit complexity.

DEFINITION. ABoolean circuit t on n inputs andm outputs is a finite directed acyclic
graph with each node labeled from {zl,...,z,, 0, 1,-, V,A}. Nodes labeled zi are in-
put nodes and have indegree 0. Nodes with indegree 1 are labeled -, and those with
indegree 2 are labeled either V or A, where each edge into the node is associated with
one argument of the function corresponding to the label. There is a sequence of m >_ 1
nodes in c designated as output nodes. In practice, the nodes of c are called gates.

DEFINITION. For a circuit c, the complexity of c, designated c(c), is the number of
nodes in c. The depth of c, designated d(c), is the length of the longest path from some
input node to some output node.

We also assign to each gate in our Boolean circuits a gate number. We assume that in
a given circuit c, each gate has a unique gate number and all gate numbers are between
0 and c(t)() (i.e., their binary encoding is O(log c(c))). Furthermore, we assume that
all gates in a Boolean circuit are on a path from some input to an output. When the
inputs are assigned values from {0, 1}, each output takes on a unique value. A circuit
c on n inputs and m outputs computes a function f {0, 1} {0, 1}" in the obvious
way. We are interested in computing more general functions, namely those of the form
f {0, 1}* {0, 1}*. We need circuit families for this.

DEFINITION. A circuitfamily (cn) is a sequence of Boolean circuits such that the nth
circuit in the family has n inputs and h(n) outputs, where h(r) n().

Notice that arbitrary circuit families are very powerful (they can even recognize non-
recursive languages). Therefore, we restrict ourselves to uniform circuit families. The
strength of the Turing machines used to generate the circuits determines the uniformity
condition on the circuit family. We note that all of our Turing machines are assumed to
be multi-tape.
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DEFINITION. Let a be a Boolean circuit. Let g be a gate in a and p {/, r}*. Then
g(p) is the gate reached when p is followed (as a path) toward the inputs of c by starting
at g. For example, g(1) is g’s left input. We make the convention that if g is an input gate,
then g(1) g(r) g.

DEFINITION [ru81]. For a circuit family (an), the extended-connection language LEC
consists of 4-tuples (, g, p, y), where {0, 1}* ( is n in binary), g {0, 1}* (g is a
gate number), y {z,...,,, 0, 1,-, v, A} t_J {0, 1}*, and IPl <- log c(a,) such that if
p e then y is the label of the gate numbered g; otherwise, y is the gate number of g(p).
(a,) is U uniform if there is a deterministic linear-time Turing machine recognizing
LEC.

Here LEC encodes local connection information in c,, that is, connections that are
within distance log c((n).

Note. The time bound in Ruzzo’s original definition of UE uniformity is iven as
O(logc(c,)). However, since the length of the input to the Turin machine is also
O(log c(c,)), our definition is equivalentmwe prefer to use the size of the input to the
machine in the definition.

DEFINITION. For all k > 0, define NCk as the class of functions computable by a
UE-uniform circuit family (Cn/such that c(cn) n(1) and d(a,) O(logk n). NC
J>0 NC

We use UE uniformity in our definition of NC instead of the more common UE.
uniformity. Ruzzo shows that NCk (k >_ 1) is the same under both definitions. The ad-
vantage of using UE uniformity is that the uniformity condition can be checked with the
generally more familiar deterministic Turing machine (DTM) instead of an alternating
Turing machine (ATM). The disadvantage is that ATMs are more powerful than DTMs
and it may be easier to check the uniformity with an ATM.

Ruzzo [ru81] developed a Turing machine characterization of uniform Boolean cir-
cuits by showing that ATMs are basically uniform circuits.

PROPOSITION 2.1 [ru81]. A problem is in NCk ifand only if it is solvable by an ATM
in time O(logk n) and space O(log n).

Notice that in Proposition 2.1 the standard textbook definition of a Turing machine
does not make sense because the time bound is sublinear (and, thus, not all of the input
can be accessed on a single path of the computation). Therefore, we adopt the random-
access multi-tape model described by Chandra, Kozen, and Stockmeyer [cks81]. This
machine has a special index tape onto which the address of the input tape cell that needs
to be accessed is written (in binary). The input head can then read the value of the
input specified by this address. A further complication arises because circuit families are
defined as computing multiple-valued functions (that is, the corresponding circuits may
have more than one output gate), whereas Turing machines recognize sets of predicates.
We make the convention that a Turing machine M is said to compute a function f if the
predicate

Ay(c, i, z) de__f the ith symbol of f(z) is c

is recognized by M.
Following Ruzzo [ru81], we also make a number of assumptions (without loss of

generality) about ATMs. First, every configuration of an ATM has at most 2 successors.
Second, all accesses to the ATM’s input tape are performed at the end of the compu-
tation. This is easily accomplished by having the ATM guess the input and in parallel
verify it (by looking at the input tape) and continue with the computation. Finally, we
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make the convention that deterministic configurations are considered to be existential
with one successor.

NG is considered to be a very fast complexity class, and many problems have been
shown to be in NG. Sum and product of 2 n-bit integers, sum of n n-bit integers, and
sorting of n n-bit integers are all in NG [sa76]. Because of their shallow depth, NG
circuits can always be converted into equivalent circuits with fan-out 1, polynomial size,
and O(log n) depth. In this form, they can be expressed as formulas.

COROLLARY 2.2. NC is the class of languages recognized by uniform log-depth for-
mula families. The nth member of the family recognizes all strings in the language of
length n.

A generalization of the uniform Boolean circuit families are the unbounded fan-in
uniform circuit families [csv82]. These circuit families are allowed arbitrary fan-in at the
A and V gates. We need a new uniformity condition.

DEFINITION. The direct connection language for an unbounded fan-in family of cir-
cuits (c,) (denoted LDC) is given by the set of 3-tuples (, g, y), where , g {0, 1}*,
y {Xl,’",Xn,0, 1,-, V,A} U {0, 1}* such that ify {0, 1}* then y is an input to g;
otherwise, y is g’s label. (c,,) is UDL uniform if LDC can be recognized by a DTM in
linear space (i.e., O(log c(c)) space).

We define a hierarchy of unbounded fan-in circuits by the following.
DEFINITION. For all k > 0, AC is the class of problems solvable by an unbounded

fan-in UDL-uniform circuit family {c,), where c(Cn) nO(I) and d(c,,) O(logk n).
AC U>o AC-

Once again we can characterize this hierarchy by using alternating Turing machines:
PROPOSITION 2.3 [CO85]. For all k > O, ACk is the class ofproblem solvable by an

ATM in space O(log n) and alternation depth O(logk n).
The definitions above suffice to define ACk when k > 0. However, we are interested

in AC because we wish to show that BSVP is complete for NC under AC reductions.
The uniformity condition is too strong in the circuit definition. The ATM definition
(Proposition 2.3) would have to place further resource restrictions on the machine since a
straightforward extension of the proposition would imply AC NL (nondeterministic
log space).

Immerman [im89] proposed defining ACk (k > 0) in terms of a CRAM (a CRCW
PRAM that is strengthened slightly to allow a processor to shift a word left or right by
log n bits in unit time). This modification does not affect ACk when k > 0. Immerman
also gave a number of other characterizations of AC, including first-order expressible
properties and inductive definitions for which the depth of the induction is constant, and
showed that all these characterizations are equivalent.

An alternate definition was proposed by Buss [bu87]. The log time hierarchy (de-
noted LH) introduced by Sipser [si83] is the class of problems solvable by an ATM in log
time and O(1) alternations. Buss proposed LH as the definition of uniform AC.

Recently Barrington, Immerman, and Straubing [bis88] showed that all 4 of the
above characterizations give the same class, thus suggesting that these may be the ap-
propriate definition. We would like a circuit definition of AC. We begin by defining an
appropriate uniformity condition.

DEFINITION [ru81]. (a,) is UD uniform if its direct connection language, LDC, can
be recognized by a DTM in linear time (i.e., O(log c(c,)) time).

Finally, AC is the class of problems solvable by an unbounded fan-in UD-uniform
circuit family (c,) that has constant depth and n() size. This definition is consistent
with the others due to the following.
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THEOREM 2.4. Uo-uniform AC LH.
The proof of Theorem 2.4 requires the following lemma.
LEMMA 2.5. IfL LH, then there is an ATMM that accepts L and there are c, k N

so thatfor all n and all z in {0, 1}* with Iz] n, and all configurations 7 with 171 <- c log
every computation ofM with input z starting in 7 terminates within c log n steps and at most
k alternations.

To handle the time constraint, we incorporate a clock into the ATM that times the
computation. When the clock runs out, the ATM automatically rejects. Because the
clock can count in unary, this at most doubles the running time. For the bound on the al-
ternations, we can use the finite state of the machine to count the number of alternations
that have occurred.

Proof (Theorem 2.4). (c_) An ATM M on input z guesses the output gate (say g)
of clx I, If g is "A" ("V"), then M enters a universal (existential) state. M now guesses
an input gate to g. If this gate is an input to the circuit, then M directly checks its cor-
responding input and accepts or rejects appropriately. Otherwise, it recursively applies
this procedure to this new gate. All guesses about the circuit are verified by checking for
the appropriate membership in LDC. Since (a,) is constant depth and M uses at most
2 alternations to simulate each step of the circuit, M is in LI-I.

(_) Let L E LH. Let M be a log time ATM recognizing L, and let c, k E N, as in
Lemma 2.5. We define a UD-uniform family of circuits (ai) that simulate M and have
depth k.

The gates of a, are labeled by a 3-tuple (7, t, p), where
1. 7 is a configuration of M (on inputs of length n).
2. t {A,V,I,I, 0, 1},where

(a) t =/x if 7 is an universal configuration.
(b) t V if 7 is an existential configuration.
(c) t 1 if 7 is an input configuration and M in configuration 7 accepts if

zi 1, where is on the index tape.
(d) t I if 7 is an input configuration and M in configuration 7 accepts if

z 0, where is on the index tape.
(e) t 0 if 7 is a rejecting configuration.
(f) t I if 7 is an accepting configuration.

3. p {1, r}*, where [Pl < c log r.
There is exactly one gate for every possible triple (7, t, p). The output gate is the

gate labeled (70, to, A), where 70 is the initial configuration, to is the type of 70, and A is
the empty string. The input gates are the triples (7, t, p) of type t equal to I, I, 0 or 1;
these are identified with the inputs z, , 0 and 1 (respectively), where is the value on
the index tape of the configuration 7. If g (7, t, p) and g (7, t, p) are gates
of a, then g is an input to gz if t tz and the computation described by p starting
in configuration 7 ends at 7 such that all configurations in this computation except the
last are of type t2.

It is straightforward to show by induction that a gate g (7, t, p) is 1 if and only
if 7 is accepting with respect to the input z. Also, the depth of the circuit is clearly the
number of alternations of M.

It remains to be proved that the circuit family (a) is UD uniform. However, this
now follows directly, since for the given gates g (7, tt, p) and g2 (72,,t2,/92) we
can simulate the computation specified by p to determine if g is an input to 92.

Note. If the U9-uniformity condition is used in the definition of AC (k > 0),
the class does not change. Also, the ATM definition of AC (Proposition 2.3) can be
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augmented to include k 0 by adding the further restriction that the machine operate
in time O(logk+l n).

We are now ready to define AC reductions:
DEFINITION. Let A and B be sets. Then A <ACO B if there is a function f in AC

such that for every z, z E A if and only if f(z) B.
THEOREM 2.6. IfA <AGO B and B <AGO C, then A <AGO C.
Proof. Let f be an AC function such that x A if and only if f(x) B. Let M be

an ATM computing f. Let g be an AC function such that x B if and only if g(x) C.
Let N be an ATM computing g. We show that g o f is computable in AGO by an ATM
T. Suppose the input to T is (c, i, x). T must accept if and only if the ith bit of (g o f)(x)
is c. T begins by simulating N on input (c, i, x) until N enters an input state. Suppose
that when N does so, it has j written on its index tape and N would accept if xj was
b E {0, 1 }. T now finishes by simulating M on input (b, j, x). Clearly, T runs in log time,
uses a constant number of alternations, and computes g o f.

THEOREM 2.7. IfB NC and A <_NC,1 B, then A NC1.
Proof. Let f be a function such that for every x, x A if and only if f(x) B and f

is in NC1. Let M be an ATM recognizing B in log time. Let N be an ATM computing
f (that is, recognizing AI) in log time. We describe an ATM T that recognizes A. T
simulates M except where M enters an input configuration. Suppose T has simulated
M up to an input configuration and has written onto its index tape and c as the guess
for the ith input bit. At this point T begins to simulate N with the input (c, i, x). It is
easy to see that T accepts input x if and only if M accepts f(x). Also, since M and N
run in log time, so does T. Therefore, A E NC1.

COROLLARY 2.8. IfB NC and A <ACo B, then A NC1.
2.2. Arithmetic circuit complexity. Most of the material in this section can be

found in [jg86].
DEFINITION. An arithmetic circuit (straight-lineprogram) over an algebraic structure

F is a directed acyclic graph for which each node has indegree 0, 1, or 2. Nodes with
indegree 0 are labeled as either input nodes or elements of F. Nodes with indegree 1
and 2 are labeled with the unary and binary operators of F, respectively. For example if
F is a field, then the unary operators are "-" (additive inverse) and ,,-1,, (multiplicative
inverse) and the binary operators are "+" and "". There is a sequence of m > I gates
with outdegree 0 designated as output nodes.

As with Boolean circuits, we assume there are no superfluous nodes. For an arith-
metic circuit a the complexity and depth of a are defined the same as for Boolean circuits.

Arithmetic circuits are not sufficiently powerful for our purpose. For example, there
may be no way to describe and manipulate the formula within the particular algebraic
structure.

DEFINITION. An arithmetic-Boolean circuit over an algebraic structure F is an arith-
metic circuit (over F) augmented with a Boolean component and an interface between
the two. The Boolean component is a Boolean circuit. The interface consists of two
special gatesmsign F {0, 1}, defined by sign(a) 0 if and only if a 0, and
sel. F F.x {0, 1} -- F, defined by

b,c)=
a ifc=O,

sel(a,
b ifc= 1.

The definitions ofcomplexity and depth for arithmetic-Boolean circuits are extended
from arithmetic circuits. Also, the definitions of arithmetic-Boolean circuit families, uni-
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formity, and parallel complexity classes (i.e., the NC hierarchy) are analogous to those
for Boolean circuits.

Inputs to an arithmetic-Boolean circuit consist of algebraic values to the arithmetic
circuit and Boolean values to the Boolean circuit. In the case of arithmetic-formula eval-
uation, the Boolean inputs will describe the structure of the formula and the arithmetic
inputs will specify the value of the variables in the formula.

2.3. Problem definitions.
DEFINITION. A Boolean sentence is defined inductively by
1. 0 and 1 are Boolean sentences.
2. If a and/ are Boolean sentences, then so are (-a), (a A/3), and (a V/3).

The definition of Boolean sentences above describes sentences in infix notation.
However, our algorithm will work with sentences in postfix (reverse Polish) notation
with the further provision that for any binary operator, the longer operand occurs first.

DEFINITION. Apostfix-longer-operand-first (PLOF) sentence is defined by
1. 0 and i are PLOF sentences.
2. If a and are PLOF sentences where lal > I/l, then a-, a/A, and a/V are
PLOF sentences.

We define the value of a Boolean or PLOF sentence in the usual way, where 0 and
1 represent False and True, respectively.

DEFINITION. The Boolean sentence-value problem (BSVP) is as follows: Given a
Boolean sentence A, what is the value of A?

DEFINITION [js82]. Asemi-ring is a 5-tuple (S, @, (R), 0, 1), where 0, 1 S such that
1. (S, q3, 0) is a commutative monoid.
2. (S, (R), 1) is a monoid.
3. (R) distributes over
4. For every a S, a (R) O O O (R) a.

For convenience, we will also assume a unary operator "(R)," where (R)a a for every
a S. This will give us flexibility to increase the size of a formula over a semi-ring.

Some examples of semi-rings are S ({0, 1}, V, A,0, 1), S (Z, min, , +o, 1),
and any ring S.

DEFINITION. Let be a semi-ring (which may also be a ring or field). An arithmetic

formula over S with indeterminates X1, X2,.--, Xn, is defined by
1. For 1 < i < n, X is an arithmetic formula.
2. For every c S, c is an arithmetic formula.
3. If a is an arithmetic formula and 0 is a unary operator of S, then (0 a) is an

arithmetic formula.
4. If a and fl are arithmetic formulas and

is an arithmetic formula.
An arithmetic formula Awith indeterminates X, X2, , X= is denoted by A(Xi,..., Xn).

The Boolean formula discussed earlier is clearly a special case of these new for-
mulas. We define postfix arithmetic formula and PLOF (postfix-longer-operand-first)
arithmetic formulas to be exact analogs of their Boolean counterparts. The length of
an arithmetic formula A (denoted IA]) is the number of nonparenthesis symbols in A
(where an indeterminate is one symbol).

DEFINITION. Let S be a ring, field, or semi-ring. The arithmetic-formula evaluation
problem is as follows: Given an arithmetic formula A(Xi, X2,..., Xn) over S and con-
stants c, c2,..., c, S, what is A(ci, c2,..., c,)?
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2.4. Other definitions. Consider a Boolean sentence A. Define the depth of
atoms ofA as the level of nesting of parentheses in the subsentence containing the atom.
We can view A as a binary tree, namely its (unique) parse tree, defined inductively as fol-
lows: the root is the operator of A of minimum depth and its children are the roots of
the trees of the operands of the operator. Notice that we do not need parentheses in the
tree representation. In exposition we will use the tree representation interchangeably
with the infix or PLOF representation. Therefore, we carry over tree notions such as
root, child, ancestor and descendent to sentences.

DEFINITION. Let A be a Boolean sentence. The length of A, denoted IAI, is the
number of nonparenthesis symbols in A.

This definition has the desirable property that sentences have the same length re-
gardless of the representation used (either infix or PLOF).

DEFINITION. Let A be a postfix Boolean sentence, and suppose 1 <_ j <_ k _< n.
Then A[j, k] is the string A[j]A[j + 1]... A[k]. The subsentences of A are those strings of
the form A[j, k] that form sentences. For I < k < n, A denotes the unique subsentence
of A of the form A[j, k] for some j. We call Ak the subsentence rooted atposition k or,
for short, rooted at A[k]. We use j <3_ k to mean that A[j] is in Ak and j <1 k to mean j k
andj # k.

Note that j S k if and only ifA is a substring of Ak if and only if A[k] is an ancestor
of A[j]. Also, the relation <1_ forms a partial order. The following fact is used often:

LEMMA 2.9. Let A be a postfix Boolean sentence IAI n. Let a, b, c < n such that
c< a, c < b, and a <_b. Then a< b.

Proof. The subsentence Ab is of the form A[j, b] (j < b). c < b j < c < b and
c <1 a = c < a. Therefore, j < c < a < b = a b. I-1

DEFINITION. Let A be a Boolean sentence. Consider the sentence obtained by re-
moving a subsentence A and replacing it with some constant c (i.e., c {0, 1}). The
resulting sentence is denoted by A(k, c). We say that A(k, c) is A with a scar at k and
that A(k, c) is scarred.

All the definitions made here can be translated to arithmetic formulas in a natural
way, and we will use these definitions when discussing arithmetic formulas.

3. Translation ofBoolean sentences to PLOF sentences. As a first step toward find-
ing an NC algorithm for BSVP, we give an NC algorithm that translates Boolean sen-
tences into PLOF sentences. It iswell known [co85] that there is a uniform family of
NC circuits in which the nth circuit computes the function

Count" {0, i}n -- {0, 1}

(i.e., given n Boolean values, output a binary string denoting their sum). Likewise, there
is a uniform family of NC circuits where the nth circuit computes the summation of n
n-bit numbers.

If A is an infix Boolean formula, let A[i] E {A, V, -, 0, 1} be the ith nonparenthesis
symbol in A. We describe an algorithm that outputs, for each A[i], its position in the
PLOF sentence.

DEFINITION. For A, an infix Boolean sentence, and A[1]A[2]... A[n], the enumer-
ation of the nonparenthesis symbols of A, the subsentence rooted at A[i] is the smallest
subsentence of A containing A[i]. A[k] is an ancestor of A[i] if the subsentence rooted at
A[k] contains the subsentence rooted at A[i].

LEMMA 3.1. Thefollowing are computable in NC.
a. Scope(A, i, j) de__f A[i] in the subsentence rooted at A[j].
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b. For each j, the size ofthe subsentence rooted at A j].
Proof. Notice that by counting the nonparenthesis symbols in A, it is easy to locate

A[j] in A.
a. Define the depth of nonparenthesis symbols in A in the normal way (i.e., with respect

to the parse tree for A). Using Count, it is easy to determine the depth of each
nonparenthesis symbol of A. This is used to find the parentheses that delimit
the subsentence rooted at A[j]. A[i] is in this subsentence if it sits between these
parentheses.

b. Count the number of for which Scope(A, i, j) holds. 1
To determine the position of nonparenthesis symbol A[j] in the PLOF translation

of A, do the following:
1. Calculate the size of the subsentence rooted at A[j].
2. For each ancestor A[k] of A[j], let Lk (Rk) be the size of the subsentence rooted

at the left (right) child of A[k]. Define

Lk if Lk >_ Rk and Scope(A, j, right child of A[k]),
Sk Rk if Rk > Lk and Scope(A, j, left child of A[k]),

0 otherwise.

3. The position of A[i] is ] Sk.
Because summation is NC computable, it is now easy to see that the function mapping
an infix formula A to its PLOF translation is NC computable.

4. The algorithm for the PLOF sentence-value problem. Because there is an NC
algorithm that translates a Boolean sentence into an equivalent PLOF sentence, it suf-
fices by Theorem 2.7 to prove the next theorem in order to prove that the Boolean
sentence-value problem is in NC.

THEOREM 4.1. There is an NC algorithm for determining the truth value ofa PLOF
sentence.

For the remainder of this section, we present a proof of Theorem 4.1. A good way to
explain the algorithm is to use an interpreted version of the Dymond-Tompa 2-person
pebbling game [dt85] (this is the standard simulation of a Boolean circuit by an ATM).
This version can be used to determine the output of a Boolean circuit C with specified
inputs, as follows. The game has two players, called the Pebber and the Challenger.
The Pebbler has a supply of pebbles, each labeled either 0 or 1. The Pebbler moves
by placing a pebble on a node of C. (The node is either a gate or an input to C.) The
label on the pebble represents the Pebbler’s guess as to the value of the node pebbled.
The Pebbler moves first by placing a pebble labeled 1 on the output node, representing a
guess that the output value of the circuit is 1. After each Pebbler move, the Challenger
moves by challenging some pebbled node. The challenged node must either be the one
just pebbled or the node last challenged by the Challenger. The game ends when all in-
puts to the challenged node have been pebbled (pebbles are never removed once placed
by the Pebbler). The Pebbler wins if and only if the label on the pebble of the chal-
lenged node is consistent with the node type and the labels on its inputs.

For example, if the challenged node is an input node with value 1, then the Pebbler
wins if and only if the pebble on that node has label 1. If, on the other hand, the chal-
lenged node is an OR gate with pebble label c and its inputs have pebble labels z and y,
then the Pebbler wins if and only if c is the logical OR of z and y.

LEMMA 4.2. In the above game, the Pebbler has a winning strategy ifand only if the
circuit has output 1.
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Proof. If the circuit has output 1, then the Pebbler’s strategy is, for each move, to
pebble with the correct label all unpebbled inputs to the challenged node. If the circuit
has output O, then the Challenger’s strategy is to always challenge the node ofminimum
depth whose pebbled value is incorrect.

The above game forms the basis for our NG algorithm for determining the value
of a PLOF sentence. The input to the algorithm is a PLOF sentence A, which is a string
of symbols A A[1]... A[n] from the alphabet {V, A, =,-, 0, 1}. Hence, the length of
A, IAI, is n.

Without loss of generality, we may assume that n is a power of 2. If n is not in fact
a power of 2, the algorithm proceeds as if a string of --’s is tacked on to the right end,
bringing the length of the input to the nearest larger power of 2. If the number of such
--’s is odd, the normal output of the algorithm is negated.

To adapt the pebbling game from the circuit C to the PLOF sentence A, the Pobbl or
places a pebble on a position k of A instead of a node of C, and the label on the pebble
is a guess as to the value of subsentence Ak. The maximal subsentences of Ak are the
inputs to the node.

If the sentence has value 1, then the Pebbler can force a win in O(log n) moves by
the strategy used by Tompa [to85] to efficiently pebble a tree. (The basic idea goes back
to Lewis, Stearns, and Hartmanis [lsh65] in their proof that context-free languages can
be recognized in space O(logz n).)

This strategy can be described as follows: Consider the challenged subsentence A
to be scarred by replacing each of its maximal pebbled subsentences by 0 or 1 (the label
on the pebble). Place the next pebble on the subsentence Aj ofA that comes as close
as possible to cutting the scarred A in half. That is, the scarred size of Aj should be as
close as possible to the new scarred size ofA (in fact, the size of A; will be between
and the size of Ak). In this way, whether the Cha:t:tenger next challenges the same
position or the new position, the scarred size of the challenged subsentence is at least
less after each pair of moves.

A straightforward implementation of this strategy on an ATM requires time
O(logz n), since each of the O(log n) steps requires time O(log n) to describe a pebble
position. To reduce the ATM time, we present a variation of the strategy that includes a
uniform method for choosing subsentences, so that each pebble move can be described
in a constant number of bits.

Associated with each of the Pebbl or’s moves is a substring g/- A[i, j] of the input
sentence Awhose length is a power of 2. This substring includes the currently challenged
position k and all unpebbled positions in the scarred subsentence A. All future moves
are made within g. To help determine these moves, we define distinguished positions
V(g), V1 (g), and V2 (g), in g which depend only on A and the end points (i and j) of

DEFINITION. Let g A[i, j]. If g has even length, define

V(g) max{klk < j and k}.

That is, Av(g) is the maximal subsentence ofA containing A[i] whose root is in g. Further,
define

Vl(g) V(A[i, (i + j 1)/2]) and V2(g) V(A[(i + j + 1)/2,j]).

Here, Vl(g) and Vz (g) are just "V(first half of g)" and "V(second half of g)," respec-
tively.

LEMMA 4.3. Let g A[i, j] have even length. Then V(g) is one ofV (g) and V2 (g).
Proof. If V(9) <_ (i + j 1)/2, then V(9) V (9); otherwise, it is Vz(9).
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LEMMA 4.4. Let t A[i, j] have even length. Then V1 (t/) + 1 V2(t/).
Proof, If V1 (g) (i + j 1)/2 or VI(g) _<1 V2(g), the lemma is obvious. Therefore,

assume that V(g) < (i + j 1)/2 and V(g) $ V2(g). Let W V(A[V(g) + 1,j]). We
show that W V2(g). If W > (i + j + 1)/2, then W V=(9) since Aw and Av() are
maximal and both contain A[(i + j + 1)/2]. Now suppose that W < (i + j 1)/2 (see
Fig. 4.1).

FIG. 4.1. V1 (9) : Vz(g) and W <_ (i + j 1)/2.

Clearly, Aw is the left operand of its parent operator, and its parent occurs to the
right of 9 (since otherwise we could extend W to include its parent). But Aw is at least
as long as its sibling to its immediate right because the input is a PLOF sentence. Since
[Awl < (i +j- 1)/2, the entire sibling as well as the parent, must be in 9, a contradiction
to the definition of W. [3

DEFINITION. Let t/= A[i, j] be a substring ofAwhose length J-i/ 1 is divisible
by 4. Then t/x, t/z, and t/3 denote the left, middle, and right halves of t/, respectively. That
is, g A[i, i + [91/2 1], g2 A[i + 191/4, + 3tgl/4 1], and g3 A[i + Ig[/2, j].

Our pebbling game will allow the Pebbler to place pebbles only at the V position
corresponding to each quarter of g (see Fig. 4.2).

Ul( u=( vx( v=(a v1(3

FIG. 4.2. Pebble positions in 9.

It is easy to see
LEMMA 4.5. V (t/1) < V2 (t/1) Vl (t/2) < V2 (t/2) Vl (g3) < V2 (t/3).
Rules of the ATM game. The Pobbaor may pebble up to 4 positions in one round of

moves, as specified below. The Challenger challenges one of these 4. Associated with
each round (except the first) is a substring g of A, whose length is a power of 2 and which
contains the challenged position. We assume IA[ > 2.

1. For the first round, the PobbXer places a pebble with label 1 on position n.
The ChaXXenger challenges n. The substring associated with the next round is
g A[1, n]. (Recall that n is a power of 2 by our earlier assumption.)

2. After the first round, the substring g contains the challenged position c. Assume
[g[ > 4. The pebbler considers V1 (gl), V2 (t/i), V2 (t/2), V2(g3), in that order, for
pebbling. For each of these 4 candidates k, the Pebblor pebbles k if and only
if k _<1 c and no pebbled satisfies k <! <3 c. The label on the pebble may be
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either 0 or 1, except that if k c (the only case in which a position is allowed to
be repebbled), the label must agree with the previous label. The Chattengor
challenges one such pebbled V(g). Notice that by Lemma 4.3, this permits
rechallenging c. The new substring is g.

3. Assume Igl 2. Then g consists of the challenged position c and a second
position k. The Pobblor pebbles k if and only if k is unpebbled and k <1 c, and
then repebbles c with the same label as before. The t3hallonger challenges
one of the positions c’ just pebbled. Lemma 4.6 below shows that all maximal
subsentences of A, have been pebbled. The Pobblor wins if and only if the
pebble label on c’ is consistent with the operator A[c’] and the pebble labels on
the maximal subsentences of A,.

The following lemma justifies our assertion that if c is the challenged position, then
the substring g contains all unpebbled positions in the scarred subsentence A. It also
justifies the end condition in step 3 of the Rules.

LEMMA 4.6. After each round in the ATMgame, everyposition k <1 c with k to the left
of g has somepebbled such that k

Proof Induction on the round number.
Basis. Vacuous.
Induction. Suppose c’ is the new challenged position and g is the new interval. By

the Rules, c’

_
c. Let k <1 c’, where k is to the left of g. Thus, k <1 c’

___
c.

Case 1. k is to the left of g. By the induction hypothesis, there is a pebbled with k <1 c.
By the Rules, c’ 1. But subsentences A, and At both contain k, so by Lemma
2.9 one subsentence contains the other. Hence, k

_
<1 c’.

Case 2. k is in g but to the left of g. Then k is in g. If j 2, then by Lemma 4.4
k <3 V1 (91) or k <1 V2 (g) and by the Rules c’ V2 (92). Similarly, if j 3, then
k

__
V (91), k

Va (gb). Then dearly Va (gb < c’, and by Lemmas 2.9 and 4.5 k

_
V(gb <1 c’ c

(since the subsentences at both position Va(gb) and c’ contain k). If Va(gb) is
pebbled, then we are done, with V(gb). Otherwise, by the Rules, there is
a pebbled with Va (gb) -- < C. Again by the Rules, c’ 1. But subsentences
A, and At both contain V, (gb), SO one subsentence contains the other. Hence,
k <:1 Va (gb)

LEMMA 4.7. In the ATM game, the Pebb].er has a winning strategy if and only if the
alue ofA is 1.

Proof. The proof is similar to that of Lemma 4.2. The positions pebbled are com-
pletely determined by the Rules and the positions challenged. The only choice iven to
the Pebber is the labels on the pebbles. If the value of A is 1, the Pebber’s strategy
is to choose each label equal to the value of the subsentence pebbled. If the value of A
is 0, the Cha:tenger’s strategy is to challenge the leftmost incorrectly labeled pebble in
each round.

It remains for us to show that the game can be implemented on an ATM in time
O(log n).

LEMMA 4.8. Thefollowingpredicates are in

a. Subsentence(A, i, j) de__f A[i, j] is a well-formed PLOF sentence.

b. Descendent(A, i, j) de=f i <1 j.

C. Child(A, i, j) de=f Ai is a maximalproper subsentence of Aj.
d. V(A, i, j, k) de__.f (k Y(A[i, j])).
Proof. Recall that the function Count is in NC.
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a. Check that the number of binary operators in A[i, j] is one less than the number of
constants and that for each binary operator in A[i, j] (say A[k]) there are more
constants in A[i, k] than binary operators.

b. Find the unique k for which Subsentence(A, k, j) holds, and check that k < i < j.
c. Assume that A[j] is a binary operator and that i j- 1 (otherwise, it is trivial). Check

that A[i + 1, j + 1] is a sentence.
d. Since V(g) is defined in terms of subsentences, descendents, and children, this is

immediate from a.-c. V1

LEMMA 4.9. Let A be a PLOF Boolean sentence and (pl,"-,pk) (pi E {1,..., 4}
for all PO be a sequence representing the challengedpositions (from among V1 (gl ), V2 (gl),
V2 (g ), and Vz (ga)) in the first k rounds ofa 2-player game as described above..Then, the
following are in NC
a. Determining if the sequence is valid.
b. Determining the position ofpk in A.
c. Determining the interval g after the kth round.

Proof. Let IAI n . We prove the above in the reverse order.
c. For each i (1 < i < k) let

Zi

0 if pi 1, 2,

1
2

if p 3,
2

if pi 4,

Ri

1,

2- if pi--l,2,

1 2. 2-7 if p--3,

0 if Pi 4.

Here Li and R represent the amount the left and right boundaries of 9 are
moved at the ith round of the game. Then, the current 9 is given by the string
All + ’ Li, n ’ nil.

b. Let g be the interval after the first k 1 moves (i.e., corresponding to plays (p, .,
Pk-)). Then, we use the predicate V to determine the position of the pkth
pebble placement at move k in g.

a. Denote the currently challenged position after the first moves by I((p,..., pi)).
For every i (1 _< i < k) check that I((pl, ,p,p+))

_
I((p,... ,pi)), and

for every j (1 < j < p)check that I((p,... ,p+)) I((p,... ,pi_,j)). All
these checks can be performed in parallel using part b. to compute I. q

DEFINITION. Let A be a PLOF Boolean sentence. Then, a k-round history of A
is a sequence u (Ul,... ,Uk), where u (pi, Ti,,..., Ti,pi_l) p {1,..., 4}, and
Ti,j {0, 1}. A k-round history u (u,..., uk) of A is valid if there is a play of the
2-person game outlined above such that each ui represents the ith round of this game.
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By this we mean that for each round i (1 < i < k) pi is the position (in the sequence
V1 (gl), V2 (g), V2 (g), Vz (g3)) of the challenge node and 7-i,j is the value of the pebble
placed by the Pebb:ter at the jth pebble position if this position was pebbled, and other-
wise -,j is arbitrary.

Using Lemmas 4.8 and 4.9, it is easy to prove the following.
LEMMA 4.10. Let A be a PLOF Boolean sentence. Let u be a k-round history of a

game on A. Then, there is an NC algorithm to determine if u is valid.
Since Igl is cut in half each round of the game, the number of rounds is at most

log n / 1. The ATM simulates the Pebblor’s moves by using existential states and the
Cha:tlonger’s moves by using universal states. It records the history of the play in a
string of 10 bits for each round. The 4 possible Pobb’l er moves are recorded by using
a pair of bits each, telling (1) whether the position was pebbled and, if the position was
pebbled, (2) the label. The Chaltenger’s move is recordedwith 2 bits tellingwhich ofthe
potentially 4 moves is challenged. The finite-state control can ensure that the challenged
position is one that was actually pebbled.

After the history of the play is recorded, the ATM checks whether 1) the Pobb].or’s

moves are legal and 2) whether the Pobb’l er won. The ATM accepts if and only if both
conditions are true. To do 1), Lemma 4.10 is used. Condition 2) is checked by using the
information in the history of the game and the Child predicate from Lemma 4.8. It is
now easy to complete the proof of Theorem 4.1.

5. NC completeness of BSVP. Theorem 4.1 showed that there is an NC algo-
rithm for recognizing true PLOF sentences; hence, by the NC translation of Boolean
sentences into PLOF sentences there is an NC algorithm for recognizing true Boolean
sentences, in this section we prove that these results are optimal.

THEOREM 5.1. BSVP is N(3 complete under many-one AGO reductions. BSVP is
also NC complete under many-one deterministic log-time reductions.

Recall that BSVP is the set of true Boolean sentences; Theorem 5.1 also holds for
the set of true PLOF sentences. By Theorem 2.4, a deterministic log-time reduction also
is an AC reductiOn. So to prove Theorem 5.1 it suffices to prove completeness under
deterministic log-time reductions.

Thus, it suffices to exhibit, for a log-timeATM M, a deterministic log-time function f
such that, for any input z (with Ix[ n), f(z) is a Boolean sentence that has value true
if and only if M accepts z. The sentence f(z) will essentially be the execution tree ofM
on input z where the V’s,/X’s, O’s, and l’s in f(z) correspond to the existential, universal,
rejecting, and accepting configurations in the execution of M, respectively. We begin by
building the framework for the proof of Theorem 5.1.

Recall the assumptions made in 2.1 about ATMs--every configuration has at most
2 successors, all accesses to the ATM’s input tape are performed at the end of the com-
putation, and deterministic configurations are considered to be existential.

Let M be a log-time ATM; without loss of generality, the input alphabet for M is
{0, 1} and the runtime of M is bounded by t(r) c. log n + c on inputs of length r
for some constant c. Throughout the remainder of this proof we will be working with
this fixed M. For each configuration s of M, we denote by l(s) and r(s) the successor
configurations of s, where the degenerate cases are defined by l(s) r(s) when s has
exactly 1 successor and s l(s) r(s) when s has no successors (i.e., s is a halt state or
a read state).
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Suppose s is a configuration and/9 E {/, r}*. Define

8 when p e (the empty string),

when p l’y, (7 E {1, r}*),
when p r’r, (’y {1, r}*).

Intuitively, p is a string of choices made by M, and p(s) is the configuration ofM reached
from s by these choices.

We want to define a family of Boolean formulas (Fn) such that M on input z accepts
if and only if FI (z) is a true Boolean sentence (here Boolean formulas are similar to
the arithmetic formulas defined in 2.3 except they have/ and v as operators). Let I
be the initial configuration of M. We define the nth Boolean formula Fn as follows: Fn
has indeterminates X1,..., X,. Let p {l, r}*. First define the Boolean formulas
(Ipl <_ t(n)) by

1. If IPl t(n), then p(IM) is a halting configuration and we define the following:
If p(IM) is accepting (respectively, rejecting), then/3,(p) 1 (respectively,

0).
If p(It) is a read configuration with i on its index tape and M would accept
(respectively, reject) if the ith bit ofthe input is 1, then/3n (p) Xi (respectively,

2. If IPl < t(n), then let bt 13n(pl) and br n(pr). If p(IM) is a universal
configuration, then fin (p) (bt A br) and otherwise/n (bt V b).

Now, Fn =/n(e). Clearly, Fix (z) is true exactly when M accepts z.
If z is an input to M, then z zl...zn is a vector of O’s and l’s. We let f(z) be

the Boolean sentence obtained from Fix by replacing each literal Xi by the binary digit
z and each literal X by the binary digit i zi. To prove Theorem 5.1, it will suffice to
show that the function f(z) is deterministic log-time computable. Recall that this means
that there is a deterministic log-time Turing machine N that, on input (z, i), outputs the
ith symbol of f(z) in O(log n) time.

DEFINITION. Let b be a Boolean formula. Let 14[ denote the number of symbols
in 4, including parentheses. For each nonparenthesis symbol s in 4, the height of s is
defined inductively by

1. If s is a 0 or i or for some i, Xi or X, then the height of s is 0.
2. If s is an operator, then its height is 1 plus the maximum of the heights of its

operands.
The height of 4 is the maximum height over all the symbols of 4.

We notice that the formulas (F,) are completely balanced (i.e., for every operator,
both its operands have the same height). Also, Fn has height t(n). It is easy to prove the
following lemma by induction.

LEMMA 5.2. Let q be a completely balanced Boolean formula of height s with only
binary connectives. Then I1 28+2 3.

Thus, IF I 2 3, and for p {1, r}* (Ipl <- t(n)), I  (p)l 2 /2 3, where
s t(n) [p]. Our construction of the deterministic log-time algorithm is based on the
following observations about F,:

1. For each i < 2t(’0+ 3, there is a unique p {/, r}* such that the ith symbol
of Fn is in/3n (p) but not in/3n (pl) or/3n (pr). (We make the convention that the
symbols of F,, and of f(z) are numbered starting with 0.)

2. Given p {/, r}*, there is a unique number No such that/3,(p) occurs at posi-
tions No,... No + [fin (P)[ 1 in Fn. Specifically, if Ipl < t(),
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(a) The leftmost "(" of,(/9) occurs at position Na of F,.
(b) The rightmost ")" of 3,(p) occurs at position N + 13,(p)l 1.
(c) The root of 3,(p) occurs at position Na + 1/2(1()1 1).
(d) (pl) occurs at positions Na + 1,...,N +
(e) 3,(pr) occurs at positions Np + 1/2(I,(P)I + 1),..., Na + (]3n(P)l 2).

3. Since,(p) is completelybalanced and has height t(n)-lp], 1, (/9)1 2t(n)-Ial+2

-3. Hence, Nat Na + 1 and Nat Na + 2t(n)-Ial+l 1.
To compute the ith symbol of the Boolean sentence f(z), we need to find a

{1, r}* such that i N or i N + 2t(n)-Ial+l 2 or i Na + 2t(n)-Ial+2 4, which
indicate that the ith symbol ofF is the "(", the root, or the ")" of,(/9). It is then quite
easy to simulate M(z) to determine what the ith symbol of f(z) is. We first give a naive
algorithm for computing the ith symbol of f(z); unfortunately, this naive algorithm does
not execute in O(log n) time, so we shall later indicate how to improve its execution time.

Input: z, i
Output: The ith symbol of f(z).
Step (1)" Compute n
Step (2): Compute d c. log n + c. (This is easy because our logarithms are base

two.)
Step (3): Check that < 2a+ 3 If(z)l; if not, abort.
Step (4): Set p e (the empty string).

Set s d.
Set j i.

Step (5): (Loop while s > 0)
Select one case (exactly one must hold):

Case (5a): If j 0, output "(" and halt.
Case (5b)" If 0 < j < 2"+ 2, set j j I and set p
Case (5c)" If j 28+ 2, exit to step (6).
Case (5d)" If 28+1 2 < j < 28+2 4, set j j (28+1 2) and set

p= pr.
Case (5e): If j 28+ 4, output ")" and halt.

Sets=s-1.
If s > 0, reiterate step (5); otherwise, exit to step (6).

Step (6): Simulate M for [p[ steps to determine the configuration p(I).
If IP[ < d and p(1M) is a universal configuration, output "A".
Otherwise, if IPl < d, output "V".
Otherwise, if p(1) is an accepting configuration, output "1".
Otherwise, if p(I) is an rejecting configuration, output "0".
Otherwise, p(I) is an input configuration with some number k written
on the index tape. If the value of the ith symbol of z would cause this
configuration to accept, output "1". Otherwise, output "0".

It should be clear by inspection that this algorithm correctly computes the ith symbol
of f(z). In an iteration of the loop in step (5), s is equal to t(n) IPl, and it has already
been ascertained that the ith symbol of FI is the jth symbol of the subformula lxl (P)o
The subformula 11 (/9) is of the form 11 (pl) 11 (P’), where is either V or A; the five
cases correspond to the jth symbol being (a) the initial parenthesis, (b) in the subformula

11 (pl), (c) the logical connective symbol, (d) in the subformula 11 (pl), or (e) the final
parenthesis.

To complete the proof of Theorem 5.1, we must prove that there is a log-time deter-
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ministic Turing machine N for computing the ith symbol of f(z). In the above algorithm,
each step other than step (5) takes O(log n) time. In particular, for step (6) the simula-
tion of M is hard wired and N simulates each operation of M with only one operation.
Step (1) can be executed by finding the least k such that rt < 2k and then using a binary
search to calculate n. Step (5), however, is more difficult: There are O(log n) iterations
of the loop, and each iteration takes O(log n) time in our naive implementationmwe
need each iteration to take constant time.

The reason that each iteration takes O(log rt) time is that in case (5d), for example,
to subtract 2+ 2 from j, both the high- and low-order bits of j must be modified; but
j has O(log n) bits, so it takes too much time just to move the tape head from one end
of j to the other. Similar problems arise in comparing j to 2+ 2 and 2+z 4. Also,
even when just decrementing j by i in case (Sb), it may take O(log n) time to propagate
a borrow.

Fortunately, all these problems can be avoided by a simple trick. Before starting
step (5), N breaks j into two parts: the low-order 2 / log d bits of j are stored on a
tape in unary notation; the remaining high-order bits of j are kept on a different tape in
binary notation. Thus, to decrement j by 1, N merely changes one tape square on the
unary tape and moves that tape head one square. To subtract 2+ 2 from j, N need
only change two squares on the unary tape and modify one square of the binary tape
(since j _< 2+z 4). A complication arises when there is a carry or borrow out of the
(2 + log d)-th bit position of j. N handles this by allowing the unary tape to overflow
(and cause a carry) or underflow (and cause a borrow). To do this the unary tape is
initialized with a marker indicating where the overflow or underflow occurs; since the
unary part ofj is changed by 1 or /2 at most d c. log n/ c times, at most one marker
is needed. During the iterations of the loop in step (5) N remembers whether or not an
underflow/overflow has occurred. N also initializes the binary tape with a marker that
indicates how far the borrow or carry will propagate.

We can now summarize how N executes step (5) in O(log n) time. First j is split into
binary high-order and unary low-order partsthese are stored on separate tapes along
with borrow/carry information. Then the loop is executed for s d to 8 1 / log d,
maintaining the value of j in the split binary/unary form. After these iterations, the
higher-order, binary portion ofj is equal to zero. The unary portion ofj is now converted
back to binary notation, and the remaining iterations of the loop with 8 log d to s 0
are executed in the normal naive fashion with j in binary notation. This completes the
proof of Theorem 5.1. [3

The set of true PLOF sentences is also complete for NC under deterministic log-
time reductions. This is proved similarly to the proof of Theorem 5.1: It must be shown
that the ith symbol of f(x) in postfix notation can be obtained in deterministic log time.

6. Log depth circuits for arithmetic formula evaluation. We begin by describing a
2-player game (similar to that in 4) for evaluating arithmetic formulas over commutative
semi-rings. We then transform this game into a log depth arithmetic-Boolean circuit over
the commutative semi-ring. Finally we show how the game can be modified to solve the
problem for noncommutative semi-rings, rings, and fields.

Throughout this section let ; be some fixed commutative semi-ring and A be an
arithmetic formula over $ of length n. Without loss of generality we can assume that n
is a power of 2. If rt is not a power of 2, we assume that A has a string of (R) attached
to the left-hand side, bringing the total length of A to the next power of 2. (Recall that
"(R)" is the unary identity operator.) Let A(j, X) be A with Aj (the subformula rooted at
position j) replaced by the indeterminate X. Recall that this is equivalent to saying that
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A is scarred at j. Then we can write

A(j,X) B X / C (B,c es).

Therefore, determining the value of A can be broken into 3 subproblems: Evaluate A
for some appropriately chosen j, determine/3, and determine (7. This procedure can re-
cursively be applied to evaluate A. However, ifwe now apply this procedure to A(j, X),
we end up with the formula [A(j, X)](j’, X’), where A[j’] is not necessarily an ancestor
of A[j]. That is, the new formula may have 2 scars. After O(log n) steps, the formula can
end up with O(log n) scars, making the procedure useless.

Brent [br74] solved this problem by allowing only one scar in any formula. In his
algorithm, A is initially scarred by a subformula of A (say A) of size approximately
IAI/2. A is handled recursively. However, the next scar of A is chosen so that its root is
an ancestor of j. Therefore, at any step in the algorithm the subformula being evaluated
has at most I maximal scar. A straightforward implementation of this technique would
require O(log2 n) time, since finding successive j’s takes O(log n) time and the algorithm
takes O(log n) rounds.

We modify the pebbling game of 4 to maintain the condition of having only 1 scar.
In this new game pebbles have no labels and pebbles can be removed as well as added.
The game ends with a win for the pebbler when all inputs of the challenged node are
pebbled. Suppose that the pebbler has a strategy such that after every challenge (after
some pebbles are possibly removed), each pebbled subformula has at most 1 maximal
scar unless both children of the subformula are pebbled. As before, in the first round
the pebbler pebbles the root of the input formula and the challenger challenges this
node; in each subsequent round the challenger challenges a node pebbled in the current
round or rechallenges the node challenged in the previous round. If the pebbler has
an r round winning strategy on any play on a given input formula, then the following
theorem shows that there is a circuit of depth 2r that computes the value of the formula.
The resulting circuit family may not be uniform, and later we describe a strategy that can
be implemented on a uniform circuit family.

THEOREM 6.1. Let A be an arithmetic formula, and let the pebbler in the above 2-
person game have an r round winning strategy on allplays on A. Then there is a circuit of
depth 2r that computes the value of A.

Proof. We prove the more general result that if the pebbler has an r round winning
strategy on all plays on a formula A with a scar X at position i, then a circuit of depth 2r
suffices to compute values B, (7 such that

A(i, X)= B. X / C.

The result required in the theorem is simply the special case in which A has no scar; in
this case B 0 and C is the value of A.

The proof is by induction on the number of pebble moves. The base case r 0
is straightforward and is omitted. Assume inductively that any formula with a single
maximal scar for which the pebbler has an r I round winning strategy on all plays can
be computed by a circuit of depth 2(r 1). Let A be a formula with a single maximal
scar X at position i, and let the pebbler have a winning r round strategy on all plays on
this formula. Let IAI n. We now show that there is a circuit of depth 2r that computes
the value of A(i, X).

In the first round of the game the position n is pebbled and challenged as required.
Consider the next move by the pebbler. If this move does not provide a new scar for A,
then the pebbler has an r I round winning strategy on all plays of A. Hence, A can be
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evaluated by a circuit of depth 2(r 1) by the induction hypothesis, and we are done. If
the move does provide a new scar Y at position j for A we distinguish two cases: 1) A
has two maximal scars X and Y, and 2) Y is an ancestor of X and hence A continues to
have one maximal scar.

Case 1. If X and Y are two distinct maximal scars of A, then by assumption X and
Y are the two children of A. Since it is possible for position j to be challenged in
the current round, the pebbler has an r- 1 roundwinning strategy for any play on
the subformula rooted at position j. Hence, by the induction hypothesis, there is
a circuit of depth 2(r- 1) that computes the value of Y. But A(i, X) B.X+C
with B 1 and C Y if the root of A is an addition node, and B Y and
C 0 if the root ofA is a multiplication node. Hence, A(i, X) can be computed
by a circuit of depth 2(r 1) in this case.

Case 2. The new scar Y is an ancestor of the old scar X (see Fig. 6.1).

C A B"Y + C"

FIG. 6.1. New scar Y is an ancestor ofold scar X.

As in Case 1, it is possible for position j to be challenged in the current round,
hence the pebbler has an r I round winning strategy for the formula Y with a
single maximal scar X. Hence, we have circuits to compute B’ and C’, each of
depth 2(r 1), such that Y(i’, X) B’ X + C’, where i’ is the new position
of i in the formula Y. Similarly, it is possible for position n to be rechallenged
in the current round, so the pebbler has an r 1 round winning strategy for the
formula A with a single maximal scar Y. Hence, we have circuits of depth at
most 2(r 1) to compute B" and C" such that A(j, Y) B". Y + C". But
A(i, X) B"(B’ X + C’) + C" B X + C, giving

B=B".B’ and C=B"-C’+C".

Since a circuit of depth 2 computes B and C in terms of B’, C’, B", and C", a
depth 2r circuit suffices to compute A(i, X).

This completes the induction step, and the theorem is proved. q

We now show how to make the game uniform.
DEFINITION. Let A be a PLOF formula, IAI n. For i, j < n, the least common

ancestor of i and j (denoted lca(i, j)) is the common ancestor of i and j with minimum
depth. Furthermore, right(i) denotes the right child of node i.

In our new game, we add 5 pebbling points to the 4 used in the Boolean game of 4.
The object will be to ensure that the challenged formula either is contained in the new
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interval or has a leftmost scar in the interval. In the original game, the pebbled positions
in an interval 9 were Vx (g), V(), V(gz), and V(). We augment these with

1. lca(Vl (91), V2(9I denoted by Lcax(g).
2. right(Lcal (g)) denoted by R1 (). This is a pebble position only if Lcal (g)

3. lca(V2(gl), V2(g2))denoted by Lca2(g).
4. right(Lca2(g)) denoted by R2(g). Again, this is a pebble position only if Lea2

5. The node challenged in the previous round denoted by last(g).
In this game we explicitly include the challenged node from the previous round since it
may not be one of the other 8. Figure 6.2 shows one possible placement of pebbles.

A

L

FIG. 6.2. Onepossiblepebbleplacement.

DEFINITION. Let A be a PLOF formula. Ale is a leflmost subformula of A if it is
a subformula of A such that when A is viewed as a tree, Ak occurs along the leftmost
branch. A leftmost scar of A is a maximal pebbled leftmost subformula.

Notice that if F is a subformula of a PLOF A and Fk is a leftmost subformula of
F, then Fk is an initial segment of F. The following rules ensure that every challenged
formula has a single leftmost scar.

Rules of the algebraic game. Let A be an arithmetic formula, IAI n a power of 2
(n > 2).

1. In the first round, the Pebber places a pebble on n, and the ha:tenger chal-
lenges it. In all subsequent rounds there will be an interval g whose length is a
power of 2 and a challenged position c within g. For the next round, g All, n]
andc= n.

2. For c, the challenged position in in g, if at least one child of c is not pebbled, then
let ,..., ’9 be the 9 pebble positions defined earlier such that u < _< u9.
We consider these for pebbling in this order. For each of these 9 candidates ,
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the Pobblor pebbles v if and only if v

___
c and there is no pebbled satisfying

v <1 c. The Challenger challenges one of these new pebble positions. Notice
that this allows rechallenging c. After the round ends all newly placed pebbles
except the challenged node and any leftmost scar are removed, unless both chil-
dren of the challenged node are pebbled. The new substring is the leftmost gj
containing the new challenged position.

3. If both children of c are pebbled, then the Pobblor wins.
LEMMA 6.2. Let g be the current interval, and let c be the challenged node. Then either

1) Ac is contained in g or 2) Ac has a leftmost scar in g.
Proof. We proceed by induction on the round number. Notice that to establish

condition 2, it suffices to show that some leftmost subformula ofA rooted in g is pebbled.
Basis. At round 1, A A satisfies condition 1.
Induction. In general, suppose the lemma holds for an interval g and challenged

node c. If the new challenged node c’ is in gl, then gl is the new interval and either
condition 1 holds for c’ and gl or condition 2 holds with the same scar as for A.

Now suppose c’ is in the second half of g2, so that g2 is the new interval, and suppose
that A, is not contained in g2. Assume that the leftmost scar of Ac does not lie in g
(since otherwise we are done). Therefore, it lies in the first half of gl. There are two
subcases, depending on whether A, includes an initial segment of g. If it does, then the
leftmost scar ofA is a leftmost subformula of A,, and Lcal (g) is either a leftmost scar
of A, in g2 (SO condition 2 holds for c’ and 92) or Lcal (g) is c’, in which case the two
children of c’ are V (g) and R1 (g), so the game ends. The second subcase is that A, is
not an initial segment of g (see Fig. 6.3).

g2

y (gx c’

FIG. 6.3. Subcase in which Ac, is not an initial segment of9.

In that case, V (91) is a leftmost subformula of Ac, because of the PLOF property.
Finally, suppose c’ is in the second half of ga, so that ga is the new interval. Further-

more, assume that A, does not lie entirely in 93. If the left child of c’ is to the left of
ga, then it is in g (since A is in g or has a leftmost scar in g), so either c’ Lca (g)
or c’ Lca2(g). In either case, both children of c’ are pebbled, so the game ends.
If the left child of c’ is in the left half of 93, it is V2(g2) and condition 2 holds for c’
and 93. The final case occurs when the left child of c’ is in the right half of 93. Then
one of {Lcal (g), Lca2(g), V2(g), the leftmost scar of c} provides a leftmost scar of c’ in

93.
Lemma 4.6 can easily be adapted to show that in any round of the game, every po-

sition k <3 c with k to the left of g has some pebbled such that k <1 <1 c.
LEMMA 6.3. In the game, the indicated strategy for the Pebbler wins in O(log n)

rounds.
Proof. In every round of the game, the interval g is cut in half. [-1
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We must now show that the game can be converted into a uniform log-depth arith-
metic-Boolean circuit family.

In the game above, we did not knowwhere any Lca, Ri, or last was in the interval
Ifone ofthese positions was challenged, a constant depth circuit could not determine the
new interval. We modify the game slightly so that the Pobbor must specify an interval
when a pebble is placed (corresponding to the interval the pebble is in). This interval
can be placed as a label on the pebble. This gives a total of at most 14 different pebble
points and labels (since many of the pebble points cannot be in every interval).

We must augment Lemma 4.8 to show that the new pebbling points can be de-
termined in Boolean NC. However, although the least common ancestor (and its
right child) can be determined once the interval is known, the entire history of the
game may be necessary to determine the last challenged position. Let v (pl,’" ",p
(Pi { 1,..., 14}) be asequence that describes the first k moves of the game. Here, p
denotes the pebble challenged by the Oaallsngr in the ith round.

LEMMA 6.4. Thefollowingpredicates are in Boolean NG"
a. Lca(A,i,j,k) de (k Lca(A[i,j])).
b. Lca2(A,i,j,k) d (k Lca2(A[i,j])).
c. Rl(A,i,j,k) dej (k R(A[i,j])).
d. R2(A, i, j, k) d (k R2(A[i, j])).
e. Last(A, i, j, k, ) d=f k is the challenged node in theprevious round ofthe game.

Proof.
a., b. By Lemma 4.8, we can determine VI(A[i, j]) and V2([A(i, j)]) in NC1. The De-

scendent predicate in Lemma 4.8 can be used to check that one of the V occurs
as a descendent of the left child of k and the other as a right child.

c., d. Determining the right child of a least common ancestor is easy once we can deter-
mine the least common ancestor.

e. Let (p,..., Pk). In ,, find the largest i such that pi is not last (say pt). Find the
indicated pebble position in round 1. This will be the challenged position in the
current round.

We can use a slightly modified Lemma 4.9 to determine if (p,..., Pk) codes a
valid sequence of challenges.

Let A denote the scarred subformula challenged after the k indicated challenges,
and let I(,) be the position of the root of A. Let fl be the circuit that computes the
value of A and c be the value computed by the circuit f2. To obtain the desired log-
depth arithmetic-Boolean circuit over the commutative semi-ring S we must compute
c with a constant-depth circuit using the values a (q) (q < 14). We break f2 into
subcircuits f2 (q). c will be either a single value in S or a tuple, depending upon which
of the cases in Lemma 6.2 holds. We will describe the circuit for the case where A has a
leftmost scar in g. The other case is an easy modification of this. Figure 6.4 is a simplified
circuit to compute the value of A for the pebble placements in Fig. 6.2.

Suppose that A has A’ as a leftmost scar. Denote by O-q the valuea (q), assuming
the correct values (or tuples) at all pebble positions in this round of the game that came
before the qth are computed. Now our algorithm is as follows.
Algorithm: Compute a where A satisfies case 2 ofLemma 6.2

qmin :--" smallest q satisfying I(/) < I(t/ (q)) < I()
qmax largest q satisfying

In parallel, for each q 6 qmin"" qmax compute" u^ <q>
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(B1, C1)

I(B4, C4)
If op at Lcal (g) is "+"
then (B1, C1 + D5)
else (B1 D5, C1 * Ds)

D5

D1

D4

If op at Lca2(g) is "+"
then D1 + 03
else D1 03

(B3, C3)

FIG. 6.4. Circuitfor computing A forpebbleplacements in Fig. 6.2.

{Train :-- Cu" (qmin)
For q qmin q- 1 to qmax

If Au satisfies condition 1 of Lemma 6.9. then aq :=

else if Au satisfies condition 2 of Lena 6.2 then

Let (B,C) a.
Let ql be the position of the mimal leftmost pebbled

subfoula of AU
If aq is element of S then aq := B. aq + C
else Let (B’, C’) aql

aq := (B B, B C’ + C)
else Let ql d q2 be the pebble placements of the left

d rght operds of A
Let be the operator at A
X ql S element of S then aq := qlg2
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else Let (/3, C) ffql

If 0 then Gq :-- (B Gq2 C * Gqg.)
else 6rq :-- (/, C -- rq2

Endfor

The only change that must be made to the algorithm for it to work for the other condition
of Lemma 6.2 above is the value of qmin.

The technique described above can easily be generalized to solve the problem for
fields and (noncommutative) semi-rings. We show the field case first. Suppose F is a
field and A is an arithmetic formula over . It is easy to show that a scarred formula
A(j, X) can be written as a rational affine function:

B.X+C
A(j,X) D. X / E (B, C,D,E e IF).

It is also easy to verify that these functions are closed under composition. Therefore, the
same algorithm as above is used except the value c of a subformula with a leftmost scar
is represented by a 4-tuple (/3, C, D, E).

For the (noncommutative) semi-ring case, we must first convert to PLOF form.
However, we have problems if is not commutative. Therefore, we augment the lan-
guage to include a "reverse multiplication," denoted .’, where a b b .’ a. Any for-
mula can be put in equivalent PLOF form in this augmented language. Now, a scarred
formula A(j, X) can be written as

A(j,X) B X C+ D (B,C,D 6S).

A subformula A(j, X) is represented by a 3-tuple (B, C, D). Again, composition is easy
to do. Therefore, the semi-ring algorithm can be used except that a little care is necessary
in keeping the left and right multipliers separate.

Finally, we present a simpler method for solving the evaluation problem when the
algebra is a ring. Suppose we wish to evaluate the scarred formula A(j, X) B. X + C.
Then, A(j, O) C and A(j, 1) B + C. From this system of equations we can easily
determine both B and C. Therefore, the problem of determining A is broken into three
subproblems: Evaluate the formula rooted at X, evaluate A(j, 0), and evaluate A(j, 1).
These problems can be recursively solved.
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Abstract. The parallel complexity of the simultaneous approximation to all the zeros of a polynomial is
investigated. By modifying and analyzing an algorithm given by Householder, it is possible to obtain a priori
bounds to the number of iterations sufficient to yield a given accuracy, and to the number of digits required in
the finite arithmetic. More classes of polynomials, for which the simultaneous approximation to all the zeros
can be carried out in polylogarithmic time, are found. Some cases of polynomials, customarily considered
hard, are easily solved. The root-finding problem for a polynomial of degree n, having zeros zi, 1,..., n
is ArC-reduced to finding a polynomial a(z) such that [a(zi+)/a(zi)[

_
1 1Inc, where c is a constant.

Key words, polynomial zeros, parallel complexity, Euclidean scheme
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1. Introduction. Wewant to analyze the complexity ofthe numerical approximation
of the zeros of a polynomial in a parallel model of computation. For this purpose we
observe that we can restrict our investigation to the case of polynomials having integer
coefficients. In fact, the case of polynomials p(z) having complex coefficients can be
reduced to the case ofpolynomials having real coefficients by considering the polynomial
p(z)p(z), where p(z) is the complex conjugate of p(z). The case of polynomials having
real coefficients can be reduced to the case of polynomials having rational coefficients by
means of rational approximation. The case of polynomials having rational coefficients
can be reduced to the case of integer coefficients by means of scaling.

In this framework the complexity of the problem depends on the degree of the poly-
nomial, on the number of digits of the coefficients, and the number of correct digits of
the approximation to the zeros. Thus we can state the problem in the following way:

PROBLEM 1.1 (Polynomial root-finding). Given positive integers n, m, and c com-
pute approximations to all the zeros ofthepolynomial p(z) -=oPz, with absolute error
at most 2-a, where p are integers such that Ipl < 2m, Pn O.

Awide literature exists concerning numerical algorithms for the solution of the poly-
nomial root-finding problem. More recently, this problem has been analyzed in terms
of its computational complexity [2], [17]-[22].

In a parallel-arithmetic model of computation we assume that at each step each
processor can perform an arithmetic operation, and we denote by OA(f(n, m, d),
g(n, m, d)) the arithmetic cost of an algorithm that solves the problem in at most
kf(n, m, d) steps (k constant) by using g(n, m, d) processors.

In a parallel Boolean model of computation we assume that at each step each pro-
cessor can perform a Boolean operation, and we denote by OB(f(n, m, d), g(n, m, d))
the Boolean cost of the algorithm.

We say that a problem belongs to the class A/’C in Boolean (arithmetic) sense if
it can be solved with polylogarithmic cost, that is, with cost OB(f(n, m, d), 9(n, m, d))
(Oa(f(n,m,d),g(n,m,d))), where f and g are polynomials in logn, logm, logd, and
in n, m, and d, respectively.

We recall that arithmetic operations modulo 2c, as well as arithmetic operations be-
tween c-digit floating-point binary numbers, can be performed with a Boolean cost that
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is polylogarithmic in c [13]. Therefore, an algorithm having polylogarithmic arithmetic
cost also has Boolean polylogarithmic cost if the number of arithmetic digits, sufficient
to give the correct output, is a polynomial function of the input sizes m, n, and d. More-
over, if the latter condition is satisfied, the algorithm can be implemented in a parallel
model of computation by increasing the asymptotic number of Boolean steps by the fac-
tor log(hind), and the number of processors by a polynomial factor.

In the case where the polynomial p(x) has real zeros it can be proved [2] that Prob-
lem 1.1 belongs to ArC in the Boolean sense. In the general case, using geometric con-
structions Pan [17] has shown an algorithm having a parallel cost Oa(n log n log(n(d +
m)), n log(m + d)/log(n(m + d))), which requires a polynomial number of digits. He
proved also that for the polynomials having zeros zi, i 1,..., n such that Izi/zi+l[ <
1 1Inc, where Izxl < Iz l < < Iz l and c is a constant, Problem 1.1 is in ArC [18].
The general proof that Problem 1.1 belongs to A/’C was recently given by Neff [15].

In this paper we consider an algorithm for the root-finding problem (2) introduced
by Householder [11], and we propose and analyze a modification of it that is suitable
for parallel computation (3). The algorithm consists of two stages: in the first stage we
choose a polynomial a(z), a positive integer v andwe compute a(v) (z) (a(z)) mod p(z),
# 2v; in the second stage we apply the Euclidean scheme to p(z) and a(’)(z).

We prove that each term of the polynomial remainder sequence and all quotients
generated in the Euclidean scheme converge to factors of p(z) as # if

where zl,-.., z, are the zeros of p(z).
The number v of iterations needed in the first stage to approximate the result within

the error bound 2-a, grows polynomially with log n, log d, and logm if

(1.1) a(z)
a(z+)

where c is a constant. Moreover, if the inequality in (1.1) holds only for j k, then the
algorithm delivers approximations within the error bound 2-a of just two factors pk(z)
and Pn-k(Z) of degree k and n k such that p(z) pk(z)Pn-k(z).

We prove that the cost of the algorithm is given by OA(vlogn, nloglogn)+
OA (log2 n, n3) or, alternatively, OA (V log n, n log log n)--t-Oa (log3 n, n2) if the Euclidean
scheme computation of [2] is applied.

The number of binary digits of the floating-point arithmetic, sufficient to compute
the result with the given precision, depends polynomially on the input sizes d, n, and m.
That is, the algorithm can be carried out with a polylogarithmic Boolean cost.

In 4 we discuss a suitable strategy for choosing the polynomial a(z) that guarantees
that the inequality (1.1) is satisfied for at least one j. This leads to a polylogarithmic
algorithm for the computation of a single zero. For the computation of all the zeros
the worst-case arithmetic time-cost is the same as that of Pan’s algorithm. Our algo-
rithm generalizes the result of [18] (obtained as a particular case with a(z) z), since it
performs the computation with a polylogarithmic cost whenever (1.1) holds.

Some cases of clustered zeros that are customarily considered hard are easily solved
in 4. For instance, we prove that the case where the clustered zeros are roughly in
geometric progression (i.e., Zl r/, z2 + eta, z3 r/+ e’l + e27, and z4
r/+ e71 + e72 + e37a, ", where e is a small positive number and 7, i 1,..., n 1, are
complex numbers having almost the same moduli) can be solved with polylogarithmic
cost by applying the algorithm with a(z) p’ (z).
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In the case where the polynomial p(z) has real zeros, once a separator w of the zeros
has been computed as in [2], our algorithm can be used to factor p(z) as a product of two
polynomials having degrees lower than 3n/4, without performing contour integrations.
This way, all the zeros can be recursively approximated with polylogarithmic cost.

2. Householder’s algorithm. Here we present a slightly simpler version of an algo-
rithm given by Householder in [11]. Let p(z) and a(z) be polynomials with complex
coefficients such that

p(z)= H(z-zi), z O, i= l,...,n,
i---1

and degree (a(z)) < n. Hereafter, we set IIp(z)ll max0<<, IPI. Suppose that the
zeros zofp(.z) have beenorderedsothat IAI/I/+I < 1, 1,..., n, where.k a(z).
We denote by p,,..., (z) the polynomial p(z)/((z z)(z z.) (z z)).

Consider the following algorithm:
ALGORITHM 2.1.

1. Given an integer v, compute a() (z) a(z) mod p(z), in the following way:

a()(z) a(z),
a(+) (z) h() (z)2 mod p(z), i =0,...,u- 1.

2. Apply the Euclidean algorithm to the pair of monic polynomials u, (z) p(z),
un-1 (z) a()(z)/o, where/0 is the leading coefficient of a(), obtaining

Un--iWl (Z) Un--i(Z)(Z i) iUn--i--1 (Z),
2t (Z) Z n, Uo(Z) 1,

i 1,...,n- 1,

where we suppose that/3i O, i 0,..., n 1, and u,_i(z) is a monic polyno-
mial of degree n i, 1,..., n.

/()Here the quantities ai, i, u_i depend also on

u_i u)i._ For the sake of simpliciWwe omit the superscript if it is not strictly needed.
It is easy to prove that, for almost any polynomial a(z), gorithm 2.1 can be carried

out. We have, in fact, the following result.
PROPOSITION 2.1. LetF be the set ofvecwrs (ao, an-l) Cn such thatAlgodthm

2.1, with a(z) -=0 az*, there ists an integer j, 0 < j < n L such that) O.
Then the set sNF has zero Lebese measure over C. In other words, for almost any

()polynomial a(z), stage 2 ofAlgodthm 2.1 can be caed out if O, i 0,..., n 1,
and degree(u(z)) n i, i 1,..-, n 1.

Proof. By construction, () is a rational function of the variables a0,- a_, i
0,..., n 1. Since the set of the zeros of a (identically nonzero) rational function from
C to C is a zero-measure subset of Cn, we have that F has zero measure over C;
therefore, eNF also has zero measure over C.

We obsee that stage 1 can be performed in O(n log n) arithmetic operations by
using fast polynomial arithmetic [5], and stage 2, i.e., the computation of, fl_, i
1,..., n, can be carried out in O(n logz n) arithmetic operations by means of the ex-
tended Euclidean algorithm [1]. However, it is worth pointing out that the evaluation
of all the coefficients of the polynomials u(z), i 1,..., n, would cost at least n2/2
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arithmetic operations, whereas the computation of u(z) for a given j (together with
ci, /i-1, 1,..., n) still costs O(n log2 n) arithmetic operations [7].

In a parallel (algebraic) model of computation, the cost of stage 1 is Oa(v log n,
n log log n) (compare [4]) and the cost of stage 2 is Oa(loga n, n2). In fact, the Euclidean
algorithm can be reduced to computing Sylvester-like determinants [10] (see also 3),
and this task can be solved with cost Oa (log n, n) [19]. Alternatively, it can be re-
duced to computing the LU block triangular factorization of an n x n Hankel matrix
generated by the rational function u,_l(Z)/U,(z) and this task can be solved with cost
OA(log3 n, n2) [31.

Algorithm 2.1 can be used for the simultaneous approximation to the zeros of the
polynomial p(z). In fact, if p(z) has pairwise different zeros, it is possible to prove (see
10] and Proposition 3.1) that

)kj_t_

AJ 12) j=2,...,n-1,

That is, the algorithm has a global quadratic convergence. Observe that the condition
of distinct zeros is not restrictive because it is possible to deflate the multiple zeros,
computing the gcd(p, p’) by means of the Euclidean algorithm (compare [9] and [3]).

This result suggests that Algorithm 2.1 be used in the following way. Choose a ran-
dom polynomial a(z) and compute, for a given u, the coefficients c and i. Select the
subscript i, closest to n/2, such that Ifll is small enough, and compute the coefficients
of Un-i(z). Then compute the quotient q(z) of the division between p(z) and u,_i(z)
and recursively apply this algorithm to q(z) and Un-i(z) until linear polynomials are ob-
tained.

3. Parallel implementation and convergence analysis. In order to give explicit a
priori bounds to the number of digits of the arithmetic and to the number of iterations
needed to reach a given accuracy, we now describe a different implementation of House-
holder’s algorithm. First, observe that stage 2 of Algorithm 2.1 yields the recurrence

2,_i+(z) (1 ZOi)Zn_i(Z)- Zign_i_(Z),

where 2 (z) zJuj(z-1). Whence we have

n--i+l (Z)
1 zci

z2i

Zn--i--l (Z)
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which gives the continued fraction decomposition of the function g(z)
a(’) (z-1
zp(z_l

,i.e.,

1 zoo1 z21
1 zc2 1 za3 +...

From the theory of Pad6 approximants we have the relations ([10], pp. 60-64)

(3.1)
ai qi + ei_, i qiei, i 1,...,n,

hi,i hi-2,i- hi,i+ hi-,i-
qi

hi-1,ihi- 1,i- 1’ ei
hi- 1,i hi,i

(eo O, e 0),

where hi,j, is the Hankel determinant obtained from the coefficients of the power series

a(,) (z-l) +

Z izig(Z)--=
zp(z_l

i=0

that is,

hi,j det Hi,j, Hi,j (Cr+s+i-j-1)r,s=l,j.

(Here we assume hi,o 1, hi,j ci 0 if i < 0, j 0.) Moreover, if a() (z)
n- () for the Hankel determinants hi,j we have the following formula ([10],-i=0 ti

p. 55)"

(3.2)

hi,j -i-j
a,_l (-1 det Ri,j,

Pn Pn-1 Pn-9.

Pn Pn-1

Ri,j

J

J

Let Ai,j(z) be the matrix obtained by replacing the last column of ni+l,j+l with the
vector (z, z-1,..., 1)T, that is,

Ai,j(z) (Crq-s-t-i--j--1)r:l,,l
i

For the Hankel polynomial defined by ki,j(z) det Ai,j(z)/hi,j, the following recur-
rence holds ([10], p. 64):

kj,j+l (z) (1 zc.j)kj_,j(z) jz2kj_2,j_l (Z).
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That is, the reversed polynomial t(z) zk_,(z-t) satisfies the following relation:

(z
Moreover, applying the Laplace rule to compute det(zI Tj+), where

yields the recurrence

C1 1
1 c2 /32

Oo Oo Oo

o.. ,.. o.,

1 c+l

det(zI Tj+) (z aj)det(zI Tj) -/3j det(zI Tj-1).

Therefore, since tl (z) z o1 det(zI T1) and to(z) 0, by using the induction
argument we obtain

(3.3) tj(z) zk_,(z-1) det(zI- T).
Nowwe are ready to provide a different version of Algorithm 2.1 that is particularly

suitable for a parallel implementation.
ALGORITHM 3.1.

1. Compute the coefficients of the polynomial a() (z) a(z)’mod p(z), # 2
by means of repeated squaring modulo p(z).

2. Compute hi,j according to formula (3.2).
3. Compute ci, C/i, according to formulae (3.1).
4. Compute the coefficients of the polynomial h(z) =det(zI-Ti), i 1,..., n- 1.

Stage 1 costs Oa(u log n, n log log n), and stage 2 costs Oa (log2 n, n3) because the
evaluation of the determinant of a "quasi Toeplitz" matrix can be performed with cost
Oa (log2 n, n2) [19]. Stage 4 can be performed with cost Oa (log2 n, n2) by applying the
parallel prefix scheme [16] for the computation of I-[=1 Bj, 1,..., n 1, where

Bi=( z-cil -C/i)0 In fact,

(ti+l) yI (tl)ti to
j=l

Therefore, the overall cost of Algorithm 3.1 is OA(l/log n, n log log n) + OA (log2 n, n3).
The following proposition strengthens the convergence results of 11], yielding bounds

to the number u of iterations sufficient to obtain a given accuracy.
PROPOSITION 3.1. Let p(z) YIi=x,, (z- zi) be apolynomial havingpairwise different

zeros zi, i 1,...,norderedso that I)11 >-I)9.1 >_ >_ I:l, where )i a(zi) and
a(z) is a polynomial ofdegree less than n such that Algotithm 3.1 can be carried out. Set
Zmx max Izil, Zmin min Izil O, and A mini Izi zl. Then we have

(1 + 005-1)(1 + 00,j+l)
(1 + 00,)

j 1,2,...,n- 1,

Ozj--Zj AI) ("J+l) #

j 1,2,...,n,
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where

(2Zmax)n

Oi,j-- ()j+l
tt

Aj )qOi,j, Iq0i,j[< (()-1) Zmax 2Zmax
Zmin A

I(1 + 0,j_)(1 + 00,j)l

IA2) < Zmax(IqO0,j-ll + IqOl,j-ll) + IBj-ll
I(1 + 01,j-1)(1 -I- O0,j)l Zmin

(1 + 00,d)(1 + 01,j-2)
(1 + 01,j_)(1 -t- Oo,j)

Proof. First we express hi, in terms of the zeros zi, i 1,..., n, of p(z). For this
purpose we prove that

n

(3.4) cm E zSi, m 1,2,..., Si a()(zi)/p’(zi).
i--1

In fact, from the Lagrange representation of a() (z) with respect to Zl,- , z,, we have

n a()(zi) 1
g(z) 1"= p’(zi) 1 zzi

Therefore,

1
c, -. D’g(z)

z=O

1 . a()(zi)D, I
m! p’(zi) 1

i=1 z=0

a((zi) zy.
i=1

Then, from the properties of determinants, we have

hi,d det(cr+s+i-d-1)r,s=l,j E _.[~r+s+i-j-1dt() S())r,s=l,j,

where ft {w {1,2,...,j} {1,2,...,n}} is the set of all the functions from
{ 1, 2, , j} to { 1, 2, , n}. Therefore,

_i--j+l de" r+s--2hi,j- E H(Sw(k)Zw(k) BlZw(s) )r,s=l,j.
wgt k=l

Now, it is easy to check that the matrix tzrWs-2(8) )r,8=l,y is singular if W(Sl) w(sg.) for
S s2. (In fact, in this case the columns with subscript S and s2, respectively, are
linearly dependent.) Therefore, we can assume that f is the set of all the injective func-

tions from {1,2,... ,j} to {1,2,...,n} so that partitioning t2 as ft [.J ftq, where
ft, q 1,-.-, (.) are the equivalence classes defined by the equivalence relation

(.O1 (.02 if w({1,2,...,j}) w2({1,2,...,j}),
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we obtain

(3.5) zi--j+l (zr+Shi,j E Sq() q(k) E det ),s=,/()
q:l k:l

where q is any function in fq. Now, since

E det(zr+S-2)r,s=l,j H (Zwq(r) Zwq(s))2(8)

for any wq ft (compare [12]) we have

J
h,j H S zi-j+ YIk k .i..i.

k=l l<_r<s<_

Zr--Zs)

E wq Zi-j+l() (k)
q=2 k--1

where we assume 6o1(r) r, I’ 1,..., j. Therefore, we obtain

(3.6) hi, H SkZik-J+l
k=l

H (zr- zs)2(1 +
l<_r<s<_j

(3.7) Oi_j+l,j

(’) (I Zi-j+lS() ()
q=2 k=l

YI (z() z())=)
J

II* z -’+1 II
k--1

Observe that

J
_i--j+1II

k=l

Moreover,

-i
a(’) (z.,q(k))

k=l
a(’)(Zk)

2

so that

(3.8)

Oi-j+l,j i--j+l,j

IqOi__j+l,jl<__ (()--1)maxo.,ft (l
k=l

Zw(’k)zk
i-j+1

Pl,2,-.., zk
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Now we are ready to obtain the bounds on [/3jl and on [aj z [. In fact, from (3.1),
we obtain

hj 2,j hj,j+

and from (3.6) we have

Sj+I Hr=lJ (zr Zj+l)2 (1 -[- 00,j_1)(1 -[- 00,j+l)
(1 + 0o,j)2

Therefore, using (3.4) we obtain

2

flj__(,j+l)/j Bj
(1 + 00,j- 1) (1 +00,j+l)(1+ O0,j )2

Pl,2,...,j (Zj )pj+1,j+2,...,n (Zj+
Pl,2,...,j+ (Zj+l)Pj,j+l,...,n (Zj)

Concerning lai zil, since from (3.1) we have a qj + ej-1 qj -b j-1/qj-1 and
from (3.7)we have

(1 + 01,j)(1 + 00,j_l)
qj zj (1 if-01,j-1)(X + O0,j)’

we obtain

f (1 + 01,j)(1 -[- 00,j-l)(-z) z \ (1 + 01,j-i)(1 -[- 0o,j)
flj-1 (1 --[- 01,j-2)(1 + 0o,j-1)
zj-1 (1 + 01,j-1)(1 "nt- 00,j-2)’

j 2,...,n,

whence

oj--zj AI) (AJ+I)
2" 2

Ae) j=l n

where

AI) zj((1 q- Oo,j-1)qOl,j qoo,j)(1 -1- 01,j_l)
(1 q- 01,j_1)(1 -1- 0o,j)

j= 1,-..,n.

A2) Zj(qtgO,j--1 q01,j--1)
(1 + 01,j_1)(1 q-- 0o,j)

By-1 (1 + 01,j-2)(1 + 0o,j)
(1 +01,j )(1 +00,j_l)’

j 1,...,n.
Zj--1 --1

Here we assume B0 0, qo,0 1,0 0. [-1

Consider the polynomial {j(z) det(zI ), where 7 is the j x j principal sub-
matrix of Tn made up by the last j rows and columns, then, by using (3.3), we can prove
the following.

PROPOSITION 3.2. We have ui(z) i(z), i 0,..., n, and, inparticular, the zeros of
p(z) are the eigenvalues ofthe matrix T,. Moreover, under the assumption and the notations
ofProposition 3.1, we have thatfor almost anypolynomial a(z) thefollowing relation holds:

IIt(z) pj+l,...,,(z)llo
2 o,j

1 + 0o,
Dj,
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where

Dj max
J J

r=l r=l

Moreover,

Ilu-(z) px,2,...,(z)l] o(
Proof The relation ui (z) i (z), i 0,..., n can be easily proved through induc-

tion by applying the Laplace rule for determinants since Uo(Z) o(z) 1, Ul(Z)
(z) z a,. For the second part, applying to k_,j(z) the same arguments used in

the proof of Proposition 3.1 yields

hj_l,jtj(z) zJkj_l,j(z-1) E Sw(k) E det tz+-2)=,+() =,
q=l k:l

compare (3.3) and (3.5). Now, since the determinant in the preceding summation is a
polynomial in z of degree j that is zero for z z(8), s 1, 2,..., j, we have

det ([zr+s-2 r=,j+w(s) =,
det/zr+S-2H (Z Zw(k)) w(s))r,s=l,j"

J k=l

Therefore, applying the arguments used in Proposition 3.1 yields

(.)
h_ tj(z) E H Sw()(z- zw()) E dettzr+S-2)r,s=15()

q=l k=l wEl"lq

J

k--1

whence

(.)
II +E II II

<_r<s<_j q=2 k=l wq(r)<wq(s)

hj_l,jtj(z) hj-l,jpj+,,...,n(Z)

(z.() z.() )2,

That is, by using (3.6) and (3.7) we obtain

/j+l flo,j

005
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where

r=l r=l c

and 0,j and 00,j are defined in (3.8). The quadratic convergence of the polynomials
u,_(z) follows from the relation

(3.9) p(z) u_i(z)h(z) u,--l(Z)h-l(Z), 1, 2,-.., n 1,

which is obtained by expanding det(zI T,) along the ith column.
We observe that the matrix T, is similar to the complex symmetric tridiagonal ma-

1/2 Applying Gerschgorin’strix having diagonal entries a and superdiagonal entries ,_
theorem yields u E LJ=I,, c where C, is defined by

{z c. Iz- I/1 l/e + Iflj-ll 1/2, J 1,..., n}

(assuming/0 =/,, 0). Moreover, ifC is disjoint from the other disks, then lay -uyl <
I/ 11/2 / I/_111/2

It is interesting to note that the relations and the bounds given in Propositions 2.1
and 3.1 still hold if the polynomial a(z) is such that I  /11 for some

j and k. In this case we have no convergence for the terms () i j, j+ 1,... j+k, but
the speed of convergence of the other components () is not affected by this situation.
Moreover, it is sufficient to choose a(z) in such a way that there is at least one break-
point, i.e., an integer j for which I),/)+ < 1, in order that two factors of p(z) can be
easily approximated. Different strategies for choosing a(z) are discussed in 4.

An interesting situation occurs if p(z) and a(z) have real coefficients, because in
this case the quantities A may occur in conjugate pairs and the algorithm delivers (after
performing an additional division) the quadratic factors of p(z). Therefore, there is no
need to perform the computation with complex arithmetic. The possibility of computing
factors of p(z) yields a tool that allows us to handle the case of clustered zeros.

The above results allow us to give a priori upper bounds to the number of iterations
needed to approximate a zero of p(z) within a given accuracy. We say that there is a
strong break-point at j if

(3.10) /kj+
( 1 1/nc,

where c is a positive constant. In the next section we prove that for any polynomial p(z)
it is possible to compute, in polylogarithmic time, a polynomial a(z) such that (3.10) is
satisfied with c 2.

The following properties allow us to prove interesting corollaries of Propositions 3.1
and 3.2.

PROPERTY 3.1 ([13], [14]). Ifthepolynomialp(x) haspairwise differentzeros Zl,..., z,,
and integer coefficients p, i 0,..-, n such that [PI < 2", then

A min [z zj[ > 2- d; 2n log n + mn.

PROPERTY 3.2 ([10]). For the zeros zl, z, of the polynomial defined in Property
3.1, thefollowing relation holds:

(2m -t- 1) -1 <_ Iz, _< 2m + 1.
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COROLLARY 3.1. Let p(z) be a polynomial satisfying the conditions ofProperty 3.1.
Suppose thatfor thepolynomials p(z) and a(z) there is a strong break-point at j. Choosing
u in Algorithm 3.1 so that u > log a(m, n), where a(m, n) 2nc+2 log(n2") yields the
bound 100,jl < 1/2. Moreover, u > log(a(m, n) + no(1 + d) log 2) iterations ofAlgorithm
3.1 are sufficient to compute the coefficients of the factor pj+l,...,, with absolute error less
than 2-a. If there is a strong break-point at j + 1, an analogous bound to the number of
iterations holdsfor the approximation to the zero zj.

Proof. The condition 100,1 < 1/2 is implied by

2 A
2Zmax

n--j

Therefore, since (.) < n, and log I,+l/,j < log(1 1In) < -1In, Properties 3.1
and 3.2 imply that the above condition is satisfied if

2’ >_ n((n j)log 2Zmax
A + j log n + log 2),

that is, if

2 _> n(2n2 log n + n2m).

Thus we obtain the first bound. Concerning the second bound, observe that Proposition
3.2 and the inequalities u > log a(m, n), 100, 1 < imply that

lira(z) P+x,...,n(Z)ll 1-
1

Therefore the condition

IIt(z) p+l,...,(z)ll < 2-a

is verified if

2 > nC(log(2q0,j) + log IDyl + dlog 2).

The result follows from Properties 3.1 and 3.2 because

Dj max (z- (z-
r=l

() k <(l+Zmax)Jmax Zma
k

COROLLARY 3.2. Let c and a(z) be given, and consider the class c,a ofpolynomials
havingzeros zj such that la(zj+l )/a(zj)l <_ 1-1/n, j 1,.-., n-1. Then thepolynomial
root-findingproblem is in IV’C, in the arithmetic sense, for any p(z)

COROLLARY 3.3. The root-findingproblem for the polynomial p(z) is in A/’C if, given
the coefficients ofp(z), it is possible to compute in polylogarithmic time the coefficients ofa
polynomial a(z) such that ]a(zj+l)/a(zj)] <_ 1 1Inc, j 1,..., n 1, where c > 0 is a
constant and z, i 1,..., n, are the zeros ofp(z).

We observe that, if there exists a general strategy to choose for the polynomial a(z)
such that a strong break-point exists at j, n/4 <_ j <_ 3n/4, and a(z) is polylogarithmic
computable, then a recursive application of Algorithm 3.1 would solve the polynomial
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root-finding problem in polylogarithmic arithmetic time. In the next sectionwe will make
some considerations along these lines.

It remains to prove that Algorithm 3.1 can be performed with a floating-point arith-
metic having a polynomial number of digits. This is necessary to extend the above results
from the arithmetic cost to the Boolean cost. For this purpose we try to keep our com-
putations in the set of the integers, and we evaluate an upper bound to the moduli of the
integer numbers involved in the computation.

First of all, suppose that a(z) is a polynomial having integer coefficients with moduli
at most 2’’. It is possible to prove that a() is a polynomial with integer coefficients
bounded in modulus by 2o(,,,,, ,,), where p(n, m, m’, #) is a polynomial in n, m, m’,
# 2. Therefore, stage 1 of Algorithm 3.1 can be performed in integer arithmetic,
with no error, and by using p(n, m, m’, #) digits.

At stage 2 the quantities h,j are determinants of integer matrices; therefore, they
are integers whose moduli can be bounded by means of a Hadamard-like inequality, such
as

Ih,yl _< (IIR,II)+ <_ (i + j)2(i+j)p(’,m,’’,) < 22np(n’m’m’’)

Therefore, stage 2 can be performed with no rounding errors by using f 2rip(n, m, m’,
#) binary digits.

At stage 3 the rational numbers c and/3 can be computed as pairs of integers having
no more than 3f + I binary digits by means of the relations (3.1).

Concerning the coefficients of the polynomial t,-i+l(Z) at stage 4, we observe that
the matrix

n-i+ diag(h-2,j-lhj-l,j-lhj-,j)Tn-i+l

has integer entries having at most 4f + i binary digits. Here diag(q,i) denotes a diagonal
matrix having diagonal entries 71, "e,’’ ". Therefore the polynomial

t--i+l (z) det diag( 2 hj hi_ )(T,_i+l zI)hj-2,j-1 -1,j-1 1,j

n-i+l

(hj_2,j_lhj_l,j_lhj_l,j)tn_i+l(Z)
j=l

has integer coefficients having at most (n + 1)(4f + 1) digits. The coefficients of
t,-+l(Z) are rational numbers that can be computed as pairs of integer numbers having
at most (n i + 1)(4f + 1) digits. Their floating-point representations can be computed
by performing a division between floating-point numbers having (n-i+ 1)(4f+ 1) digits
each.

Therefore, we may conclude that, if there is at least one strong break-point, it is
possible to approximate a factor of p(z) within the given precision, with no rounding
errors and with a polynomial number of binary digits in the arithmetic.

We recall (see [2]) that in order to compute the zeros of p(z) within d binary digits
of absolute precision, it is sufficient to approximate the coefficients of the monic factors
of the polynomial p(z) with absolute error less than 2-’r, /= n(m + d + 2 log n + 4).
Therefore Algorithm 3.1 can be applied recursively in polylogarithmic time by using an
arithmetic with a polynomial number of digits.
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4. Break-point strategies We show a strategy for choosing the polynomial a(z) in
such a way that a strong break-point is obtained. We consider, for simplicity, the case
in which the coefficients of the monic polynomials p(z) and a(z) belong to the complex
field.

We prove that a strong break-point exists for at least one choice of a(z) in the set
{z g, z g ]p(g) 11/’, z g -/Ip(g) x/’}, where g -p,_1/T is the center of gravity
of the zeros of p(z) and i is the imaginary unit.

If no break-point exists for a(z) z g, then all the zeros ofp(z) are located inside
an annulus centered in g with radii p < pz such that P/P2 > (1 1/n)’-. Choose
c 2 so that we have pl/p2 > 0.83 if n > 4, that is, the annulus has relative width less
than 0.17.

In this case, the point r g + Ip(g)l/ lies inside this annulus, and we may again
apply Algorithm 3.1 with a(z) z r.

Suppose that also with this choice we have no strong break-point. Then the zeros
of p(z) are located in the intersection of two annuli having relative width less than 0.17,
centered in g and in r, respectively, as in Fig. 1.

FIG. 1. Zeros in the intersection oftwo annuli.

Now, recall that t is the center of gravity of the zeros. Therefore the greatest radius
of the annulus centered in r cannot be less than ]r (g + Lox)1, and the smallest radius
cannot be greater than Ir (g + Lo)]. This fact can be used to prove that choosing
a(z) z-(g+i_(r-g)) yields a strong break-point, which allows us to split the polynomial
p(z) into two factors having roughly the same degree.

In the case where the polynomial has real coefficients it is possible to modify this
strategy in the following way. Once we detect that the zeros are located in the inter-
section of two annuli, instead of choosing a(z) z (g + i_(r g)), which would
yield complex factors, we choose a(z) z 2gz + gZ + (r g)Z, which has zeros
w g + (r g) and z g (r g). If even with this choice we have no break-
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point, it means that the zeros are located on the annuli determined by the two Cassini
ovals {z E C" la(z)l p’} and {z E c" la(z)l 0.83p’} (see Fig. 2); that is,
0.83p’ < aj < p’, where aj I(z w)(z z)l. Now it is possible to compute, at
a low cost, a point inside these annuli. In fact, observe that 0.83p’ < a < p’, where
r I-I= ,rlX/’ Ip(w)12/’, so the following points lie in the annuli determined by
Cassini’s ovals (see Fig. 3):

Vl ----’//)+ ((0"2--4(r-6)4)1/2 2(r--6)2) 1/2 V2 w--/(6--r+ (0.+ (r--6)2)) 1/2

FIG. 2. Zeros in the Cassini ovals.

Now, since g is also the center of gravity of the real parts of the zeros of p(z), and
since there exist j and k such that 19 zl > Iw 91, and 19 z[ < [w g[ (recall
that w (1-Il Iz 91)1/’), at least one of the following polynomials gives a strong
break-point:

a(z) (z v)(z ’0), a(z) (z v2)(z ).

This strategy does not necessarily guarantee that the break-point yields two factors of de-
gree roughly n/2. For instance, choosing a(z) z g might lead to just one break-point
corresponding to two factors of degrees I and n- 1, respectively. Indeed we could apply
the same algorithm to the factor of degree n-, 1 and go forth. In the worst case situation
the algorithm stops after n 1 steps and therefore the overall cost of the algorithm is
not polylogarithmic. In this case we have ]z --gk] < eklgk --gk+l, i k + 1,..., n, k
0, 1,..., n 1, where 9k is the gravity center of the zeros zk+,"’, z, and ek < e are
positive numbers small enough to yield just one strong break-point at each application
of the algorithm. In fact, observe that for i, j > k the zeros z and z belong to the kth
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FXG. 3. Zeros clustered in the Cassini annulus.

cluster, being

(4.1) 1 2e + O(e2) < a,-+,l < 1 + 2 +
A special situation occurs, for instance, in the case for which the zeros are almost in
geometric progression, i.e., Zl r/, z2 + e’x, za + eTx + e2"2, z4 r/+ e’l +
e2"2 + ea’)’a, ", where e is a small positive number and "i, i 1,..., n 1 are complex
numbers having almost the same moduli.

This situation, considered hard in [22], can be easily handled by Algorithm 3.1, by
choosing a(z) p’(z). In fact, in this case we have

n

r=l, ri, rTj

Zr Zj

Zr Zi

so that we have n- 2 strong break-points, and one application of Algorithm 3.1 yields all
the zeros. This can be proved by splitting the above product into three parts, as follows
(for simplicity, assume i < j):

ii Zr Zi Zr Zi Zr Zir=l r--i+l r--jd-1

The first product is 1 + O(e), the second product is e(i-i)(J--x)/2(1 + O(e)), and the
third product is e(j-)(’-) (1 + O(e)). Hence, we obtain

e’-’ (1 + O(e)), j 2,...,n.
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Also, in the case of zeros clustered as in (4.1) choosing, a(z) if(z) yields n 2
strong break-points. However, this choice may fail if, at each recursive application of
the algorithm with the implicit shift in the gravity center, only two factors with clustered
zeros, of degree n 2 and 2, respectively, are computed.

This situation can be handled by choosing a(z) p"(z). In general, the case for
which at each recursive application of Algorithm 3.1 two factors with clustered zeros,
of degree n h and h, respectively, are computed, can be treated by choosing a(z)
p(h) (Z). This can be proved by using the relation

(4.2)

Pl,’",ih-l,J(zJ)
1_<il <"’<ih--l <_n, iryj

1<_il <"’<ih-l <_n, irsi

Here we consider, for simplicity, the case h 2. Suppose that at the kth recursive appli-
cation of Algorithm 3.1 with the implicit shift in the gravity center, we get two clusters
F {z_x, zz} and C (z+,. , z} such that

i,j > 2k,

where fk and gk are the centers of gravity of clusters Fk and Ck, respectively. Now we
prove that z2k is well separated by zj, j > k, if a(z) p" (z).

Setting i 2k, from (4.2) we have

p"(zj)
p"(z,)

n

"1-[ z z
Zs Z

s-- 1, si,j

n 1

s=l, sCj
n 1

z,)

Observe that, for our assumptions it follows that

i--2
Zs Zj

Zs Z
1 + O(e).

Therefore, we must consider the remaining factor, which we rewrite in the following
form, where the integer q is such that [zq z[ mins [z8 zj ["

(4.3) Zs Zj

Zs Zi

Zi_ Zj

Zi_ Z

Zq Zj

Zq Zi
n

1

z,)

Now, it is easy to prove that the first factor in (4.3) is less than

)
n--2k-

(n/2 f)(1 e)
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Concerning the remaining part, since [(zq zj)/(z8 zj)[ < 1, we obtain

Zi--1 Zj

Zq Zi

n
Zq Zj

Zs Zjs=l,
n

zi_1 z

Zs zis=l, s#i,i-1

l+e n-1<
1 e 1

so that we may conclude with the bound

<(n-l)( 2e )n-2k-1n- 2k + O(e).

In the case where p(z) has real zeros it is sufficient to find a real number w such
that n/4 < #{zi zi < w} < 3n/4 in order to obtain factors with degree less than
3n/4. In fact, choose a(z) z w and apply Algorithm 3.1. If a factor q(z) of degree
ra > 3n/4 is obtained, we have that at least ra zeros are inside a thin annulus centered in
w. Observe that r w + Iq(w)l/" is inside the annulus. Choosing a(z) z r allows
us to determine only factors with degree not greater than 3n/4. The determination of w
can be performed in polylogarithmic time by applying the Euclidean algorithm to p(z)
and if(z) [2].

In the general case of polynomials with complex zeros it is an open problem to de-
termine a strategy of choosing a(z) such that the recursive application of the algorithm
can be carried out in a polylogarithmic number of steps and a(z) is polylogarithmically
computable. Indeed, such a strategy can be easily devised if a separator w, dividing the
real parts of the zeros into two sets having almost the same cardinality, is computable in
polylogarithmic time.

Acknowledgment. The first author wishes to thank Victor Pan for helpful discus-
sions and precious suggestions.

REFERENCES

[1] A.V. AHO, J.E. HOPCROFT, AND J.D. ULLMAN, The Design andAnalysis ofComputerAlgorithms, Addison-
Wesley, Reading, MA, 1976.

[2] M. BEN-OR, E. FEIG, D. KOZEN, AND P. TIWARI, A fast parallel algorithm for determining all roots of a
polynomial with real roots, SIAM J. Comput., 17 (1988), pp. 1081-1092.

[3] D. BINI AND L. GEMIGNANI, On the Euclidean scheme forpoynomials having interlaced real zeros, Proc.
of 2nd Ann. ACM SPAA Syrup. Crete, Greece, 1990, pp. 254-258.

[4] D. BINI AND V. PAN, Improvedparallelpolynomial division, SIAM J. Comput., to appear.
[5] .,Polynomial division and its computational complexity, J. Complexity, 2 (1986), pp. 179-203.
[6] A. BORODIN, J. VON ZUR GATHEN,AND J. HOPCROFT, Fastparallel matrix and GCD computation, Inform.

and Control, 52 (1982), pp. 241-256.
[7] R. BRENT, E GUSTAVSON, AND D. YUN Fast solution of Toeplitz systems ofequations and computations of

Pad approximants, J. Algorithms, (1980), pp. 259-295.
[8] L. GEMIGNANI, Metodi numerici per il calcolo simultaneo degli zeri di un polinomio, Tesi di Laurea in

Matematica, Department of Mathematics, University of Pisa, Italy, 1987.
[9] J. YON ZUR GATnEN, Parallel algorithmsforalgebraicproblems, SIAM J. Comput., 13 (1984), pp. 802-824.

[10] A.S. HOUSEHOLDER, The Numerical Treatment ofa Single NonlinearEquation, McGraw-Hill, New York,
1970.

[11] ,Generalization ofan algorithm ofSebastiao e Silva, Numer. Math., 16 (1971), pp. 375-382.
[12] P. HENRICI,Applied and Computational ComplexAnalysis, Vol 1., John Wiley, New York, 1974.
[13] D.E. KNUTH, The Art of Computer Programming: Seminumerical Algorithms, Vol. 2, Addison-Wesley,

Reading, MA, 1981.



ON THE COMPLEXITY OF POLYNOMIAL ZEROS 799

[14] K. MAHLER,An inequalityfor the discriminant ofa polynomial, Mich. Math. J., 11 (1964), pp. 257-262.
[15] C.A. NEFF, Specified precision polynomial root isolation is in NC, Proc. 31st Annual IEEE Syrup., 1990,

pp. 138-145.
[16] Yu. OFMAN, On the algorithmic complexity ofdiscretefunctions, Soviet Physics-DoE., 7 (1963), pp. 589-

591.
17] V. PAN, Sequential andparallel complexity o1’approximate evaluation ofpolynomial zeros, Comput. Math.

Appl., 14 (1987), pp. 591-622.
[18] ,Algebraic complexity ofcomputingpolynomial zeros, Comput. Math. Appl., 14 (1987), pp. 285-

304.
[19] V. PAN AND J. REIF, Displacement structure andprocessor efficiency offastparallel Toeplitz computations,

Proc. 28th Annual IEEE Symposium on the Foundations of Computer Science, IEEE Computer
Society, Washington, DC, 1987, pp. 173-184.

[20] S. SMALE,Algorithmsfor solving equations, Proc. Intern. Congress Math., Berkeley, CA, 1987.
[21] .,On the efficiency ofthe algorithms ofanalysis, Bull. Amer. Math. Soc., 13 (1985), pp. 87-121.
[22] A. SCHONHAGE, Thefundamental theorem ofalgebra in terms ofcomputational complexity, Department

of Mathematics, University of Tubingen, Federal Republic of Germany, 1982.



SIAM J. COMPUT.
Vol. 21, No. 5, pp. 801-823, October 1992

1992 Society for Industrial and Applied Mathematics

001

INCREASING THE SIZE OF A NETWORK BY A CONSTANT FACTOR
CAN INCREASE PERFORMANCE BY MORE THAN

A CONSTANT FACTOR*

RICHARD KOCH?

Abstract. The performance of unbuffered routing algorithms for parallel computer architectures is
analyzed. Unbuffered algorithms are an alternative to the use of queues. When the capacity of a switch or
communications link is exceeded, the extra messages are discarded, and another attempt to transmit the
message will be made at a later time. The analysis presented here is relevant for routing on the BBN Butterfly
and Agarwal and Knight’s Alewife architecture, both of which have interconnection networks based on the
butterfly graph.

Suppose that each of the N inputs of the butterfly independently decides to send a message with
probability p, and that the message is sent to a random output, with each output having an equal probability
ofbeing chosen. If more than q messages attempt to traverse an edge, the extra messages over q are discarded.
q is called the dilation of the network. The bandwidth is the number of messages that reach their destinations.
It is shown that ifp l)((log N)-l/q), the expected bandwidth is O(N(log N)-l/q), and ifp o((log N)-l/q),
the expected bandwidth is N(p+o(p)). This result also holds for dilated networks based on the d-ary
butterfly and for graphs constructed by taking copies of butterflies and identifying corresponding inputs
and also identifying corresponding outputs. An expression is also derived for the asymptotic constants and
it is shown that the probability distribution is tightly concentrated about its mean. Interesting techniques
are developed for finding asymptotics of nonlinear systems of recurrences.

The result may also have implications for design trade-offs since, for sufficiently large networks, having
a fixed amount of hardware increasing the value of q will increase bandwidth more than increasing the
values of d or r.

Key words, parallel computation, interconnection network, parallel computer architecture, performance
analysis, difference equations

AMS(MOS) subject classification. 68M10

1. Introduction. When designing computer architectures it is useful to have quanti-
tative measures of system performance. Since the performance of actual systems cannot
be measured until the system has been built, it is necessary to resort to analytical and
simulation studies when making design decisions. Unbuffered routing strategies for
multistage interconnection networks for multiprocessor systems have been proposed
and analyzed in several previous papers [8], [5], [6], [3]. An interconnection network
that uses such a strategy is being built at MIT by Knight and Agarwal [4], and the
BBN Butterfly uses a related routing strategy [2]. With unbuffered routing, congestion
is eliminated by discarding messages rather than holding excess messages in queues;
a mechanism is provided for notifying a processor if its message is discarded, and, if
necessary, the message is retransmitted at a later time.

We will analyze unbuffered routing on the butterfly network. If N, tr are integers
such that N 2, then the butterfly network of size N is defined in the following way.
There are three kinds of nodes: input nodes, which have degree one, where processors
are located; output nodes, which have degree one, where processors are located; and
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switching nodes, which have degree four and where switches are located. Input nodes
are labelled with integers k such that 0 k N- 1; output nodes are labelled similarly.
Switching nodes are labelled with ordered pairs of integers (1, m), where 0l
(N-1)/2 and 1 m- tr. Let b_l bl be the binary representation of I. Then for a
switching node (l, m) with m < cr and for i-0, 1, let li be the integer with binary
representation b_l""" bm+libm-l"" bl. Then there is an edge (physically realized
with a wire) between (l, m) and (li, m 4-1). In addition, for switching nodes with m 1
there are edges connecting (1, m) to input nodes whose labels have binary representation
b-l"" bli for i-0, 1 and for switching nodes with m- cr there are edges connect-
ing (l, m) to output nodes whose labels have binary representation b_l"’" bli for
i--0, 1, (see Fig. 1).

FIG. 1. Butterfly network of size 8.

The butterfly network is known by other names such as the FFT network, the
multistage cube [12], the indirect binary n-cube [9], and the generalized cube [13]
and is isomorphic to other networks such as the omega network [7] and the baseline
network [14]. It is an example of a delta network [8].

Before we analyze the performance of unbuffered routing, we first make a few
definitions. All input nodes are defined to have level zero; all output nodes are defined
to have level tr + 1, and a switching node (l, m) is defined to have level m. We denote
by Vm the set of all nodes with level m. We denote by E the set of all edges connecting
nodes with level m to nodes with level m + 1. For e E, where m > 1, we define e0
and el to be the two edges of E,_I incident to e.

Now suppose that each processor at an input node independently decides to make
a request to a memory at some output node with probability p, with each output node
having an equal probability ofbeing chosen. At each time m 0, , tr packets attempt
to advance from the nodes where they are currently located in V to the next nodes
on their paths to their destinations in Vm/l. If less than or equal to q packets attempt
to traverse an edge in E, all of the packets are forwarded to the next node in Vr/l.
If more than q packets attempt to traverse an edge in E, q of the packets are forwarded
to the next node in V/I, and the other packets are discarded. The packets that are
discarded are chosen in such a way that the choice is independent of the packet
destinations. We will refer to q as the dilation of the butterfly network. For an edge
e, we let Xe be the number of packets that traverse e. Let

Em
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Then we define the bandwidth to be S; the bandwidth is just the number of packets
that successfully reach their destinations.

The question of finding the bandwidth when q 1 was first raised by Patel [8],
who derived a recurrence to describe the bandwidth. Kruskal and Snir [5] found the
asymptotics for this recurrence. They also raised the problem of finding the bandwidth
butterfly networks with q-_>2 and derived a system of recurrences to describe the
bandwidth. Kumar and Jump [6] conjectured that dilated networks have bandwidth
(R)(N(log N)-l/q) based on a plausible but unproved assumption about a particular
probability distribution; although the assumption resulted in a correct estimate up to
constant factors, their assumption resulted in an incorrect evaluation of the asymptotic
constant. Knight [3 has also considered the problem of computing generating functions
to describe the bandwidth of unbuffered routing.

2. The principal theorem. The following theorem holds.
THEOREM 1. When q 1, expected bandwidth is

N(1/4 log N+p-l+ O(log log N))-1

and for constant q >-2, when p o((log N)-I/q), the expected bandwidth is

Np(1 + O(pq log N+p)),

and ifp f((log N)-l/q), then the expected bandwidth is

N(P-q +Xq log N)-’/q + O(N(log N)-z/q),

where

to

q(1--2-q)
(q+l)!

For example, when q 2 and p is a constant, the expected bandwidth is asymptotic

2N

x/log N"

Increasing q from 1 to 2 increases the expected bandwidth by (R)(x/log N). Thus,
increasing the amount of hardware by a constant factor can increase bandwidth by
more than a constant factor! If we look at the bandwidth as p varies from zero to one,
we observe a threshold. When p is w((log N)-I), the bandwidth is asymptotic to
4N/log N, and when p is o((log N)-), the bandwidth is asymptotic to pN, in which
case the expected fraction of packets that successfully reach their destination
approaches 1 as Nc. However, when p is w((log N)-I), the expected bandwidth
is virtually independent of p; attempting to send more packets results in few additional
packets reaching their destination. If 3’ is a constant and p is y(log N)-, a constant
fraction of the packets reach their destinations, where the constant depends on 3’.

3. Asymptotics for a nonlinear recurrence. To prove Theorem 1, the following
theorem of de Bruijn [1] will be essential. Since we need an estimate of an error term
that was not given in [1], we prove the result here.

THEOREM 2. Suppose q is a fixed positive integer and

lim s,, 0, 0 So =< 1, c > 0,

Sm+l Sm CSqm+1 -[- O(sqm+2).
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Then, if q 1,

and if q >- 2,

Sm (cm + s- q- O(log m))-l,

Sm (cqm + s-q + O(ml-1/q))-1/q.

Proof Let tm= sqm. Then
tm+11/q tl/qm ct+(1/q) + O(t+(2/q)),

tm+l tm(1--Ctm + O(t+(1/q))) q

tin(1--cqtm + o(tlm+(1/q))).

Let Um= tn Then

and thus

Urn+ Um(1- cqu + O(blnl-(1/q))) -1

Um+ cq + O(un(1/q)),

Since

Thus if q 1,

and if q -> 2,

--l/q).U cqm + Uo + 0(U
i=1

lim Sm=0, lim Unl/q O, Um=(m),
m.cx

-1/q) 0 E i-1/qE O(ui O(ml-(1/q)) >
i=1 q 2

Um cm + Uo+ O(log m),

S (cm + s + O(log m))-,

Um cqm + Uo + O( ml-(1/q)),

Sm (cqm + sq + O(ml-(1/q))) -1/q.

4. Proof of the principal theorem for q 1. The proof of Theorem 1 is long and
technical. In order to give an understanding of the underlying ideas, we first prove the
cases q 1 and q 2, and then give a sketch of the proof for the general theorem
before giving the technical details.

Proof of Theorem 1 when q= 1. For m =0,..., o- let Pm--Pr {X 1}, where
e Em; by symmetry, the definition of Pm will not depend on the choice of e. Packets
that traverse an edge e Em+ must have traversed either eo or el at the previous step.
Packets that traverse e0, el will attempt to traverse e with probability . Since the set
of input nodes that can send their packets through eo is disjoint from the set of input
nodes that can send their packets through el, Xeo and Xel are independent. If Xeo, Xel
1, then Xe 1 with probability ; if Xeo 1, Xel 0 or Xeo O, Xe, 1, then Xe 1 with
probability 1/2, and if Xeo, Xel 0 then clearly Xe 0. Thus

__3 2
Pm+l -Pm-F1/2Pm(1--pm) +1/2Pm(1--pm)

2
Pm---Pm.
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We now show that Pm ’’> 0 when m--> . It clearly follows from the recurrence for p.
that P.,+I -< P., and since we know that Pm >- 0, it follows that there exists an L such
that p. L since any bounded monotone sequence converges [10]. Then

L lim Pm+l
mx

lim (pm 2-p)

1L2

from which it follows that L 0. It follows from Theorem 2 that

p. (p-’ +m + O(log m))-1.

Thus

Z E(Xe)
E

Np.

We now continue with the proof of Theorem 1 when q >= 2. Xe and Sm are defined
as before. If e, e’. E., then by symmetry

Pr {Xe i} Pr {Xe’ i}.

Thus we can define

Pm,i---Pr{Xe=i}, eE..
It follows that Po, P and Po. 0, 2, , q. Choose e E; we define z by

Zm=(Xe)
q

E ip,.
i=1

Since

E

E E(Xe)
E

JNfZm

we know that the expected bandwidth is Nz.
5. Proof of the principal theorem for q 2. We first prove the case q 2.

Proof of Theorem 1 when q 2. We first wish to write recurrences for Pm,1 and
Pm,2. Suppose e Em+l. We know that Xeo and Xe, are independent since the set of
input nodes that may send packets through e0 is disjoint from the set of input nodes
that may send packets through e1. If j packets traverse eo and k packets traverse el,

then since each of these j + k packets will traverse e with probability 1/2, the probability
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")/i,j,k that packets will traverse e is

(J+k) 2-j-k’i<q;i
Thus

P.,+l,i Y Yi,j.kPm,jPm,k.
0=<j,k2

If P.,o is replaced by 1 P.,I Pro,2 and similar terms are collected, we have the following
recurrence relations"

2
Pm+l,1 Pm,1 + P.,,2---Pm,1 -- 2

P m,2 -Pm,1 Pro,2,
2 2

Pro+l,2 P,,2+P,I +P,,2+sP,,P,..
(1)

()

It follows that

(3) 2
z,+l z,,, gP ,,2 ---P,,l Pr.2We would like to show that z, satisfies the recurrence

Zm+ Z O(Zrn),

from which we could conclude that z is (p-2+O(m))-l/2 by Theorem 2, but it is not
obvious how to prove that Zm satisfies such a recurrence. We will define Zm,1 and z.,2,
in a way that preserves the asymptotic behavior of Zm, and so that we get a Zm,2 for
which we can show the desired recurrence. We define Zm,1 by

Zm,1 Pm,1 + 2pm,2 -Pro,1Pm,2"We now wish to show that Zm,1 Z.,. We need the following lemma.
LEMMA 1. lim.,_ z., 0.

Proof of Lernrna 1. Clearly Zm+l <- Zm and z,. >_- 0. Thus there exists an L such that
lim.,_. z., L. Suppose L> 0, and choose

e < min {4L2, L4tj.
Then there exists M such that if rn-> M, then L<= Zm < L+ e. We consider two cases.

Case 1. pM.z>1/2L. It follows from (3) that
2

ZM+ <- ZM --gPM,2

<L+e-L2

<L.

Case 2. pM.2<--L. Then Pt,l> IL. It follows by (2) that pM+,2>L2. It follows
from (3) that

2
ZM+2 <- ZM+--gPM+I,

< L+ e -356L4
<L.

Since lim.,_.oo z,. 0, it follows that limm_oo P.,,1, P.,, 0, and thus

P,..lP.,, O(max{p,.,1, pm.}2),
and since

P,..1 + 2p.,,2 (R)(max {P.,,1, Pro,z}),
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it follows that z.,---z.,,1. We find a recurrence for z.,,1 in the following way:

Zm+l,1 Z,+I--1/2Pm+l,lPm+l,2
Z., p2m,2 -Pm, Pm,2 Pm+I,1 Pro+ 1,2"

Now replace z by z, +P,P,2 to get the recurrence
2

Zm+l,1 Zm,1 --Pm,2 +Pm, Pm,2--Pm+l,lPm+l,2"
Replace P+I,1 and Pm+l,2 by the right-hand side of the recurrences (1) and (2),
respectively, and collect similar terms to yield the following recurrence"

2 2
Zm+l,1 Zm,1--Pm,2--Pm,1--Pm,lPm,2--Pm,lP,2+Pm,2+ Pl(Pm,1, Pro,2),

where P1 is a polynomial with no monomials of degree less than or equal to three.
Zm,1 was defined so that there would be no Pm,lPm,2 term in the recurrence for Z,l. The
reason for doing this will be made clear later. Now let

2
Zm,2 Zm,1 P m,2

z.2 Zm by an argument similar to that used to prove that Z,l z. Elementary
calculations similar to those used to derive the recurrence for z, give the following
recurrence for Zm.2"

11 2 43 2(4) Zm+l,2 Zm,2 gPm,1 Pm,lPm,2 Pm,lPm,2--P.+ P2( Pro, l, Pm,),
where P2 is a polynomial with no monomials of degree less than or equal to three.

2
z.2 was defined so that there would be no P,2 term in the recurrence for z,2.

Now, since Zm,2 O(max {Pm,1, Pm,}), it follows that

z+, z, O(z,).
Thus we can conclude from Theorem 2 that z,2 is (p-2+O(m))-1/2, and since z=
Zm,2 + 0 2

z (-+O(m))-’/ + O((p-+ m)-),
and thus z is O((log N)-/2) when p O((log N)-/2) and is p(1 +O(p2 log N+p))
when p o((log N)-l/2).

We now assume that p ((log N)-/2). We first prove that p, is O(m-/2) and
p=, is 0(m-). We need a lemma.

LZMMa 2. If 0 < C < 1, r a real number, then

E cm-Ss O(m).

Proof Let K [- log m/log c ]. Then
m--1

c-*s E c*(m-s)
s=l s=0

cSm 1+0 + cS(m--s)
s=O s=K

)m-1cSmr+O scSmr- + cKm
=0 =0 K

m
+O(Km-)+ O(m)
1-c

O(mr).
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A simple induction on m using (2) shows that

Pm+l,2 2-(.,-s) 2 2(-dP s,1 +-igP s,2 -b-Ps, Ps,2).
s=0

We know that Pro.1 and P,.,2 are O(m-1/2) because z,. is (R)(m-I/2), and thus it follows
from Lemma 2 that P.,,2 is O(m-1). Since Zr. is a linear combination of Pro,1 and Pm,2,
we know that Pro.1 is O(tn-1/2). It then follows from (5) and Lemma 2 that Pro,: is O(m-1).

2We can now conclude that P.,I- z., +O(z) and p,., O(z.,). It follows from
(4) and Theorem 2 that

1/2) 1/2
z,2 (p-2+m + O(m )-

(p-2+-m)-1/2(1 + 0(m-1/2))-1/2

(p- +1/4m)-1/2(1 + O( rn-1/:) ).

Since z,. Zm,2"[-O(m-1), the theorem now follows when q= 2 since the expected
bandwidth equals Nz,. E!

6. Sketch of the proof of the principal theorem for q > 2. To prove Theorem 1 for
q > 2, we will generalize the procedure used to prove the theorem for q 2. We wish
to prove that z. satisfies the recurrence

We can derive a nonlinear system of difference equations to describe a relationship
between the p,i’s, as in (1) and (2). A recurrence can also be derived to describe a
relationship between z., and the p.,i’s as in (3). It is not immediately clear how to
show the desired recurrence for z. from a recurrence that contains p.,i’s since we do
not have an expression for each Pm, in terms of z.,. We will successively define

Zm,l," Zm,s** SO that z.,,s** has the same asymptotics as z.,.s, and we can easily show
the desired asymptotics for z.,,s**; for simplicity, in making assertions, we will also
denote z., by z,.,o. For 0_-< s _-< s** we will have a recurrence

z.,+l.s=z.,,s+As(p.,,1, ,p.,,q),

where As is a polynomial.
As** will have no more monomials of degree less than or equal to q, and each

monomial of degree q + 1 will have a negative coefficient. Since for i_-> 1, P.,.i O(z,.),
and since

q

Zm-- Z ipm,
i-1

from which it follows that

Zm O ( l<__i<=qmaX {Pro,i}),
at least one of p,+l, p, will be O(zq+).,, Furthermore, each monomial in As**
of degree greater than q + 1 is O(z+2). Since it will be true that

,.=z.,,**+O(z,**),
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we will be able to conclude that
q+l

Zrn+ l,s** Zm,s**

_
Z rn,s** ].

It will then follow from Theorem 2 that z,..s**=(p-q +O(m))-q.
The zm.1, ", Zm,s** will be defined in two stages. In the first stage we define z.,,s

for 1 _<-s <-s* so that As* has no monomials of degree less than or equal to q; Zm,s+l
will be defined by modifying z,.,s so as to force the coefficient of a monomial of degree
less than or equal to q in As+l to zero. In the second stage we will define zm, for
s*+ 1-<_ s-<_ s** so that all monomials of degree less than or equal to q still have
coefficient zero and all monomials of degree q + 1 have negative coefficients; in this
stage z.,,s+l will be defined by modifying z.,,s so as to force the coefficient of a monomial
of degree q + 1 in As+l to be negative.

In both stages we modify z.,s to define z,.,s+l as follows. We let

Zrn,s+l Zm, -’[- Asks(Pro,l," Pro,q),

where bs is a monomial and As is chosen to force the coefficient of bs in As+ to zero
or some negative number. How do we choose As? Let’s look again at how in the case
q 2 we forced the coefficient of Pm, Pm,2 to be zero. We start by letting

Zm,1 Zm -]- hpm, Pm,2.

Then we derive the recurrence for Pro,1 as follows"

Zrn+ 1,1 Zm+ -" hpm+1,1P,.+ 1,2

2
Zm --gPm,2---Pm,lPm,2 + hPm+l,lPm+l,2

Zm,1 hPm,lPm,2 2
P,2 XPm.1P,2 + hp.,+1,1Pm+l,2.

Now replace P.,/1,1 and P.,/1,2 by the right-hand sides of the recurrences in (1) and
(2), respectively. Then the coefficient of P.,,lPm.2 in the resulting recurrence is -h-1/4+
/zh, where /z is the coefficient of P.,lP.,,2 in the expression that results when the
right-hand side of the recurrences (1) and (2) are multiplied together. The coefficient
of Pm, Pm,2 in the recurrence for z.,1 can be forced equal to a zero by choosing

which is possible as long as/z 1, which is true since/x is the product of the coefficient
ofPm, on the right-hand side of the recurrence in (1), which equals 1, and the coefficient
of p.,, in the right-hand side of the recurrence in (2), which equals 1/2.

When we attempt to define the z.,s’s so as to have the desired properties, we
encounter several problems. After we force the coefficient of a monomial b in As to
be zero, how do we know that when we subsequently force the coefficient of in At
to be zero, where s < t, that the coefficient of b in At does not become nonzero again?
To answer this question, we need to look at the properties of a particular polynomial.

Suppose that b is a monomial. Henceforth we will always assume that the
polynomials are polynomials in the indeterminates wl,’", Wq. Let (b) be the
polynomial that results when each wi in b is replaced by the right-hand side of a
recurrence that expresses each Pm+l,i as a linear combination of Pm,j’S and Pm,jPm,k’S
such that 1 <_-j, k_-< q, and then each p., in the resulting expression is replaced by an
indeterminate w. Now suppose is the monomial whose coefficient in the recurrence
was forced equal to zero or a negative number when z.,s is modified to define
By looking closely at the derivation of the recurrence for Zm,1 in the case q 2 it should
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seem reasonable that the coefficient of a monomial b in the recurrence for z,,,s will
differ from the coefficient of b in the recurrence for Zm,s+l only if b has a nonzero
coefficient in (q).

We define the order of a monomial 4 to be sum of all the i’s of the wi’s taken
according to multiplicity; in other words, the degree of the monomial that results by
replacing wi by x i, where x is an indeterminate. We will prove that 4 has a nonzero
coefficient in (q,) only if both of the following conditions are true:

degree of b-> degree of q,
order of b >_-order of q.

Furthermore, the only time that will have a nonzero coefficient in (q) when the
degree of 4 equals the degree of q and the order of & equals the order of q, is when
4’ q. Then, if when defining the Zm,s’S, we first force the coefficients to zero of those
monomials of degree two, starting with those with the smallest order and working up
to those with the largest order, then we do the same for monomials with degree three,
etc. The coefficient of a monomial 4 will remain zero (or negative for those monomials
of degree q + 1) after it has been forced to zero because when we subsequently force
the coefficient of q to zero, the degree of 4’ will be less than or equal to the degree
of q, or the order of b will be less than or equal to the degree of q,. Thus 4 has a zero
coefficient in (q), and the coefficient of 4 will be identical to what it was before the
coefficient of q was forced to zero.

Another problem appears to occur when we attempt to force the coefficients of
monomials to zero. When we found the constants necessary to force the coefficient of
Pm, Pm,2 to zero for the case q 2, it was necessary to divide by 1- x. Had /x been
equal to one, we would not have been able to find the desired constant. In order to
force the coefficient of a monomial b to zero, we need to divide by 1- u, where u is
the coefficient of b in (b). 1-u will be equal to zero only if b is not of the form
wl, where k is a positive integer.

What do we do if we need to force to zero the coefficient of a b such that u 1 ?
It turns out that this is never necessary since monomials of order less than or equal

kto q always have zero coefficients, and any monomial of the form wl, where k=< q,
has order less than or equal to q. We prove that monomials of order less than or equal
to q always have zero coefficients by first proving the assertion for the coefficients of
monomials in z,,. We then prove it for all s using induction on s. To prove the induction,
we make use of the property of that b has a nonzero coefficient in (4’) only if
the order of b is greater than or equal to the order of 4’; thus when we force to zero
the coefficient of a monomial with order greater than q, the coefficients of other
monomials will change only if their order is also greater than q.

q+lIt is also necessary for the monomial w to have a negative coefficient in the
recurrence for z,,,**, but again for this monomial we will not be able to force it negative
using our usual technique since we cannot divide by zero. Fortunately though, it turns

q+out that after the first stage w will already have a negative coefficient; we prove this
by proving by induction on s that there always exists a monomial of order q + 1 that

q+l is the only monomial of degree greater than orhas a negative coefficient. Since w
q+ has a negative coefficientequal to q+ 1 with order q+ 1, we can conclude that Wl

after the coefficients of all monomials of degree less than or equal to q have been
forced to zero.

To evaluate asymptotic constants when p =l)(N(log N)-I/q), we first prove for
i+1).i_>- 1 that p,,, O(rn-/q). We then prove that p,,,i (1/i!)z + O(z,,, The constants

are then evaluated by replacing the p,,,i’s in the recurrence for z,, with the previous
formula in order to yield a recurrence whose asymptotics follow from Theorem 2.
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7. Derivation of the initial recurrences. We now provide the details of the proof
of Theorem 1 for constant q _-> 2. We first find a system of nonlinear recurrences in the
variables Pm, for 1 _--< _--< q and prove certain properties about them.

THEOREM 3. There exist constants ai, and fli,j,k such that
(1) Fori-1,...,q, tn=0,...,tr-1,

q

P,+I, ’. a,:p,,: + ., ,:,kP,,:P,,k.
j=l l<=j,k--q

jk

(2) Oli, 21-i.
(3) If <j then a,, > O.
(4) If >j then ai, O.
(5) If =j + k then ,,k 2- ifj k and g,j,k 21-’ ifj < k.
(6) If >j + k then
Proof Suppose e e E,/l. As before, Xeo and Xel are independent, and we define

y,,k to be the probability that packets traverse e given that j packets traverse eo and
k packets traverse el. Clearly Y,,k 0 only if j + k -> i, and if j + k i, then Yi,,k 2-.
We have the following recurrence"

Pm+l,i Ti,j,kPm,jPm,k"
Oj,kq
j/k>--i

If we now replace each occurrence of P,,o by

we have the following recurrence:

Pm+l,i 7i,,kPm,jP,,k + 7i,,oPm, 1- p,,,
Nj,kNq

(6)
+kei

+ i,o, 1- p, p,.
k=i s=l

The values of , and ,, are now chosen in a natural way. , is the sum of the
coecients of all p, terms in the right-hand side of the recurrence in (6), and ,,
is the sum of all p,p, or Pm,P, terms in the right-hand side of the recurrence in
(6). Then, clearly ,=0 if i>j since p, does not appear in (6). If iNj, then, ,,o+ ,o, > 0 and , 2-. If >j + k, then ,, 0 since p,p, or
does not appear in the right-hand side of the recurrence in (6). If i=j + k and j k,
then ,, ,, 2-, whereas if =j + k andj < k, then ,, ,,+ ,, 2-.

We now find a recurrence for z and prove ceain propeies about the recurrence.
THEOREM 4. ere exist constants , such tha
(1) For m =0,.-., -1,

z+ z ,p,p,.
lNj,kNq
jNk

(2) Ifj + k q + 1, chert , 2-q- ifj k and , 2-q ifj <
(3) Ifj + k N q, chert , 0.

Proo For e e , m > 0, let Y be the number of packets that have traversed eo
and e and attempt to traverse e (some of these packets may have to be discarded).
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Let P’,i Pr { Ye i}. Since packets that traverse eo and el will traverse e with probability

E(YeIXeo, Xe,)=1/2(Xo4-X,),
and, therefore,

and thus

Since fori=q+l,...,2q,

2q, =E(Ye)lPm+l,i
i=1

=E(1/2(Xo4-X,))
q

q q 2q

E iP,,+l,i Y’. ip+l,i+ E
i=l il i=-q/l

qPm+l,i

q 2q 2q

E ip,,,,,- E iP’,,+l,i+ E
i=1 i----q+l i=q+l

q 2q

--Zipm, Z
i=1 i=q+l

Pm+l,i
lj,k<=q
j+ki

(i-q)p’m+l,i

m+l,i

J + k) 2-:-kPm,jPm,k.

The theorem follows. [3

Suppose that 4 is a monomial in the variables wl," ", Wq. We define the order
of 4 to be the degree of 4(w, w2, ", w). Let U be the set of all monomials 4 with
degree greater than or equal to two with coefficient equal to one. We define an
enumeration 4o, 41," ", of all monomials in U as follows. Let 4o,"" ", 4% be an
enumeration of all monomials in U with degree two such that for s =0,-.., s-1,
the order of bs is less than or equal to the order of bs+. Let b,+,..., b be an
enumeration of all monomials in U with degree three such that for s s + 1, , s2-1,
the order of b is less than or equal to the order of b/l. Continue to define
bs2+l, bs+2,’’" in a similar manner. For s =0, 1,..., and m =0, 1,..., let b,m

q+2q/l and cr:.=w Since forb(Pm,1, ", Pro,q). Choose s* and s** so that b. wl
i-2, 3,..-, w is the monomial in U with the smallest order of all monomials in U
with degree i, bo, , bs._ is an enumeration of all monomials in U with degree less
than or equal to q, whereas b.,..., b**_l is an enumeration of all monomials in U
with degree q + 1.

8. Properties of 41,m. We now state and prove essential properties of the poly-
nomial discussed previously.

THEOREM 5. There exist constants d,t such that
(1) For s =0, 1,... and rn =0," , tr-1,

(2) For s 0, 1,-.., {t: ds, ys 0} is finite.
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(3) If s < and the order of chs is greater than the order of ct, then ds, O.
(4) If s and the order ofb equals the order of cht, then ds, >- O.
(5) IfdsWil, i=2,3,..., then 0d,l.
(6) If dp. # w’1, 2, 3,’’’, then there exists a such that s < t, the order of

equals the order of c,, and d,, > O.
Proof We choose d,, in a natural way. Replace each P,.+l,i in b,,.+l by the right

side of the recurrence in Theorem 3 (1) to yield the following expression:

(7) OZi,jPm, + L i,j,kPm,jPm,k
i=1 j=l lNj,k<--q

j<=k

where pi is the exponent of wi in 4)s. Now multiply and simplify the expression in (7)
according to the rules of polynomial multiplication and addition, multiplying and
adding the Pm, as if they were indeterminates. Then d,t will be the coefficient of b.m
in the resulting expression. Theorem 5 (2) follows since the expression in (7) is formed
by multiplying together a finite number of finite terms. Each d,t will be the sum of
terms of the form

q

(8) 1-I 1-I
i=1 p=l

where sci,p results from replacing a Pm+l,i in t)s,m+ by one of the terms on the right-hand
side of the recurrence in Theorem 3 (1), and thus

:,,p {a,,j 1 <--j <-- q} U {fli,j,k 1 <=j, k <-_ q,j <- k}.

Since a, # 0 only if i<-j and 13i,,k : 0 only if j + k-> i, (8) will be nonzero only if i,
results from replacing Pm+l, by either a,p.,,, where i-<_L or fl,j,kP.,,aPm,k, where
j + k_-> i, and thus (8) will be nonzero only if both of the following conditions hold:

degree of b, _-> degree of b,,
order of 4, -> order of 4.

Theorem 5 (3) follows. Furthermore, the only time that (8) will be nonzero when the
degree of ths equals the degree of 4 and the order of b equals the order of th is
when s t. Thus ds, will be nonzero only if s-<_ t, and 5 (1) follows.

If s < and the order of th, equals the order of the, then for all nonzero terms of
the form (8) that contribute to d,, i,p must be either ci,i, or/3,g,k, where j + k i. Since
for any of these choices i,p--> 0, Theorem 5 (4) follows.

When s there is only one term of the form (8) that contributes to d,, and in
this term each sci,o equals Oli, i" thus

q

dss= l-I l,l
i=1

Since ogi, --21-i, Theorem 5 (5) follows.
If 4,s wl, i=2,3,..., then there exists an 1->2 such that pl>= 1. Choose so

that 4, is the monomial in U that results from replacing a Wl in 4 by W Wl_ Since
the degree of 4’ is greater than the degree of 4, s < t. Since the order of 4 equals
the order of 4, we know that all terms of the form (8) contributing to d,, are
nonnegative. Furthermore, for one of the terms of the form (8) contributing to ds, t, I,1
/3,,_1, and all other sci,p ai, i, and thus the expression in (8) is greater than zero, and
thus d,, > 0, proving Theorem 5 (6).

9. Derivation of modified recurrences. For ease in stating theorems, we will also
denote z,, by z,,,o. For 1 =< s _<-s*, we now define z,,. and derive a recurrence for
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such that the coefficients of b0,’’’, (s--1 have coefficients equal to zero and all
monomials of degree less than or equal to q also have coefficients equal to zero.

THEOREM 6. For s =0,’.., s*, there exists a polynomial Ps, constants cs, t, s,
s+ 1,. ., and Zm,, m =0," ", er such that

(1) P has no nonzero constant or linear terms and

(2) Z.,,=Z.,+P.(pm,, ",p,.,),

Zm+l,s Zm, -- 2 Cs, t/)t,

(3) { c,,, # 0} is finite.
(4) If s <-_ and the order of oh, is less than or equal to q then c,,, O.
(5) For s 1, , s*, either Cs-l,,-1 0 and c,,, c-1,, or c,-1,s-1 # 0 and

Cs-l,s-lds-l,t
Cs, Cs_l, -1

t-

1 d_l.,-1

Proof. We prove the theorem by induction on s. The proof for s 0 follows from
Theorem 4.

So now suppose that Theorem 6 (1)-(5) is true for s. We prove that Theorem 6
(1)-(5) is true for s+ 1.

If c,., 0, then let P,+I Ps, let c+., G,t, and let Zm.,+l Z.,. Then Theorem 6
(1)-(5) follows immediately.

If c,,, # 0, then we first observe that by Theorem 6 (4) (using the inductive
hypothesis) that the order of ’bs is greater than or equal to q+ 1; therefore, b, # Wl,

i=2,..., q, and thus by Theorem 5 (5), 0<d,,, < 1. Now let

(9)

CsP+= P+
1 d,,s

Zm,s+l--Zm+Ps+l(Pm,l," ",pro,q),

Cs+ l,t Cs --.Theorem 6 (1) and (5) now follow.
Theorem 6 (2) follows since

CS
Zm+l,s+l Zm+l,s -J- s,m+l

1-d,

=z+ Z c,,,,,+ Z

t=s+l 1-ds,,

Cs=z+ 6,+ E c+1,,6t,
1-C, ,:+1

=z,++ E c+
t=s+l

which proves Theorem 6 (2).
We know by the inductive hypothesis that { Cs, 0} is finite. Theorem 6 (3) now

follows from (9) and Theorem 5 (2).
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To prove Theorem 6 (4) suppose that t-> s + 1 and the order of b, is less than or
equal to q. We have previously observed that our assumption that cs, 0 implies that
the order of b is greater than or equal to q + 1. Then by Theorem 5 (3), ds,, 0. Since
by the inductive hypothesis, c,, =0, it follows from (9) that Cs+l, --Cs, --0. [-]

q+lWe now prove that the coefficient of w in the recurrence for Zm,* is negative
THEOREM 7. Cs*,s* < O.
Proof We first prove by induction that for s 0,..-, s*, the following hold.
(a) If the order of b, equals q + 1, then cs,, _-<0.

(b) There exists a such that the order of b, equals q + 1 and Cs,, < O.
For s =0, (a) and (b) follow from Theorem 4. So now suppose that (a) and (b)

are true for s; we prove that they are true for s + 1. If c, 0, then (a) and (b) follow
immediately by the inductive hypothesis and Theorem 6 (5). If c, 0, then by Theorem
6 (5),

(10) Cs+I, Cs, -[-.
1-d,

Since c, 0 it follows from Theorem 6 (4) that the order of b is greater than or equal
to q + 1. Thus bs # wl, 2, 3, , and, therefore, it follows from Theorem 5 (5) that
0< d, < 1.

To prove (a) we consider two cases.
Case 1. The order of b is greater than or equal to q+2. By the inductive

hypothesis, c,t-<_0. It follows from Theorem 5 (3) that d,, =0. It now follows from
(10) that c+,, _-< 0.

Case 2. The order of b q + 1 By the inductive hypothesis we know that c.... c,,
0. By Theorem 5 (4), d,,>0. It follows from (10) that c+,,=

To prove (b), we first observe that by the inductive hypothesis there exists a t*
such that the order of bt. equals q + 1 and Cs,. < 0. We consider two cases.

Case 1. t* s. The proof is similar to the proof of (a).
Case 2. t*= s. Since we have previously observed that b w, i= 2, 3,. ., it

follows by Theorem 5 (6) that there exists a such that > s, the order of b, =q + 1
and d,, > 0. Now we know by (a) (using the inductive hypothesis) that c,, <_-0. We
have previously assumed that c, 0, and since the order of ,. equals q + 1, c,s < 0
by (a) (using the inductive hypothesis). We have previously observed that 0 < d, < 1.
It follows from (10) that c/1,, < 0.

Since if s* < the order of b, is greater than or equal to q + 2, it follows from (b)
that Cs.,. < O. [3

For s*/ 1 _-< s _-< s** we now define z,, and derive a recurrence for z,, such that
monomials of degree less than or equal to q have coefficients equal to zero and the
coefficients of bs*,’’’, bs_ are negative.

THEOREM 8. For s s*+ 1,’’ ", s**, there exists a polynomial P, constants c,,
s, s + 1,. , z,.,, m 0,. , o-, and for s s*,. , s**- 1 there exist constants h

such that
(1) P has no nonzero constant or linear terms, and

Zm,=Z.+P(pm,," ,p.,q).
(2)

s--1

am+,,s Zm, + Z htPt, -k 2 Cs, tt,m.
t:s*

(3) { t" c,t # 0} is finite
(4) h, < 0.



816 RICHARD KOCH

Proof. We prove the theorem by induction on s. The proof for s s* + 1 follows
from Theorems 6 and 7.

So now suppose that Theorem 8 (1)-(4) is true for s. We prove that Theorem 8
(1)-(4) is true for s + 1.

Since for s* < s < s**, bs has degree q + 1 and bs Wlq/l, it follows by Theorem
5 (5) that 0 < ds, < 1. Now let

(11)

l+cssPs+I=P+

Zm,s+l--zmq-Ps+l(Pm,1, ,Pm,q),

(c, + 1)d,
Cs+ l,t Cs, -]-

hs+l 1.

Theorem 8 (1) and (4) now follow.
Theorem 8 (2) follows since

1 +css
Zm+l,s+ Zm+l,s "]- /)s,m+

s--1 l + cs
Z -It- E h f]b t, "- E Cs, (/) t, -- E ds, (jt,

t=s

(Zm, -i- htt, -[- Cs, -]- (i / t=s+lE
s--1 (l+GsZrn q- E htf/)t,m q- -1 6s,m-Jl Cs+l,t6t,

t=s+l

---Zm,s+ _d dPs,m+ htqbt,m+ E
t=s* t=s+l

Cs+ l,tfDt,

(l+Css)dst
i Z-s--s /

(]t,m

Zm, + -Jl- h c/a ,, -{- E C + 1, bt,
t=s* t=s+l

which proves Theorem 8 (2).
We know by the inductive hypothesis that { G,t 0} is finite. Theorem 6 (3) now

follows from (11) and Theorem 5 (2). E]

10. Proof that z oo. In order to invoke Theorem 2 it is now necessary to prove
that Zm- 0 as m c. We will prove this by assuming that Zm is bounded below by
some positive number, and then by showing that there will be on average enough
packets discarded to force Zm below the assumed lower bound.

THEOREM 9. limm__, Zm 0.

Proofi Since messages are never created when using the routing scheme it follows
that Sm/l <- Sm, and thus E(S+I) <- E(Sm). Since E(Sm) Nzm, Zm+l <- Z. Since Zm => 0,
there exists an L_-> 0 such that limm_ Zm L. Suppose L> 0. Then for all e > 0 there
exists M such that for rn _>-M, L-< Zm < L+ e. Choose positive integers r/ and r such
that r/_-> (q + 1)/L and r/= 2L

We now show how to partition the switching nodes of the butterfly of size N in
levels M + 1 through M+ z so that the subgraph induced by each set of nodes in the
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partition is isomorphic to the subgraph induced by the set of switching nodes of a
butterfly of size .1. For k O, , N/,1 1, let b_. ba be the binary representation
of k, and let Fg be the set of all integers with binary representation

b_" bM+lb’ bbM"" bl
where for i= 1,..., r-l, bi6{O, 1}. Let

Bk={(l,m): lFk, m=M+l,. M+r}.

Then the subgraph of the butterfly graph of size N induced by Bk is isomorphic to
the subgraph of the butterfly graph of size .1 induced by its switching nodes. Let B
be the set of edges in EM that are incident to vertices in Bk, and let B be the set of
edges in EM+ that are incident, to vertices in Bk. Then {B} is a partition of Em and
{B} is a partition of EM+-. Let

Since

T= Y Xe, T*= Z Xe.
eB eB

it follows that Pr{Tk>--_q+l}=h>O. Let Q be {k: Tk>=q+l}. Since
and 0 <- k <-_ N/*1 1, there exists K,/x, such that

Pr {]QI -->/xS} _-> K.

Let A be the event IQI> and let/ be the complement of A. Now if Tk >--q + 1,
there exists " > 0 such that the probability that q + 1 of the packets that traverse some
edge in B, will attempt to traverse the same edge in the next z steps is greater than
or equal to ’, and thus

E(T*) E(E( T* Tg)) <- E( Tg ).

Then

and thus

kQ k:Q

kQ kQ

E T]A -E E
k=0 kQ

E(S+,) E(S+.IA Pr {A}+ E(S+,IX Pr {/}
_-< E(S[A) Pr {A} sr/zN Pr {A} + E(Su X) Pr {/}
E(SM)- Pr {A}iN

<= E S, ,CN.

If e =< rtz, then

contradicting z,, >_- L for rn >_- M.
ZM+ <= ZM tx < L+ e e L,
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11. Conclusion of the proof of the principal theorem.
THEOREM 10. For constant q -- 2,

Zm,s**--(p-q+O(m))-1/q.

Proof Since lim,_oo z. 0, it follows that for i_-> 1, lim.,_ P.,,i- 0, and thus we
can conclude that limm_oo Zm,s**- 0. NOW by Theorem 8,

s**--I

Zm+l,s** Zm,s** 47 E htd)t,m + Z Cs**,tft,m,
t=s* t=s**

where only a finite number of the summands of the last sum on the right-hand side
of the last equation are nonzero and where for t--s*, s**-1, h < O. For t-

s*, , s** 1, the degree of $ equals q + 1, and for s**, s** + 1, , the degree
of St is greater than q+2. Since z.,s** (R)(max {Pm,i’i 1," , q}) and 4s*, ", ()s**-m
is an enumeration of all monomials of degree q / 1, it follows that

Zm+ l,s** Zm,s** _JZ m,s** }.

By Theorem 2 it follows that Zm,s**=(p-q +O(m))-1/q.
2Proof of Theorem 1 when p o((log N)-l/q). Since z,. z.,** + O(Zm.**), it

follows that

z,, (p-q +O(m))-/" + O((p- + m)-2/)
=p(1 +O(pqm))-1/q + O(p2)
=p(1 + O(pqm))+ O(p2)
=p(l+O(pqm+p)).

The theorem follows since S Nz,.
We now assume that p fl((log N)-/q), so that

Zm--’Zm,s**/O( =(R)(m ).Z2m,s**) -X/q

THEOREM 11. For i= 1,. ", q, P.,i =(R)(m-i/q).
Proof. We prove by induction on m that for _-> 1,

q

(12) Pm+l,i-- E E Oli, ai,jPs, / E E Ogi, fli, j, kPs,jPs, k.
j=i+l s=0 j--k,j+ki s=0

lj,kq

We simply assume that (12) is true for m, and then to prove it true for m + 1 we express
P+a.1 as a linear combination of p+l,’s and P,.+I,P,.+I,k’S using the appropriate
recurrence in Theorem 3 (1); replace the p+, in this expression by the right-hand
side of (12), and collect similar terms.

We will prove by induction on the following assertion:

(13)
Pm,i=O(m-i/q), i=1,...,l,

P,,,,i O(m-l/q), i= l+ 1," ", q.

To prove (13) for 1, we first observe that since

q

z,,= Z iP,i=O(m-1/q),
i=0

it follows that P,,i O(m-/q), i= 1,. ., q. Then by Theorem 3 (1),
q

p,,+, Y. a,p,,,, + O(m-2/q).
j=l



INCREASING THE SIZE OF A NETWORK 819

Since

q

Z ipm, e(m-’/’),
i=1

it follows that max {Pm,i" i= 1,"" ", q}=O(m-1/q), and since al,j>O,j 1,..., q, it
follows that

q

Z al,jPm,j--l)(m-1/q),
j=l

and thus Pro,1 =O(m-1/q)
Now assume that (13) is true for/. We now prove (13) for 1+ 1.
We prove by backwards induction on that pm, O(m-(l+)/q), i--l-Jr 1,-" ", q.

Since Pm,Pm,, O(m-(+l)/q) for j, k such thatj + k >- q by (13), it follows from Lemma
2 that

Z oqm,Sflq,j,kPs,jPs,k= O(m-(l+’)/q)
S-=--0

It follows from (12) that Pm,q O(m-l+l)/ q). Now suppose that

(14) pro, i, O(m-(t+l)/q), i’= i+ 1,’’’, q.

By (13), P,,,,Pm., O(m-(l+)/q) for j, k such that j+ k => i, and thus by Lemma 2,

Y ozi, i,j,,Ps,jPs,, O(m-t+)/q).
s=0

It follows from (14) and Lemma 2 that for j>=i+ 1,

=O(m-t+l)/q),O i,i Cei, jPs,
s=0

and thus by (12), pm, O(m--(t+l)/q).
Now to prove that Pm,l+l -)(m-(t+)/q), we first observe that for i_-> + 2, a+l, > 0

by Theorem 3, and Pm, O(m-(t+l)/q) by what we have just proved. Ifj + k => + 2, then
p,,,,-p,,,,, O(m-(t+2)/q) by (13) and (14). Ifj+ k l+ 1, then/3+,,k > 0 by Theorem
3, and Pm,Pm,, =1)(m-(l+)/q) by (13) (using the inductive hypothesis). It follows by
Lemma 2 and (12) that pm,t+=O(m-t+)/q), l-’1

i+1THEOREM 12. If q>--2, then for i= 1,..., q, Pm,i=Zmi!+O(Zm ).
Proof We prove the theorem by induction on i. To prove 1 we note that since

Pm,i---O(m-i/q), it follows from
q

Zm= E ipm,
i=1

2that Pm, Zm + O(Zm). We also observe that it follows from Theorem 4 that Zm+
z. + O(Zm).

Now suppose that forj 1, , i, p,,, z/j! + O(zl). It follows from Theorems
3 and 11 and the inductive hypothesis that

2-i-1--i jZ i+1
pm+,i+ =2 p,,++-= j!(i+ l-j)! Zm + r(m),

i+1where r(m) is O(z+)m Since Pm,+ is O(Pm,), there exists a such that

(1+) +
p,i+Nz

(i+l



820 RICHARD KOCH

Choose Ca and C2 so that
i+1 i+1 i+2 i+2 i+2 i+3

Z" Z"+I C1Zrn Zrn Zm+ ..,1Zm

Choose K so that
i+2 i+3 i+2r(m)+Cl(l+6)z" +2KC2zm <lz"

We prove by induction on rn that

(1+21-m6) i+1 _21-,.Z,. + 2K(1 )zi+2(15) Pm’i+l (i+1)!

Now (15) holds for m 1 by choice of 8. So now suppose that (15) holds for m. Then

2-i-1-i i+1
P,.+I,I+I 2 P,.,i+l + z + r(m)

j=j!(i+l-j)!

(1-2-’)-i zi+ + r( rn=2 P,.,i+l+ (i+l)!

<--2-
(1+21-,.8) i+1 1-,K -21-,. +

(i+l)! Zm +r(m)
(i+1)!

z,. +2 (1 )zi+2
(1 2-i) i+l

(1+2-,.8)
(i+1)!

z,. +K(1-2 + r(m)

(1 +2-,.8) i+1 -,.) i+2

(i+ 1)!
z,. +K(1-2 z

i+2 i+2 i+3+ hz,. -C(1 + 6)z,. -2C2Kz,.

(1 +2-,.8) i+l i+2 2-,. -2C2Kz,.
(i+ 1)!

z,. -CI(1 + 6)z,. +2K(1- )z’+2 /+3

(1 +2-,.8) i+1 2-,." i+2

(i+ 1)!
Z,.+I +2K(1 )Z,.+I.

We can similarly prove that there exists a K such that
i+1 21-m i+2p,.,i+l>(1-Z1-,.6)z,. -2K(1-

i+1 [-]It follows that P,.,,+I (1/i!)z,. + O(z2)
Proof of Theorem 1 when p =f(N(log N)-l/q). It follows from Theorems 4 and

12 that

q 2--q-1

Z,.+I Z,. Zq"+1 O(zq"+2)
=1 k!(q+ l-k)!

(1 2-0) q-bl q+2
=7__,. Z --O(z,. ).

(q+l)!

It follows from Theorem 2 that

2;,. N(p-q + Xqm + O(ml-(1/q))) -1/q,

where

q(1-2-q)
(q+l)!

The theorem follows by setting rn log N. [3



INCREASING THE SIZE OF A NETWORK 821

We now consider additional modifications of the butterfly network.
We first consider the d-ary butterfly network. If N, tr are positive integers such

that N d, then the definition of a d-ary network is similar to our previous definition
of the butterfly network. Source and output nodes are defined and labelled as before.
Switching nodes are labelled with ordered pairs of integers (l, m) such that 0_-< 1-<_

(N-1)/d and 1-< m =< tr. Let d_l""" dl be the d-ary representation of I. Then, for
a switching node (l, m) with m < tr and for 0,. , d- 1, let li be the integer with
d-ary representation d_.., dm+lid,,,-l’" dl. Then there is an edge between (l, m)
and (li, m + 1). For switching nodes with rn 1 there are edges connecting (l, m) to
input nodes with d-ary representation d_l di for 0, , d 1, and for switch-
ing nodes with m tr there are edges connecting (l, m) to output nodes with binary
representation d_.., dli for i= 0,. , d- 1. A q-dilated d-ary butterfly network is
defined in the same way as before.

We now define the r-replication of a butterfly network. An r-replicated butterfly
network is defined by taking r copies of a butterfly network and identifying correspond-
ing input nodes and also by identifying corresponding output nodes. A replicated
butterfly network can also be q-dilated and d-ary. A packet to be routed from an input
node to an output node now has r paths it can take.

We analyze bandwidth using the same assumptions we made before; each input
node independently decides to send a packet with probability p to an output node,
with each output node having an equal probability of being chosen, and packets move
through the network in synchronized time steps. If the network is r-replicated, we
further assume that each packet to be routed independently chooses one of the r

possible paths, with each path having an equal probability of being chosen. We have
the following theorem.

THEOREM 13. For constant q and d, the expected bandwidth for the r-replicated,
q-dilated d-ary butterfly is

-1

when q 1 and is

Np(1 + O(pq log N +p))

when q >= 2 andp o((log N)-l/q), and when q >-_ 2 andp 12((log N)-/q), the expected
bandwidth is

-1/q

4- O(N(log N)-/q),

where

q(1-d -q)
(q+l)!

Proof The proof is similar to the proof of Theorem 1.
Theorem 13 states that when p- o((log N)-l/q), increasing the values of d or r

will not significantly increase the expected bandwidth since most packets are already
reaching their destinations. When p l)((log N)-l/q), increasing the values of d and
r will increase the expected bandwidth by a constant factor when measured as a

function of N.



822 RICHARD KOCH

We have discussed several modifications of butterfly networks: q-dilated butterfly
networks, d-ary butterfly networks, and r-replicated butterfly networks. These different
types of modifications can be combined. For example, a d-ary butterfly network can
also be r-replicated and q-dilated. Decisions about which values of q, r, and d to use
when building actual machines will be based on comparisons of cost and performance.
When building a machine of a fixed cost trade-offs will have to be made about what
values of q, d, and r to use.

Increasing the value of q will increase the amount of wire needed and will also
require larger, more expensive switches. Increasing the size of r will require more wire
and more switches but the switch size will remain the same. Increasing the value of d
will use the same number of wires but will require larger switches.

Our results show that when analyzed using our probabilistic assumptions, that
for sufficiently large networks of fixed cost increasing q will result in the greatest
increase in bandwidth. Since we know that increasing the values of r and q will only
change bandwidth by a constant, whereas increasing q will increase bandwidth by an
increasing factor of N and that increasing q, d, and r only changes the cost of networks
by a constant, we can conclude that for sufficiently large networks increasing q to the
greatest value permitted by cost constraints will result in the greatest bandwidth.

12. Concentration of bandwidth about its mean. We now will show that the proba-
bility distribution of the bandwidth is tightly concentrated about its expectation. We
will need the following theorem of Shamir and Spencer [11].

THEOREM 14. Suppose that Zo, , Zn are random variables defined on a common
sample space such that Zo is a constant function, for tn 0,..., n, E (Zo)- E (Z,,) and
for m =0,. , n- 1, [Zm+l-Zm[ 1. Then

Pr {[Z E(Z)I- A} <2 e-/.

THEOREM 15. For dilated, replicated, and d-ary butterfly networks

Pr {IS E(S)I >- A} < 2 e-2/2N.

Proof. When the routing strategy was described, there was some ambiguity about
how to decide which packets to discard. We now give a rule to decide which message
to discard. We discard the packets that have the lowest values for the label of the input
nodes at which they originated. The distribution of S is independent of the rule used
to decide which messages to destroy, but this choice for the rule makes it easier to
prove that the distribution of S is sharply concentrated about its mean.

Let Z0 E(S). For m 1,..., N, let W,, be the random variable that is equal
to one when a message sent from input node m-1 is able to successfully reach its
destination, and is equal to zero otherwise. For m- 1,..., N, let

Z E(Scr WI,’’’ Win)

i.e., the conditional expectation of the bandwidth when it is known which packets sent
from input nodes 0,..., m-1 successfully reach their destinations, and ZN is the
bandwidth S. Then

E(Z) E(E(SI W,, Win))

E(S)

E(Zo).

Then for m 0,..., N-1, whether a message sent from 1, where 1 m, reaches its
destination is not affected by whether a message sent from 1", where 1" m, reaches
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its destination. Thus Zm+l- Zm is determined by whether or not a message sent from
m reaches its destination, and, therefore, IZ,,,/I- Zml =< 1. The theorem now follows
from Theorem 14. [3
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REPRESENTABILITY OF DESIGN OBJECTS BY
ANCESTOR-CONTROLLED HIERARCHICAL SPECIFICATIONS*

LIN YU AND DANIEL J. ROSENKRANTZ’

Abstract. A simple model, called a VDAG, is proposed for succinctly representing hierarchically
specified design data in CAD database systems where there are to be alternate expansions of hierarchical
modules. The model uses an ancestor-based expansion scheme to control which instances of submodules
are to be placed within each instance of a given module. The approach is aimed at reducing storage space
in engineering design database systems and providing a means for designers to specify alternate expansions
of a module.

The expressive power of the VDAG model is investigated, and the set of design forests that are
VDAG-generable is characterized. It is shown that there are designs whose representation via VDAGs is
exponentially more succinct than is possible when expansion is uncontrolled. The problem of determining
whether a given design forest is VDAG-generable is shown to be NP-complete, even when the height of
the forest is bounded. However, it is shown that determining whether a given forest is VDAG-generable
and producing such a VDAG if it exists, can be partitioned into a number of simpler subproblems, each of
which may not be too computationally difficult in practice. Furthermore, for forests in a special natural
class that has broad applicability, a polynomial time algorithm is provided that determines whether a given
forest is VDAG-generable, and produces such a VDAG if it exists. However, the paper shows that it is
NP-hard to produce a minimum-sized such VDAG for forests in this special class, even when the height
of the forest is bounded.

Key words, hierarchical modules, databases, design objects, versions, module alternatives, conditional
expansion, configuration control

AMS(MOS) subject classifications. 68P15, 68Q25, 68R05

1. Introduction. We investigate a model of hierarchically represented design
objects, which accommodates design versions and alternatives by permitting the
inclusion of a submodule within a larger module to be conditional on the identity of
the ancestors of the larger module. This concept of ancestor-controlled expansion of
hierarchical modules is formalized by a simple model called a VDAG. The expressibility
of the VDAG model is explored, and the design objects that are directly representable
via the VDAG model are characterized. Several computational problems dealing with
the representability of objects via this model are considered. The computational
complexity of these problems is studied, and several appropriate algorithms are
developed.

In many design applications, designs are both specified and represented hierarchi-
cally, where each design object can contain instances of lower level objects within it.
This use of hierarchy expedites the design process, and permits very large design
objects to be represented relatively succinctly. The issue of storing designs is compli-
cated by the need for version control [2], [3], [8], [10], [13], [15], [18] and design
alternatives 1 ], 11 ], 17]. Version control has to deal with multiple versions of a given
design object, with the possibility that these versions differ only slightly. Design
alternatives involve multiple designs, with the possibility that a given higher level

* Received by the editors July 10, 1989; accepted for publication (in revised form) August 26, 1991.
This research was supported in part by the National Science Foundation under grants DCR86-03184 and
CCR88-03278. A preliminary extended abstract of this paper appeared in Proceedings of the Ninth Annual
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systbms, April 1990, Nashville,
Tennessee.

t Department of Computer Science, State University of New York at Albany, Albany, New York 12222.
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object contains somewhere within it more than one alternative design for instances of
a given lower level object. For a recent survey of version control issues, see [9].

In existing version control systems for software engineering and document gener-
ation systems, the differences between two versions are usually described on a line
basis 13], 15]. The differences between two given files can be computed by algorithms
such as those in [6], [7] and the utility program diff in Unix system [16]. With this
approach, version differences that are kept track of are line differences. Sometimes, the
differences being kept track of are database units, such as record differences [14]. In
[3], a technique is proposed for storing different versions of a text file, based on a
model in which each version can be envisioned as an AVL tree, each of whose vertices
represents a line of text. The set of trees may share common subtrees, and a data
structure is proposed that keeps only one copy of certain common subtrees. From an
abstract perspective, the method used in [3] is a particular technique for storing a
forest of trees compactly, by storing only one copy of common subtrees. This raises
the general issue of how to produce a compact representation of a given forest. For
this problem, the kind of ancestor-based control of tree expansion considered here
can lead to more compact representations.

In this paper, we consider hierarchically specified design objects, and focus on
module differences in that the basic granularity of differences that are kept track of are
instances of submodules within a higher level module. Using module differences to
support design alternatives has emerged as an issue in CAD systems. Several schemes
have been incorporated in [17]. For instance, one scheme allows a module to have
alternate bodies that share a common interface, and a configuration of a module can
be created by specifying which alternative body to use for submodules within that
module. A configuration can have a different expansion specification for each instance
of the same module type within it. Another mechanism provided in 17] is conditional
expansions, which can be based on the values of generic parameters. Conditional
expansion involves a test to determine whether given submodule instances should be
placed within a given module body. The generic parameters, which are typically
involved in such tests, are passed in a top-down manner to a given module, and so
represent control passed to the module from its ancestors in the hierarchy. A model
is proposed in 1 whereby a module can have alternate implementations (correspond-
ing to bodies in VHDL), which share a common interface. Abody can have instantiations
of submodules, and can be parameterized by a specification of which body to use for
specified occurrences of submodules. However, the model in 1] does not provide any
explicit mechanism to control expansion. Furthermore, in the model of [1] certain
kinds of alternatives are not supported conveniently, in the sense that they require the
creation of separate implementations, even though they may differ only slightly. For
example, suppose we want module A to contain certain submodules when it is used
as a submodule of B and to contain some other submodules when it is used as a
submodule of C. In this case, the model in 1] would require two distinct implementa-
tions for module A.

In this paper, a hierarchically specified set of modules is a collection of modules,
each of which can have a body. A module body contains instances of lower level
modules, where some of these instances might only be conditionally included in the
body. A given hierarchically specified design module can be envisioned as a design tree.
For example, suppose that within the body of design module Z there are three
submodules, where two are instances of X and the other is an instance of Y; within
the body of each module X there are submodules U and V; within the body of each
module Y there are two submodules that are instances of W; and the body of each
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W contains two submodules that are instances of T. Figure 1.1 shows module Z at
different levels of abstraction, and the tree representation of module Z is shown in
Fig. 1.2. Note that module Z includes the vertex Z and all of its descendants in the
tree. In the tree, for each arc a (u, v), there is a function st(a) (where "st" standards
for stamp) that provides information about the occurrence of v as a submodule within u.

In the tree of Fig. 1.2, there are two copies of X, U, V, and W, respectively, and
four copies of T. If the tree were to be stored directly, there would be a copy of the
design data for each instance of a module within Z; e.g., there would be four copies
of T. However, in CAD systems, a more succinct representation is usually used for
hierarchically specified designs; namely, a directed acyclic multigraph (dag). The dag
representation for module Z is shown in Fig. 1.3. Thus, a hierarchically specified set

/

FIG. 1.1

FIG. 1.2
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FIG. 1.3 FIG. 1.4

of modules can be represented as a multigraph, where each vertex represents a module.
If the body of module Z contains an instance of module X, we say "X is a direct
submodule of Z." Corresponding to this instance of X within the body of Z, the dag
contains an arc from the vertex representing Z to the vertex representing X. If there
is a directed path from Z to X, we say "X is a submodule of Z."

In this dag representation, only one copy of the design data for each module is
kept, regardless of the number of the instances of the module involved in the design.
The dag representation uses an appropriate stamp to keep track of information about
instances of submodules within other modules, such as the two instances of T within
W. Since the dag representation reduces duplication of design module descriptions, it
is more space efficient to store hierarchically specified design data this way. Also,
designers typically use a hierarchical approach to design their modules, so the dag
would typically capture the design in the form specified by the designer.

An issue in the formulation of the dag model is that sometimes designers want
to have alternative designs for a given module, and sometimes want to use different
designs for different instances of a given submodule within a higher level module. We
consider the following problem: how to succinctly represent hierarchically specified
design module data that supports design alternatives and version control. To illustrate
this problem, consider the example shown in Fig. 1.4, where the three multigraphs
represent three different versions of a design module H.

The conventional dag representation, as depicted in Fig. 1.3, involves no control
over expansion. In the forest represented by such a dag, all the subtrees corresponding
to a given vertex of the dag are identical; therefore, expansion control is needed to
represent versions and alternatives. The emphasis of this work is on the foundation
of mechanisms for controlling expansions. We focus on using the identity of ancestors
to control expansion.

Since we do not want to keep multiple copies of the same module for different
versions, we can use the following scheme, as illustrated in Fig. 1.5, to store versioned
hierarchically specified design module data. Under this scheme, we create one source
vertex for each design version of module H (note that these newly added source
vertices are "dummies" that do not contain actual design data), and we place labels
on each arc to indicate to which version or versions the arc belongs. Since the amount
of storage for the labels would generally be relatively small compared with the amount
of storage saved from eliminating duplicated copies of submodules, this representation
is more succinct than a method that keeps all of the design data for each version in
separate files. If the number of versions is large and the differences between versions
are relatively small, the storage savings can be quite significant.
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FIG. 1.5 FIG. 1.6

Of course, since we are concerned with succinctness of the design representation,
we would like to represent the labels succinctly. For example, in Fig. 1.5, we might
use (M) as the label for the arc from M to O, instead of { V1, V2), since every instance
of M in the forest of Fig. 1.4 contains an instance of O. Thus it is appealing to consider
a more general scheme in which the elements of a label for an arc from u to v are
either u or some ancestors of u in the dag. The example in Fig. 1.6 illustrates how the
generalized scheme can be used to represent the three designs of Fig. 1.4.

The VDAG model is a formalization of the technique used in Figs. 1.5 and 1.6,
which blends in concerns over version control, design alternatives, and hierarchy by
representing hierarchical specifications through alternate expansions of hierarchical
modules ("VDAG" stands for versioned dag). The VDAG model features an ancestor-
based expansion scheme to control which instances of submodules are to be placed
within each instance of a given module. The approach is aimed at reducing storage
space in engineering design database systems and providing a capability for designers
to specify alternate expansions of a module. The VDAG model is not restricted to any
specific design applications, such as VLSI design or civil engineering design.

In this formalization, each module is represented by a VDAG vertex having a
unique tag. Each possible use of one module is a direct instance within a larger module
is represented as a VDAG arc. The arc is labeled with a specification as to when the
potential instance should indeed be a real instance within the larger module. This
specification is ancestor-based. It can say that the instance should always be included
within the larger module, or it can say that the instance should be included only if
some member of a given list of modules is an ancestor of the larger module.

Not every design forest can be generated by a VDAG. The issue of which design
forests can be represented by VDAGs is explored here. A forest that cannot be generated
by a VDAG would have to be modified in order to be VDAG-generable. Such a
modification would take the form of changing the identity of some of the vertices in
the forest so that they can be represented by distinct vertices in the VDAG. However,
a conventional model of hierarchical designs, where all expansions are unconditional,
would require more duplication than the VDAG model requires. A typical conventional
CAD system might have a file for each module, perhaps with the file name the same
as the module name. If a variant of a given module is needed, the file is copied,
modified appropriately, and the variant module is renamed. Instances of the given
module (within larger modules) that are to use the new variant are modified to use
the new module name.
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In [19] we introduced the VDAG model, provided some algorithms to process
VDAGs, and investigated some combinatorial problems involved in processing a given
VDAG.

The remaining sections are organized as follows. In 2, we present some basic
definitions and concepts. In 3, we investigate the expressive power of the VDAG
model. The complexity of determining whether a design forest can be generated by a
VDAG is examined in 4. An important natural class of design forests is identified in

5, and a polynomial time algorithm is provided to build a VDAG, when one exists,
for a given design forest in that class. In 6, we address the search space issue in
construction of arc labels. In 7, non-VDAG-generable forests are dealt with. The
relative conciseness of the VDAG model in comparison with the conventional dag
model is examined in 8. Simplification problems are considered in 9.

2. Basic definitions and concepts.
DEFINITION. In a dag G(V, A), where V is a set of vertices and A a set of arcs,

a vertex u is an ancestor of a vertex v if u is v or there is a directed path from u to
vinG.

DEFINITION. A design tree is a triple (T, t, st) where T is a tree, is a function
that assigns each vertex v of T a value t(v) called the tag of v, and st is a function
that assigns each arc a of T a value st(a) called the stamp of a.

In a design tree, each vertex v represents a module. The tag t(v) on a vertex v
contains the design data for the module represented by that vertex. We assume that a

portion of a tag serves as a module identifier. The information in the tag may also
include an interface description describing how the module is connectable when used
as a direct submodule within a larger module. For example, the tag might contain a
formal parameter list, comparable to a list of input and output ports of a VLSI module.

An arc a from vertex u to vertex v represents an instance of module v as a
submodule occurring within module u. For arc a, the stamp st(a) is the information
specifying how the instance of v occurs inside u. For example, the stamp may specify
the location and/or orientation of the instance within u. The stamp might also contain
an actual parameter list; for instance, in the VLSI application st(a) might specify
which signal of u is connected to each port of the instance.

Note that a design tree is an unordered tree. If it is desired that the ordering of
children of a vertex should have some significance, this ordering information can be
incorporated in the stamps on the arcs going to the children. In that case, the arcs
existing from the same vertex will have distinct stamps.

DEFINITION. A design forest is a set of design trees such that each tag of a root
vertex contains an identifier occurring nowhere else in the forest.

The tag on the root of each tree serves to uniquely identify the tree as a design
module, or perhaps as a particular version or alternative of a design module.

In the future we often use "tree" and "forest" to mean design tree and design
forest, respectively.

DEFINITION. A VDAG is a four tuple (G, t, st, l), where G is a directed, acyclic
multigraph with vertex set V and arc set A; is a function mapping each vertex v to
a unique value denoted by t(v), (t for tag); st is a function mapping each arc a to a
value denoted by st(a), (st for stamp); and is a function mapping each arc a to a
nonempty subset of ancestors of the vertex exited by a, and is denoted by l(a) (1 for
label).

Since each VDAG vertex has a tag containing a unique identifier, we assume that
a label l(a) for an arc a is represented as a list oftag identifiers. (For convenience in
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presenting results and examples, we will often equate a tag with its tag identifier, but
in practice we anticipate that a vertex would contain an entire tag, and a label would
contain just tag identifiers.) The interpretation of element w in l(a), where arc a goes
from u to v, is that whenever an instance of module w has an instance of u as a
submodule, or a submodule of a submodule, etc., then each instance of u within the
instance of w should contain an instance of v within the instance of u. This concept
is formalized below in the definition of a "generating path."

Each vertex of the VDAG might have the format shown in Fig. 2.1, where vertex
v has k exiting arcs pointing to (not necessarily distinct) submodules vl,’", Vk. The
connection data contains stamps, labels, and pointers to submodules. The design data
contains the tag of v. Fig. 2.1 is only intended to be suggestive of how the design
information might be stored, and many variations are possible. For instance, there
might be a separate file for each VDAG vertex.

Example. Given a forest of two trees representing two versions of a design as
shown in Fig. 2.2(a), a possible VDAG representation is shown in Fig. 2.2(b). (In this
example, the arcs all have stamp 3.)

From the examples given above, we observe that if there is a path in the forest
that starts at a root vertex with tag A and ends at a vertex with tag B, then module A
contains an instance of B as a submodule. Each such path in the forest corresponds
to a VDAG path that starts at the vertex with tag A and ends at the vertex with tag
B, and has appropriate labels and stamps on its arcs. Similarly, for each properly
labeled path in the VDAG, there should be a corresponding path in the design forest.
However, care is needed in formalizing the concept of properly labeled paths. For
instance, in Fig. 2.2(a) A contains D but B does not, even though there may seem to
be a path from B to D in Fig. 2.2(b). To capture the concept of a properly labeled
VDAG path, which corresponds to the containment relationship, we formulate the
following definition. The idea behind this definition is that a given path can be extended

design data for vertex v
tag(v)

connection data connection data connection data
for arc al for arc a2: for arc ak
stamp a1), stamp (a2), stamp ak
label(a1), label a:) label ak

pointer to Vl pointer to v_ pointer to Vk

FIG. 2.1

(a) (b)

FIG. 2.2
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by a given arc exiting the path’s endpoint only if the path contains at least one vertex
that is an element of the given arc’s label.

DEFINITION. In a given VDAG (G, t, st, l), a valid path is either a single vertex
Vo, or is a sequence of arcs al, a2,’", ak in A, k>= 1, such that there exist vertices
Vo, Vl, , Vk for which for all i, 1 -< _-< k, arc ai connects Vi_l to v, and the intersection
of l(a) and {Vo, Vl,"" ", V-l} is nonempty. A generating path is a valid path whose
initial vertex is a source of G.

Note that, by the definition of a generating path, for each source vertex v in V,
there is a generating path from v to v, and if a sequence of arcs al, a2,..., ak is a
generating path, then so are each of its prefixes of the form a, a2,’’’, aj, where
1 _-<j < k. The significance of a generating path from Vo to Vk is that an instance of
module Vo contains an instance of Vk as a submodule because of that generating path.
In particular, v0 contains an instance of Vl, which in turn contains an instance of vz,
etc. The generating path corresponds to this sequence of nested module instances.

DEFINITION. Given a VDAG/3, the exploded forest generated by is a forest F
with a distinct vertex for each distinct generating path in /3. The tag on the vertex
corresponding to such a path is the same as the tag of the last vertex in the path. For
each source vertex v0 in /3, forest F contains a root vertex corresponding to the
generating path consisting of the single vertex Vo. For each generating path consisting
of a single arc a from a source vertex v0 to a vertex Vl, the tree vertex corresponding
to the generating path v0 is the parent of the tree vertex corresponding to the generating
path a. For each generating path al,. ", ak, having at least two arcs, the tree vertex
corresponding to the generating path al,... ak_ is the parent of the tree vertex
corresponding to al,. ", ak. There are no other vertices and arcs in F. The stamp on
the tree arc between a parent and a child is the same as the stamp of the last arc in
the generating path for the child. Given a VDAG/3, we will denote the exploded forest
generated by fl as F. We say that a design forest F is VDAG-generable if there exists
a VDAG/3 such that F F.

Given a VDAG/3, the exploded forest generated from the VDAG is a set of design
trees, with a tree root for each source vertex in/3. The relationship between a given
VDAG and this set of design trees constitutes the meaning of the VDAG; the purpose
of the VDAG is to represent the set of design trees that it generates.

Recalling Fig. 2.2, the exploded forest generated by the VDAG in Fig. 2.2(b) is
the forest shown in Fig. 2.2(a). Figure 2.3 is the exploded forest generated by the
VDAG in Fig. 1.6.

We now show that the problem of finding a VDAG that generates a given forest
is no harder than the problem of finding a VDAG that generates a given tree. Consider
an algorithm SUPERTREE, which given a forest F containing k trees with source tags
Sl, s,..., Sk, as shown in Fig. 2.4(a), returns a forest consisting of a single tree, as
follows. (1) Add a "super source" with a tag S not in F; (2) make Sl, s,. , Sk each
a child of S where the stamps on the arcs from S to its children are assigned arbitrary
unique values 81, t, , tk, as shown in Fig. 2.4(b).

PROPOSITION 2.1. A forest F is VDAG-generable if and only if SUPERTREE(F)
is VDAG-generable.

Proof. (if) Suppose that a VDAG a, as shown in Fig. 2.4(c), generates SUPER-
TREE(F). A VDAG/3 generating F can be constructed from a as follows. First vertex
S and its exiting arcs are deleted. Then each occurrence of S as a label element in a
remaining arc, say from vertex u to vertex v, is replaced by those members of the set
{Sl, s2,..., Sk} that are ancestors of u. (VDAG a and/3 are illustrated in Figs. 2.4(c)
and (d), respectively.) It is easy to see that/3 generates F.
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FIG. 2.3

(a) Forest F

(c) VDAG 0t generating SUPERTREE(F)

FIG. 2.4

(b) SUPERTREE(F)

(d) VDAG generating F

(only if) Suppose a VDAG/3, as shown in Fig. 2.4(d), generates F. Then SUPER-
TREE(F) is generated by the VDAG a shown in Fig. 2.4(c), which is obtained from
/3 by adding a new vertex of tag S and for each i, 1 =< -< k, one arc from S to si with
stamp 6i and label {S}. [3

From the proof of Proposition 2.1, we observe that the problem of finding a VDAG
that generates a given forest is not significantly harder for forests containing multiple
trees than for forests containing a single tree.

A VDAG arc, vertex, or label element that is uninvolved in any generating path
is useless in producing the exploded forest represented by the VDAG. The set of
VDAGs without such useless components can be formalized as follows.

DEFINITION. A VDAG is valid if each arc occurs on some generating path, and
if each element of each arc label occurs on some generating path that leads to the
vertex exited by the arc.
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LEMMA 2.2. Given an invalid VDAG a, there exists a valid VDAG that generates
the same forest as a does.

Proof. Let/3 be the VDAG obtained from a by deleting vertices and arcs that do
not occur on any generating paths, and deleting arc label elements that do not occur
on any generating path leading to the vertex exited by the arc. Then/3 is a valid VDAG
that generates the same forest as a. ]

3. Expressive power of the VDAG model. In 1, we pointed out that there are
certain forests that are not VDAG-generable. This is a consequence of the requirement
that each VDAG vertex has a unique tag, and that in generating the exploded forest
represented by a given VDAG, the expansion of a given vertex in the’forest can depend
only on the ancestors of that vertex.

For example, there are no YDAGs that generate the design forests in Fig. 3.1(a)
and Fig. 3.1(b), since each tree contains two instances of B that are indistinguishable
by the tags of their ancestors, but which are expanded differently. It is also the case
that the VDAG model cannot be used for forests that represent recursively defined
design modules. An example.of such a forest is shown in Fig. 3.1(c).

(a) (b)

FIG. 3.1

(c)

If a given design forest cannot be generated by a VDAG, the forest can be modified
by using new tag values for certain vertices. For instance, in each of the examples of
Fig. 3.1, one of the B vertices could have its tag changed to B’, and the modified
design forest would be YDAG-generable. The VDAG would have separate vertices
with tags B and B’, with replication of data in the tag.

We now investigate the conditions under which a design forest F can be generated
by a VDAG.

DEFINITION. Given a vertex u in a forest F, pathtag(u) is the set of all tags of
vertices on the path from a forest root to u (including the tag of u itself). For each
tag in F, anctag(t) is the union of pathtag(u) over all vertices having tag t.

Consider a forest F and a given tag t. Consider the set of paths starting at a root
and ending at a vertex with tag t. As shown in Fig. 3.2, let these paths be Pl, P2," ",

and Pk, having endpoints Ul, u2,. , uk, respectively. Suppose there is a ui, 1 <- <= k,
having m exiting arcs with stamp 6 that enter vertices with tag t’, m _-> 0, and there is
a uj, 1 <=j <-k,j i, having n exiting arcs with stamp 6 that enter vertices with tag t’,
where n > m. Then in each VDAG that generates F, if any, there must be at least n
arcs with stamp 8 going from to t’. Furthermore, of this set of arcs, there must be
n-m arcs having labels that are each disjoint from pathtag(ui) but not disjoint from
pathtag(uj). In other words, there must be n-m arcs whose label satisfies the
conditions that pathtag(ui) 3 and pathtag(uj) t . An obvious necessary condi-
tion for this is that pathtag(uj)-pathtag(u) is nonnull. However, the requirements on
the VDAG are more subtle.
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root

FIG. 3.2

DEFINITION. For a given forest F, tag t, tag t’, and stamp 3, if F contains at least
one arc with stamp going from a vertex with tag to a vertex with tag t’, we say that
(t, t’, ) is a relevant triple for F. We call a forest or VDAG arc that exits a vertex with
tag t, enters a vertex with tag t’, and has stamp 3, a (t, t’, )-arc.

It will turn out that whether or not a given forest is VDAG-generable involves a
certain combinatorial property for each relevant triple. First consider the following
definitions pertaining to relevant triples.

DEFINITION. Given a vertex u with tag t, a tag t’, and a stamp 6 in a forest F, let
hum(u, t’, 3) be the number of (t, t’, )-arcs exiting from u. Given a relevant triple
(t, t’, 3) for F, let maxnum(t, t’, 3) be the maximum number of (t, t’, )-arcs exiting
from a vertex with tag t, i.e.,

maxnum(t, t’, 3)= max {num(u, t’, 3)1 u has tag t},
and let totnum(t, t’, 3) be the total number of (t, t’, 6)-arcs, i.e.,

totnum( t, t’, tS )= num(u, t’, 5 ).
vertices with tag

To capture the labeling requirements imposed by F, we define the concept of a
"number function" for a relevant triple, as follows.

DEFINITION. Given a design forest F and a relevant triple (t, t’, ), a number
function Nt, t,,8 for F and (t, t’, 8) is a mapping from the nonempty subsets of anctag(t)
to the nonnegative integers, i.e.,

Nt,t.’: (2anctag(t)--() ’’> N,
such that for all vertex u in F with tag t,

num(u, t’, t)= ’. Nt,t,,,5()/).
3, such that

y pathtag( #f

The intuition behind a number function is that it specifies the number of arcs
having each label in a particular VDAG for F; i.e., Nt,t,,(y) is the number of
(t, t’, )-arcs labeled with y. One observation on N,,t,, is that it need not be unique.

We now define some properties that will characterize the VDAG-generable forests.
DEFINITION. A design forest F is tag-acyclic if merging vertices of F with the

same tag does not create cycles.
DEFINITION. A relevant triple for a design forest is labelable if a number function

exists for it. A design forest is labelable if all of its relevant triples are labelable.
DEFINITION. A design forest is well structured if it is tag-acyclic and labelable.
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It will be shown that a given forest is VDAG-generable if and only if it is well
structured.

LEMMA 3.1. Every well-structured design forest is VDAG-generable.
Proof. Consider a well-structured design forest F. Consider any directed multi-

graph with a vertex for each tag occurring in F, and a set of arcs satisfying the constraint
that there is an arc from the vertex with tag to the vertex with tag t’ only if F contains
an arc from a vertex with tag to a vertex with tag t’. Since F is tag-acyclic, any such
multigraph is acyclic.

Now consider the following directed acyclic multigraph a of the above form.
Multigraph a has a vertex for each tag occurring in F. For each relevant triple (t, t’,/5),
let Nt,c, be a number function; since F is labelable, such a number function exists.
Based on this number function, multigraph a is given a set of labeled (t, t’,/5)-arcs.
For each set y such that N,.,,,(y) is nonzero, the number of (t, t’,/5)-arcs with label
y in a is N,,,,.(y). Note that the elements of each such label y are ancestors of the
vertex for in a; therefore, the labeled directed acyclic multigraph a is a VDAG. The
constraints on Nt,,,, guarantee that the exploded forest generated by c is the original
design forest.

LEMMA 3.2. If a design forest is VDAG-generable, it is well structured.
Proof Consider a design forest F. Suppose F is generated by VDAG a. By Lemma

2.2, we may assume that a is valid.
Since a does not contain cycles and each arc of F corresponds to an arc of

whose endpoints have the same tags as the arc in F, F must be tag-acyclic.
The remaining task is to show that F is labelable. We claim that for each relevant

triple (t, t’,/5) for F, a number function Nt.,, exists. For a given tag t, let v, be the
vertex of a whose tag is t. Because a is valid, every label element x occurring in the
label of an arc exiting the VDAG vertex v, has the property that a has a generating
path p going from a source vertex to vertex v,, such that x occurs on p. Since forest
F is the exploded forest generated from a, F contains a vertex u corresponding to
path p. This vertex u has tag t, and has x as a member of pathtag(u). Consequently,
x is a member of anctag(t). Since this is true for each label element of each arc exiting
v,, the label of each arc exiting v, is a nonempty subset of anctag(t). Now, on the
basis of a, define a function N,c, from (2anctag(t)--) to N as follows. For each
nonempty subset y of anctag(t), define Nt,,,,(y) to be the number of (t, t’,/5)-arcs in
a with label 3/.

We now show that the specified function N,,,,, is indeed a number function for
F. Consider a vertex u of F having tag t. Since F is the exploded forest generated
from a, VDAG a has a generating path p corresponding to u, such that this generating
path ends at the vertex v, whose tag is t. Furthermore, each (t, t’,/5)-arc exiting vertex
u in F corresponds to an extension of path p to a longer generating path by the use
of a VDAG arc having stamp/5 that exits vt and enters the vertex vt, having tag t’, such
that the arc’s label 3/has a nonnull intersection with the vertices in path p. Since 3’ is
a subset of anctag(t), this arc contributes to the value of Nt,,,,(y). Thus num(u, t’,/5)
equals the number of (t, t’,/5)-arcs in a having a label whose intersection with the
vertices on path p is nonempty. Furthermore, each such arc has a label that is a subset
of anctag(t). Consequently,

Nt,t,,(’y)--num(u, t’,/5).
"y such that
pathtag f

Therefore, for each relevant triple (t, t’,/5), the specified function N,.,,. is indeed a
number function for F. Hence F is labelable.
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A consequence of Lemmas 3.1 and 3.2 is the following.
THEOREM 3.3. A designforest is VDAG-generable ifand only if it is well structured.

4. VDAG construction. We now consider the problem of determining if a given
design forest F is well structured. First consider tag-acyclicity. To test tag-acyclicity,
a given forest can be collapsed into a graph having single vertex for each tag in the
forest (thereby merging all forest vertices having the same tag), and having a single
arc for all the forest arcs whose endpoints have the same tag. This conversion is
described in algorithm COLLAPSE, shown in Fig. 4.1.

PROPOSITION 4.1. A forest F is tag-acyclic ifand only if COLLAPSE(F) is acyclic.
Proof. The proof is obvious, fi
An observation on the tag-acyclicity of a forest F is that it can be tested in linear

time. The graph COLLAPSE(F) can be constructed in linear time, and a topological
sorting on COLLAPSE(F) can be done in time linear in its size [12].

ALGORITHM COLLAPSE

Input: forest F T, t, st)
Output: a graph

1. for each distinct tag in F, create a vertex with tag and call the vertex t;

2. for each pair of tags (t, t’) such that in F, a vertex with tag is a parent of a vertex with tag t’, create

an edge from to t’ in the graph.

FIG. 4.1

If a given forest F is tag-acyclic, we can perform a labelable test on F to determine
whether it is well structured. Detecting the labelable condition, however, can be a
difficult computational task, as indicated by the following result. The problem of
determining if a forest is VDAG-generable is NP-complete; furthermore, the problem
is NP-complete even for forests of bounded height.

DEFINITION. The height of a forest F is the number of arcs on a longest path
from a source vertex to a leaf vertex. The depth of a vertex u in a forest is the number
of arcs on the path from a source vertex to u.

We observe that Proposition 2.1 implies that (1) if the VDAG-generability problem
for forests of height h is NP-hard, the VDAG-generability problem for trees of height
h + 1 is also NP-hard; and (2) if the VDAG-generability problem for trees of height
h is computationally easy, the VDAG-generability problem for forests of height h- 1
is also easy.

The following result concerns the size of a VDAG with respect to the size of a
forest it represents.

THEOREM 4.2. For a VDAG-generable forest F and a number function Nt, t,, for
F, it is the case that

Nt,c, (3’) <-- totnum t, t’, iS).
T (2anctag(t)-O)

Proof. Consider a number function Nt,c, for relevant triple (t, t’, 8). For each
vertex u with tag and at least one exiting (t, t’, i)-arc, it is the case that

Hum(u, t’, ) , Nt.t,.(3,).
3’ such that

3" pathtag( O
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Because of the above equality, it is possible to associate each of the forest arcs that
contribute to Hum(u, t’, 6) with a set y having a nonnull intersection with pathtag(u),
such that exactly Nt,t,,(7) of these arcs are associated with each set y. Since the
association can be done for each vertex u having tag t, each arc that contributes to
totnum(t, t’, 6) is associated with exactly one set 7.

Now consider a set 7 such that Nt,t,,(y) has a nonzero value, say k. Because 7
is a nonnull subset of anctag(t), F contains a vertex u with tag such that y c pathtag(u)
is nonnull. Consequently, there are k arcs exiting u that have been associated with 7.
Since this is true for each y, and the total number of arcs available for association is
only totnum(t, t’, 6), it is the case that

Nt,c, (y) <- totnum t, t’, 6 ).
3/E (2anctag(

THEOREM 4.3. For each h >-4, given a design tree F of height h that is tag-acyclic,
the problem of determining if F is VDAG-generable is NP-complete.

Proof. Theorem 3.3 implies that F has a VDAG representation if and only if a
labeling can be found. By Theorem 4.2, for each relevant triple (t, t’, 6), the number
of sets y such that Nt,t’,(y) is nonzero cannot exceed the number of vertices in F.
Thus a nondeterministic Turing machine can guess a labeling and verify in time
polynomial in the size of F that the labeling satisfies the constraints of the labelable
condition. Consequently, the set of well-structured forests is in NP.

The NP-hardness is by a reduction from the Graph 3-Coloring Problem (for
undirected graphs) [4].

Consider graph G(V, E), where V= {Vl, v2,"" ", v,}, which is to be 3-colored.
We construct a design tree F as follows. The root of F, denoted root, has tag r. For

2 2each vi in V, F contains four distinct tags, v i, v i, a, and a i. Also, for each v in V,
and a respectively, as shown in Fig. 4.2. Forroot has two subtrees, headed by V i,

previously placed in F has a subtree,each edge (v, v) in V, <j, the vertex with tag V
2headed by v, as shown in Fig. 4.3. F also contains three distinct tags b b2, and Q,

where root has two subtrees, headed by Q and bl, respectively, as shown in Fig. 4.4.
All arcs in F have stamp 6.

For instance, given the Graph 3-Coloring instance shown in Fig. 4.5, the construc-
ted forest F is shown in Fig. 4.6. A VDAG generating F is shown in Fig. 4.7.

Note that the size of F is linear in the size of the given graph, that F has height
4, and that F is tag-acyclic. Also, as illustrated in Fig. 4.7, we observe that all arcs,
except for (t, t’, 6)-arcs, can be labeled by {r}; so there is clearly a number function
for each relevant triple, with the possible exception of the triple (t, t’, 6).

FIG. 4.2 FIG. 4.3
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FIG. 4.4

el

FIG. 4.5

Suppose F can be generated by a VDAG. Consider VDAG arcs from to t’. Since
the forest paths r, b b2, and r, a 2

i, a i, t, for 1 <_- <- n, end in vertices with no children,
2the VDAG cannot contain any (t, t, 6)-arc whose label contains r, t, bl, b2, a, or a.

2 2 and v2For each i, 1 <- i_-< n, the paths r, a i, v i, and r, v i, a, require that v
each must appear in exactly one (t, t’, 6)-arc label, since each of the occurrences of
on the two paths has only one child whose tag is t’. Because the occurrence of in

and 2path r, v, v i, has exactly one child of tag t, tags v v must appear in the same
(t, t’, 6)-arc label.

Consider the path r, Q, b, t. Since this has 3 children whose tag is t’, the VDAG
must contain exactly three (t, t’, 6)-arcs whose labels contain Q. For each i, 1 _-<i_-< n,

2because of the path r, Q, v i, where this occurrence of has 3 children whose tag is
2t, the (t, t, 6)-arc in whose label v and v occur must be one of the three (t, t, 6)-arcs

whose label contains Q. All possible label elements have now been accounted for. The
VDAG must have exactly three (t, t’, 6)-arcs. The label of each of these three arcs
must contain Q, plus some subset of tags corresponding to the members of V, with

2each v, v pair occurring on exactly one of these three arcs. The occurrence of tags
corresponding to each member of V in the label of exactly one of these three VDAG
arcs represents an assignment of one of three colors to each member of V.

Now consider each edge e in E. Suppose e (v, v), where i<j. F contains a
2path r, v, v, t, where this occurrence of has two children whose tags are t. This

requires that {v, v} and {vJ, v} occur in the labels of two distinct (t, t’, 6)-arcs of
the VDAG, i.e., v and v must be assigned different colors in G. Thus if F is
VDAG-generable, then graph G is 3-colorable.

If G is 3-colorable, we can construct a labeling for (t, t’, 6) as follows. For each
set of vertices v,,..., v of G which have the same color, let there be a VDAG arc
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FIG. 4.7. Arcs whose label is not shown have label {r}. All arcs have stamp

2 2with label { Q, v c,, v c,, , vk, vk}. By the previous discussion, this is indeed a labeling
for (t, t’, 8). Hence F is VDAG-generable.

The above reduction can be easily extended to construct an F having any height
h_->4. [3

In contrast to Theorem 4.3, the VDAG-generability of height 3 design trees can
be determined in polynomial time, as shown in the following results.

DEFINI:ION. Given a design forest F, a relevant triple (t, t’, 8) of F is number-
compatible if for all vertices u and v of tag t, pathtag(u)pathtag(v) implies
num(u, t’, 8)<-num(v, t’, i). F is number-compatible if every relevant triple of F is
number-compatible.

It is easy to see that given a forest F, in polynomial time we can determine whether
F is number-compatible. The following result shows that number-compatibility is a
necessary condition for labelability.

LEMMA 4.4. If a design forest is labelable, then it is number-compatible.
Proof. Let (t, t’, 8) be a relevant triple of a labelable design forest F. Since F is

labelable, a number function Nt, t,, exists, where for all vertices w of tag in F,

Nt,t,,(T) num(w, t’, 8).
y: ycpathtag(w)f

Now consider two vertices of tag in F, say u and v, such that pathtag(u)_ pathtag(v).
Then for all y (2a"gt--), if y pathtag(u) f then y pathtag(v) f. But this
in turn implies that

E Nt,t’,(’Y) <- Z Nt,t’,(Y).
y: y pathtag f 3/: y pathtag f

Hence hum(u, t’, 8) <- num(v, t’, ), so (t, t’, 8) is number-compatible. Since this is true
for all relevant triples, F is number-compatible. [3

Our next results show that a design tree of height at most 3 is VDAG-generable
if and only if it is tag-acyclic and number-compatible.
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LEMMA 4.5. Let F be a tag-acyclic design tree of height at most 3. If F is number-
compatible, then F is labelable.

Proof. Let (t, t’, 8) be a relevant triple of F, and let

minnum(t, t’, 8) =min {hum(u, t’, 8)lu has tag t}.

If maxnum(t, t’, 8)= minnum(t, t’, 8), then for all vertices u and v with tag t,
hum(u, t’, 8)- hum(v, t’, 8), and (t, t’, 8) is labelable since we can specify a number
function Nt,c, by assigning Nt,c,({t})-minnum(t, t’, 8), and for all nonempty
anctag(t) where 3’ { t}, N.,,(),) 0.

So now suppose that minnum(t, t’, 8)<maxnum(t, t’, 8), and we need to find a
number function for (t, t’, 8). Note that for any vertex u, with tag t, occurring at depth
0 or 1 in F, num(u, t’, 8)= minnum(t, t’, 8). Also, since the height of F is at most 3,
if there is a vertex u of depth 3 with tag t, this u has no children; so, in this case,
num(u, t’, 8)=0= minnum(t, t’, 8). Thus, every vertex u for which num(u, t’, 8)>
minnum(t, t’, 8) is of depth 2. Suppose q is the tag of a depth 1 vertex, having a (depth
2) child whose tag is t. Since F is number-compatible, all depth 2 vertices u having
tag and a parent whose tag is q have the same value for num(u, t’, 8). Let this value
be designated as enum(q, t, t’, 8). For a tag q’ that is not the tag of any depth 1 vertex
having a child whose tag is t, let enum(q’, t, t’, 8) be undefined.

We now construct Nt.c, as follows. We assign Nt,t,,({t})= minnum(t, t’, 8). For
each q for which enum(q, t, t’, 8) is defined, we assign N.c,({q})= enum(q, t, t’, 8)-
minnum(t, t’, 8). For all other nonempty subsets y of anctag(t), we assign N.t,,({y})=
0. By number-compatibility of F and our previous discussion, it is easily verified that
N,,,. is indeed a number function for (t, t’, 8).

Since the above construction of a number function can be applied to all of the
relevant triples of F, F must be labelable.

THEOREM 4.6. A design tree F of height at most 3 is VDAG-generable if and only
if it is tag-acyclic and number-compatible.

Proof The proof is a direct result from Theorem 3.3 and Lemmas 4.4 and 4.5.
THEOREM 4.7. The VDAG-generability problem for trees of height at most 3 can

be solved in polynomial time.

Proof Tag-acyclicity and number-compatibleness of design trees can each be
tested in polynomial time. By Theorem 4.6, these tests are sufficient to determine
whether a design tree of height 3 is VDAG-generable.

5. Stamp uniqueness property and the effect of bounded stamp multiplicity. It is
likely that in many design applications, for instance, applications in civil engineering
design, mechanical design, or VLSI layout, the stamps on the arcs exiting from any
given design tree vertex and entering vertices with the same tag would have to be
distinct (e.g., it is not meaningful or useful in the design application for two instances
of the same type of submodule to be placed in exactly the same position within a

larger module). The class of design objects having this property is important, and
covers the forests that would arise in many design systems. In this section we formalize
this class of design forests, characterize the VDAGs that generate members of this
class, and show that it is computationally easy to determine if a given forest in this
class is VDAG-generable. This contrasts with the computational difficulty of determin-
ing if an arbitrary forest is VDAG-generable.

DEFINITION. Given a design forest F, let

stpmult(F) =max {num(u, t’,
u,t’,
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Given a VDAG ce, let

stpmult(a) max {mla contains vertices u and v such that there are m arcs from u
to v having the same stamp}.

Stpmult stands for stamp multiplicity.
We now show that determining whether a given forest is VDAG-generable is

NP-complete, even for forests whose stamp multiplicity is 2.
THEOREM 5.1. It is NP-complete to determine whether a given forest F, where

stpmult(F) 2, is VDAG-generable.
Proof The argument for membership in NP is the same as in the proof of Theorem

4.3. The NP-hardness proof is by a reduction from Not-All-Equal 3SAT, which is
known to be NP-complete [4]. A Not-All-Equal 3SAT instance consists of a set of
variables X and a set of clauses C, each of which contains three literals. The computa-
tional problem is whether there is a truth assignment to the variables such that each
clause has at least one literal true and at least one literal false.

Consider a given Not-All-Equal 3SAT instance with X {Xl, x2,’" ", x,} and
C -{Cl, C2,""" Crn}, where for each j, 1-<_j =< m, c contains literals l), l, and 1}, and
the index of the variable corresponding to l) is less than the index of the variable
corresponding to l, which in turn is less than the index of the variable corresponding
to 1j Construct the forest F consisting of the single tree whose form is shown in Fig.
5.1. For example, given the Not-All-Equal 3SAT instance shown in Fig. 5.2, the
constructed forest F is shown in Fig. 5.3, and,a VDAG generating F is shown in Fig.
5.4. Note that stpmult(F)= 2, F is tag-acyclic, and the size of F is linear in m and n.
Also note that there is a number function for each relevant triple, with the possible
exception of (A, B, 6).

Suppose the forest is VDAG-generable, and consider relevant triple (A, B, 6).
Consider the occurrences of A in paths S, W, A; S, Y, A; S, Z, A and for each j, 1 -<j <=
m, S, c, A. Since each such A has no child with tag B, it follows that S, W, Y, Z, c,
and A cannot appear in the label of any VDAG arcs from A to B. Consider paths

all arcs have stamp

FIG. 5.1

X {Xl, 22, 23}

C {(Xl, )2, x3), (Xl, x2, )3)}

FIG. 5.2
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all arcs have stamp

FIG. 5.3

(ca)

(s) (s)

(Y,Z}

{w)

all arcs have stamp

FIG. 5.4



844 LIN YU AND DANIEL J. ROSENKRANTZ

S, W, T, A; $, W, F, A and for each i, 1 _-< <_- n, S, W, xi, A and S, W, )i, A. Since each
occurrence of A in each of these paths has exactly one child with tag B, it follows that
T, F, xi, i each appears in the label of exactly one VDAG arc from A to B. Consider
paths S, Y, T, F, A and S, Y, x, , A, where each occurrence of A has two children
with tag B. It follows that T and F have to be in two different labels; and similarly,
x and i have to be in two different labels. Because each occurrence of A on paths
S, Z, T, F, xg, A and S, Z, T, F, i, A has two children with tag B, xi and ff must be in
the labels containing T or F. It follows that there must be exactly two VDAG arcs
with stamp 8 from A to B. Now consider, for each j, 1 -<_j _-< m, the occurrence of A in
the path S, cj, l), l, l}, a. This a has two children with tag B, hence at least one of
the three literals must appear in the label containing T and at least one of the three
literals must appear in the label containing F. We may interpret the literals in the label
containing T as being assigned true and the literals in the label containing F as being
assigned false in the truth assignment for the Not-All-Equal 3SAT instance. Thus the
appearance of literals in the two arcs from A to B in a VDAG generating F represent
a not-all-equal satisfying truth assignment.

By the above discussion, the given Not-All-Equal 3SAT has a satisfying truth
assignment if and only if there is a labeling on VDAG arcs from A to B, that is, if
and only if F is VDAG-generable.

DEFINITION. Let UnqStamp be the set of design forests such that no two arcs
exiting from the same vertex and entering vertices with the same tag have the same
stamp, i.e., forests whose stamp multiplicity is 1. Let VDunqstamp be the set of VDAGs
such that no two arcs with the same endpoints have the same stamp, i.e., VDAGs
whose stamp multiplicity is 1.

Later we will show that there is a close correspondence between UnqStamp and
VDunqStamp

We now consider VDAG-generability problem for forests in UnqStamp. First, note
that from Theorem 3.3, a given member of UnqStamp is VDAG-generable if and only
if it is well structured. To be well structured, the design forest must be both tag-acyclic
and labelable. Since even for arbitrary forests, tag-acyclicity is testable in linear time,
the main computational issue is labelability. The forests in Figs. 3.1(a) and (b) are
examples of forests in UnqStamp that are tag-acyclic, but not labelable, and therefore
not VDAG-generable. In both these examples, a number function for relevant triple
(B, C, 8) does not exist because the forest contains vertices u and v with tag B such
that num(u, C, 8)= 1, num(v, C, 8)=0, and pathtag(u) is contained in pathtag(v).
This phenomenon can serve as the basis for a polynomial time test for labelability, as
follows.

LEMMA 5.2. The problem ofdetermining whether a member of UnqStamp is VDAG-
generable can be solved in polynomial time.

Proof. Consider a given forest F in UnqStamp. Using the algorithm COLLAPSE
from Proposition 4.1, F can be tested for tag-acyclicity in linear time. If F is not
tag-acyclic, then it is not VDAG-generable. Thus, assume F is tag-acyclic, and consider
its labelability.

Note that since F is in UnqStamp, for any vertex u, tag t’, and stamp 8, num(u, t’, 8)
is at most 1. Given a relevant triple (t, t’, 8), let the set of all paths from a root to a
vertex u with tag t, where num(u, t’, 8)= 0 be P0(t, t’, 8), and the set of all paths from
a root to a vertex u with tag t, where num(u, t’, 8)= 1 be Pl(t, t’, 8). Let Fo(t, t’, 8) be
the set of all tags occurring in the paths in Po(t, t’, 8). Similarly, let Fl(t, t’, 8) be the
set of all tags occurring in the paths in P(t, t’, 8). For each p in P(t, t’, 8), we check
if the set of tags of vertices on path p is contained in Fo(t, t’, 8). If one such p exists,
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Nt,t,, cannot exist, and F is not labelable. Otherwise, let Nt,t,,(Fl(t, t’, 8) Fo(t, t’, 8))
1, and for all y Fl(t, t’, 8)-Fo(t, t’, 8), let Nt,t,,(y)=0. It is easy to see that Nt,c,
satisfies the requirements for a number function. If for each relevant triple (t, t’, 8),
Nt,,,, is found, F is labelable. Otherwise, F is not labelable. Note that the above test
can be done in polynomial time. [3

If a forest F in UnqStamp is well structured, then Algorithm VDAGCONS, shown
in Fig. 5.5, constructs a VDAG that generates F.

ALGORITHM VDAGCONS
Input: a forest F in UniStamp
Output: a VDAG a generating F, if F is well structured
1. if F is not tag-acyclic, exit;
2. apply the algorithm used in the proof of Lemma 5.2 to F;

if F is not well structured, exit;
3. let a have a vertex for each tag occurring in F;

for relevant triple (t, t’, 6) do
let a have an arc a with stamp 6 going from the vertex with tag to the vertex with tag t’, and label
arc a with (Fl(t, t’, 6)-Fo(t, t’, 6)) as described in the proof of Lemma 5.2.

FIG. 5.5

THEOREM 5.3. Given a member of UnqStamp, say F, we can in polynomial time,
(1) determine whether F is VDAG-generable; and (2) if F is indeed VDAG-generable,
construct a VDAG that generates F.

Proof Algorithm VDAGCONS terminates in polynomial time. If it terminates by
exit, the given forest is not VDAG-generable, as implied by the proof of Lemma 5.2;
otherwise, it is VDAG-generable. If Algorithm VDAGCONS constructs a VDAG, then
from the proof of Lemma 5.2, this VDAG generates F. rl

We next note that the algorithm in the proof of Lemma 5.2 is applicable not only
to forests in UnqStamp, but to any relevant triples for which the value of maxnum is
1, even if other relevant triples have a larger value of maxnum.

DEFINITION. A relevant triple (t, t’, 8) for a design forest F has the unique stamp
property if maxnum( t, t’, 8)= 1.

THEOREM 5.4. If a relevant triple (t, t’, 8) for a forest F has the unique stamp
property, then we can in polynomial time (1) determine if (t, t’, 8) is labelable; and (2)
if it is, construct a number function for t, t’, 8).

Proof Apply the algorithm from the proof of Lemma 5.2. [-1

We now show that the set of forests generated by members of VDcnqsta,,p is
identical to the set of VDAG-generable members of UnqStamp.

THEOREM 5.5. The set offorests generated by members of VDc,qsta,,p is precisely
the set offorests in UnqStamp which are VDAG-generable.

Proof Consider a forest F which is a well-structured member of UnqStamp. Then,
a VDAGCONS(F) is a VDAG generating F. Since for each relevant triple (t, t’, 8),
the constructed VDAG a has exactly one (t, t’, 8)-arc, a is a member of VDcr,qs,amp.

Now consider a member a of VDer,qstr,p. No two arcs of c with the same
endpoints have the same stamp; therefore, if a vertex of forest F has more than one
child with the same tag, the stamps on the arcs from the vertex to these children must
have distinct stamps. Hence F is a member of UnqStamp. U

6. Construction of number functions. Theorems 4.3 and 5.1 imply that finding a
labeling for a forest is NP-hard. If P NP, this task cannot be done in polynomial
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time. However, finding a labeling can be divided into a set of independent subtasks,
namely finding a number function for each relevant triple (t, t’, 6). In searching for a
number function for a given relevant triple, an obvious approach is to enumerate
potential number functions in a canonical order, and check whether the labelable
condition is satisfied. The search space can be reduced because if a given forest is
labelable, its number functions are "sparse," in a sense formalized by the following
result. The next result shows that if there is a number function, then there is one in
which Nt,t,,(y) is nonzero for only a small number of sets y.

THEOREM 6.1. If a relevant triple (t, t’, 6) for a forest F is labelable, then it has a
number function Nt, t,, for which

(lYl" Nt,,’,(Y)) <= totnum(t, t’, 6).

Proof Let c be a valid VDAG generating F. For each relevant triple (t, t’, 6),
consider the (t, t’, 3)-arcs in a. From the proof of Theorem 4.1, each (t, t’, )-arc in
F can be associated with one of these arcs in a; and each of these arcs in a is associated
with at least one of these arcs in F. This association can be strengthened by associating
each F arc with a single element of the label of its associated a arc. In particular,
since an F arc exiting a vertex u is associated with an c arc having label y such that
3’ c pathtag,(u) is nonnull, let the F arc be associated with some arbitrary member of
y c pathtag(u). Note that because c is valid, each arc label in c will have at least one
F arc associated with at least one of the elements of the label.

Now, modify the arc labels in c by deleting every label element that has no F
arc associated with it. Let /3 be the resulting VDAG. Then /3 is a valid VDAG that
generates F. Let Nt, t,, be the number function for (t, t’, 6) that is embodied in/3. Each
arc of F that contributes to totnurn(t, t’, 6) is associated with some label element in
/3, and each label element is associated with at least one such arc. A label y in/3 is,
therefore, associated with at least ]y] arcs of F. Since there are only totnum(t, t’, 3)
arcs available for this association, it is the case that

COROLLARY 6.2. If a given design forest F is VDAG-generable, then there exists a
VDAG c generating F whose size is linearly bounded by the size of F.

Proof First, note that the number of vertices in a valid VDAG generating F cannot
exceed the number of distinct tags on vertices in F. Theorem 6.1 implies that the
total number of occurrences of label elements in cr need not exceed the number of
vertices in F. Since arc labels are nonempty, the total number of arcs cannot exceed
the total number of label elements, and thus cannot exceed the total number of
vertices in F.

Another observation that can sometimes reduce the search space for a number
function is that the members of anctag(t) for tag can be partitioned on the basis of
occurrences in paths, and only one representative from each block of the partition
need be considered. This concept can be formalized as follows.

DEFINITION. Given a forest F and a tag t, two tags p, q in anctag(t) are equivalent
with respect to if for every vertex u such that t(u)= t, either p and q are both in
pathtag(u) or neither is. Let neqtag(t) be a set that contains exactly one member from
each tag equivalence class with respect to t.

For each relevant triple (t, t’, 6), the search space for a number function Nt,t,,
can be reduced to nonnull subsets of neqtag(t), instead of anctag(t), as shown by the
following result.
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DEFINITION. For each y that is a subset of anctag(t), let neq(y) be the subset of
neqtag(t) defined as follows: a member w of neqtag(t) is in neq(3") if and only if 3’
contains at least one member of the equivalence class represented by w.

LEMMA 6.3. If a relevant triple (t, t’, 6) for a forest F is labelable, then it has a
number function for which each argument having a nonzero value is a nonnull subset of
neqtag(t).

Proof Suppose that there is a number function Nt,c, for (t, t’, 8). On the basis
of this number function, define a function Mt,t,, from (2anctag(’)--) to N as follows.
For each nonnull subset : of neqtag(t), let

Mt,t’,() E St, t’,,( 3").
y:neq(y)=?

For each set that contains a member of (anctag(t)-neqtag(t)), let Mt,t,,()=O.
Note that from the definition of the equivalence relation used to construct

neqtag(t), for each vertex u with tag in F, and each subset
pathtag(u) is nonnull if and only if neq(3")pathtag(u) is nonnull; therefore, since
Nt, t,, is a number function for (t, t’, 6), so is M,,,,,. Furthermore, M,,t,, only has a
nonzero value for subsets of neqtag(t).

The search space for a number function can be reduced even further, as follows.
DEFINITION. Given a forest F and a relevant triple (t, t’, 6), let F0(t, t’, 8) be the

set of tags that occur in pathtag(u) for some vertex u of the forest having tag and
for which num(u, t’, 8) equals zero. Let candtag(t, t’, 8) be (neqtag(t)-Fo(t, t’, 8)).

Note that a member of Fo(t, t’, 6) cannot be a member of any set 3" for which a
number function for (t, t’, 6) has a nonzero value. Thus we can confine the search for
a number function for (t, t’, 8) to nonnull subsets of candtag(t, t’, 8). This can be
formalized as follows.

THEOREM 6.4. If a relevant triple t, t’, 6) for a forest F is labelable, then it has a
number function for which each argument having nonzero value is a nonnull subset of
candtag t, t’, 6).

The search space can be reduced still further by observing that two vertices in a
forest having the same tag and whose ancestors include the same subset of cand-
tag(t, t’, 6) are equivalent with respect to finding a labeling. If forest F contains two
vertices u and v with tag such that pathtag(u)candtag(t, t’, 6)=pathtag(v)
candtag(t, t’, 6), then for (t, t’, 8) to be labelable it must be the case that num(u, t’, 8)
num(v, t’, 6). Suppose that this condition is not violated for relevant triple (t, t’, 6).
Let @(t, t’, 6) be the collection of subsets of candtag(t, t’, 6) such that 3’ is in @(t, t’, 8)
if and only if F contains a vertex u with tag such that 3’ pathtag(u) candtag(t, t’, 8).
Also, let numc(% t, t’, 6) be the value of num(u, t’, 6) for some vertex u with tag for
which 3’ pathtag(u) candtag( t, t’, 6). Let

totnumc( t, t’, 6) numc(% t, t’, 6).
"y @( t, t’,

Then, from the reasoning used in the proof ofTheorem 6.1, we have the following result.
THEOREM 6.5. If a relevant triple t, t’, 8) for a forest F is labelable, then it has a

number function Nt,c, that only has nonzero values for subsets of candtag( t, t’, 6), and
for which

(13"1" Nt,t’,8(3")) totnumc(t, t’, 8).
T 2candtag( t’,,5)_0)

7. Handling non-VDAG-generable forests. We pointed out earlier that a given
forest that is not well structured can be made well structured by modifying the tags
of its vertices. This concept can be formalized as follows.
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DEFINITION. A homomorphism h from design forest F onto design forest G is a
mapping from the tags occurring in F onto the tags occurring in G, such that applying
mapping h to F produces G. A VDAG c embodies design forest G if there exists a
homomorphism from F onto G.

Note that a homomorphism can map several tags of F onto the same tag of G.
From a different perspective, G is the same as F, except that each tag of G has been
split into one or more tags in F and for each vertex of G the corresponding vertex in
F has as its tag some member of the split tag set.

An observation is that if a given forest F is modified to have a distinct tag on
each of its vertices, then there is a homomorphism from the modified forest F* to F.
Furthermore, F* is well structured, and each valid VDAG generating F* is simply F*
with appropriate labels on its arcs. One such labeling scheme is for each arc exiting
a vertex with tag to be assigned label {t}. We thus see that every forest is embodied
by some VDAG. Furthermore, it is embodied by a VDAG whose expansion is uncondi-
tional,, where VDAGs with unconditional expansion, corresponding to the conventional
dag representation of hierarchically specified design objects, can be formalized as
follows.

DEFINITION. An UncVDAG is a VDAG where the label of each arc contains only
the tag of the vertex exited by the arc.

"UncVDAG" stands for Uncontrolled-expansion VDAG. The UncVDAGs are
a subclass ofVDAGs, corresponding to conventional dags with uncontrolled expansion.
The only difference between a UncVDAG and a conventional dag is that an UncVDAG
has the extra overhead of storing a one-element label for each arc.

From the preceding discussion, we have the following observation.
PROPOSITION 7.1. Every design forest is embodied by some UncVDAG.
A natural computational problem is minimizing the amount of splitting needed

to obtain a VDAG embodying a given forest. This problem can be posed as a decision
problem, as follows.

MINIMUM TAG SPLIT (MTS).
Instance: A design forest F with m distinct tags tl, t2," ", tin, positive integers

spi, l<-im.

Question" Is there a VDAG generating design forest F*, where F* is obtained
from F via replacing tag ti by at most spi modified versions of ti, 1 _-< <_- m ?

The following result shows that this problem is NP-complete.
THEOREM 7.2. MTS is NP-complete.
Proof The membership of MTS in NP is obvious. The NP-hardness proof is by

a simple reduction from the problem: "Given a forest F, determine whether there is
a VDAG generating F," which has been shown to be NP-complete by Theorem 4.3.
For a given forest F with m distinct tags, we construct an MTS instance by assigning
spi 1 for all i, 1 _-< _-< m. It is straightforward to verify that there is a positive answer
for the constructed MTS instance if and only if there exists a VDAG generating F.

8. Relative conciseness of VDAG model. As mentioned in 1, one of the purposes
of the VDAG model is to succinctly represent design versions and alternatives. It is
well known that conventional dags can be exponentially more succinct than trees. For
instance, consider a UncVDAG fin with n vertices, numbered vl, v2," , vn, such that

vi has two arcs going to Vi+l, for 1 <-i < n. Then F,. is a tree with 2n- 1 vertices; so

F,. is exponentially larger than fin.
We now show that VDAGs, utilizing controlled expansion, can be exponentially

more succinct than UncVDAGs, where expansion is uncontrolled.



REPRESENTING OBJECTS BY CONTROLLED HIERARCHY 849

Given a positive integer n, let VDAG an be that shown in Fig. 8.1. All stamps in
an are 6. The label on the arc from Bn to Ci is {Ai}, 1-<_i_-< n, and all the remaining
arcs are labeled by {R}. It is easily verified that there are 3n + 1 vertices, 4n arcs and
4n label elements in

Now consider F.. It is easily seen that there are 2 generating paths in an from
R to Bn, where for each i, 1 _-< i_-< n, each such path either goes through or bypasses
Ai. In particular, each of these 2 generating paths to Bn goes through a distinct subset
of the Ai vertices. The instance of Bn in F. corresponding to a generating path in
say path p, has an instance of C as a child if and only if p goes through Ai. Hence
F. contains 2 distinct subtrees rooted by instances of Bn. The leaves of each of these
subtrees correspond to a distinct member of the power set of {C1, C2," , Cn}. More
generally, for each i, 1-< i-<_ n, there are 2 distinct subtrees rooted by instances of Bi
and 2-1 distinct subtrees rooted by instances of Ai. For example, Fig. 8.2 shows F2.

Let D be a UncVDAG embodying F.. Since for each i, 1 _-<i_-< n, each of the 2
vertices with tag Bi in F. is the root of a distinct subtree, D must split tag B into 2
tags, i.e., D must have a separate vertex for each of these 2 vertices of F.. Similarly,
D must have a separate vertex for each of the 2-1 vertices with tag Ai in F.. Thus
D must have at least . 2i+ 2i+n+l=3.2n+n-2

i=0 i=1

FIG. 8.1. All arcs have stamp
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all arcs have stamp

FIG. 8.2

vertices. Since there must be

i=0

arcs exiting from instances of Bn and entering instances of C, and each instance of A
and each instance of B must have exactly 1 entering arc, D must have

i. + Y 2’+ 2i=(n+6).2"-1-3
i=0 i=0 i=1

arcs.
We have just shown the following result.
THEOREM 8.1. For each positive integer n, there exists a VDAG an with 3n + 1

vertices, 4n arcs, and 4n label elements, such that every UncVDAG embodying Fan has
at least (n +6). 2"-- 3 arcs and at least 3.2"+ n- 2 vertices.

Therefore, there exists design objects whose VDAG representation is exponentially
more succinct than their representation using a conventional dag with uncontrolled
expansion. On the other hand, if design versions and alternatives are not involved, so
that controlled expansion is not needed, the only extra overhead ofVDAG with respect
to conventional dags is a one-element label per arc. Since the size of a tag identifier
is usually smaller than the size of a stamp, this overhead will usually be small. This
overhead could be reduced even fuher by adopting a default convention that an arc
is to be included unconditionally, unless the label says otherwise.

9. Automatic simplification. In this section we consider the problem of, given a
well-structured forest F, finding a VDAG that generates F and has as small a size as
possible.

Dzvxwioy. Two VDAGs are equivalent if the forests they produce are identical.
VDAG a is smaller than VDAG if a has fewer arcs than , or if a and have the
same number of arcs and a has a smaller total label size than . A VDAG a is
minimum-sized if there is no equivalent VDAG such that is smaller than a.

Since the size of a VDAG is finite, for each VDAG there exists some equivalent
minimum-sized VDAG.

THEOREM 9.1. For each h 5, given a well-structured design tree F in UnqStamp
with height h, it is NP-hard to find a minimum-sized VDAG generating E
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Proof We show NP-hardness by a reduction from the Vertex Cover Problem [4].
The Vertex Cover decision problem consists of determining for a given undirected
graph G and integer k, whether there is a set of at most k vertices such that each edge
is incident on at least one vertex in the set. Given a Vertex Cover instance involving
graph G with the set of vertices V={vl, v2,’", vn} and the set of edges E=
{el, e2,. -, e,,}, we construct a forest F as follows. F consists of one tree where the
root has tag S. For each i, 1-<_ i-< m, root S has a child with tag ei. Suppose the two
endpoints of ei are vii and vi2, where il < i2. Then ei has two children" one with tag A
and the other with tag vii. This vertex with tag vi, has a child with tag vi2, which in turn
has a child with tag A, which has a child with tag B. Stamp 6 is assigned to all arcs in
F. F is in UnqStamp since no two children of a vertex have the same tag. Note that
the height of F is 5.

For example, given the Vertex Cover instance shown in Fig. 4.5, the constructed
forest is shown in Fig. 9.1, and a VDAG generating that forest is shown in Fig. 9.2.

)

)

) (

)

all arcs have stamp

FIG. 9.1

To see that the constructed F is well structured in general, first note that F is
tag-acyclic. Next, consider labelability. For relevant triples of the form (S, ei, 6), the
label can be {S}. For relevant triples whose first component is ei, the label can be {
For relevant triples of the form (vi, vj, ), i<j, the label can be {ek}, where ek is the
edge of G which is incident on both vi and vj, For relevant triples of the form (v, A, 6),
the label can be the set of e’s that have vi and v as endpoints for some i<j. For
relevant triple (A, B, 6), the label can be V. Thus F is well structured, and hence
VDAG-generable.

Theorem 5.5 asserts that there is a VDAG in VDunqstamp that generates F. Hence
in each minimum-sized VDAG generating F, only one (A, B, 6)-arc is needed. Let
be a minimum-sized VDAG in VDunqstamp and let the label on the (A, B, 6)-arc in
be /. For each i, 1 _-< _-< m, because of the path S, ei, A in F, where this occurrence of
A has no children, S, A, and ei do not occur in /. Hence only vi’s can appear in
l, 1 _-<i-< n. Note that a minimum-sized VDAG generating the forest in Fig. 9.1 may
have {vl, v3}, and {vl, v3} is a minimum cover for the given vertex cover instance
in Fig. 4.5. In general, for each ei, the generating path in a from S to ei to vii to )i2
to A must involve at least one member of/. Therefore, contains at least one of {
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{e

all arcs have stamp {V1 ,V2,V3 ,V4

FIG. 9.2

Hence, set covers all elements of E and is indeed a vertex cover; therefore, there
exists a k-element label for arc (A, B) if and only if graph G has a vertex cover of
size k.

The above reduction can be easily extended to construct an F having any height
h->5. D

From Theorem 9.1, we obtain the following results.
COROLLARY 9.2. For each h >-4, given a well-structured design forest in UnqStamp

of height h, it is NP-hard to find a minimum-sized VDAG generating that forest.
Proof. The proof is similar to that in Theorem 9.1, with the root and its associated

arcs removed from the constructed tree. D
In contrast to Theorem 9.1, minimum-sized VDAGs can be efficiently found for

VDAG-generable trees of height 4 or less.
THEOREM 9.3. For each VDAG-generable tree F in UnqStamp of height 4 or less,

a minimum-sized VDAG generating F can be found in polynomial time.

Proof. Let (t, t’, 8) be a relevant triple. Then by Theorem 5.5, a minimum-sized
VDAG generating F has exactly one (t, t’, 8)-arc. A minimum size label for this arc
must be found.

If Fo(t, t’, 8) is null, then { t} can serve as a minimum size label for this arc. Thus
assume that Fo(t, t’, ) is nonnull. Then both and the tag of the root vertex are in
Fo(t, t’, 8), and so neither can be elements of the label.

Let relvert be the set of vertices u of F such that the tag of u is and num (u, t’, )
1. Note that each member of relvert has depth 2 or 3 in F.
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For vertex u of relvert, let

ptag(u) =pathtag(u)-Fo(t, t’, 6).

Note that Iptag(u)l must be either 1 or 2. Let onecand be the set of members u of
relvert such that Iptag(u)l 1. Let

mustintag ptag(u).
in onecand

Note each member w of mustintag is a tag that is the only ancestor of some member
u of relvert, such that {w}=pathtag(u)-Fo(t, t’, ), so w must be an element of the
label being constructed.

For a vertex u of relvert, let

crag(u) ptag( u) mustintag.

Note that if Ictag(u)l= 1, then one of the ancestors of u is a member of mustintag,
and the presence of this tag in the label will account for vertex u. If Ictag(u) 0, then
u is a member of onetag, so an ancestor of u is a member of mustintag.

Let twocand be the set of members u of relvert such that Ictag(u)l- 2. The members
of twocand present a design choice in constructing the label. Each member u of twocand
must be accounted for by having at least one member of crag(u) included in the label,
but it is not necessary for both members of ctag(u) to be included. This gives rise to
a Vertex Cover Problem as follows.

We construct a Vertex Cover instance G( V, E) as follows. Let

V= ctag(u).
in twocand

For each u in twocand, E contains an undirected edge between the two members of
crag(u). A minimum size label consists of the union of mustintag and a minimum size
vertex cover of graph G.

Now, we show that graph G is bipartite. First note that for each u in twocand,
the two vertices of F that contribute to crag(u) occur at depth 1 or 2, respectively.
Let A be a member of V. Suppose that there is a vertex at depth 1 with tag A that is
an ancestor of a member of twocand. Then, there are tags S and B such that S, A, B, t, t’
are the tags along a path in F. Suppose that there is also a vertex at depth 2 with tag A
that is an ancestor of a member of twocand. Then there is a tag C such that S, C, A, t, t’,
are the tags along a path in F. Let c be a VDAG generating F; since F is VDAG-
generable, such a VDAG exists. Because of the two forest paths described above,
VDAG a must have an arc from S to C labeled {S}, an arc from C to A whose label
contains S or C, an arc from A to B whose label contains S or A, an arc from B to
whose label contains S, A or B, and an arc from to t’ whose label contains A or

B. But then c contains a generating path with tags S, C, A, B, t, t’. This generating path
would correspond to a depth 5 vertex in F, contradicting the assumption that F has
height 4. Thus either all the vertices with tag A that are ancestors of members of
twocand have depth 1, or they all have depth 2. Consequently, the constructed graph
G is bipartite, with each edge of G connecting a depth 1 tag and a depth 2 tag.

Given a bipartite graph, a minimum size vertex cover can be found in polynomial
time [4], [5]. Therefore, a minimum size label for (t, t’, i) can be found in polynomial
time. [3

An immediate consequence is the following.
COROLLARY 9.4. For VDAG-generable design forests in UnqStamp of height at

most 3, a minimum-sized VDAG generating a givenforest can befound in polynomial time.
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We now consider the issue of whether the value of maxnum(t, t’, 6) for a relevant
triple in a forest can be used to limit the number of VDAG (t, t’, 3)-arcs. The next
result shows that the number of such arcs in the VDAG may have to be arbitrarily
larger than maxnum(t, t’, 6), that is, in general, the stamp multiplicity of a VDAG
cannot be bounded by the stamp multiplicity of the forest it generates.

THEOREM 9.5. For each integer k >- 2, there exists a VDAG-generableforest F, such
that stpmult(F) 2 and for each VDAG a generating F, stpmult(a k.

Proof For a given k, consider the complete undirected graph of k vertices, and
consider the forest Fk produced from this graph by the construction used in the proof
of Theorem 4.3, except with the subtree rooted by Q removed. It is easily seen that
stpmult(Fk) 2 and that Fk is VDAG-generable. Suppose that VDAG a generates Fk.
By an argument similar to that used in the proof of Theorem 4.3, it can be seen that
the number of (t, t’, )-arcs in a must be k. Thus stpmult(a)= k. ]

10. Conclusion. The VDAG model proposed in this work can be used to concisely
represent hierarchically specified design data in a flexible way that supports design
alternatives in engineering design database systems. In fact, there are designs whose
representation via VDAGs is exponentially more succinct than is possible with the
conventional model of uncontrolled expansion. However, only those design forests
which are well structured can be generated via the VDAG paradigm of ancestor based
expansion. Problems such as determining whether a forest can be generated by a
VDAG are NP-complete, even for forests whose heights are bounded. However, for
an important class of design forests that include objects from many design applications,
namely UnqStamp, the problem of determining whether a given forest is generable
from a VDAG can be solved in polynomial time. If the answer is "yes," an appropriate
VDAG can be generated in polynomial time, although finding a minimum-sized VDAG
for a forest in UnqStamp is NP-hard, even if the height of that forest is bounded.
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A LOWER BOUND FOR PARALLEL STRING MATCHING*
DANY BRESLAUERt AND ZVI GALILt

Abstract. This paper presents an f(log log m) lower bound on the number of rounds necessary for finding
occurrences of a pattern string P[1..m] in a text string T[1..2m] in parallel usingm comparisons in each round.
The bound is within a constant factor of the fastest algorithm for this problem [D. Breslauer and Z. Galil,
SIAMJ. Comput., 19 (1990), pp. 1051-1058] and also holds for an m-processor CRCW-PRAM in the case of
a general alphabet. Consequently, the paper derives the parallel complexity of the string matching problem
using p processors for general alphabets, which is

O()ifp < loglogm’
<p<m,O(loglogm) if loglogm

O(log log2p/m p) if m _< p _< m2,
0(1) ifp _> m2,

or in short 0([] + loglogil+p/m 2p).

Key words, string, period, parallel algorithms, lower bounds

AMS(MOS) subject classifications. 68Q10, 68Q20, 68Q25

1. Introduction. The string matching problem is defined as follows: given a string
P[1..m] called "pattern" and a string T[1..n] called "text," find all occurrences of the
pattern in the text. In the parallel case the output of a string matching algorithm will
be a Boolean array MATCH[1..n] that contains a true value at each position where
an occurrence of the pattern starts. We consider the case where n 2m. The string
matching problem has so far defied all attempts of proving lower bounds.

In the sequential case, at a certain time when the problem had a logarithmic space
algorithm [9] and linear time algorithm [12], it was conjectured to have a time-space
tradeoff [2]. But this conjecture was later disproved when a linear-time constant space
algorithm was discovered [10]. Moreover, even a six-head two-way finite automaton can
perform string matching in linear time. It is still an open problem as to whether a k-head
one-way finite automaton can perform string matching. The only known cases are for
k 1, 2, 3 [11], [14], [13], where the answer is negative.

In the parallel case, better and better algorithms have been designed, all on CRCW-
PRAM with the weakest form of simultaneous write conflict resolution: all processors
which write into the same memory location must write the same value of 1. The best
CREW-PRAM algorithms are those obtained from the CRCW algorithms for a loga-
rithmic loss of efficiency. Galil [8] designed an optimal O(log m) time algorithm for the
case of a constant size alphabet. (An optimal algorithm is one with pt O(n), where
t is the time and p is the number of processors used.) Vishkin [17] gave an optimal
O(log m) time algorithm for general alphabet. Breslauer and Galil [4] obtained an opti-
mal O(log log m) time algorithm for general alphabet. Recently, Vishkin [18] developed
an optimal O(log* m) time algorithm. Unlike the cases of the other algorithms, this
time bound does not account for the preprocessing of the pattern. The preprocessing
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in Vishkin’s algorithm takes O(log2 m log log m). Vishkin’s super fast algorithm raised
the question of whether an optimal constant-time algorithm is possible.

In this paper we prove the first lower bound for parallel algorithms that solve the
string matching problem. We show that a CRCW-PRAM with m processors requires
f(log log m) time to perform string matching. Thus, our O(log log m) optimal parallel
algorithm cannot be improved, and Vishkin’s algorithm crucially depends on a slower
preprocessing.

As a result we derive the exact parallel complexity of string matching for general
alphabets on the CRCW-PRAM. In the case 1 < p < m/log log m, it is known to be
O(m/p); when m/loglogm < p < m it is O(log log m); when m < p < m2 it is
O(loglogzp/p); and when p _> m it is known to be O(1). All these bounds can be
summarized in one expression: O([m/p] + log log+p/,q 2p).

Various string matching algorithms use different models. The weakest model is the
comparison model in which we test for equality of two symbols. Comparisons of this
type are sufficient to solve the string matching problem in the sequential case [3], [12],
[10] and in the parallel case [4], [17]. However, although the definition of the string
matching problem does not require the alphabet to be ordered, an arbitrary order is used
in some algorithms [5], [6]. This assumption is reasonable since the alphabet symbols
are encoded numerically, which introduces a natural order. Some other algorithms use a
more restricted modelwhere the alphabet symbols are assumed to be encoded as integers
in a small range [1], [8]. These algorithms usually take advantage of the fact that the
alphabet symbols can be used as indices of an array or that many symbols can be packed
together in one register. The case where only comparisons are used is usually referred
to in the literature as the general alphabet assumption, while the latter case is usually
called fixed alphabet.

Our model is similar to Valiant’s parallel comparison tree model [16]. We assume the
only access the algorithm has to the input strings is by comparisons that check whether
two symbols are equal or not. The algorithm is allowed p comparisons in each round,
after which it can proceed to the next round or terminate with the answer. We give a
lower bound on the minimum number of rounds necessary in the worst case. We show
also that our bound holds even if the algorithm is allowed to perform order comparisons
that can result in less than, equal, or greater than answers.

Consider a CRCW-PRAM that solves the string matching problem over a general
alphabet. In this case the PRAM can only perform comparisons, but no computation,
with its input symbols. Thus, its execution can be partitioned into comparison rounds
followed by computation rounds; therefore, a lower bound for the number of rounds in
the parallel comparison model immediately translates into a lower bound for the time
of the CRCW-PRAM.

Ifthe pattern is given in advance and any preprocessing is free, then this lower bound
does not hold, as Vishkin’s O(log* m) algorithm shows. The lower bound also does not
hold for CRCW-PRAM over fixed alphabet strings. Similarly, finding the maximum in
the parallel decision tree model has the same lower bound [16], but for small integers
the maximum can be found in constant time on a CRCW-PRAM [7].

In 2 we present a lower bound for a related problem of finding the period length
of a string. In 3 we show how this lower bound extends to string matching. In 4 we
extend our bound to cases where the number of comparisons is greater than m.

2. A lower bound for finding the period of a string. Given a string S[1..m], we say
that k is apedod length of S if S[i + k] =S[i] for 1,..., m k. We call k thepedod
length of S if it is the minimal period length of S. In this section we prove a lower bound
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for the problem of finding the period length of a string S[1..m] using m comparisons in
each round. Our lower bound also holds for determining whether such a string has a
period of length smaller than m/2.

We show a strategy for an adversary to answer 1/4 log log m rounds of comparisons
and after which still has the choice of fng the input string S in two ways: in one the
resulting string has a period of length smaller than m/2 and in the other it does not have
any such period. This implies that any algorithm that terminates in less rounds can be
fooled.

We say that an integer k is a possible period length if we can fix S consistently with
answers to previous comparisons in such a way that k is a period length of S. For such
k to be a period length we need each residue class modulo k to be fixed to the same
symbol; thus if j mod k, then S[1] S[j].

At the beginning of round i the adversary will maintain an integer k, which is a
possible period length. The adversary answers the comparisons of round i in such a
way that some k+ is a possible period length and few symbols of S are fixed. Let
K m-4-’-*> The adversary will maintain the following invariants that hold at the
beginning of round number i:

(1) k satisfies 1/2K < ki < K.
(2) If S[/] was fixed, then for every j mod ki, S[j] was fixed to the same symbol.
(3) If a comparison was answered as equal, then both symbols compared were fixed

to the same value.
(4) If a comparison was answered as unequal, then

(a) it was between different residues modulo k;
(b) if the symbols were fixed, then they were fixed to different values.

(5) The number of fixed symbols fi satisfies fi < Ki.
Note that invariants 3 and 4 imply consistency of the answers given so far. Invariants

2, 3, and 4 imply that ki is a possible period length: if we fix all symbols in each unfixed
residue class modulo k to a new symbol, a different symbol for different residue classes,
we obtain a string consistent with the answers given so far that has a period length k.

We start at round number i with k K 1. It is easy to see that the invariants
hold initially. We show how to answer the comparisons of round and how to choose

1Ki+l Ki+l are]i-t-1 SO that the invariants still hold. All multiples of ki in the range 7
candidates for the new ki+l. A comparison S[l] S[j] must be answered as equal if

j rood k+1. We say that ki+l forces this comparison.
THEOREM 2.1 (see [15]). For large enough n, the number ofprimes between 1 and n

denoted by r(n) satisfies " < 7r(n) < ’41nn"

n/log n.COROLLARY. The number ofprimes between -n and n is greater than -LEMMA 2.2. If p, q >_ v/m/ki are relatively prime, then a comparison Sill S[k] is

forced by at most one ofpk and qki.
Proof. Assume k mod pki, =_ k mod qki for 1 < l, k < m. Then also k mod

pqk. But pqki >_ m and 1 < l, k _< m, which implies k, a contradiction. U
LEMMA 2.3. The numberofcandidatesfor ki+ that areprime multiples ofki and satisfy

-Ki+ < ki+ < Ki+ is greater than Ki+/4Ki logm. Each such candidate satisfies the
condition ofLemma 2.2.

Proof. These candidates are of the form pki for prime p. The number of such prime
values of p can be estimated using the Corollary to Lemma 2.1. It is at least
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Ki+ Ki+
log Ki+ - 4Ki log m"

ki

Each one of these candidates also satisfies the condition ofLemma 2.2 since ki < Ki,
pki >_ Ki+t/2 and

1 g?+ 1 m2-2"4-
p2 __>

ki 4Ki ki 4m1-a-(i-x)

m 1 m2.4- m>--o [-1
ki 4 ki

LEMMA 2.4. There exists a candidate for ki+t in the range 1/2Ki+ Ki+ thatforces
at most 4mKi log m/Ki+ comparisons.

Proof. By Lemma 2.3 there are at least Ki+I/4Ki logm such candidates that are
prime multiples of ki and satisfy the condition of Lemma 2.2. By Lemma 2.2, each of the
m comparisons is forced by at most one of them. So the total number of comparisons
forced by all these candidates is at most m. Thus, there is a candidate that forces at most
4mKi log m/Ki+l comparisons.

LEMMA 2.5. For m large enough and i < 1/4 log log m, 1 + m2"a- 16 logm < m3"4-*.
Proof. For m large enough,

1 (2)log log (1 + 16 log m) < log log m 1 log log m,

log(1 + 16 log m) < 4-(1/4) lglgm logm,

1 + 16 log m < m4-(1/4) lglgm

from which the lemma follows.
LEMMA 2.6. Assume the invariants hold at the beginning ofround i and the adversary

chooses ki+ to be a candidate whichforces at most 4mKi log m/Ki+ comparisons. Then
the adversary can answer the comparisons in round i so that the invariants also hold at the
beginning ofround i + 1.

Proof. By Lemma 2.4, such ki+l exists. For each comparison that is forced by ki+l
and is of the form S[1] S[j], where j mod ki+l, the adversary fixes the residue class
modulo ki+l to the same new symbol (a different symbol for different residue classes).
The adversary answers comparisons between fixed symbols based on the value they are
fixed to. All other comparisons involve two positions in different residue classes modulo
ki+ (and at least one unfixed symbol) and are always answered as unequal.

Since k+l is a multiple of k, the residue classes modulo ki split; each class splits
into k+/k residue classes modulo ki+l. Note that if two indices are in different residue
classes modulo k, then they are also in different residue classes modulo ki+l; if two
indices are in the same residue class modulo k+l, then they are also in the same residue
class modulo ki.

We show that the invariants still hold.
(1) The candidate we chose for ki+l was in the required range.
(2) Residue classes that were fixed before split into several residue classes; all are

fixed. Any symbol fixed at this round causes its entire residue class modulo k+t
to be fixed to the same symbol.
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(3) Equal answers of previous rounds are not affected since the symbols involved
were fixed to the same value by the invariants held before. Equal answers of
this round are either between symbols that were fixed before to the same value
or are within the same residue class modulo k+, and the entire residue class is
fixed to the same value.

(4) (a) Unequal answers of previous rounds are between different residue classes
modulo ki+ since residue classes modulo k split. Unequal answers of this
round are between different residue classes because comparisons within
the same residue class modulo ki+ are always answered as equal.

(b) Unequal answers that involve symbols that were fixed before this round
are consistent because fixed values dictate the answers to the comparisons.
Unequal answers that involve symbols that are fixed at the end ofthis round
and at least one that was fixed at this round are consistent since a new
symbol is used for each residue class fixed.

(5) We prove inductively that fi+l <_ K+. We fix at most 4mK log m/Ki+
residue classes modulo ki+. There are ki+l such classes and each class has
at most [m/ki+l] < 2m/ki+ elements. By Lemma 2.5 and simple algebra the
number of fixed elements satisfies

2m 4mK logm

k+ K+
m

16 logm_< K 1+ K+
_< m1-4-(-1)(1 + m2"4-161ogm)
< m1--’ K+.

THEOREM 2.7. Any comparison-based parallel algorithm forfinding the period length
ofa string S[1..m] using m comparisons in each round requires 1/4 log log m rounds.

Proof. Fix an algorithm that finds the period of S, and let the adversary described
above answer the comparisons. After i 1/4 log log m rounds

fi+lki+l m
1-4-(1/4)lglg’ m < m

2lV/i-m 2

The adversary can still fix S to have a period length k+ by fng each remaining
residue class modulo k+ to the same symbol, different symbols for each class. Alter-
natively, the adversary can fix all unfixed symbols to different symbols. Note that this
choice is consistent with all the the comparisons answered so far by invariants 3 and 4,
and the string does not have any period length smaller than m/2. Consequently, any
algorithm that terminates in less than 1/4 log log m rounds can be fooled.

THEOREM 2.8. The lower bound holds also for order comparisons.
Proof. The adversary gradually defines the linear order of the symbols. He does it

in such a way that the answers to comparisons in round i are determined at the round
or before. The order is determined by a lexicographic order on a name given to each
symbol and is extended for unfixed symbols at each round.

At round i, after k+ is chosen and before fixing new symbols, all names of unfixed
symbols S[1] are extended to be < mod kz, mod ka,..., mod ki+l >. If a symbol
S[1] was fixed at round j < i, its entire residue class is assigned the name < mod ke,
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mod ka," ", mod k+l >, which is never changed. Note that all other names cannot
have this name as a prefix. If two symbols compared at round i are in the same residue
class modulo ki+l, then theywere fixed at this round or before and given the same name.
Symbols that are compared at round i and are in different residue classes modulo ki+l
have different names unless they were fixed earlier to the same value. The result of the
comparison (<, =, >) is already determined even if the full final name of the symbols is
not defined yet. At the end, if the residue classes modulo k+l are fixed in such a way
that k+l is the period length, then the full names are given as before. If all symbols are
fixed to be different, the name given to unfixed position is < mod k2, modk3,...,
modki+1,1 >. Iq

3. A lower bound for string matching.
THEOREM 3.1. The lower bound holds also for any comparison-based string matching

algorithm.
Proof. Fix a string matching algorithm. We present to the algorithm a pattern

P[1..m] that is S[1..m] and a text T[1..2m 1] that is S[2..2m], where S is a string of
length 2m generated by the adversary in the way described above. (We use the same
adversary that we used in the previous proof; the adversary sees all comparisons as com-
parisons between symbols in S.) After 1/4 log log 2m, rounds, the adversary still has the
following choices. He can fix S to have a period length smaller than m, in which case
we will have an occurrence of P in T; he can fix all unfixed symbols to completely differ-
ent characters, which implies that there would be no such occurrence. Thus, the lower
bound holds also for any such string matching algorithm.

4. More comparisons in each round. We can use the trivial algorithm to solve the
string matching problem in constant time if m2 comparisons are available in each round
on a CRCW-PRAM; therefore, no more than mz processors are necessary. If the num-
ber of processors p is smaller than m/log log m, then we can slow down the log log m
algorithm in [4] to run in O(m/p) time. We prove below that for m _< p < m the time
complexity of the string matching problem becomes O(log logp/m p).

LEMMA 4.1./f c > I and p1-c- m/2, then k O(log log2p/m p).
Proof We have 2p/m p-. Taking logarithms twice we get

k=log
logp

=logclog 2p lOg2p/m P"
m

THEOREM 4.2. The algorithm in [4] takes O(log log2p/m p) time ifwe use m < p < m2

processors.
Proof. The algorithm in [4] consists of two phases. The first phase is the pattern

analysis phase, which is easily modified to check in round i for period lengths in the
range p1-2-’-1) p1_9.-. This phase terminates when pl-2-’ > m/2, and by Lemma
4.1, O(log log2p/m p) rounds are sufficient. The second phase is the text analysis phase,
which can also be modified to work within the same time bound.

THEOREM 4.3. Any comparison-basedparallel algorithm forfinding the period length
of a string S[1..m] using p comparisons, m <_ p <_ m2, in each round requires at least
ft (log log2p/m p) rounds.

Proof. We change m to p in the appropriate places of the proof. In particular, we
choose K p1-4-(-1) The adversary can go on as long as Ki < m/2. By Lemma 4.1,
2(log log2p/m p) rounds are necessary.
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SEARCHING FORA MOBILE INTRUDER IN A POLYGONAL REGION*
ICHIRO SUZUKIt AND MASAFUMI YAMASHITA*

Abstract. The problem of searching for a mobile intruder in a simple polygon by a single mobile searcher
is considered. This paper investigates the capabilities of searchers having different degrees of visibility by in-
troducing the searcher having k flashlights whose visibility is limited to k rays emanating from his position,
and the searcher having a point light source who can see in all directions simultaneously. This paper presents
necessary and sufficient conditions for a polygon to be searchable by various searchers. The paper also intro-
duces a class of polygons for which the searcher having two flashlights is as capable as the searcher having a
point light source, and it gives a simple necessary and sufficient condition for such polygons to be searchable
by the searcher having two flashlights. The complexity of generating a search schedule under some of these
conditions is also discussed. Many of the results are proved using chord systems that represent the visibility
relations among the vertices and edges of the given polygon.

Key words, geometry, visibility

AMS(MOS) subject classification. 68E99

1. Introduction. Problems related to visibility inside a simple polygon have been the
subject of many recent papers, where two points inside a polygon are said to be mutu-
ally visible if the segment between them does not go outside the polygon. Of particular
interest to us among these problems is the watchman route problem [3], [4], which is
an interesting variation of the well-known art gallery problem of stationing guards in a
simple polygon so that every point in the interior of the polygon will be visible from at
least one guard [5], [8], [11], [15], [16]. The goal of the watchman route problem is to
construct a shortest tour within a given simple polygon so that every point in the inte-
rior of the polygon will be visible from at least one point on the tour. Note that this
goal can be interpreted as (constructing a path for) finding a stationary intruder located
in the polygon by a single mobile searcher. The objective of this paper is to consider
a dynamic version of the watchman route problem in which the intruder is assumed to
be mobile rather than stationary. Obviously, if the speed of the intruder is sufficiently
large compared to that of the searcher, then even if the searcher can see in all directions
simultaneously at any time, depending on the shape of the given polygon it may or may
not be possible for the searcher to find the intruder.

Another motivation for considering such a dynamic search problem is the following.
The well-known graph search problem [10], [14], [17] of"clearing" an initially "contami-
nated" graph by using a number of searchers was first introduced as a possible formaliza-
tion of the following problem [17]: "Suppose a man is lost and wandering unpredictably
in a dark cave. A party of searchers who know the structure of the cave is to be sent
to find him. What is the minimum number of searchers needed to find the lost man re-
gardless of how he behaves?" Ifwe represent the cave as a polygon (possibly with holes
and overlaps) rather than as a graph, then we obtain a geometric search problem that
can be considered as a more faithful formalization of the original problem. The problem
considered in this paper can be viewed as a restricted version of this geometric problem
in which the given polygon is simple and the number of available searchers is one.
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We refer to the dynamic search problem informally introduced above as the poly-
gon search problem. In this problem we represent both the searcher and the intruder
as a point that can move continuously within a given polygon, and assume that the in-
truder can move arbitrarily faster than the searcher. To investigate the capabilities of
the searchers having different degrees of visibility, we introduce the k-searcher for each
integer k > I and the o-searcher. The k-searcher is the searcher having k "flashlights"
whose visibility is limited to k rays emanating from his position, where the directions
of the rays can be changed continuously with bounded angular rotation speed. The o-
searcher is the searcher having the visibility of 360 degrees who can see in all direc-
tions simultaneously at any time. Given a simple polygon, the objective here is to decide
whether there exists a "schedule" for the given searcher to find the intruder regardless of
how he moves, and if so, to generate such a schedule. Detection of a mobile intruder in a
simple polygon was first considered in the searchlight scheduling problem [20] in which
the rays of stationary "searchlights" are used to find the intruder, but to our knowledge,
no concrete results on the polygon search problem have been reported.

We say that a polygon is searchable by a given searcher if there exists a schedule
for the searcher. Note that any polygon searchable by the k-searcher is searchable by
the k’-searcher for any k’ > k and also by the o-searcher. In the next section we show
that (1) the 2-searcher is strictly more capable than the 1-searcher (i.e., there exists a
polygon searchable by the 2-searcher but not by the 1-searcher), and (2) any n-sided
polygon searchable by the o-searcher is searchable by the (ln/2J + 1)-searcher. Thus a
fundamental question here is whether there exists an n-sided polygon searchable by the
k-searcher but not by the (k- 1)-searcher for some 3 < k < [n/2J + 1. So far we have
not been able to find such a polygon, and we conjecture that any polygon searchable by
the o-searcher is actually searchable by the 2-searcher. One of the goals of this paper
is to discuss a case in which the 2-searcher is in fact equally capable as the c-searcher.

The main results of this paper are the following. First, we present simple necessary
conditions and sufficient conditions for a polygon to be searchable by various searchers.
Specifically, we show that no polygon P searchable by the 1-searcher can have three
points x, y, and z such that no point in 7r(x, y) is visible from z, no point in 7r(y, z) is
visible from x and no point in 7r(z, x) is visible from y, where for points u and v in P,
7r(u, v) denotes the Euclidean shortest path between u and v within P. We prove a similar
result for the -searcher using the concept of "2-visibility" instead of visibility, where a
point u is said to be 2-visible from a point v if u is visible from a point visible from v. The
sufficient conditions state that a polygon is searchable (1) by the 1-searcher if it is weakly
visible from an edge, (2) by the 2-searcher if it is weakly 2-visible from an edge, and (3) by
the 2-searcher if it is weakly visible from 7r(u, v) for some points u and v on the boundary,
where a region Q is said to be weakly visible (or weakly 2-visible) from a region R if every
point in Q is visible (or 2-visible) from some point in R. The complexity of generating
search schedules under these conditions is also discussed. Next, we introduce a structure
called chord system that represents the visibility relations among the vertices and edges of
a polygon, and we discuss its basic properties. We then use chord systems to show that
any polygon searchable by the 1-searcher (or the oc-searcher) must be weakly visible
(or weakly 2-visible) from 7r(u, v) for some vertices u and v. Finally, we investigate the
case in which the given polygon is a hedgehog, which is a simple polygon consisting of a
convex body and narrow hooked pins (corridors) (see Figs. 3, 5, and 6). We show that any
hedgehog searchable by the cx>searcher is also searchable by the 2-searcher, and that a

Recently we found that the polygon search problem is mentioned as an open problem and called the
huntingproblem in [19].
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schedule of the 2-searcher oflength O(m) for searching a given n-sided hedgehog having
m hooked pins can be generated in O(n + m log n) time. The results on hedgehogs are
again obtained using chord systems.

The polygon search problem is stated formally in 2. Simple necessary conditions
and sufficient conditions are presented in 3. Chord systems and their basic properties
are discussed in 4. Section 5 presents additional necessary conditions that are obtained
using chord systems. The case when the given polygon is a hedgehog is discussed in 6.
Concluding remarks are found in 7.

2. Problem formulation. Let P be a simple polygon. We denote by OP the bound-
ary of P. Two points z and y E P are said to be mutually visible if c_ P. We let V(z)
denote the set of points in P that are visible from z.

Let us introduce the searcher who can walk within P holding k flashlights, where k
is a positive integer, and a flashlight emits a single light beam that is blocked as soon as
it intersects with the exterior of P. We call this searcher the k-searcher.

DEFINITION 1. A schedule of the k-searcher for P is a tuple S (S, F1, F2, , Fk)
ofk+ 1 continuous functions S" [0, T] P and F1, F2, , Fk [0, T] R, where [0, T]
is an interval of real time and R is the set of real numbers. A point z E P is illuminated
at time t [0, T] during the execution of S if z is on the intersection of V(S(t)) and the
k rays emanating from S(t) in the directions Fl(t), Fz(t),..., F(t), respectively.

S(t) is the location of the searcher and Fl(t), F(t),..., F(t) are the directions of
the k flashlights at time t, respectively, where directions are measured in radian coun-
terclockwise from the positive z-axis. Intuitively, the illuminated points are those that
the k-searcher can "see" at any given time. Note that the visibility of the k-searcher is
limited to k rays emanating from his position.

Let us introduce another type of searcher who can see in all directions simultane-
ously. We call this searcher the o-searcher, since we can imagine that this searcher has a
point light source that can be viewed as a collection of infinitely many flashlights aimed
in all directions.

DEFINITION 2. Let P be a simple polygon. A schedule of the c-searcher for P is
S (S), where S [0, T] P is any continuous function over an interval [0, T] of real
time. A point z P is said to be illuminated at time t 6 [0, T] during the execution of S
if x V(S(t)).

S(t) is the location of the x>searcher at time t. Again, the illuminated points are
those that the -searcher can "see" at any given time. Note that the set of illuminated
points at time t coincides with the set of points that are visible from S(t).

DEFINITION 3. Let S be a schedule of any searcher defined over the interval [0, T] of
real time. Apoint x P is said to be contaminated at time t E [0, T] during the execution
ofS if there exists a continuous function I" [0, t] P such that for any t’ [0, t], I(t’) is
not illuminated at time t. A point that is not contaminated is said to be clear. A region
R c_ P is said to be contaminated if it contains a contaminated point; otherwise, it is
clear.

The function I in Definition 3 represents a path of the intruder who can move con-
tinuously with unbounded speed. Intuitively, z P is contaminated at time t [0, T] if
and only if the intruder can reach z at t without being seen by the searcher in the interval
[0, t]. Note that at time zero, a point is contaminated if and only if it is not illuminated.
Also, at any time an illuminated point is clear, and a contaminated point remains con-
taminated until it becomes illuminated.

DEFINITION 4. Let S be a schedule of the k-searcher (or a-searcher) for P defined
over the interval [0, T] of real time. S is called a search schedule for P if P is clear at time
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T. P is said to be k-searchable (or o-searchable) if there exists a search schedule of the
k-searcher (or c-searcher) for P.

Since the "speed" at which the searcher "executes" a given schedule is irrelevant to
whether or not P is clear at the end of the execution, we represent a schedule S of any
searcher simply as a sequence of some elementary actions, instead of giving formal de-
scriptions of the functions contained in S. The only elementary action of the oc-searcher
that we use here is to move over a given line segment, and hence a schedule of the
searcher is simply given as a directed polygonal chain within P. For the k-searcher, the
elementary actions we use are (1) to aim a flashlight at a given point, (2) to rotate a
flashlight either clockwise or counterclockwise to illuminate a given point, (3) to move
over a segment aiming the flashlights at or through given points, and (4) to move over a
segment aiming the flashlights in given fixed directions. (All the schedules we develop
require these elementary actions to be executed one at a time.) Obtaining a formal de-
scription of a schedule as a collection of functions from a sequence of such actions is
straightforward. We define the length of a schedule to be the number of elementary
actions it Contains.

Example 1. Figure 1 shows a simple polygon and the directed polygonal chain abcde
determined by a search schedule of the oc-searcher. The chain consists offour segments,
and hence the length of the schedule is four. The regions that are clear when the
searcher reaches a, b, c, d, and e are shown shaded in Figs. l(a), (b), (c), (d), and (e),
respectively (the oc-searcher is shown by o).

(a) (b) (c)

(d) (e)

FIG. 1. A polygon and a search schedule ofthe o-searcher.

Example 2. Figure 2 shows how the polygon of Example 1 can be cleared by the 2-
searcher. Again, clear regions are shown shaded. Initially the two flashlights are aimed at
a, and then one ofthem is rotated counterclockwise until it is aimed at b (Fig. 2(a)). Then
the 2-searcher moves to a new position aiming the two flashlights continuously at a and b,
respectively (Fig. 2(b)). This movement requires two consecutive moves over a segment,
since the positions of the 2-searcher in Figs. 2(a) and (b) are not mutually visible. The
rest of the operation should be self-explanatory. Note that only the elementary actions
introduced above are used.

Some points in the polygon may have to be recontaminated repeatedly during the
search, as the following example shows.
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(a) (b) (c)

(d) (e)

FIG. 2. Clearing thepolygon ofExample I using the 2-searcher.

Example 3. The polygon shown in Fig. 3 consists of a square and seven narrow
hooked pins, where each pin is drawn schematically as a polygonal chain. Each pin is
assumed to be sufficiently narrow so that the visibility (into the square) from the points
near the bend is limited approximately to the neighborhood of the corresponding dotted
line. Let a, b,..., and g be the vertices at the "tip" of the pins, as is shown in the figure.
Note that the c-searcher must visit each of V(a), V(b),..., and V(g) to dear these tips.
This polygon is o-searchable, since it can be cleared by the oo-searcher who visits V(a),
V(b), V(g), V(c), V(d), V(a), V(e), V(f), V(c), V(g), V(b), and V(a) in this order by
using the shortest paths to go from one region to the next. (An initial segment of this
path is shown in Fig. 3.) Table 1 shows the clear tip vertices at the moment each of the
tip vertices are cleared. Note that a is recontaminated twice during the search. This is
unavoidable, as explained below. We may assume that the a-searcher starts the search
from a point in V(a), since if a tip vertex x other than a is cleared first among all the tip
vertices, then x becomes contaminated when any other tip vertex y is cleared next, and
hence a will be the only clear tip vertex when the o-searcher eventually reaches V(a).
Also, we may assume that the search ends at a point in V(a), since the "reversal" of
any search schedule is also a search schedule.2 Now, note that at the moment he enters
V(d) or V(e) for the first time after leaving V(a), at least four tip vertices including a are
contaminated. (For example, if the a-searcher is in V(d), then at least a, e, f and g are
contaminated.) If a is recontaminated only once during the search, then the o-searcher
must clear all contaminated tip vertices other than a before he enters V(a). But this
is not possible, since as soon as he clears a contaminated tip vertex x other than a, x
becomes the only clear tip vertex. Therefore, a must be recontaminated at least twice.

Example 4. The polygon shown in Fig. 3 can also be cleared by the 2-searcher. Basi-
cally, the 2-searcher clears the tip vertices in the same order as the o-searcher, and uses
the two flashlights appropriately so that the set of clear tip vertices at any given moment
is the same as that at the corresponding moment during the execution of the schedule

2For any function f: [0,T] P, its reversal is the function f-1 [0, T] P such that f-l(t)
f(T t) for all E [0, T]. Obviously, if the oo-searcher given by S cannot detect the intruder given by I, then
the oo-searcher given by S’- cannot detect the intruder given by I- 1. Thus S is a search schedule if and only
if S-1 is a search schedule.
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FIG. 3. A square with seven hookedpins.

TABLE 1
Clear tip vertices at the moment each tip vertex is cleared.

Tip vertex just cleared Clear tip vertices at that moment

a

a, b, g

a, b, c, g

b, c, d

a, b, c, d

a, b, c, d, e

d,e,f

c, d, e, f
c,d,e, f,g

b,c,d,e,f,g

a,b,c,d,e,f,g

for the o-searcher. Specifically, the 2-searcher starts from a point in V(a) sweeping
the boundary of P by the "left" and "right" flashlights (called Fz and F, respectively).
See Fig. 4 for illustration. When b is cleared for the first time, the 2-searcher is in V(b)
aiming Fn at b and Fz at a point in the boundary OP between a and 9, so that a and b
are clear. Similarly, when 9 is cleared for the first time, the 2-searcher is in V(9) aiming
FL at 9 and F at a point in OP between b and c, so that a, b, and 9 are clear. Tip vertex
c is cleared in a similar manner. When he moves from V(c) to V(d), Fn is advanced
to d and Fz is moved backward (from a point in OP between f and 9) to a point in OP
between a and b, so that b, c, and d are clear. The rest of the schedule is similar, and we
leave details to the reader.

Example 5. Figures 5 and 6 show schematic drawings of two polygons that are not
o-searchable. The one shown in Fig. 5 consists of a rectangle and three narrow hooked
pins, where again each pin is drawn as a polygonal chain with a bend. To see that this
polygon is not o-searchable, note that whenever one of the three tips a, b, and c is
illuminated by the o-searcher, there exists a path between the remaining two tips not
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g f

FIG. 4. Clearing thepolygon ofExample 3 using the 2-searcher.

containing any illuminated point. This, together with the fact that initially at most one of
the three tips can be illuminated, implies that at most one of the three tips can be clear
at any time during the search by the a-searcher. Thus this polygon is not searchable by
the c-searcher. The polygon shown in Fig. 6 is a "windmill" consisting of a convex body
and five narrow hooked pins. Note that initially at most one of the five tips a, b, c, d, and
e can be clear. Thus, without loss of generality, let a be the tip that becomes clear first
among the five. If any of b, c, and d is cleared next, then that tip will be the only clear
tip since a becomes recontaminated. It is possible to clear e without recontaminating a,
but both become recontaminated if b or c is cleared next, and d and e will be the only
clear tips if d is cleared next. Therefore, at most two of the five tips can become clear
simultaneously, and hence there exists no search schedule for this polygon.

FIG. 5. A polygon which is not cxz-searchable.

The following proposition is immediate from definition.
PROPOSITION 1. Anysimplepolygon that is k-searchable is k’-searchableforany k’ > k

and o-searchable.
THEOREM 1. There exists a simplepolygon which is 2-searchable but not 1-searchable.
Proof. We have already seen in Example 2 that the polygonshown in Fig. 7 is 2-

searchable. Points a, b, and c shown in the figure have the property that whenever one
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FIG. 6. Anotherpolygon which is not oo-searchable.

of them is illuminated by the 1-searcher, there exists a path between the remaining two
points not containing any illuminated point. This, together with the fact that initially at
most one of the three points can be illuminated, implies that at most one of the three
points can be clear at any time during the search by the 1-searcher. Thus the polygon is
not searchable by the 1-searcher. [3

FIG. 7. A polygon which is not 1-searchable.

THEOREM 2. If an n-sided simple polygon is cx>searchable, then it is (Ln/2J + 1)-
searchable.

Proof. We only give an outline of the proof. Let P be an n-sided simple polygon P
that is c-searchable. If P is star-shaped [12], then it can be cleared by the 2-searcher
stationed in the kernelwho (1) aims both flashlights at an arbitrary point on the boundary
of P and then (2) rotates one of the flashlights clockwise for 27r without rotating the
other. Now assume that P is not star-shaped. Let S [0, T] P be a path of the -searcher for clearing P. First, we place the ([n/2] + 1)-searcher at S(0) and aim one
flashlight at every reflex vertex which blocks visibility from S(0), as is shown in Fig. 8.
Note that the number of such reflex vertices is at least one (since P is not star-shaped)
and at most Ln/2J. Next, we clear V(S(O)) by aiming another flashlight at any of the
reflex vertices blocking visibility from S(0) and rotating it clockwise for 27r. When this
is done, basically we move the (In/2J + 1)-searcher along the path determined by S in
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such a way that one flashlight is aimed at every reflex vertex which blocks visibility from
his position. (When the ([n/2J + 1)-searcher reaches a reflex vertex v that has been
blocking visibility, he must stay at v temporarily and perform additional rotations of the
flashlights to clear the points in V(v) that have not been visible. We leave details to the
reader.) This guarantees that, when the (Ln/2J + 1)-searcher is at z, the intruder can
move (without being seen) only within a single maximal connected region of P V(z)
not visible from z. Therefore, if it were possible for the intruder to avoid being seen by
the ([n/2J + 1)-searcher until the end of the execution of this schedule, then it would
also be possible for him to avoid being seen by the c-searcherwho moves along the path
determined by S. This is a contradiction. 0

FIG. 8. Simulation ofthe cx-searcher by the (Ln/2J + 1)-searcher.

Whether there exists an n-sided simple polygon that is k-searchable but not (k 1)-
searchable for some 3 < k < Ln/2j + 1 is an interesting question. So far we have not
been able to find such a polygon, and we conjecture that any a-searchable polygon is
actually 2-searchable. In 6 we show that this indeed is the case if the given polygon has
a certain topology.

3. Simple necessary conditions and sufficient conditions. Let P be a simple poly-
gon. For a point z P, define V2(z) yv(x) V(/). Note that V(z) c_ V2(z). If

/ V (z), then we say that /is 2-visible from z. For regions Q and R c_ P, we say that
Q is weakly visible (or weakly 2-visible) from R if every point in Q is visible (or 2-visible)
from some point in R. (In this definition, if R consists of a single point p, then we simply
say that Q is visible (or 2-visible) from p.) For points z, /, and z P, /and z are said
to be separable (or 2-separable) by z if every path within P between /and z contains at
least one point in V(z) (or V(z)). Note that since P is simple, /and z are separable
(or 2-separable) by z if and only if 7r(/, z) contains at least one point in V(z) (or Vg(z)),
where 7r(/, z) is the Euclidean shortest path within P between /and z. See Fig. 9 for an
illustration of these concepts.

Points z, /, and z P are said to be mutually nonseparable (or mutually non-2-
separable) if no two points out of the three are separable (or 2-separable) by the third.
The proofs of the following two theorems are essentially similar to that of Theorem 1.

THEOREM 3. Let P be a simple polygon. If P is 1-searchable, then no three points in
P are mutually nonseparable.

Proof. Suppose that there are three points in P that are mutually nonseparable.
Then (1) at most one of them can be clear at the beginning of the schedule of the 1-
searcher, and (2) whenever one of them is illuminated by the 1-searcher, there exists a
path between the remaining two points not containing any illuminated point. Thus at
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,. -.
(y,z)

FIG. 9. to is visibleom x; v is 2-visiblefrom ; 1 andz are separable by to and 2-separable by .
most one of the three points can be clear at any time, and hence P cannot be cleared by
the 1-searcher.

THEOREM 4. Let P be a simplepolygon. IfP is o-searchable, then no threepoints in
P are mutually non-2-separable.

Proof. Suppose that there are three points in P that are mutually non-2-separable.
Then (1) at most one of them can be clear at the beginning of the schedule of the o-
searcher, and (2) whenever one of them is illuminated by the o-searcher, there exists
a path between the remaining two points not containing any illuminated point. Thus at
most one of the three points can be clear at any time, and hence P cannot be cleared by
the o-searcher. [3

By Theorem 4, the polygon shown in Fig. 5 is not c-searchable, since tips a, b,
and c are mutually non-2-separable. On the other hand, the non-o-searchable polygon
shown in Fig. 6 has no three points which are mutually non-2-separable. The non-o-
searchability of this polygon follows from Theorem 13 given in 5.

Nowwe present some sufficient conditions for a polygon to be searchable and discuss
related complexity issues.

THEOREM 5. Let P be a simple polygon that is weakly visible from an edge -. Then
P is 1-searchable. Furthermore, P can be cleared by the 1-searcher who moves only within

Proof. Let u pl, p2,’", p, v be the clockwise listing of the vertices of P. For
convenience we assume that the searcher is located on facing the interior of P, and
hence u is to his left and v is to his right. For each p, 2 < i < n, let #(p) (or v(p)) be
the point closest to u (or v) on- that is visible from p. We denote by S the position of
the 1-searcher. P can be cleared by the 1-searcher as follows. Initially, the 1-searcher is
located at u aiming the flashlight F at p. At this moment S u and the region to the
left of Sp is clear. Suppose that for some 2 < i < n 1, the 1-searcher is located at S,
p is visible from S, and the region to the left of Sp is clear. There are three possible
movements of the 1-searcher for clearing p+x.

1. If S is strictly to the left of #(p+.), then the 1-searcher moves right from S to
tt(p+) aiming F at p. Note that the triangle Sp#(p+I) lies within P, and
hence p is visible from every point in Stt(p+), as is shown in Fig. 10(a). Thus
when the 1-searcher reaches/z(p+x), the region to the left of Sp+x is clear,
where S is now at #(p+).

2. If S is between #(p+) and v(p+), inclusive, then edge PiPi+I is visible from
S. Thus the 1-searcher simply rotates F clockwise fromp top+ and clears the
region to the left of Sp+x. See Fig. 10(b).
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3. If S is strictly to the right of u(pi+l), then Spi and pi+Iv(pi+t) intersect. See
Fig. 10(c). Let r be the intersection. Since triangles u(pi+)rS and pirpi+ both
lie within P, when the 1-searcher moves left aiming F through r and reaches
u(pi+), the region to the left of Spi+ becomes clear, where S is now at #(pi+).

P becomes clear when p, v is cleared. q

Pi+l

S g(Pi+l
(a)

Pi Pi+l

S
(b)_

Pi+l

U- V
v (pi+1) S

(c)

FIG. 10. Illustration for theproofof Theorem 5.

Since the points #(pi) and v(pi) for all i can be computed in O(n) time by a method
given in [1], a search schedule based on the discussion given in the proof of Theorem 5
can be generated in O(n) time. The length (i.e., the number of elementary actions) of
the resulting schedule of the 1-searcher is n- 1. We also note that given a simple polygon
P, all edges of P from which P is weakly visible can be found in linear time [18].

THEOREM 6. Let P be a simplepolygon that is weakly 2-visiblefrom an edge -. Then
P is 2-searchable.

Proof. We only give an outline of the proof. Let P’ be the subpolygon ofP consisting
of the points that are weakly visible from --. Then P’ is 1-searchable by Theorem 5,
and any maximal region Q c_ p p’ not weakly visible from is weakly visible from
its "lid" (i.e., the boundary between P’ and Q). Thus the 2-searcher can clear P by
executing the search schedule for P’ using flashlight Ft, in such a way that whenever the
flashlight illuminates the lid of such Q, where u, z, /and v occur clockwise in OP,
he (1) moves straight from his position S to z aiming F and the other flashlight Fz at x
and S, respectively (Fig. ll(a)), (2) clears Q from using Ft by the method given in the
proofofTheorem 5 aiming Fz continuously at S so that the intruder will not move across
Sz (Fig. ll(b)), and then (3) returns to S aiming F and F2 at /and S, respectively (Fig.
11(c)). U
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x

(a)

x

(b)

(c)

FIG. 11. Illustration ]’or the proofof Theorem 5.

Search schedules described in the proof of Theorem 6 can be generated in linear
time given a triangulation of P, since (1) the regions Q not weakly visible from uv can be
found in sorted order in linear time by basically constructing the weak visibility polygon
[7] (consisting of the points weakly visible from -) from the triangulation, and (2) a
schedule for clearing each Q can be generated in time linear to the size of Q. A triangu-
lation of a simple polygon can be obtained in linear time [2].

Theorems 5 and 6 can easily be extended to the case in which P is weakly (2-)visible
from a consecutive portion of the boundary ofP that is convex toward either the interior
or exterior of P. We omit the details to save space.

THEOREM 7. Let P be a simple polygon that is weakly visible from 7r(u, v) for some
points u and v E OP. Then P is 2-searchable.

Proof. We only give an outline of the proof. See Fig. 12 for illustration. Basically,
the 2-searcher moves from u to v along 7r(u, v) aiming the "left" and "right" flashlights
(called FL and FR, respectively) in opposite directions perpendicular to the direction
of his movement. Whenever a flashlight, say FL, illuminates a reflex vertex z blocking
visibility from his position x, he does the following aiming the other flashlight (FR in this
case) through x continuously: (1) Move straight to z, (2) clear the region Q behind z not
visible from x by FL from the "lid" of Q using the method given in the proof of Theorem
5 (this is possible since Q is weakly visible from 7r(u, v), and hence 2-visible from x), and
(3) return straight to x aiming FL at or through z. (Before the 2-searcher starts to move
from u, the regions, if any, "behind" the rays of FL and FR must be cleared by executing
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the above operation regarding u as both z and z. Similar operations may be needed to
complete the search when he reaches v.) When he reaches a corner y E 0P of 7r(u, v) at
which 7r(u, v) makes a right (or left) turn, he sweeps the opposite boundary of P using
Fz (or Fn) until its ray becomes perpendicular to the direction in which he moves next,
clearing all regions not visible from y using a technique similar to the one described
above (this is possible since the portion of the boundary to be cleared is 2-visible from
). Certainly P is cleared by this method. ]

V

FIG. 12. Illustration for theproofof Theorem 7.

For an n-sided polygon P, points u and v satisfying the condition of Theorem 7 can
be found in O(n log n) time (if they exist). The basic idea is similar to that given in [9] for
finding a segment within P from which P is weakly visible. To save space, we only give
an outline. We construct a set (7 of chords of p3 having the property that P is weakly
visible from 7r(u, v) for some u and v OP if and only if there exist u and v OP such
that rr(u, v) intersects every chord in C. Then we map the chords in C to a set C of
chords of a unit circle4 preserving the order in which their endpoints appear in OP. We
can then show that there exist u and v OP such that 7r(u, v) intersects every chord in C
if and only if there exists a stabbing line that intersects every chord in G’. As is explained
.in [9], the set C (of size O(n)) can be constructed in O(n log n) time using the bullet
shooting algorithm of [7] and a modified version of an algorithm given in [21]. (Bullet
shooting is the problem of finding the first point in OP hit by the ray emanating from a
given point in P in a given direction.) The set C is constructed from C in linear time.
A stabbing line for G" can be found (if it exists) in O(n log n) time by using an algorithm
of [6], and a pair of u and v can be found in O(log n) time from the given stabbing line
using binary search over the intervals of the circumference of the unit circle determined
by the endpoints of the chords. Thus the total time needed is O(n log n). We leave the
details to the reader.

Given such u and v, the search schedule described in the proof of Theorem 7 can be
generated in additional O(n log n) time. First, we compute 7r(u, v) in linear time from a
triangulation of P [13]. Once 7r(u, v) is computed, we can find all the regions (called Q
in the proof) not visible from the 2-searcher and those region of P that must be cleared

3A chord of P is a line segment within P whose endpoints are in OP.
4A chord of a circle is a line segment whose endpoints are on its circumference.
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from corners (called V in the proof) of 7r(u, v) in O(n log n) time using the bullet shooting
algorithm of [7]. Since a schedule for each such region can be found in time linear to its
size as we discussed above, the total time needed to generate a schedule is O(n log n).
The total number of elementary actions is clearly O(n).

By Proposition 1, any polygon P satisfying the condition of Theorem 7 is a-search-
able. In fact, we can show that the c-searcher can clear it by simply moving from u to v
along 7r(u, v). To save space, we leave the details to the reader.

4. Chord systems. In this section we introduce chord systems. Chord systems are
used extensively in 5 to prove additional necessary conditions for a polygon to be search-
able, and also in 6 to study a class of polygons called hedgehogs. We start with some
definitions.

Let a, b, a, b2,..., a,, bn be distinct points that appear in this order clockwise on
the circumference of a unit circle. Let A {al, a2,..., an} and B {bl, b2,..., bn}.
For any sets X and Y c_ A tA B, X x Y denotes the set of chords of the unit circle
connecting a point in X and a point in Y. A chord c of the unit circle is said to separate
two disjoint sets A1 and Az c_ A if c q z z # O for any chord ZlZ2 E A x A. If c

separates {ai } and {aj }, then we simply say that c separates ai and aj.
DEFINITION 5. A set C C_ A B of chords is called a chord system if for any a E A

there exists some b B such that ab C. The sets A and B are called the base sets of C.
DEFINITION 6. Let C C_ A x B be a chord system. Let A and Az c_ A be two

disjoint sets. We say that a point a Aseparates A and A iffor any two points z A1
and z2 A there exists a chord ab C which separates them. We say that a point
a A strongly separates A1 and A if there exists a chord ab C that separates every pair

A1 and z2 A2 of points.
The separability and the strong separability are equivalent for singleton sets. If a

(strongly) separates {ai} and {aj}, then we simply say that a (strongly) separates ai and
aj. Note that for any a, aj A, a strongly separates ai and aj.

We use chord systems to represent the visibility relations among the vertices and
edges of the given polygon. Let P be an n-sided polygon having vertices pl, p2,""", Pn
and edges el, e2,..., en, where the vertices are taken clockwise and for each 1 _< _< n,
e is the edge betweenp and p+l. We define chord systems C1 (P) and C2(P) with base
sets A {pl, p2,’’’, Pn} and B {el, e2, , en} as follows6:

1. E C1 (P) if and only if some point in ej is visible from p;
2. G (2(P) if and only if some point in e is 2-visible from pi.

It is immediate from the definition that vertices p and pj are separable by p in P if
and only if points p and pj are separated by p in C1 (P), and vertices pi and pj are 2-
separable byp in P if and only if points p and pj are separated byp in 2(e). 1 (P)
and C2(P) are similar in spirit to a circular embedding of a visibility graph described in
[16].

Example 6. The chords incident on p in g (P) are drawn as solid curved paths
within P in Fig. 13. In C(P), an additional two chords drawn as broken curved paths
are also incident on p. The reader can verify that C(P) {[1 _< i,j <_ 8}
{ple, p2e,pe pel).

We say that a vertex x of P is hit at time t if x is illuminated at t but not illuminated
in the interval It , t) for some > O. Assume that P is searchable by some searcher,

5The subscripts for vertices, edges, and the points of a chord system are taken cyclically over 1, 2,..., n,
so that n + 1 1, n + 2 2, etc.

6The symbols "pi" and "ej" are simply the labels of the points of the chord systems.
7We use the term "separable" for the vertices of P, and "separate(d)" for the points of a chord system.
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Pl el P2

e8
e2

P7 e7 P8

P6 e5 P5
Fro. 13. The chords incident on pl in Cl (P) and C2 (P).

and let Pjl, Pj,’", PjK be the order in which the vertices of P are hit during a search,
where jl, j2,--’, jK E {1, 2,-.., n} (ties are broken arbitrarily). Note that some vertices
can appear more than once in the sequence Px, P.," "’, PK" For each 1 < i < K, we
define Qi to be the set of vertices that are clear at the moment pj, is hit, except that
if more than one vertices are hit simultaneously, then we add these vertices to the set
one at a time in the order they appear in the sequence pl, p.,..., p,,. Formally, if
P,, Pj,+I ,’",P+, -> 0, are a maximal sequence ofvertices that are hit simultaneously
at time t, then we let Q be the set of clear vertices at t except p,, p,+ ,..., p,+, and
define Qi+k Q t3 {pj,, pj,+ ,..., pj,+. } for each 0 < k < g. Then it is easy to verify the
following:

(a) Q1 {pj};
(b) QK {Pl,P2,""" ,Pn} (since all vertices are clear at the end);
(c) For all 1 _< i _< K, py, Q;
(d) Forall2 <_ <_ K, Qi-{p} c_ Qi-1 (since avertexnotin Qi_I canbeincluded

in Qi only if it is pj);
(e) For all 1 <_ i <_ K, any x e Q and y Qi are separable (for the case of

the 1-searcher) or 2-separable (for the case of the oc-searcher) by py, (since,
otherwise, y is not illuminated and is thus contaminated by definition and there
is a path between x and y not containing any illuminated point, and hence x
must also be contaminated, a contradiction).

The sequence py, py,..., py is called a "feasible sequence" of a chord system in
the next definition.

DEFINITION 7. Let C_ A x B be a chord system. For a subset A1 c_ A, a sequence
a Xl,X2,’",XK of points in A1 is said to be a feasible (or strongly feasible) sequence
of C with respect to A if there exists a corresponding sequence E X1, X2,-. , XK of
subsets of A1 satisfying the following conditions, (a)-(e) (or (a)-(d) and (e’)):

(a) Xl-- {Xl};
(b) XK A1;
(c) For all 1 _< _< K, xi E Xi;
(d) For all 2 <_ i <_ K, Xi- {xi} c_ Xi-1;
(e) For all I < <_ K, xi separates Xi and Ax Xi;
(e) For all i <_ i <_ K, xi strongly separates Xi and A Xi.
C is said to be feasible (or strongly feasible) if there exists a feasible (or strongly fea-

sible) sequence of C with respect to A.
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Example 7. Polygon P shown in Fig. 14 can be cleared by the 1-searcher using a
schedule in which the vertices are hit in the order pl, p2, p3, p8, ps, pg, p4, ps, pT, p6, pT,

ps. The positions of the 1-searcher and the beam of the flashlight when the vertices are
hit are shown in the figure. Table 2 shows the vertices that are clear at the moment each
vertex is hit. The reader can verify that the sequence given above is a feasible sequence of
1 (P). The corresponding sequence of subsets of vertices is given in the second column
of the table, namely, {pl }, {p, p2 }, {p, p, p3}, ., etc.

P Pl

P8

FIG. 14. A search schedule ofthe 1-searcher.

TABLE 2
Clear vertices at the moment each vertex is hit.

Vertex hit Clear vertices at that moment

pl

P2

P3

P8

P5

P9

P4

P5

P7

P6

P7

P8

Pl

Pl, P2

Pl, P2, P3

Pl, P2, P3, P8

Pl, P2, P3, P5

Pl, P2, P3, P9

Pl, P2, P3, P4, P9

Pl, P2, P3, P4, P5, P9

Pl, P2, P3, P4, P5, PT, P9

Pl, P2, P3, P4, P5, P6, P9

Pl, P2, P3, P4, P5, P6, PT, P9

Pl, P2, P3, P4, P5, P6, PT, PS, P9

The following two theorems are immediate from the definition and the discussion
given above. We omit the proofs.

THEOREM 8. Let P be a simple polygon. IfP is 1-searchable, then CI (P) is feasible.
THEOREM 9. Let P be a simple polygon. IfP is cx>searchable, then C2(P) is feasible.
A (strongly) feasible sequence a of (J is said to be minimal if no proper subsequence

of it is a (strongly) feasible sequence.
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PROPOSITION 2. Let cr Zl, Z2,’’’, ZK be a minimal strongly feasible sequence of
c_ A x B with respect to A, and let X1, X2,..., Xc be a corresponding sequence of

subsets ofA satisfying conditions (a)-(d) and (e’) ofDefinition 7. For each i < i < K 1,
let E C be a chord separating Xi and A Xi. Then for each 1 < i < K 1, zi+1 is
either thepoint not in Xi next to zi or the point not in X next to

Proof. Suppose that z+l E X for some 1 < i < K- 1, and let k > be the smallest
index such that z X. (Clearly Xi c A by the minimality of r.) Since Xe c_ X for
each i + 1 < g < k 1 by condition (d), the sequence obtained from tr by removing
subsequence z+l,..., zk-1 is a shorter strongly feasible sequence. Thus z Xi. Also,
if z+ is not one of the points not in X next to z or , then IA XI _> 3, and hence
by conditions (c), (d), and (e’) we have X+I {z+l }. Therefore, Zi+l, x+2,..., zc is
a shorter strongly feasible sequence. This completes the proof.

The strong feasibility of chord systems can be used to state sufficient conditions for
the searchability of the given polygon.

THEOREM 10. Let P be a simple polygon. If Cl (P) is strongly feasible, then P is 1-
searchable.

Proof. To save space, we only give an outline of the proof. Let
be a minimal strongly feasible sequence of C1 (P) with respect to A {pl,p,’" ,p,},
and E Q, Q,..., Qr a corresponding sequence of subsets of A satisfying conditions
(a)-(d) and (e’) of Definition 7. By condition (e’) for each I < i < K there exists a
chord pj, eh, el(P) that separates Qi and A Qi. Since plex CI(P) and any
chord incident to pi separates Q {pix } and A Qx, we may assume that ehx ejx.
Similarly, we may assume that eh: ej For each I < i < K, let s be a point in edge
eh, visible from V(pj,). Define A to be the situation in which (1) the 1-searcher is either
at pi, or s, (2) the beam of the flashlight contains p,si, and (3) the vertices in Q are
clear. Note that since Q: {p,.-., p,}, P is clear in Ac. Thus we only need to show
that situation An is reachable. We do this by induction on i. Since Q {pix }, A is
realized if we place the 1-searcher at p and aim the flashlight at Sl. We show that
can be changed into A+I for any 1 < i < K 1. At Ai, by Proposition 2 p+l is either
the vertex not in Q next to pi, or the vertex not in Q next to s. In the former case, we
advance the endpoint of the beam at p, to p,+ and move the other endpoint from
to s+, in such a way that the vertices in Q which are also in Q+x remain clear. This
is certainly possible if si and s+l are on the same edge of P. If s and si+l are not on
the same edge, then by condition (d) it must be the case that the endpoint of the beam
at s is moved backward to s+l over a portion of the boundary which is clear in A.
(We observed a similar situation in Example 4 when the 2-searcher moved from V(c) to
V(d).) See Fig. 15 for illustration. It is not hard to show that this backward movement
can be done by a sequence of elementary actions so that the vertices in Q that are also
in Qi+ remain clear, regardless of whether the 1-searcher is at pj, or si in Ai. We leave
the details to the reader. The latter case when p,+ is the point not in Q next to s is
similar.

THEOREM 11. Let P be a simple polygon. If Cg(P) is strongly feasible, then P is 2-
searchable.

Proof. The proof is essentially similar to that of Theorem 10, except that we use
the fact that the 2-searcher can illuminate simultaneously two points that are mutually
2-visible. We omit the details.

C1 (P) and C(P) can be constructed in O(n) time for an n-sided polygon P basically
by constructing V(z) and V (z), respectively, in linear time from a triangulation of P for
each vertex z ofP [7], [21]. Given C1 (P) or C2(P), we can find a minimal strongly feasible
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PJi+l

FIC. 15. Movement ofthe endpoints ofthe beam.

sequence tr Pjl, Pj.," of length O(n2) and a corresponding sequence E Q1, Q2,’"
(or decide that no such sequences exist) in O(n) time, as explained below. Note that
the set Q corresponding to p, consists of p, and the points in A {p, p,..., p,}
that are on one side of a chord incident on p,. Thus for each p E A, chord and a
flag s E {left, right}, we call the tuple (p, --, s) a configuration. Configuration (p, --, s)
determines a set Q consisting ofp and the points in A that are on the left (if s left) or
right (if s right) of viewed from p. Then we can use (p, --, s) to represent a pair of
p and Q that appear correspondingly in cr and E. Since each point in A is an endpoint of
O(n) chords, there are O(n) configurations. By Proposition 2 for each p, and the cor-
responding Qi there are at most two candidates for P,+I, and for each candidate, clearly
there exists a unique maximal subset of A that can be adopted as Qi+l. This implies that
there are at most two immediate successors for each configuration. Clearly, we can find
a minimal strongly feasible sequence of length O(n) (or know that no such sequence
exists) by exploring the configuration space using breadth-first search repeatedly start-
ing from various initial configurations, such as (pl, plel, left) (which determines {Pl }),
(p, pe, left) (which determines {p2 }), etc. Now we discuss the complexity of search-
ing the configuration space. Given a configuration (p,, p, ej,, si) (representing a pair of
p, and Q), we can find the two candidates forp,+ in constant time. Note that continu-
ing the search from a configuration (p, --, left) is not necessary if another configuration
(p, pe’, left) such that pe’ is to the right of (viewed from p) has already been explored
(since the latter determines a larger set than the former). Similarly, (p, -, right) need
not be explored any further if (p, pet, right), such that pe-w is to the left of (viewed
from p), has already been explored. Thus for each p A, we maintain two chords pep,L
and pep,n, where pep,L (or pep,R) is the rightmost (or leftmost) chord incident on p used
in a reachable configuration with flag left (or right), which has already been found. If no
such configuration has been found for the given flag value, then let Pep,L (or pep,l) be
nil. Given a configuration (p,, p,e,, si) and a candidate q for P,+I, we first determine
the flag Si+l of the next configuration (Pj,+I, P,+I e,+l, Si+l). This can be done in con-
stant time without actually finding the chord P,+I e,+l. Suppose that Si+l is left. Then
we test whether p,+ e,+, is to the right of p,e, in constant time (again, without find-
ing Pj,+I e,+l) by examining the relative positions of the endpoints of qeq,L and p,e,,
and if so, then we obtain P,+I ej,+l (as well as Qi+l) by examining the chords incident
on q sequentially (spending constant time per chord) from left to right (viewed from q)
starting from the one immediately to the right of qeq,L (or the leftmost chord if qeq,L is
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nil). The case when s+t is right is similar. Since this method ensures that each of the
O(n) chords is examined only a constant number of times during the entire process of
searching, the complexity of searching for a minimal strongly feasible sequence is O(n2).

We conclude this section with the following technical proposition, which will be used
in 5.

PROPOSITION 3. IfC C_ A x B is feasible (or strongly feasible), then for any subset A1
of A, there exists a feasible (or stronglyfeasible) sequence ofC with respect to A1.

Proof. Let a zl, z2,..., zg be a feasible (or strongly feasible) sequence of C with
respect to A, and let E X1, Xz,..., XK be a corresponding sequence of subsets of A
satisfying conditions (a)-(e) (or (a)-(d) and (e’)) of Definition 7 with respect to A. For
an arbitrary A c_ A, let a’ zjl, xj.,-..,z be the sequence of points in A1 obtained
from a by deleting the points not in A, and define the sequence E’ Yt, Y,..., Y of
subsets of A1 by Y X, f A for 1 < i </?. It is a straightforward exercise to show
that a’ and 2’ satisfy conditions (a)-(e) (or (a)-(d) and (e’)) of Definition 7 with respect
to A. U

5. Additional necessary conditions. The goal ofthis section is to prove the following
two theorems. Note that the non--searchability ofthe polygon shown in Figs. 6 follows
from Theorem 13.

THEOREM 12. Let P be a simplepolygon. IfP is 1-searchable, then there exist vertices
u and v ofP such that P is weakly visible from 7r(u, v).

THEOREM 13. Let P be a simplepolygon. IfP is o-searchable, then there exist vertices
u and v ofP such that P is weakly 2-visiblefrom 7r (u, v).

A chord xx E A x A is called a stabbing chord of C c_ A x B if Xl and xe are
separated by all a E A. We use the following theorem to prove Theorems 12 and 13.

THEOREM 14. Let C be a chord system. IfC is feasible, then C has a stabbing chord.
To prove Theorem 14, assume that there exists a feasible chord system having no

stabbing chord, and let C c_ A x B be such a chord system. We may assume that the size
n of its base sets A {a,..., a,} and B {bl,..., bn} is smallest among the base sets
of all chord systems having the same property. Clearly n > 2. Let us first prove some
properties of this C (Lemmas 1-5).

Since C has no stabbing chord, for any chord xx A A, there exists a point
a A such that a does not separate X and xz. If there is exactly one such point a for
xlxe, then a is said to be responsible for xx2. For each 1 < < n, let F be the set of
chords c A x A for which ai is responsible.

LEMMA 1. For any 1 <_ i <_ n, F 7 O.
Proof. Without loss of generality, assume that F, . Construct a chord system

having base set A’ A {an} of size n 1 from t7 by removing all chords incident to
a, and identifying b,_ and b,. Formally, iT’ is defined as follows:

1. For all i and j, 1 < i, j < n 1, ab C.’ if C;
2. For all i, 1 < i < n 1, ab,_i ’ if aib,

Since C is feasible, there is a feasible sequence a of C with respect to A’ by Proposition
3. Then, by the construction of C’, it is immediate that a is also a feasible sequence of
C’ with respect to A’. Therefore, C’ is feasible, and by the minimality of the base set of
C, C’ must have a stabbing chord xx2 A’ A’. By the construction of C’, each point
ai A’ separates xx and x2 in C. This implies that a, must also separate X and x2 in
since, otherwise, a, will be responsible for xx2, and hence xlx2 Fn. Therefore, xx2
is a stabbing chord of . This is a contradiction.

LEMMA 2. For any 1 < i, j <_ n such that i # j, F f3 F .
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Proof. Assume that XlX2 E Fi I") Fj for some i j. Then neither ai nor aj separates
Xl and xg.. Thus neither ai nor aj is responsible for XlX2. This is a contradiction.

Select a chord fi st E I’ arbitrarily for each 1 < i < n, and construct the set
F {fill < i < n}. By Lemma 2, we have fi f for all i j. Therefore, IFI

LEMMA 3. For each a .4, the number ofchords in F incident to a is exactly two.

Proof. Since IAI IFI n, if there exists a point in A to which fewer than two
chords in F are incident, then there must exist another point in A to which at least three
chords in F are incident. Thus it suffices to show that the number of chords incident to
each point in A is at most two. Assume that there are three distinct chords az,
and in F which share a A as an endpoint. Without loss of generality, assume
that (1) points a, zl, z2, and za appear in this order clockwise on the circumference of
the unit circle, (2) a- 6 Fi for some i, and (3) point ai is in the arc containing Zl and
subtended by-. See Fig. 16. Since ai does not separate a and z, it does not separate
a and za either. Since every chord in F has a unique point in A that does not separate its
two endpoints, a must be the unique such point for ---ff. Thus I’. Therefore, F
contains two chords and a---ff, both ofwhich are in I’. This contradicts the definition
of F. I3

x1
ai

x2

inE
1

FIG. 16. Illustration for theproofofLemma 3.

COROLLARY 1. For any 1 < i <_ n, IFl 1.

Proof. Assume that ]F _> 2 for some i. By Lemma 3, the number of chords in F
incident to each point in A is exactly two. Let F’ be a set constructed from F by replacing
fi with another chord in Fi. Again by Lemma 3, the number of chords in F’ incident to
each point in A is exactly two. Obviously this is not possible. U

LEMMA 4. For any 1 < i, j < n such that i # j, fi f3 fj .9
Proof. Assume that F contains two chords fi sti e F and f syt Fj such

that f f3 fj . Without loss of generality, assume that s, ti, sy and ty appear in this
order clockwise on the circumference of the unit circle. See Fig. 17. Since sit F
and sjt E F, any ak A (a, aj} separates s and ti, and also s and ty. Thus any
such ak must separate s and sy, and also t and t. If a separates s and sy, then since
sisj is not a stabbing chord, ay must be responsible for ssy, and hence ssy F. Thus
IFjl > 1, which is a contradiction to Corollary 1. Therefore, a does not separate s and

8We will show later that each Fi is a singleton set, and hence F is in fact determined uniquely.
9Of course, such f and fj may intersect at their endpoints.
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sj. By using a similar argument, we can show that ai does not separate ti and tj either.
This is impossible, however, since (1) s and t are separated by ai and (2) any chord
intersecting with st must also intersect with either ssj or tt.

ak in Fi

FIG. 17. Illustration for the proofofLemma 4.

F is called a star if n is odd and F {aiai+(n+l)/2 1 < < n}. In a star, each ai is
connected to the two points in A which are (almost) directly opposite to it. See Fig. 18.

a.

a
n+3
2

a2

n+l
2

FIG. 18. A star.

LEMMA 5. n is odd and F is a star.

Proof. Let f be any chord in F. Chord fi divides the circumference of the
unit circle into two arcs, each of which is subtended by f. Let u and u:, respectively,
denote the numbers of points in A {si, ti} lying in the two arcs, where ul < u2. See
Fig. 19. Since (1) n u + ue + 2, (2) f intersects with n 3 chords in its interior, and
(3) exactly two chords are incident to every point in A, we have
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Assume that n is even. Then the inequalities given above yield vl v2 (n 2)/2.
Now let f’ be the chord in F which shares an endpoint si with fi, and let v and v,
respectively, denote the numbers of points in A {s, t} lying in the two arcs subtended
by f’. By using a similar argument we obtain v v (n 2)/2, but then this is
certainly impossible. Thus n must be odd,//1 (n 3)/2, and v2 (n 1)/2. The fact
that F is a star follows immediately. 1

v1 vertices

....o "’-.....

si ti

v2 vertices

FIG. 19. Illustration for theproofofLemma 5.

Proof of Theorem 14. We take as above and derive a contradiction. Since C is
feasible, let a xl, x2,..., XK be a feasible sequence of with respect to A. Let E
X1, X,..., XK be a sequence of subsets of A corresponding to a satisfying conditions
(a)-(e) of Definition 7. Let # (n + 1)/2. Since X {x} c_ X_ for all i, there is an i
such that IX l-- Letxi a andFk {fie} {8--). LetA denote the set ofpoints
in A {s, t) lying in the arc containing a and subtended by f, and let A2 A A1.
See Fig. 20. Since F {fi E rll _< i < n} is a star by Lemma 5, IAll _< (n- 1)/2 < ,
and hence X A # 0. But then we must have A c_ X, since a does not separate any
two points in A2. (Note that ak E A and ak does not separate s and t.) Now let us
estimate the value of Ixl. Again by Lemma 5, we have IA21 >_ (n 3)/2 + 2 . Aso,
ak Xi Ae. Thus, IXil _> / 1. This is a contradiction. ]

Now we are ready to prove Theorems 12 and 13.
ProofofTheorem 12. The theorem follows from Theorems 8, 14, and the observation

that if aiaj is a stabbing chord of Cx (P), then every vertex of P (and hence P itself) is
weakly visible from 7r(p, pj).

ProofofTheorem 13. The theorem follows from Theorems 9, 14, and the observation
that if aia is a stabbing chord of C2(P), then every vertex of P (and hence P itself) is
weakly 2-visible from 7r(pi p ). [3

6. Hedgehogs. In this section we introduce a class ofpolygons called hedgehogs and
show that any a-searchable hedgehog is 2-searchable. The complexity of generating
a search schedule for a hedgehog is also discussed. Again, chord systems, which are
constructed slightly differently from those in 4, are the main tool in this section.
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FIG. 20. Illustration for theproofof Theorem 14.

A hedgehog is a simple polygon consisting of a convex body and a set of narrow
hooked pins (corridors). Examples of hedgehogs are shown in Figs. 3, 5, and 6. More
specifically, a hedgehog is constructed from a convex polygon by replacing some of its
edges by a polygonal chain such as the one shown in Fig. 21 consisting of four segments
representing a hooked pin under a restriction stated below.

FIG. 21. qi, ri, ei, fi, Li, and Ri ofpin i.

Let us introduce the following symbols (see Fig. 21). Let P be an n-sided hedgehog
havingm hooked pins. Letpx, p2, , p, be the vertices ofP taken clockwise. We denote
by q, q2,. , qm the tips ofthe hooked pins, where for some 1 < jx < j < < j, < n,
q pj, for 1 < i < m. For convenience, the hooked pin containing q is called pin i.
For 1 < i < m, q and r denote the tip of pin and the reflex vertex adjacent to q,
respectively. Also, we denote by e and f the points where the edges forming pin i meet
the convex body, and call the line segment ef the entrance of pin i. We require that the
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pins are sufficiently narrow and appropriately oriented so that no point in the entrance
of a pin is 2-visible from the tip of any other pin. (This implies that, when we construct
a hedgehog from a convex polygon, we should not replace two adjacent edges by pins.)
Finally, for each i < i < m, L (or Ri) denotes the set of the tips of the hooked pins that
are to the left (or right) of V(q) when viewed from r. (Neither L nor R contains q.)

THEOREM 15. Let P be a hedgehog having m hookedpins. Then P is 1-searchable if
and only ifm < 2.

Proof. It is obvious that P is 1-searchable if m < 2. If m > 3, then the tips of
any three hooked pins are mutually nonseparable, and hence P is not 1-searchable by
Theorem 3.

In the following we characterize 2- and -searchable hedgehogs having three or
more hooked pins. Let P be a hedgehog having m > 3 pins. Define a chord system
On(P) of P with base sets A {q, q,..., q,} and B {b, b,...,
On(P) if and only ifq andq+ are 2-separable by qi in P. (In a sense, point b represents
the portion of the boundary of P between the entrances of pins j and j + 1.) Since no
point in the entrance of a pin is 2-visible from the tip of any other pin, each qi A is
an endpoint of at most three chords in Cn(P), namely, qibi_l, qibi and possibly qb for
some j i- 1, i.

LEMMA 6. Let P be a hedgehog. IfP is o-searchable, then On(P) is stronglyfeasible.
Proof. Assume that P is o-searchable, and let q, q,...,q be the order in

which the tips of the hooked pins of P are hit during a search by the o-searcher, where
jl,j,’",j {1,2,...,m}. For each 1 < i < K let Qi be the set of clear tips at the
moment q, is hit. Clearly q,q ,...,q and Q, Q,. ,Q satisfy conditions (a)-(d)
of Definition 7. Since no two tips in L, (and no two tips in R,) are separable by the
position of the -searcher when q, is hit, Qi is either {q, }, {q, } to L,, {q, } tO R,,
or {ql, q2,’", qm}. Thus Qi and A Qi are strongly separated by q, in On(P) for all
1 < i < K. Therefore, C(P)is strongly feasible.

Example 8. For the hedgehog shown in Fig. 3 examined in Example 3, the sequence
a, b, 9, c, d, a, e, f, c, 9, b, a given in the first column of Table 1 is a minimal strongly
feasible sequence of its chord system. The corresponding sequence of subsets of tip
vertices is given in the second column, namely, {a}, {a, b}, {a, b, 9},’" ", etc.

LEMMA 7. Let P be a hedgehog. IfCn (P) is strongly feasible, then P is 2-searchable.
Proof. We only give an outline ofthe proof. Let cr q,...,q be a minimal strongly

feasible sequence of C/(P) with respect to A {q, q,..., q,,}. Let Q1," ,Q be
a corresponding sequence of subsets of A. The 2-searcher can visit V(qx), V(q),.-.,
V(q) in this order in such a way that the tips in Qi are clear when he is in V(q,).
Initially, the 2-searcher is in V(q) aiming both flashlights at q. (Note thatQ {q }.)
Suppose that at present the 2-searcher is in V(q,) for some 1 < i < K 1 and the tips
in Q are clear. By Proposition 2, the tip q,+ that he must clear next is one of the
contaminated tips right next to the clear tips. Then it is easy to show that the 2-searcher
can move to V(q,+) advancing one flashlight to q,+ and possibly moving the other
backward, and clear q,+ without recontaminating any tips in Qi which are also in Q+x.
(A similar argument is used in the proof of Theorem 10.) When he reaches V(q) all
tips are clear (note that Q/ {q, q,..., q,, }), and again it is easy to show that he can
clear the remaining contaminated points (if any) without recontaminating any tip. We
leave the details to the reader.

By Lemmas 6 and 7 and the fact that any 2-searchable polygon is -searchable
(Proposition 1), we obtain the following theorem.
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THEOREM 16. Let P be a hedgehog. Thefollowing three statements are equivalent
1. P is o-searchable;
2. P is 2-searchable;
3. (P) is stronglyfeasible.

Finally, we discuss the time complexity of computing a search schedule for hedge-
hogs.

LEMMA 8. Let (P) be the chord system of a hedgehog P having m hooked pins.
Given a suitable representation ofCn(P), whether Cn(P) is stronglyfeasible can be tested,
and ifso, a minimal strongly feasible sequence of length O(m) ofCn(P) with respect to A
can be obtained in 0 m time.

Proof. The argument is similar to that given in 4 (following Theorem 11) regarding
C (P) and C(P). The difference is that each point in A is an endpoint of at most three
chords in Cn(P), instead of O(n) chords. Therefore (1) there are only O(m) possible
pairs of q and Qi, and (2) the binary search we used for finding Qi/ for the given
candidate for qj,+l is no longer necessary. We omit the details to save space.

THEOREM 17. Let P be an n-sided hedgehog having m hooked pins. Whether P is
2-searchable can be tested, and ifso, a search schedule ofthe 2-searcher consisting of0(m)
elementary actionsfor cleadng P can be generated in 0(n + rn log n) time.

Proof. Given the vertices pl, p2, , p, of P, we first find the tips ql, q2,’’’, qm. The
reader can verify that this can be done in O(n) time. (For example, we look for a maximal
run of reflex vertices in pl,..., p,. Clearly the length of such a run is at most four. If
there are four consecutive reflex vertices p,..., p+a, then bothp_ andp+4 are tips. If
p,p+ is a maximal sequence of reflex vertices, then eitherp_ orp+2 is a tip, and p+2
is a tip if and only if p+a is nonreflex and p+4 is not visible from p+u. Whether or not
p+4 is visible fromp+2 can be tested in O(n) time. The case when there is a maximal run
of three reflex vertices is similar, and we can find a tip in O(r) time. Once a tip is found,
all other tips can be found in O(n) time.) Then a representation of CH(P) suitable for
the purpose of the method given in the proof of Lemma 8 can be obtained by testing the
visibility from r (the reflex vertex adjacent to q) for each 1 < i < m. Since the body of
P is convex, this can be done in O(log n) time for each r by finding, using binary search,
the intersection of the convex body of P and the line containing r and one of e and
f. The total time so far is O(n + m log n). When this is done, we test whether CH(P)
is strongly feasible, and if so, we find a minimal strongly feasible sequence r of length
O(m) in O(m) time, using the method given in the proof of Lemma 8. Finally, from
we generate a search schedule for the 2-searcher described in the proof of Lemma 7.
Since P is a hedgehog having a special structure, the 2-searcher can move from V(qj,)
to V(q,+ and clear q,+ (without contaminating the tips in Q which are also clear in
Qi+1) by a sequence of O(1) elementary actions, and such a sequence can be generated
in O(log n) time using bullet shooting (again, bullet shooting reduces to binary search).
The length of the entire schedule generated is certainly O(m) and the time needed to
generate it is O(m log n). The overall time, therefore, is O(n + m log n).

Finally, we briefly discuss a variant of hedgehogs. Given a hedgehog P, construct
P’ from P by stretching all hooked pins. (P’ can be viewed as a hedgehog with straight
pins.) By Theorem 6 such P’ is always 2-searchable. It turns out that the 1-searchability
of P’ can be determined by constructing a chord system. (as we did for P) using the
visibility (instead of the 2-visibility) from the tips of the pins, and then testing whether
it is (strongly) feasible. Since, of course, the chord system constructed above for P’ is
identical to Cn(P), we obtain the following theorem. The proof is omitted.
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THEOREM 18. Let P be a hedgehog. Let P’ be a simple polygon constructed from P
by replacing the hooked pins by straight pins. Then P is 2-searchable if and only if P’ is
1-searchable.

7. Concluding remarks. We have posed the polygon search problem and presented
some necessary conditions and sufficient conditions for a polygon to be searchable by
various searchers. The related complexity issues have also been discussed. We have
also shown that the 2-searcher is as capable as the a-searcher if the given polygon is
a hedgehog. Chord systems have played a major role in many of the discussions. An
interesting open problem is to prove or disprove the conjecture that the 2-searcher can
search any polygon searchable by the c-searcher. This problem, as well as the problem
of determining the complexity of deciding whether a given polygon is searchable by a
given searcher in the general case, is suggested for future research.
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comments on an earlier version of this paper.
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DETERMINISM VS. NONDETERMINISM IN MULTIPARTY COMMUNICATION
COMPLEXITY*

DANNY DOLEV* AND TOM/S FEDER*

Abstract. A given Boolean function has its input distributed among many parties. The aim is to determine
which parties to talk to and what information to exchange in order to evaluate the function while minimizing
the total communication. This paper shows that it is possible to evaluate the Boolean function deterministi-
cally with only a polynomial increase in communication and number of parties accessed with respect to the
information lower bound given by the nondeterministic communication complexity of the function.

Key words, communication complexity, multiparty communication

1. Introduction. Our model of multiparty communication complexity is motivated
by two basic earlier models. The two-party communication model assumes that each
of two processors has a part of the input, and the aim is to compute a function on the
input minimizing the amount of communication. In the decision tree model, the input
is distributed among many memory locations, and the aim is to compute a function on
the input while minimizing the number of memory locations examined. Our multiparty
communication model extends these two basic models by assuming that the input is dis-
tributed among many processors; here the goal is to minimize both communication and
number of processors accessed.

Two-party communication has been extensively studied. The main issues studied
were the relative power of determinism, nondeterminism, and randomization. Yao [19]
introduced the tool of minimum fooling set (or crossing sequence) as a measure for the
amount of information that needs to be exchanged for a given input partitioned among
the two parties. The same technique was widely used in [2], [7], [9], [11], [13].

The decision tree model has been studied in several contexts [3], [10], [12], [15], [16],
17]. An area that inspired research in this direction is the study of graph properties (see
[14], for example). The main focus in these studies is how to minimize the fraction of
the input that must be examined in order to verify a given property. Here again we are
interested in the relative power of determinism, nondeterminism, and randomization.
The basic issue is how to decide what input locations to examine. Similar reduction
ideas appear in the proof of Theorem 1 in [1].

In the multiparty communication model, when a large amount of information is
distributed among a large number of processors, it is crucial to decide both which pro-
cessors to communicate with and what information to exchange. We can neither talk
to all parties as in the two-party model, nor obtain all the information known to each
party as in the decision tree model. A natural measure for the least amount of infor-
mation required is the information that a nondeterministic algorithm needs to exchange
in order to decide the value of the function. In this paper we show that when comput-
ing a Boolean function, this information can be obtained deterministically with limited
overhead. More precisely, we prove that the deterministic and the nondeterministic
communication complexity of multiparty Boolean function evaluation are polynomially
related.

Tight bounds relate the deterministic and the nondeterministic communication com-
plexity in the two-party model. Let C be the nondeterministic communication complex-
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ity of the language defined by a Boolean function f(xl, x2), and Co that of its comple-
ment. Aho, Ullman, and Yannakakis [2] showed that the deterministic complexity of f is
at most O(CoC1 ); Halstenberg and Reischuk [9] improved this bound to CoCI (1 + o(1)).
A matching lower bound was obtained by Halstenberg and Reischuk [9], improving an
earlier result of Mehlhorn and Schmidt [11]. Fiirer [8] obtained similar lower bounds
for the randomized case. Further restrictions on the communication exchange, such as
bounding the number of rounds, have been studied by Papadimitriou and Sipser [13];
Duris, Galil, and Schnitger [7]; and others.

Quadratic bounds relating deterministic and nondeterministic complexities have
also been obtained for decision trees. Let k and k0 be the nondeterministic com-
plexity (the number of memory locations examined) of a Boolean function of n vari-
ables f(x,...,x,) and its complement. Blum and Impagliazzo [3], Hartmanis and
Hemachandra [10], and Tardos [17] independently showed that the deterministic deci-
sion tree complexity of f is at most kok. Related results for randomized decision trees
can be found in Saks and Wigderson [16] and Nisan [12].

Our work was motivated by the striking similarity of the results in these two mod-
els, which give quadratic CoC and kokl bounds, respectively. The methods used to
obtain the bounds in these two models, however, are very different. Since in distributed
computing, the natural model is one that combines both, we should wonder whether a
similar relation holds for multiparty communication. Our result gives a bound on the
order of ko2k for the number of parties accessed with CoC bits exchanged with each
one, up to logarithmic factors, where k and C are the number of parties accessed and
the total number of bits exchanged in a nondeterministic algorithm for f, and k0 and Co
are the analogous parameters for the complementary function 1 f. This bound essen-
tially matches the communication bound for the two-party case while only increasing the
bound on the number of parties accessed by a factor of k0 with respect to the decision
tree case. It improves the bound (koCo)2(kiC) on the total communication from an
earlier version of this paper by a factor of Co [6].

Communication complexity in distributed computing has mainly focused on the num-
ber of messages or bits required to compute a specific function in a system. The com-
plexity usually arises from either symmetry breaking or asynchronous behavior. The
only study that is somewhat close to ours was done by Tiwari [18]. Tiwari mainly studies
a chain of processors computing a function f(x, x2), where the inputs are at both ends
of the chain. The difficulties in this model are knowing what information to distribute
(as in the two-party model) and how that information should be propagated along the
chain. In this model the added complexity of deciding what processors to query does not
arise.

In order to concentrate on the combined complexity of deciding what processors to
query and what information to exchange with them, we assume the following model. The
input is distributed among n parties, and a single coordinator can communicate directly
with each one of them. We can easily show that allowing direct communication among
the parties will not significantly affect the bounds that we obtain.

In [5] a different communication complexity model was defined. In that model each
party has all the inputs but one, and all parties communicate through a shared "black-
board." This model was also used in [4]. Our results do not apply to this model because
the inputs that individual parties hold are not independent.

2. Definitions. Suppose that a coordinatorwishes to evaluate a Boolean-valued func-
tion f(zl,..., z,), where each z is chosen from an arbitrary set Fi. The input vector
z (Zl,.-., z,) is distributed among n parties, with zi known to party i.
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We shall define nondeterministic algorithms in terms of communication behavior.
A nondeterministic algorithm A/’I that accepts the language defined by f (the set of input
vectors that map to 1 under f) is a tuple (S,..., S,, A,..., A,, V). The components
of such a tuple are as follows. Each Si is a set of nonempty binary sequences that repre-
sents the possible communication exchanges between the coordinator and party i. The
binary sequences in Si are self-delimiting, i.e., no one is a prefix of another. (This makes it
possible to uniquely determine the end of the sequence.) EachA is a function that maps
each sequence s S t3 {} to a nonempty subset A(si) of F; this subset represents the
possible inputs at party for which s is a valid communication from the point of view of
party i. Here is the empty sequence and represents the case where no communication
occurs between the coordinator and party i; we thus require that A(e) F. A commu-
nication vector s (sl,..., Sn) with s E S/t3 {} covers an input vector x (xl,..., x,)
at party i if xi E Ai (si). Furthermore, z is consistent with s if s covers x at each party
i. We say that party is accessed by s if s is nonempty. The communication vector s is
a 1-certificate if f(x) 1 for all x consistent with s. The last component V is a set of
1-certificates such that each input vector x with f(x) i is consistent with some s V,
and represents the communication vectors that are accepted by the coordinator.

We characterize the communication complexity ofA/’I with two parameters. The first
parameter C is the maximum over all 1-certificates s V of -i length(si); thus C1 is
the maximum number of bits exchanged when JV accepts. The second parameter kl is
the maximum over all 1-certificates s V of the number of parties accessed by s; thus
kl is the maximum number of parties accessed when A/’I accepts. We also assume the
existence of a nondeterministic algorithm A/’0 that accepts the language defined by the
complementary function 1 f, and define 0-certificates, V, Co,/Co, and the appropriate
terminology analogously.

We say that a 1-certificate s and a 0-certificate t are incompatible at party i ifA(s) n
A(t) . Notice that every 0-certificate must be incompatible with every 1-certificate
somewhere because otherwise we could construct an input vector on which f takes both
values 0 and 1.

3. A deterministic algorithm. The algorithm of Blum and Impagliazzo [3] for the
decision tree model works by repeatedly "exposing" the parties accessed by given 1-
certificates in turn; each 1-certificate chosen for this purpose is required to cover the
input at parties exposed earlier by previous 1-certificates. By incompatibility, if t is a 0-
certificate that covers the input at the parties already exposed, then the next 1-certificate
s chosen must expose a new party accessed by both s and t. Thus by the time k0 1-
certificates have been chosen, any 0-certificate consistent with the input has been com-
pletely exposed, and the value of f can be verified directly. The total number of parties
exposed is at most kok.

A straightforward adaptation of this approach does not work in our model. The rea-
son is that it is too expensive to obtain all the information stored at each party exposed.
To overcome this difficulty, we choose a set of parties to expose. Each party exposed
evaluates with respect to its input, those 1-certificates that were not yet discarded. It
communicates enough information, via a 0-certificate that covers its input, to discard a
fraction of the possible 1-certificates left. To keep the amount of information "wasted"
bounded, it does not communicate when this implies discarding only a very small frac-
tion. Only when no exposed party has a valuable contribution does the coordinator use
the remaining 1-certificates to choose more parties to expose. Every time the set of
exposed parties increases, the number of exposed accessed parties for each 0-certificate
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consistent with the input increases as well, as in the decision tree algorithm. By the
k0 / lth time the value of the function is determined.

The following lemma will be important in bounding the amount of communication
required by the algorithm.

LEMMA 3.1. If the Boolean function f has nondeterministic complexity bounded by
Co, k0, Cx, k, then there exists a nondeterministic algodthm for f for which the set of 1-

certificates satisfies IVXl _< c
Proof. The number of 1-certificates in V is at most 2cnx, since each certificate s

is described by the (7 bits communicated and the kx out of n parties accessed. We show
that the dependency on n can be eliminated by replacing n with the potentially smaller
k0. Consider the list of all 0-certificates in V in some canonical order (say, the lexico-
graphic order). Choose a 1-certificate s in V, and produce the following description.
For each 0-certificate t in the canonical list in turn, find a party atwhich s is incompatible
with t, indicate which of the k0 parties accessed in t is party i, and then give the sequence
s that characterizes the communication with party i. Delete then from the list all 0-
certificates that are incompatible with s at party i. When the end of the list is reached,
the description contains at most C’ communication bits and k parties described by a
number in the range 1,..., k0, for a total of 2c k0 possible descriptions. The com-
munication vector s’ indicated by this description may be smaller than the 1-certificate
s, since only a fraction of the parties accessed by s is listed in the description. On the
other hand, by construction, each 0-certificate t in V is incompatible with s’, and so s’
is indeed a 1-certificate. The certificate s’ can, in fact, be recovered from the description
by traversing the canonical list and identifying the appropriate parties. Thus the number
of 1-certificates s’ obtained by this construction is indeed bounded by 2

We now describe a deterministic algorithm for a Boolean function f. In this algo-
rithm, all communication is initiated by the coordinator, who sends messages to various
parties in turn and receives a response from each of them. Just like in the conventional
two-party model, each party knows the protocol in advance and uses its own local mem-
ory during the execution. When the algorithm terminates, the coordinator must hold
the value of f.

THEOREM 3.1. There is a deterministic algorithmfor f that communicates with a total
of 2kk parties and exchanges 2(C + [k log k0] + 1)((70 + ko([log(2kkl)] + 2)) bits
with each.

Proof. The deterministic algorithm for computing f(z,---, z,) maintains two sets:
a set of chosen parties, the exposed parties, and a set of candidate 1-certificates from V,
the current 1-certificates. The algorithm runs in/Co + 1 phases and satisfies the following
basic properties.

(i) All communication during a phase occurs only between the coordinator and
exposed parties.

(ii) All information sent by an exposed party to the coordinator is shared with all of
the exposed parties, so that every exposed party can deduce the set of current
1-certificates.

(iii) New parties are exposed only at the end of a phase.
(iv) If the value ofthe function is 0 then at the beginning ofphase j, each 0-certificate

consistent with the input accesses at least j exposed parties.
Each phase discards some 1-certificates that are not consistent with the input vector
z (z,..., z,), by communicating 0-certificates that cover the input at some exposed
party to all other exposed parties. If it is no longer possible to discard a large fraction
of the 1-certificates in this way with a reduced amount of communication, then we shall
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show that the following property must hold: each 0-certificate t in V consistent with the
input must be incompatible with at least half of the current 1-certificates at nonexposed
parties. This property implies that such a t must be incompatible with at least a fraction
1/(2k0) of the current 1-certificates at some nonexposed party (since at most k0 parties
are accessed by t). We then expose all nonexposed parties accessed by a fraction 1/(2k0)
of the current 1-certificates; this exposes, in particular, at least one more party accessed
by t, for each 0-certificate t in V consistent with the input. If the set of current 1-
certificates is still nonempty, we proceed to the next phase.

By the time the (k0 + 1)th phase is executed, if all 1-certificates have been discarded,
then the value of f is 0; otherwise k0 + i parties are accessed by every 0-certificate t in
V consistent with the input; this is impossible unless no such certificate exists, in which
case the value of f is 1.

Each phase thus consists of two steps: The first step reduces the number of current
1-certificates. The second step increases the number of exposed parties (and implicitly
the number of exposed parties for 0-certificates consistent with the input). The two steps
are given below in full detail. Note that, at the beginning of the first phase, step (1) can
be skipped since no exposed parties have been chosen yet, and that step (2) need not be
executed in the (k0 + 1)th and last phase because by that time the value of f is already
determined by whether the set of current 1-certificates is empty or not.

(1) Each exposed party i, in turn, looks for a 0-certificate t in V such that t covers
the input at party i and t is incompatible at party i with at least 1/(2a) of the
current 1-certificates per bit needed to describe t at party i, for a as specified be-
low. We shall see that the number orbits needed is lengh(ti) + [log(2kkx)] + 2,
so t must be incompatible with at least (length(ti) + [log(2k0k)] + 2)/(2a) of
the current 1-certificates at party i. Party communicates such a certificate, if
found, to the coordinator, in which case each exposed party is told this t and
updates the set of current 1-certificates accordingly (the 1-certificates incompat-
ible with t at party i are discarded). The next exposed party is now considered,
in a round-robin fashion.

(2) If no 1-certificates can be discarded as just described, then each 0-certificate
that contains the input will be incompatible with at least half of the current 1-
certificates at nonexposed parties. The coordinator and each exposed party can
recognize this situation, find all the parties accessed by a fraction of at least
1/(2k0) of the current 1-certificates, and add these parties to the set of exposed
parties. Now each 0-certificate that contains the input has one more accessed
party exposed.

The communication bound is obtained as follows. Since each bit communicated
with a given exposed party discards at least 1/(2a) of the current 1-certificates, 2a bits
must discard more than half of the current 1-certificates. By the bound in the lemma,
this halving can be done at most C1 + [kl log k0] times before all 1-certificates have been
discarded. Adding another 2a bits to ensure that the description of the last 0-certificate
used to discard 1-certificates is not truncated, we obtain a (C + [kl log k0] + 1)(2a)
bound on the communication with each exposed party. With a as defined below, we can
check that a is indeed at least as large as the description of a certificate at a party, and
that the communication bound in the statement of the theorem is satisfied.

We shall see below that at most 2kok parties are exposed at each phase, for a total
of 2kk parties over the entire execution of the algorithm (since we need not expose
parties at phase k0 + 1). If this bound is maintained, then a 0-certificate t in V at party i
can be describedwith length(t) bits, plus an additional log(2kk) bits to identify i within
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the set of current exposed parties. In communicating this information to each exposed
party j, two additional bits are used: one bit is used by party j to tell the coordinator
whether, after 1-certificates have been discarded according to t, there is some new 0-
certificate t’ that party j can use to discard 1-certificates; and one bit is sent back by the
coordinator to tell party j whether it wants to use this new t’ as the next 0-certificate
to discard 1-certificates. Thus the communication of ti to each party costs length(ti) +
[log(2k0kl)] + 2 bits.

We choose a (Co + ko(log(2kkl) + 2)). If no exposed party i can provide a
0-certificate t in V that covers the input at party i and is incompatible with a fraction of
at least p (lengh(t) + [log(2kk)] + 2)/(2a) of the current 1-certificates at party
i, then every 0-certificate t in V consistent with the input is incompatible with at most
Epi _< 1/2 of the current 1-certificates at exposed parties, where the sum is over the
parties accessed in t (at most k0 of them). Hence every 0-certificate t in V consistent
with the input must be incompatible with at least half of the current 1-certificates at
nonexposed parties, as claimed.

Since at most k parties are accessed by a single 1-certificate, the sum over all parties
of the fraction of current 1-certificates that access them is k, and so the number of
parties accessed by a fraction of at least 1/(2k0) of these current certificates is at most

2kokx. This proves the bound on the number of exposed parties added at each phase,
completing the proof.

4. Conclusion and open problems. In this paper we studied communication com-
plexity in a multiparty model. The approach is based on the two-party model and the
decision tree model. Same results from the two basic models can be applied to our
model. The main open problems are the existence of lower bounds in this model and
the study of randomization. An intriguing question is whether a quadratic upper bound
with O(kok) parties accessed andwith polynomial communication can be achieved. The
study ofother measures, such as the number ofphases [7], [13], and ofmore general com-
munication networks [18], has a special importance for understanding communication
in distributed systems.
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ON THRESHOLD CIRCUITS AND POLYNOMIAL COMPUTATION*
JOHN H. IEIFt AND STEPHEN 1. TATEr

Abstract. A Threshold Circuit consists of an acyclic digraph of unbounded fanin, where each node com-
putes a threshold function or its negation. This paper investigates the computational power of Threshold Cir-
cuits. A surprising relationship is uncovered between Threshold Circuits and another class ofunbounded fanin
circuits which are denoted Finite Field Zp(n) Circuits, where each node computes either multiple sums or
products of integers modulo a prime P(n). In particular, it is proved that all functions computed by Threshold
Circuits of size S(n) _> n and depth D(n) can also be computed by Zp(n) Circuits of size O(S(n) log S(n) +
riP(n) log P()) and depth O(D(n)). Furthermore, it is shown that all functions computed by Z,(n) Circuits
of size S’(n) and depth D(n) can be computed by Threshold Circuits of size O((1/e.2)(S(n) log P(n))1+)
and depth O((1/e.r)D(n)). These are the main results of this paper.

There are many useful and quite surprising consequences of this result. For example, an integer recipro-
cal can be computed in size n(1) and depth O(1). More generally, any analytic function with a convergent
rational polynomial power series (such as sine, cosine, exponentiation, square root, and logarithm) can be com-
puted within accuracy 2-no, for any constant c, by Threshold Circuits of polynomial size and constant depth.
In addition, integer and polynomial division, FFT, polynomial interpolation, Chinese Remaindering, all the
elementary symmetric functions, banded matrix inverse, and triangular Toeplitz matrix inverse can be exactly
computed by Threshold Circuits of polynomial size and constant depth. All these results and simulations hold
for polytime uniform circuits. This paper also gives a corresponding simulation oflogspace uniform Zp(,,,.) Cir-
cuits by logspace uniform Threshold Circuits requiring an additional multiplying factor of O(log log log P(n))
depth.

Finally, purely algebraic methods for lower bounds for Zp() Circuits are developed. Using degree argu-
ments, a Depth Hierarchy Theorem for Zp(,) Circuits is proved: for any S(n) > n, D(n) O(S(n)c’ for
some constant c’ < 1, and prime P(n) where 6(S(n)/D(n))D(n) < P(n) <_ 2n, there exist explicitly con-
structible functions computable by Zp() Circuits of size S(n) and depth D(n), but provably not computable
by Zp(n) Circuits of size S(n) and depth o(D(n)) for any constant c > 1.

Key words, circuit complexity, threshold circuits, finite field circuits

AMS(MOS) subject classifications. 68Q25, 68Q40

1. Introduction. A threshold function is a boolean function whose output is 1 de-
pending on whether at least k of its inputs have value 1. For example, a threshold5 func-
tion is defined to be 1 if at least 5 inputs are 1. A Threshold Circuit is a boolean circuit
in which each node computes a threshold function or its negation, and the nodes have
unbounded fanin.

Many basic physical devices such as transistors and neurons can be modeled as
threshold devices. Since an individual neuron may have very high fanin, a Threshold
Circuit is a natural model for a neural net. For reasons described below, we will be
particularly concerned with bounded depth Threshold Circuits.

Certainly any massively parallel computing device that uses a large number of rela-
tively slow components must have small computational depth on a given computation if
the overall computation is to be fast. For example, the reaction time of the lower brain
for many nontrivial behavioral and recognition responses is less than .5 seconds, whereas
the synapse response time of most neurons of the brain is at least .005 seconds; there-
fore, the depth of these particular computations can be no more than 100. Nevertheless,
in this small depth, many nontrivial functions are computed by the brain. Minsky and
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Papert were among the first investigators to observe the relationship between the lower
brain and constant depth Threshold Circuits [15]. In particular, they developed a model
for a learning device, known as a Perceptron, which is essentially a threshold circuit with
constant depth.

There has been a considerable amount of renewed interest in models for the brain
and for learning, and many ofthe recently proposed models are again essentially constant
depth Threshold Circuits. Examples of these models include the Connectionist Models
[5] and the Boltzmann Machine [1], [10]. Recently, Parberry and Schnitger proved that
Boltzmann Machines can be simulated by constant depth Threshold Circuits [16].

This paper is a further theoretical investigation of bounded depth Threshold Cir-
cuits. In particular, we consider the following fundamental computational question:
14/hat class offunctions can be computed by bounded depth Threshold Circuits?

This paper is organized as follows: In 2, we give definitions of Threshold and Fi-
nite Field Circuits. In 3, we give a precise statement of our results. In 4, we give
a simulation of Threshold Circuits by Finite Field Circuits. In 5, we give simulations
of polytime uniform Finite Field Circuits by polytime uniform Threshold Circuits, thus
characterizing the functions computed by Threshold Circuits of depth D(n) as a certain
class of multivariate polynomial functions computed by Finite Field Circuits of depth
O(D(n)). In 6, we give similar simulation results for logspace constructible circuits. In
7 we prove a Hierarchy Theorem for size bounded Finite Field Circuits with increasing
depth. In 8, we conclude the paper with some open problems, conjectures, and some
comments on how our theoretical results on Threshold Circuits might be applied to the
construction of parallel arithmetic VLSI chips and to biological studies of learning in
neuron nets by interpolation.

2. Circuit definitions.

2.1. Circuits that compute boolean functions. Fix a value domain E. A function
basis is a set F offunctions over domain Ek, for each k > 0. We assume a binary decoding
function decode,,,,, (0, 1}’ E’’ for decoding length n binary strings into n’ values in
E, and an encoding function encode,,,, E’’ - (0, 1 }’, for binary encoding vectors
of m’ values in E into binary strings of length m. We will define circuits that take n binary
values as input, decode these inputs to an n’-tuple of values in E, make a computation
using the functions in F, and then encode the outputs in binary.

A circuit C, over function basis F is an oriented, acyclic digraph with a list of input
nodes vl,-.., v,e, a list of output nodes u1,..., u,v, and a k-adic function in F labeling
each noninput node with fanin k _> 0. Given a binary input string (x,..., Xn) {0, 1},
we decode the input as decode,,,,(x,...,Xn) (y,...,y,,) where (y,’",yn,) E
En’, and assign each input node vi a value val(vi) yi E , for i 1,..., n’. For
each other node w, with say k predecessors w,..., wk, we recursively assign w a value
val(w) f(val(wl),... ,val(wk)) E, where f F is the k-adic function that labels
node w. C, finally outputs the binary string given by encode,,,,(val(ux), , val(um,))
{0, 1}" (where the output length m is fixed for the circuit C). Thus C, computes a
boolean function from {0, 1} to {0, 1}’.

We shall allow the circuits considered in this paper to have arbitrary fanin. The size
of circuit Cn is the number of edges of the circuit. The depth of circuit Cn is the length
of the longest path from any input node to an output node. A circuitfamily is an infinite
list of circuits C (C1, C,.-., C,...), where Cn has n binary inputs. C computes
a family of boolean functions (f, fg., , f,,...), where f is the function of n binary
inputs computed by circuit C,. Let (3 have size complexity S(n) and simultaneous depth
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complexity D(n) if, Vn > 0, circuit C, has size < S(n) and depth < D(n).
Circuit family C is polytime (logspace) uniform if there exists a Turing machine M

with n(1) time bound (O(log n) space bound, respectively), such that given any n > 1
in unary, M constructs an encoding of circuit C,.

2.2. Threshold circuits. A threshold function is a boolean function denoted 6k,/x
{0, 1 }k __. {0, 1} such that

(k,A(Xl

k

1 ifE xi _> A,
Xk) i--1

0 otherwise

for xx,’",Xk E {0, 1}. Let Th denote the set of all threshold functions and their nega-
tions. A Threshold Circuit is a circuit with function basis Th. Note that in the case of
Threshold Circuits the value domain is E {0, 1}, so the number of input nodes is al-
ways the same as the number of boolean inputs, and decode and encode are simply the
identity functions (i.e., no decoding of inputs or encoding of outputs is required). We let
Th(S(n), D(n)) denote the collection of boolean function families computed by poly-
time uniform Threshold Circuits of size O(S(n)) and simultaneous depth O(D(n)). In
addition, we will use the notation (logspace uniform) Th(S(n), D(n)) to denote the cor-
responding function families computed by logspace uniform Threshold Circuits. Note
that with this notation, the class of all functions computed by Threshold Circuits having
polynomial size and constant depth is Th(n(x) 1).

2.3. Finite field circuits. Let p be a prime number. For finite field circuits, the value
domain E is Zp, the finite field modulo p. We will let FZp denote the set of func-
tions consisting of k-adic addition and multiplication taken modulo p for each k _>
1, as well as a constant function giving value y, for each y Zp. A (Finite Field)
Zp Circuit C, is a circuit over function basis FZp. Let b [log pJ. Given binary
inputs xl,...,x, {0,1}, we decode these inputs into n’ [n/b] integer values
decoden,n,(Xx,’",Xn) (Yx,’",Y,’), where the value yi Z2b is the number with
binary encoding x(i-1)b+X, X(i-1)b+2,""", Xmin(n,ib). Note that the decoding ofbinary in-
puts yields only numbers in the range {0, 1,. , 2b 1} c_ Zp. The circuit C, then makes
a computation over FZp as described in 2.1. If ux,..., urn, are the output nodes, then
we encode the output as encode,,,m(val(ux),-.. ,val(u,,)) B... Bm,, where Bi is
the ti min(m-b(i- 1), b) bit binary encoding of the integer residue ofval(ui) mod 2t’.
We let Zp(n)(S(n), D(n)) denote the collection of boolean function families computed
by polytime uniform Zp(n) Circuit families (3 (C, C2,..., C,,...), where each Cn
is a Zp(,) Circuit with size O(S(n)) and simultaneous depth O(D(n)). We will use the
additional notation (logspace uniform) Zp(,0 (S(n), D(n)) to denote the corresponding
function families computed by logspace uniform Zp(,0 Circuits.

3. Statement ofresults. In the followingwe let P(n), S(n), and D(n) be any positive
functions of n such that S(n) >_ , and P(n) is prime for all n.

We will first give a simulation of (polytime uniform) Threshold Circuits by (polytime
uniform) Finite Field Circuits.

THEOREM 3.1. If S(n) < P(n) < n(x) for all n, then

Th(S(n), D(n)) c_ Zp(n)(S(n) logS(n) + nP(n) logP(n),D(n)).

Note. Theorem 3.1 also holds for logspace uniform circuits.
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Next we will give a simulation of (polytime uniform) Finite Field Circuits by (poly-
time uniform) Threshold Circuits.

THEOREM 3.2. Zp(,)(S(n),D(n)) c Th((1/e2)(S(n) log P(n))+’, (1/e5)D(n)).
The proof of Theorem 3.2 requires that we build up families of Threshold Circuits

for the basic problems ofmultiplication, iterated sum, and iterated product. The costliest
problem we encounter is iterated product, and this is solved using techniques introduced
for integer division [2], [8], [18].

As a consequence of Theorem 3.2, we have the following.
COROLLARY 3.3. Suppose an analytic function f(x) has a convergent Taylor Series

Expansion ofform

over an interval Ix xo[ < e, where 0 < e < 1, and the coefficients are rationals c, a.

where a,, b, are integers ofmagnitude < 2’(1). Thenpolytime uniform Threshold Circuits

ofpolynomial size and simultaneous constant depth (i.e., a function in Th(n(1), 1)) can
compute f(x) over this interval within accuracy 2-’*c for any constant c > 1.

Note that Corollary 3.3 follows directly from Theorem 3.2 since a Finite Field Zp(,0
Circuit of size n() and depth O(1) with P(n) 2’(1) can simulate the rational arith-
metic required to approximately evaluate f(x).

Corollary 3.3 implies (see [18]) that Th(n(), 1) contains a surprisingly rich class
of elementary functions (which can be computed within accuracy 2-), including in-
teger reciprocal, sine, cosine, exponential, logarithm, and square root, as well as exact
computation of the following:

1. integer and polynomial quotient and remainder,
2. interpolation of rational polynomials,
3. banded matrix inverse, and
4. triangular Toeplitz matrix inverse.

These problems can all be efficiently reduced to integer products; also see [3], [4], [12],
[18]. Theorems 3.1 and 3.2 yield the following characterization.

COROLLARY 3.4. For S(n) <_ P(n) <_ n(1),

U ZP(n) (S(n)c’D(n)) U Th(S(n)C’D(n))"
c>l c>l

For example, for S(n) nO(1), D(n) O(1), P(n) <_ n(), we get

In other words, the class of functions computed by polytime uniform Zp(,) Circuits of
polynomial size and constant depth is exactly the same as the class offunctions computed
by polytime uniform Threshold Circuits of polynomial size and constant depth.

Next, we will give a simulation of logspace uniform Finite Field Circuits by logspace
uniform Threshold Circuits.

THEOREM 3.5.

(logspace uniform)Zp(,)(S(n), D(n))
C_ (logspace uniform)Th((S(n) log(P(n)))(), D(n) log log log P(n)).
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The proof of Theorem 3.5 uses techniques developed by Reif for integer division
by uniform boolean circuits of bounded fanin, polynomial size, and O(log n log log n)
depth [18]. Theorem 3.5 implies that (logspace uniform) Th(n(1), log log n) contains
the various elementary functions listed above.

Finally, we derive some lower bound results for Finite Field Circuits using algebraic
degree arguments.

THEOREM 3.6. IfD(n) O(S(n)C’)forsome constant c’ < 1, D’(n) o(D(n)), and
6(S(n)/D(n))D(n) < P(n) < 2n, then there exists a function in Zp()(S(n),D(n)) that is
not in [.Jc>l ZP(n)(S(n)C,D’(n))

Previously, Kung showed that degree bounded polynomials formed a hierarchy [13],
but this did not immediately imply our result for Zp(n) Circuits.

4. Simulation of threshold circuits by finite field circuits. The key to our simula-
tions will be the following.

LEMMA 4.1. For prime p and any function f Zp Zp there is a (polytime and
logspace uniform) Zp Circuit ofsize O(plogp) and depth O(1) which computes f.

Proof. Any function f Zp Zp can be interpolated within Zp at all p of its inputs,
yielding a degree p 1 polynomial p(z) -=0 cx. In O(p) size and O(1) depth, we
can compute z for j 0,..., [log Pl. From these values we can compute for each
i 1,...,p I in O(plogp) size and O(1) depth. It follows that f(z) is computable by
a Zp Circuit of size O(p log p) and depth O(1).

4.1. Proof of Theorem 3.1. Let Cn be a polytime uniform Threshold Circuit of n
binary inputs (zl,... ,Zn) E {0, 1}n, where Cn has size S(n) and depth D(n). For any
prime p P(n) >_ S(n), we will construct a Zp Circuit C’ that will also take n binary in-
puts (zl,..., Zn) E {0, 1}n. Let b Llog pJ. By definition (see 2.3), C’ must have n’
[] input nodes vl, , Vn,, which are assigned integers val(vl) yl,""’, val(vn,) Yn’,
where decoden,n,(Zl,’’’, Xn) (Yl,’’’, Yn’). The first difficulty we must overcome is
to compute within C’ the boolean encoding x(i-1)b+l, X(i-1)b+2,""", Xmin(n,ib) {0, 1}
of each integer yi (i.e., these boolean values must be computed by C’ from the yi values
using only addition and multiplication modulo p). By Lemma 4.1, there exists a polyno-
mial fj (y) of degree <_ p 1 which, when evaluated in Zp, gives the boolean value of the
jth bit of y Zp, so each x(i_l)bd_j fj(Yi) can be computed in C using size O(p logp)
and depth O(1). The total size required here is O(np log p).

Next we must simulate in C a threshold function 6,zx of k binary inputs, which we
kwill denote al,..., ak. This can be done by first computing the sum s ]i=1 ai and

then by finding the interpolating polynomial of degree k i that computes the function

1 s>A,
0 s<A.

This interpolating polynomial can be evaluated in size O(k log k) and depth O(1). The
negation of 6k,zx can be computed in Zv by a similar application of Lemma 4.1. This
simulation of the threshold computations of C requires the Zp Circuit C’ to have
size O(S(n)log S(n)) and depth O(D(n)). Finally, if Cn has (boolean valued) output
nodes u1,..., urn, then we let C’ have output nodes u,...,u’, where m’ ].
For i 1,..., m’ we compute the values val(u) ]’ 2val(u(_l)b+), where ti
min(b, m-b(i- 1)), so encodem,,, (val(u),..., val(u’,, ) (val(ul),..., val(u,,)), and
the (boolean) function computed by C’ is exactly the same as the function computed by
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C,. The constructed Zp(n) Circuit C has O(S(n) log S(n) + nP(n) log P(n)) size and
O(D(n)) depth, and C’ is polynomial time constructible, thus completing the proof of
Theorem 3.1.

Note that if C’, is logspace uniform, then C is also logspace uniform.

5. Simulation of finite field circuits by threshold circuits.

5.1. Computing arithmetic using polytime constructible threshold circuits. The
problem of finding the sum of a set of numbers is called the iterated sum problem. Pip-
penger has given a constant depth threshold circuit for multiplication, and the method
used is the straightforward reduction to iterated sum (i.e., the "grade-school method"
of multiplication) [17]. Looking at just the iterated sum circuit, we see that Pippenger’s
circuit for adding m values, each of n bits, has size O(nm2) and depth O(1). In the fol-
lowing lemma, we show how to produce a constant depth circuit for iterated sum with
smaller size.

LEMMA 5.1. Given any constant satisfying 0 < e < 1, there exists a circuitfor comput-
ing the iterated sum ofm numbers, each ofn bits, (with m < n(1)) that has size O(nm+)

1and depth 0 ).
Proof. Since m < nO(1), it is trivial to show that the result of the iterated sum will

have less than cn bits for some constant c.
To calculate the iterated sum, we build a computation tree with maximum fanout

[m’J and m leaves. Placing the m input values at the leaves, computation proceeds
toward the root of the tree with each internal node computing the sum of its children.
After all computations, the root contains the sum of all m input values. It is easy to
see that the desired tree has O(m-) internal nodes, and a height of O(). We use
Pippenger’s circuit at each internal node for a node size of O(nm2"), so the total circuit
size is O(nmX+’). Since the depth of each node in the tree is constant, the total depth of
the circuit is the same as the height of the tree or O(1/4). [:]

Using this result, we can also construct small size circuits for discrete Fourier trans-
form. Let DFTM denote the discrete Fourier transform of an M-vector.

LEMMA 5.2. Given any constant e satisfying 0 < e < 1, we can construct a circuitfor
DFTM (a0, a,..., aM-) mod 2N+ 1 (where M and N are bothpowers of2and M < N)

1MN+’) and depth 0 ).that has size 0(-
Proof. Since N and M are powers of 2, let N 2’ and M 2". We will first show

DFTM exists in the ring Z2N+1. If we let a; 2eN/M, then by taking wM/z 2N =_ -1
(mod 2N + 1) it is easy to see that w is a principle Mth root of unity in ZeN+I. Also,
since M is a power of 2, we know that M and 2N / 1 are relatively prime; therefore,
M- exists in the ring. By these facts, the ring Ze+ supports DFTs on M-vectors.

We introduce a new constant 6 (v/1 + 4e 1)/2. We will construct a computa-
tion tree as we did in Lemma 5.1, but the fanout in this case will be f 2/’J. Let
v0, v,-.., Vf_l be the children of the root, and assume each child recursively computes
the M/f-vector val(vi) (xi,o, xi,, Xi,M/f_l) DFTM/f(ai, af+i, aM-f+i).
Note that these vectors exist since wf is a principle Mirth root of unity, and (M/f)-1
exists in Z2+. From these vectors we can produce the vector (y0, y,’", YM-1)
DFTM(a0, al,..., aM-l) by calculating

(1)
f-1

Yi E wJxJ,i mod 2N / 1.
j=0

The proof of correctness for (1) is straightforward and is not included in this paper.
Equation (1) is a simple modular iterated sum, since multiplication by powers of w is
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just a bit shift of zero cost. This process is repeated down the tree until there are fewer
than f values in each node. In general, if we label the root as level 0, we are calculating
DFTM//, at each node of level from its f children. By using the iterated sum circuit of
Lemma 5.1 (the reduction mod 2N+ 1 can be done after a nonmodular iterated sum with
a single subtraction), we can do this in size O((M/fi)Nf+) for each node on level i.
Since there are fi nodes on level i, the total size for all nodes ofthat level is O(MNf+).
There are O(1/2) levels, so the total size of the circuit is O(1/2MNf+). Since f is O(N),

1MNI+,). The depth of each level isthe sze can be written as O(MN1++ 0(-
O(), so the total depth is O() O(

Using this circuit for discrete Fourier transform we can construct a constant depth
multiplication circuit.

LEMMA 5.3. Given any constant e satisfying 0 < e < 0.6, we can construct a circuitfor
1N1+multiplication oftwo N bit numbers that has size 0(- and depth 0( ).

Proof. The circuits that we construct are actually for multiplying two N-bit numbers
modulo 2N + 1, where N is a power of 2. For exact (nonmodular) multiplication of N’
bit numbers, we use the same circuit with N 2[g N’]+. It is easy to show that this
will produce the exact answer.

We will denote the two input numbers by a and b, and their product by c. Since N
is a power of 2, let N 2", where n is an integer. Letting m 2 [enj we can write any

u bits, a (a0 al am-- 1); tZ0 is theN-bit number a as an m-vector of blocks of s ,..
block of least significant bits. We can view this vector as a vector of polynomial coeffi-
cients and define the po!ynomial A(z) yi=-o aizi. Note that A(2*) a. Defining a
polynomial for b in a similar way, the product polynomial C(z) A(z)B(z) will be such
that C(2*) c.

We use discrete Fourier transforms for the polynomial multiplication, and since
the product polynomial will have degree 2m 2, we must calculate the transform of
2m-vectors. (We could actually use wrapped convolutions on m-vectors, but nothing is
gained over our asymptotic bounds.) Looking at the straightforward method of polyno-
mial multiplication, it is easy to bound max0<<,{c} < m2 < m(2 + 1). Since m
and 2 + 1 must be relatively prime, we can calculate the coefficients of C(z) modulo
both m and 2 +1 and combine these results for the final answer modulo m(2*+1). This
ring includes as a subset the range of all possible results, so the result of these modular
calculations is also the exact (nonmodular) answer. The calculations modulo m can be
done using Lemma 5.1 and "grade-school multiplication," with a total size ofO(NTM) as
long as e < 0.6. We will now concentrate on the cost of the calculations modulo 2z / 1.

We will again use a divide-and-conquer tree with the root labeled as level 0. The
fanout of the tree is 2m, and it should be obvious that on level we are computing prod-
ucts of s N () bit numbers. The DFT, mod (2’+ + 1) required at this level
can be done in size O(-2m(2s+) by Lemma 5.2. On level i, there are (2m) such

DFTs to calculate, for a total size of O( () (2N) +’). For sufficiently large
N (and, therefore, m) we have ()" > 8, so the size of level i can be simplified to

Nl+eO( (7) NI+’). Summing over all levels we have a total size of O( ).
The depth of each level in the tree is O() by Lemma 5.2, so the total depth of our

multiplication circuit is O().
Note. The requirement that e < 0.6 can be relaxed to e < 1 by simply creating a

new constant 6 and absorbing the constant factor increase in depth into the big-Oh
notation; however, this is clearly just a notational manipulation and not an algorithmic
improvement.
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The problem of Chinese Remaindering can be stated as follows: given m small
primes pl, p2,’", p, (actually, they only have to be pairwise relatively prime) and an
n bit number a, calculate the residue of a rnod pi for all 1 _< _< m. Conversely, given
the residues modulo each of the primes rl, r2,...,r,, we would like to calculate the
least positive a such that a _-- ri (mod p) for all i <_ i <_ m. We will only be interested
in the case where m _> n, and this fact simplifies the analysis.

LEMMA 5.4. Given any constant e satisfying 0 < e _< 0.6, we can construct a circuitfor
Chinese Remaindering (in both directions) with size O(mTM) and depth 0().

Proof. The method of Chinese Remaindering is taken straight from [8], using the
multiplication circuit of Lemma 5.3. The proof of the size and depth of the circuit is also
analogous to that found in [8], and is not included in this paper. [3

The last basic problem we will look at is that of an iterated product over a finite
field. An iterated product of m values al, a2,.-., a,, over the field Zp is defined to be
mI-Ii=l ai mod p.
LEMMA 5.5. Given any constant e satisfying 0 < e <_ 1, we can construct a circuit

for iteratedproduct ofm numbers over the field Zp with size 0( (m log p)1+) and depth

Proof. Define a new constant 6 . We will perform the iterated product in a tree
similar to the tree used for iterated sum. The tree will have fanout m6 and will perform
an iterated product ofm values in Zp at each node. The iterated product at each node is
computed by performing a Chinese Remainder step, followed by calculating the iterated
product over each of the smaller fields (using discrete logs, iterated sum, and powering),
and finally a Chinese Remaindering step to recover the full result. This produces the
exact iterated product, and by multiplying by an m logp bit approximation to l/p, we
can find the residue modulo p.

To insure there is no loss of information, we must be sure that I-[ P is greater than
the maximum possible result. Specifically, we must insure that HiS=l Pi > Pm6. By basic
number theoretic results, we can achieve this with s < p O(m6 logp). Obviously,
s > log p, so the condition of Lemma 5.4 is satisfied, and we may construct the required
Chinese Remaindering circuit with size O(m96 (log p) t+6) and depth O().

After performing the initial Chinese Remaindering step, we must perform an iter-
ated product over each of the p. Since for all prime p, Zp, is a cyclic group, there is a
(not necessarily unique) generator call it 9 that generates the entire group. Let
fi(z) 9; due to the fact that 9i is a generator, this function is one-to-one and onto
over Z,. We make tables for fi(z) and f-(z), each of size O(p logp). Within a par-
ticular field, there must be tables for all m6 input values, so the total size taken up by
tables for pi is O(m’p log pi).

The iterated product is calculated by taking the discrete logarithm of all input values
(f/-- l(z), above), performing the iterated sum of these values modulo pi 1, then raising
the generator to the resulting power in Zp, (this is just fi(z), above). This is a fairly
common method of performing iterated product (see, for example, [2]). The only part
we have not examined here is the iterated sum. By Lemma 5.1, we can calculate the
exact iterated sum of m6 numbers, each of logpi bits, in size O(m’+’ log pi) and depth
O(). With an m6 log pi bit approximation to (1/(pi 1)), we can reduce this exact result
to the result modulo p I with a single multiplication. By Lemma 5.3, this takes size

O(1/2m’+’(logp)l+’) and depth O(); therefore, the total complexity of calculating
the iterated product of me numbers modulo pi is O(mepi(log pi)+’) size and O(4
depth.
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Since this must be done for all s prime fields, the total size complexity of iterated
product of m numbers is s times the above value, plus the cost of Chinese Remainder-
ing. Using the upper bounds for s and pi, the total size is O( 1/2mS (log p)x+2) and the
total depth is O(). With an m logp bit approximation to (l/p), we can reduce this
result (the exact iterated product) modulo p. The complexity of this multiplication is
negligible compared to the rest of the circuit.

All the above results are for one node of the tree. Summing over all nodes and
rewriting in terms of e, the total size is O(-ml+5(log p)+2) O((mlogp)+’),
and the depth is O().

Note. All Threshold Circuit families considered in this section can easily be seen to
be constructed in polynomial time.

5.2. Proof of Theorem 3.2. Now we are ready to prove Theorem 3.2. Consider any
polytime uniform Zp(,,) Circuit C, with size S(n) and depth D(n). We wish to simulate
C’, by a Threshold Circuit n. We will precompute an S(n) log P(n) bit approximation
of the reciprocal of P(n) so that a residue computation modulo P(n) node of fanin k can
be done by just O(k) additions and multiplications on O(log P(n)) bit binary numbers,
followed by a residue computation using an O(k log P(n)) bit approximation to p();
therefore, each iterated sum or iterated product required at a node of C,, can be done
by applying Lemmas 5.1 and 5.2 using only size O((k log P(n))+’) and depth O().
The total size of the Threshold Circuit , is O((S(n) log P(n))l+’), and the depth is

O(D(n)); furthermore, the circuit family is constructible in polynomial time, com-
pleting the proof of Theorem 3.2.

6. Log space uniform threshold circuit simulation ofarithmetic and finite field cir-
mcuits. Let a, , am E Z2n. Let D(m, n) be the depth required to compute I-Ii=l ai mod

(2n + 1) using a (logspace uniform) Threshold Circuit of size (ran)(1).
LEMMA 6.1. D(m, n) <_ D(m, O(mn)1/) + O(1).
Proof. We use a reduction of Reif from iterated product to discrete Fourier trans-

form [18]. Assume, without loss of generality, that n is a power of 2, and let h
O(mn)1/ also be a power of 2. Given al,..., a, E Z2n, we let aid (for i 1,..-, m and

fi,-1
j 0,..., h- 1) be integers in Z2,/ such that ai -]j=0 ai,2a’/’. We first compute in
the vector (gi,0,-’-, gi,-l) DFT((ai,o,2ai,1,..., ai,_l)T) for 1,.-. ,m. By
Lemma 5.2, we can easily compute these DFTs in polynomial size and constant depth.
For k 0,..., h- 1 compute in (logspace uniform) Th((mh)(1),D(m,h)) the iter-
ated product e Him__1 gi,k mod (2’ + 1). Finally, compute in (logspace uniform)

2-1f_1) DFT-I((eo e_l)T) and out-Th((nm)(1) 1) the vector (f0 2fl,..., ,...
-1 2in/Cz mput -]i=0 fi Hi= ai mod (2 + 1). The total depth is the depth of the recursion

plus a constant amount, as stated in the lemma.
LEMMA 6.2. D(m, n) < O(logm log logn log n).
Proof. For any e, 0 < e < 7, we can compute the iterated product of m integers by

first computing the [m/n] iterated products of n

times, we get D(m, n) < lolm,ogn](D(n,n) + O(1)). Applying Lemma 6.1 and this re-
currence a constant number of times, we get

D(n’,n) < D(n, n1/2) -}-O(1)< D(n’/2,n/2) + O(1).



ON THRESHOLD CIRCUITS AND POLYNOMIAL COMPUTATION 905

Finally, applying the above recurrence log log n times, we get D(n, n,) < O(log log n).
Hence

D(m, n) O log n O(log log n),

which is the bound claimed in the lemma.

6.1. Proof of Theorem 3.5. Note that Lemma 6.2 implies that iterated product of
n() integers with n bits each is in (logspace uniform) Th(n() log log n). Since com-
puting the n bit approximation of the reciprocal of an n bit number reduces to simply
computing the iterated sum ofn iterated products of size n, we can also compute residues
modulo a number with n bits in (logspace uniform) Th(n(1), log log n). Theorem 3.5
immediately follows, since we must compute residues, iterated sums, and iterated prod-
ucts of n O(log P) bit numbers.

7. Lower bounds. The degree of a multivariable polynomial f(l,’", /) is the
maximum sum of the powers of the variables appearing in any term (monomial) of
f(Yx,""" ,Yk)"

LEMMA 7.1. Suppose f(y,. , y is a nonzero polynomial of degree d over a finite
field Zp, and A is a subset of Zv of size a. If a > d, then (ax,..., a) Ak such that
f(ax,’’’,ak) 7 O.

Proof. The proof is by induction on k. For the basis case k 1, we have f(yl), which
is only a single variable polynomial. It is well known that any nonzero polynomial f(x)
of degree d over any field can have at most d zeros in the field (see, for example, [6]),
and since a > d, at least one a A must give a nonzero value for f(a).

We make the induction hypothesis that the lemma holds for all polynomials with < k
variables. Since f(y,..., y) is nonzero, (u,..., u)
0. Hence f(ul, Y2,"" ", Yk) if(Y2,""", Yk) is not a zero polynomial, and by the induc-
tion hypothesis, (a2,’",ak) Ak-1 such that f’(a2,’",ak) f(ztl,a2,...,ak) O.
Let g(Yl) f(yl, a2,..., ak). g(x) is clearly a nonzero polynomial, so by the basis step
there is an al A such that g(al) O, and we have constructed (al,a2,.. ",ak) Ak

such that f(al, ak) # O.
Note. A similar lemma for polynomial identity testing in infinite fields was proved

by Ibarra and Moran [11].
7.1. Proof ofTheorem 3.6. Fix any positive integer functions S(n) and D(n), where

D(n) O(S(n)c’) for some constant c’ < 1, and S(n) > n. Now consider a sequence
of primes {P(1), P(2),..., P(n),...}, where 6(S(n)/D(n))D(’) < P(n) < 2’. We will
construct a family of Zp(,) circuits C (C, C:,..., C,...) of size S(n) and depth
D(n). In particular, we let vl,..., v,, be the input nodes of C,, where n’ In/hi and
b [log P(n)J < n. We also let w0 vl denote the first input node. Each level
L 1,..., D(n) of C, consists of a single "product" node WL with IS(n)/D(n)J edges
entering WL from node WL-1, SO that val(wL) is the [S(n)/D(n)J power ofval(wL_l);
WD(,) is the unique output node of Cn. Let yl val(vl),..., y,, val(v,,) be the
input values, and let ff (y,..., y,,). We have constructed C, of size <_ S(n) and
depth D(n) so that its output is the d ([S(n)/D(n)J)D(’) degree polynomial f(ff)
vaI(WD(,0) (y)a". Note, however, that by definition, C gets decoded input integers
y, , y,, only over input domain Z2, whereas the computation is over the entire Finite
Field Zp(,,). Furthermore, the binary encoded output value is the residue f, (if) mod 2b.

Next consider any Zp(,) circuit family (2’ (C, C, , C’,...), where C has size
S(n)c, for some constant c _> 1, and simultaneous depth D’(n) o(D(n)). We can
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assume without loss of generality that C has only a single output node, which computes
value 9, (if), where g (yl," , y,,) are the decoded integer values of its input nodes.
Again note that 9, (if) has only input domain Z2b. We wish to show that there exists
some ff 6 (Z2b)’’ such that fn(ff) : 9n(ff) mod 2b. Observe that gn(ff) is of degree

vI’D’ (n)< , ,L=I eL, where eL is the number of edges of C entering nodes of level L. This

product form is maximized when each eL S(n)C/D’(n) and since x-’D’(’0 S(n)
we get an upper bound on the maximum possible degree of g, (if) as (S(n)C/D (n)) D’(n).

Since D’(n) o(D(n)), we have for infinitely many n, and any constant c,

([S(n)lD(n)J)DO >

>_ (S(n)/(2D(n))) >

> S(n)cD’(n) > (S(n)C/D’(n))D’(n) deg(gn(ff)).

Fix some such n. For this value of n, by the above derivation d, > deg(9, (if)) and
d < (S(n)/D(n))D() < P(n)/6, so by Lemma 7.1 there exists some/7 e (Zp())’
such that f, (if) - g, (/7). However, this does not prove Theorem 3.6 because we must
actually show there exists some 7 6 (Z2)’’ such that f,(ff) - g,(ff) mod 2b.

We define a new function h(if) by the equation

hn (if) (f (if) gn (if) 2t’) (fn (if) gn (!7)) (fn (!7) g (if) + 2t’)

Note that if f,(ff) g,(/7) mod 2b for all/7 e (Z2)’’, then h,(ff) 0 for all inputs
ye n’.

The degree of hn (/7) is easily seen to be 3d,, and it is also obvious that h, (/7) is not
identically zero. Let A Zz, and since we know that

(S(n) " n(,) P(n)degree(h(ff)) 3d < 3
\ D(n) ]

<
2

we can use Lemma 7.1 to see that h,(ff) 0 for at least one n’-tuple (a, a2," ", aw)
(Z)’’. Theorem 3.6 follows immediately. I3

8. Conclusions.

8.1. Threshold circuits for arithmetic units. Division is by far the most costly op-
eration for Arithmetic Units. Our polynomial size, constant depth Threshold Circuits
for arithmetic indicate that Threshold Circuits might be quite useful in highly parallel
Arithmetic Units for integer division and trigonometric computations. It is an interesting
question as to whether a high fanin threshold gate can be manufactured in a reasonably
small area on silicon chips. Constant fanin threshold gates are in fact used in current
NMOS and CMOS technologies. In theory, fanin k threshold gates can be constructed
so that with sufficient area (growing no more than quadratically with k) these gates can
be driven in unit time. In particular, Mead and Conway describe how to construct tally
circuits (for k input threshold) in VLSI with total area O(k) and time O(1) for moderate
k using pass transistors [14, pp. 78-80]. The Microelectronics Center of North Carolina
is investigating the use of new microelectronic devices that may be used for Threshold
gates with large fanin. If this is feasible in practice, then VLSI Arithmetic Units might
be designed using Threshold Circuits to run much faster than currently possible (i.e.,
compared with the standard bounded fanin boolean logic gates of conventional VLSI).
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8.2. On learning and interpolation in neural networks. Our positive results con-
cerning Threshold Circuits (in particular, Theorem 3.2 and Corollary 3.3) show that
Threshold Circuits of polynomial size and constant depth can compute high accuracy
approximations to a large class of multivariate rational polynomials, and, furthermore,
can interpolate rational polynomials with a constant number of variables. Learning by
algebraic interpolation appears to be appropriate in certain constrained cases such as
low level vision [7], and would likely be much more efficient than previously proposed
methods for learning (such as found in [1] and [9]), which are essentially brute force.
Nevertheless, even making the apparently reasonable assumption that certain portions
of the lower brain act essentially as Threshold Circuits of constant depth does not nec-
essarily imply that the lower brain is wired so as to compute approximations or interpo-
lations of multivariate polynomials. However, our theoretical results do provide strong
evidence of the feasibility of neuron nets that evaluate and interpolate such polynomial
functions.

A neural biologist might, for example, make experimental tests to verify this by us-
ing a computer to monitor input-output response functions of neuron nets. Specifically,
the lower brain very rapidly provides feedback control for certain muscles; this control
appears to be smooth and nonlinear. Such easily observable responses would appear to
be ideal to monitor and to interpolate. By using known randomized multivariate poly-
nomial identity tests, such as those of Ibarra and Moran [11], we can, with very high
likelihood, verify that the input-output response of a neuron net is a specific interpo-
lated multivariate polynomial.

$.3. Lower bound conjectures. Finally, we make two lower bound conjectures con-
cerning Threshold Circuits.

CONJECTURE 8.1. For Dl(n) o(D(n)), there exists an f E c>1Th(no, D(n)) that
is not in Uc>l Th(no, D’ (n)).

Let DETERMINANT be the problem "given an n r matrix A with 0, 1 elements,
compute the determinant of A."

CONJECTURE 8.2. DETERMINANT is not contained in Th(n, 1) for any constant
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GENERALIZING THE CONTINUED FRACTION ALGORITHM TO ARBITRARY
DIMENSIONS*

BETTINA JUSTt

Abstract. This paper presents for the first time a higher-dimensional continued fraction algorithm (ab-
breviated "cfa") that produces diophantine approximations of more than linear goodness. On input xl,. ,
xn-1 E R, it produces vectors (pk) ...,p(k) q()) E Zn, k i 2,-..,suchthat

o) I111" const(n)
max xi

1<i<n-1 q- --Iq(k)llT1/(2n(n-i))

By a theorem of Dirichlet, there is no algorithm that replaces the term 1/(2n(n 1)) by a te bigger than
1/(n 1). The higher-dimensional cfa’s analyzed so far do not achieve better than m<i<n- [xi
pk) /q(k) o(1)/lq(k)l. The o(1) term decreases with k but is not own to be related with q(k).

Other properties of the cfa are also generalized by the algorithm. On input Xl,- , xn- it starts with the
standard basis of Z and then constructs by performing elementa
of bases of Zn. The sequence (B(k))k is finite if and only if the numbers x,...,xn-, 1 are Z-linearly
dependent; a linear dependence is found in case of estence. The mmal distance beeen the vectors of
B(k) and the straight line (x,...,xn-, 1) R tends to zero exponentially fast in k. For each k, the above-

mentioned vector (pk) ,p2 ,q(k)) is the first vector ofbasis’’"The algorithm is a variant of an algorithm for the integer relation problem presented in [G. Bergman,
Notes on Feson and Forcade’s Generalized Euclidean Algothm, preprint, Univ. California, Berkeley, 1980]
and analyzed in [J. Hastad, B. Just, J. Lagarias, and C. R Schnorr, SMZ Comput., 18 (1989), pp. 859-881].
The bound on the goodness ofthe diophantine appromations is proven with a "parallel induction" technique.

Key words, continued fraction algorithm, diophantine approximation, integer relation

AMS(MOS) subject classifications. 11A55, l lJ70, 68Q25

1. Introduction. The continued fraction algorithm (cfa) is one of the fundamental
mathematical algorithms. Its underlying computational model is the unit cost model,
that is, one step is an arithmetic operation +, -,.,/, a trunc L.J to the next lower integer,
or a comparison > among real numbers. The cfa accepts as input one arbitrary real
number xl and outputs a sequence of bases of Z2. Some fundamental properties of
these bases are in the list that follows. For a detailed presentation and for the proofs of
the properties mentioned, we refer to the literature (e.g., [22]).

In 1868 Jacobi [20] considered generalizations of the cfa. An n-dimensional cfa ac-
cepts as input real numbers x1,..., Xn_ and outputs a sequence of bases of Z’. It
obtains each basis from the previous one by performing a sequence of elementary basis
transformations. (A basis of Z’, n > 1, is an ordered set {b,..., b,} c Z’ such that
b Z Z’. An elementary basis transformation transforms one basis of Z’ to another

either by interchanging two basis vectors or by adding an integer multiple of one basis
vector to another basis vector.)

One desires that the following four properties of the cfa carry over to higher dimen-
sions.

Approximation of the straight line. The sequence ({bk),..., b(nk) }) k of bases of Zn

produced on input x,..., x,_ should fulfill

max dist(b), x R) - 0
l<i<n
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(if the sequence is infinite). Here and in what follows, the notation z := (z1,’", z,_ 1, 1)
is used [5].

Integer relations. A vector m (ml,..-, m,) E Z’ \{0} is called integer relation
for y (yl,’", y,) E lZt’ if ]i=1 miy 0. The cfa stops, if and only if the input zl
is rational, that is, if and only if z fulfills an integer relation. A higher dimensional cfa
should do so too (and should also find integer relations, if they exist).

Diophantine approximations. Vectors b (pl,’", p,-l, q) Z’ such that
maxl<<,_l ]x p/q] is "small" are called (simultaneous) diophantine approximations
for x1,..., x,-l. For arbitrary given denominator q one can find trivially nominators
Pl,’",Pn-1 such that maxl<i<n-1 [xi p/q[ <_ 1/(21q[) holds. The following is a
theorem of Dirichlet [10]: "For arbitrary x,...,x,_ R there exist infinitely many
(Pl," ,Pn-l,q) Zn such that maxl<i<n_l [xi- pi/q[ _< 1/(1q11+1/(’-1)).

The bound is sharp in the sense that the right side of the inequation cannot be re-
placed by c/[q[, where s > 1 + 1/(n 1) and c and s are constants [6].

If b (p, q) Z is a basis vector of the cfa on input x, then Ixx P/ql <- 1/Iql
holds. For higher dimensions it is not known whether there exit entire bases of diophan-
tine approximations fulfilling the Dirichlet bound (or some other nontrivial bound). So,
one desires that some of the basis vectors are "good" (in some sense) diophantine ap-
proximations for the input numbers.

Periodicity. A sequence (Bk)kN of bases of Zn isperiodic if there exist m0, s N
and an n x n matrix T with integer entries, such that for all r E N and m > m0

[B.J-T [Bm+].

Here [B] denotes the matrix with the basis vectors of B as columns. The sequence
of bases produced by the cfa on input Z is periodic if and only if the field extension
Q(zl) of Q is of degree 2. One might desire that the sequence of bases produced by a
higher dimensional cfa on input zl, , Zn- is periodic if and only if the field extension
Q(xl,’’’, Xn--1) of Q is of degree n.

Since Jacobi’s paper, higher dimensional cfas were proposed by Poincar6, Minkowski,
Perron, Brun, Payley and Ursell, Rosser, Szekeres, and others [3], [5], [8], [16], [28]-[31],
[36]. However, none of these algorithms has been proven to fulfill one of the four prop-
erties above. Only results for specific inputs are known.

In several papers since 1979, Bergman, Ferguson, and Forcade [4], [11]-[14] pre-
sented variations of an algorithm for the integer relation problem. It is the first known
ideally convergent algorithm. It was analyzed by Hastad, Just, Lagarias, and Schnorr
[17]. For any > 0, after O(na(n + log 1/)) arithmetical steps on real numbers either
it finds an integer relation for z or it proves that the Euclidean length of each integer
relation for z is larger than 1/. Babai, Just, and auf der Heide [2] showed that the
parameter cannot be omitted: In a very powerful model of computation there is no
algorithm that detects Z linear dependence in finite time.

It is natural to ask whether the Bergman-Ferguson-Forcade algorithm produces
good diophantine approximations, and how about periodicity? Nothing is known about
the latter. The former is implicit in the ideal convergence of the algorithm: Every
ideally convergent algorithm produces diophantine approximations pk) ,(k) (k)

/’n--l q

such that maxx</<n-1 [xi pk)/q(k)[ < o(1) /[q(k) ], where the o(1) term decreases with
k (cf. Claim 24 of this paper). However, it is not known how it is related to q().

The present paper for the first time presents a higher-dimensional continued frac-
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tion algorithm that produces approximations with

max x <
l<i<n-1 - -[q(k)ll+(1)"

The bound is proven with a parallel induction technique. The algorithm is a variant
of the Bergman-Ferguson-Forcade algorithm. On input x,..., x,-i it starts with the
standard basis of Z’ and then constructs, by performing elementary basis transforma-
tions, a sequence (B(k))k of bases of Z’. The sequence (B(k))k is finite if and only if the
numbers x,..., x,_, 1 arc Z linearly dependent; a linear dependence is found in case
of existence. The maximal distance between the vectors of B(k) and the straight line
(x,...,x,_, 1) R tends to zero exponentially in k. For each k, the preceding vector
pk),... ,’,-l(k), q(k) is the first vector of basis B(k).

The paper is organized as follows. Section 2 contains mathematical facts and algo-
rithmical techniques. In 3 the algorithm is presented and its performance is stated as a
theorem, which is proven in 4. Section 5 contains remarks on the algorithm.

2. Mathematical and algorithmic preliminaries. We start with some lattice theory.
Let a,..., a Rd be linearly independent. Then the set L(al,..., a) ai Z ofall
integer linear combinations of the ai is called lattice spanned by a,..., a. The ordered
set {a,..., as} is called the basis of the lattice, and the number s is the dimension of the
lattice. The dimension is unique, the basis is not: For each unimodular s s matrix T,
the columns of the matrix [a,..., a] T also form a basis of the lattice. Moreover, all
bases of L(a,..., a) are obtained in this way [9]. (A matrix T is unimodular if it has
integer entries and [det T[ 1.) So the number

det(L) [det[a,..., a]t- [a,.-., as][ /2

is unique for the lattice and is called the determinant of L. Here, [.- .It denotes the trans-
posed matrix.

The purpose of lattice basis reduction theory is to select "reduced" bases from the
bases of the lattice. A reduced basis must consist of "short" vectors that are pairwise
"fairly orthogonal." For the dimension 2 Gauss [15] defined reduced bases and presented
an algorithm that constructs a reduced basis from an arbitrary given one. For higher
dimensions, however, the definition of reduced bases is not canonical. Proposals were
made by Hermite, Korkine and Zolotareff, Minkowski, and others [19], [23], [28].

In 1982 Lenstra, Lenstra, and Lovisz presented the first polynomial time algorithm
to construct a reduced lattice basis from an arbitrary given one. They invented a new
definition of "reduced" that will be used in the present paper..Their algorithm starts
with a lattice basis and then performs two kinds of basis transformations (size reduction
steps and exchange steps) until a reduced basis is reached. The algorithm has beenwidely
applied [1], [18], [21], [24]-[27], [33], [34].

Now let {al,.-.,as} be a lattice basis. For all i,j such that 1 _< j _< _< s,
we denote by ai(j) the orthogonal projection of ai to the orthogonal complement <<
al,..., aj_ >>+/- of the linearspace spanned by a,.--, aj_. The ai(j) situation is il-
lustrated in Fig. 2.1.

For all i E (1,..., s} we also write a’ instead of ai(i); the a are an orthogonal
system. Now for all I _< i, j <_ s, we denote by #,j the jth coefficient ofa in this system;
thus,

i--1

+
j--1
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al(1) a(1)

a2(2)

ai-- ai+l-

ai(1) ai+i(1)

ai(2) ai+1(2

ai(i) ai+l(i)

ai+l (i d- 1)

as--
a,(1)

1 prj" nal R+/-

as(2)

a(i)

l prj’naiR+/-

as(i+ 1)

on  _l rt

FIG. 2.1. Projection of ai.

Moreover, we observe

(2) det(L(al,..., a,)) I{I Ila’ll,
i=1

where II. denotes the Euclidean norm.
Now, according to [27] we call a basis {al,’’’, as} reduced if it fulfills (3) and (4):

(3) Ilagll = 2. Ilalll = for all/e {1,...,s- 1},

(4) Im, l -< 1/2 for all i _< < j _< s.

LEMMA 1 [27]. Ifthe basis {a, a} is reduced, then

(5) Ilal[ 2 <_2s-l.llv[I 2 for allveL(al,...,as)\{O},

(6) IlaTII < 2(s-1)/4" det(L(al,..., as)) 1/s.

We return to the task of generalizing the cfa to arbitrary dimensions. Let
x,’",Xn-1 R be the input numbers, and denote the vector (x,’",Xn-, 1) by x.
For each vector b Rn we denote by 7rb the projection of b to the orthogonal comple-
ment x R+/- of x. So the distance between b and the straightline x R is IIrbll.

Now let {bx,..., bn} be a basis of Z’, for example, the standard basis that we take
to begin with. We want to perform elementary basis transformations in order to get
bases that more closely approximate x R. To this end, we treat {Trbx,..., 7rbn} as if it
were a lattice basis to be reduced. Certainly it is not, since 7rbl,..., 7rbn are linearly
dependent. Nevertheless, we perform size reduction steps and exchange steps. These
steps provide elementary basis transformations on bl,. , bn that decrease 7rb, , 7rbn
and, therefore, the distance of the basis vectors to the straight line.
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I proj. onxR+/-

[ proj. on bl R-I-

proj. on bn-1 R+/-

FIG. 2.2. Projection of bi.

For x, bl,..., bn and all I < j < i < n, we denote by bi (j) the projection of bi to the
orthogonal complement << x, bl,..., bj-1 >>+/- of the space spanned by x, bl,..., bj_l.
Figure 2.2 illustrates the bi (j) situation.

The vectors x, bT,..., b form an orthogonal system; one b is the zero vector.
LEMMA 2 [17].
(a) Denote by A(x) the Euclidean length ofthe shortest integer relationfor x ifone exists;

otherwise, define )(x) o. Thenfor each basis {bl,.. , b,} of Z’

(7) (x) _>
l<i<n

(b) Define [el,..., Cn] := ([bl,’", b]t) -1. If b 7 O, then cn is an integer relation
for X.

Remark. Equation (7) implies that each ideally convergent algorithm solves the inte-
ger relation problem: The algorithm on input x1,..., x,_l, 1 approximates the straight
line x tt with bases of Z’. This cannot be achieved if there is an integer relation for x,
hence the algorithm will fail in that case. This "failure" proves the Z-linear dependence
of Xl Xn-l 1.

By Lemma 2(b) we may assume from now on that b 0, since otherwise we have
found an integer relation and are finished. For i {1,..., n}, we denote by #i,j the
coordinates of bi with respect to x, b,..., b_1, thus,

i--1

(8) bi #i,o x + b +E #i,j b,
j--1
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i-1

j=l

Our aim is to decrease I#i,gl and I[b for 1 <_ j < i <_ n. To this end, size reduction
steps and exchange steps are performed. Both transform one basis of Z’ to another.

Asize reduction step replaces bi by bi- [#i,jJ .bj for one pair (i,j) with I _< j < i _< n.
Here [.J denotes the nearest integer. This achieves ,i,il",o -< 1/2. All b* and all #’s
except the #,t with < j are unchanged. By performing size reduction steps in a nested
loop for all 1 to n and for all j i 1 down to 1, one achieves [#,jl < 1/2 for all
l<_j<i<n.

Anexchange step i i+1 (for 1 <_ i _< n- 1) is allowed onlyif IIb’ll 2 > 2. Ilbi*+lll 2. It
first performs--if I#i+l,il > 1/2--a size reduction step to achieve I#i+l,il -< 1/2. Then
it interchanges b and b+l. This changes b, b*+l, and #r,L with {r, 1} ;3 {i, + 1} (0.

An exchange step i + 1 achieves

(10) h*new IIb"otdI[-, :,
since lib*’ 9. ota 9. h,ota iibOta 9. ,,,o is a projection- I[b+l (i) I[’i+1 2 -" [i+1,i1" Since
of bta, we have

(11) td II.
,oldThe following claim is obvious if b+l 0; otherwise, it holds because the exchange step

leaves the lattice L(bi(i)Ld, b+l (i)td), and hence its determinant, fixed:

(12) A*old h.new IIA*new
I1’-’i+1

Equations (10), (11), and (12) imply the following.
n--1 2(n--i)Resuh 3. Each exchange step decreases D := I-I=1 lib} by at least a factor

Now we consider algorithms that perform size reduction steps and (allowed) ex-
change steps as long as b 0. Such algorithms have the following readily checked
properties.

CLAIM 4. max Iib never increases.
CLAIM 5. min#n IlbT decreases only (butnot necessarily) atexchange steps n 1 n.

CLAIM 6. Exchange steps n 1 n decrease ,-1

Hi--1 [Ib by at least a factor of 1/2; the
other exchange steps and the size reduction steps leave I1_-1 IIb unchanged.
The Bergman-Ferguson-Forcade algorithm and the generalized cfa presented in the
present paper perform size reduction steps and exchange steps in order to decrease the

By (9) the distance between the bi and the straight lineIIb and to achieve I,jl <- .
x l:t becomes small. The algorithms differ in where exchange steps are performed. The
Bergman-Ferguson-Forcade algorithm always performs exchange steps i i / 1 at the
position i where T-IIbTll 2

maxl_<j_<n 2J IIbll 2, Our algorithm performs arbitrary
exchange steps with the restriction that exchange steps n 1 n are performed only if
no others.are allowed. However, the basic idea for both algorithms is the same.

Exchange steps bring short b’ "upwards" and long b "downwards" in Fig. 2.2. If
b 0, an integer relation is output as a result of Lemma 2(b). Otherwise, at least
an exchange step n 1 n is allowed, which shortens a "long" b_1. If b_1 becomes
short enough, an exchange step n- 2 n- 1 is allowed. This shortens b_9., and so on.
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3. The algorithm. In this section we present a higher-dimensional cfa. On input
Zl,...,z,_l E tt it produces a sequence (B(k))k of bases of Z’. The performance of
the algorithm will be stated as a theorem, which will be proven in the next section.

ALGORITHM
Higher-dimensional cfa (x1, z,_ ).

Step 1 (initialization):
x := (xl,’",xn-1, 1);
for E {1,-.., n} let b be the ith unit vector;
for all 1 < j < i < n compute b’ and #,j;

Step 2 (exchange steps of the first basis vectors):
while i < n- 1 such that IIbll 2 >_ 2-IIb*+ 2 do

(i) bi+l := bi+ [/i+l,iJ" bi;
(ii) interchange bi and bi+l;
(iii) update b$, bi*+ and the #’s;

Step 3 (size reduction):
for i 2 to n do

for j --i- 1 downto 1 do
(i)
(ii) update #’s;

output B(k) := {bl, , bn };
Step 4 (exchange step n 1 - n):

interchange bn- and b;
update/z’s and b$_l, b$;
ifb$ #0

then [Cl,’",Ca]’=([bl,’",bn] -1);
output integer relation c, for x;

else goto 2. []

Remarks. The notation B(k) stands for the basis Before the kth exchange step n 1
n. We note that when entering in step 4 we have I#n,,-1[ <_ 1/2, thus an exchange step

n 1 - n interchanges the lasto basis vectors without size reduction.
EOREM 7. On input z_ Rthe algothm stas with the standard basis of

Zn andpeos a sequence ofelementa basis transfoations. It outputs a subsequence
(B() ofthe obtained bases.

(a) If the numbers Zl,’",zn-, 1 are Z-linearly independent, the sequence (B())
is infinite. Otheise, the algothm stops after finitely many steps and outputs an
integer relation c for z such that

Ilcnl[ 2 2-2- (x,-. ",Xn_l, 1) 2.

(b) If := dist(x R, bk)), then the basis B(k) is obtained after at most O(n4(n +
log 1/5)) elemenm basis transfoations. Moreove each basis B(k) lfills

m dist(x R, bk)) n 1.2(-)/2 2-(k-)/(-x).
l<i<n

(c) Thefirst basis vector bk) (p,-.., Pn-, q) ofeach basis B() lfills
Pi Ilxll. 2

l<i<n--1 --I[])
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4. Analysis of the algorithm. The purpose of this section is to prove Theorem 7.
Parts (a) and (b) are provenwith methods similar to those used in [17]. Part (c) is proven
with a parallel induction technique that (as far as the author knows) was not used be-
fore in lattice theory or in the context of cfa’s. Before starting the proof, we note the
following:

Note 8. The basis {Trbk), 7rb1} is a reduced lattice basis for all k. Thus,

(13) 2’-1" IIbll max 2i. tlb)ll for all k.
1<i<n--1

We shall first prove part b of Theorem 7, then part (a), and then part (c).

4.1. Proof of Theorem 7(b). We know from Result 3 that each exchange step de-
--Icreases the number D 1-Ii=l Ilbi 2(n-) by at least a factor of . At the beginning we

(k)*have D < 1. The basis B() fulfills IIb)*ll 2 < 211,+ 2 for all I _< _< n 2; otherwise,
step 2 would not have been finished. So we have

for the basis B(k). This shows that at most O(n2(n + log 1/llb)* II)) exchange steps are
performed until B(k) is output. Since each exchange step is followed by at most O(n2)
size reduction steps, the claim on the number of elementary transformations is proven.

To bound dist(x R, bk)) we define, for each intermediary basis {bl,..., bn} of the
algorithm (not only for the output bases 13(k)) and for each e > 0, the measure De by

n--1

De(b1,’", b,,) := H max {e,
i=1

We first show the following.
CLAIM 9. D never increases throughout the algorithm.
Proofi Since size reduction steps leave the b’ and thus De fixed, it suffices to show

that exchange steps do not increase
We consider the exchange step i + 1, which transforms the basis {bd, bd}

to the basis {b, beW}. With the notation a(b) := max {e, Ilbll} we have

De(bId, bld)

{hnew*a(b*)" awi+l
(hold,c(bld*) av.i+l

Therefore, we have to show

,[hnew*a(bew*)"’"i+l < 1.(14) [hold*a(bld*) awi+l

To prove (14), we observe that a is increasing in Ilbll, Now, if a(b’*) e, (14)
holds, since IIbZdll > * new,

i+1 ]l. If a(bi and-z \’i+1 11’i+1 II, (14)
(hnew* hnew* ,.,[hnew*follows from (12). If a,_i and e, (14) follows from (10). This\vint-

proves (14) and, thus, Claim 9.
Now, let 0 < <_ 1 be fixed. At the beginning De <_ 1, and De >_ -1 always.

lib(k)*Moreover, as long as maxl<i<,-i IIb*ll= > -1. , we have ,,-111 >- ; hence,
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the interchange step n 1 n applied on B(k)in step 4 decreasesD by at least a factor
of 2. So by Claim 9 and Claim 4 we have maxl<i<n-1 IIb)*ll= < -x = for all k >
1 + (n 1). log 1/e. Hence, maxl<i<n dist(bk), z R) < x/’n 1.2(n-1)/2 e holds for
these k. This implies part (b) of our theorem.

4.2. Proof of Theorem 7(a). We first show that each execution of step 2 takes only
a finite amount of time. It suffices to show that the while loop is performed only finitely
often.

We denote by .A() {a), a() } the basis of the algorithm After the kth ex-

change step n 1 n. The basis A() is obtained from B(k) by interchanging b( and

b(). By A() we denote the standard basis. Each time step 2 is entered the actual basis

of the algorithm is some A(), which, moreover, fulfills a()* 0.
n--IWe again consider the quantity D 1-1=1 IIb 2(n-), which is decreased by each ex-

change step by at least a factor of -z
4. When entering in step 2with basis A(), we have D <

1, and by Claim 5, during execution of step 2 we have D > (minl<<n-1 [1)* II)’n-1).
So the while loop is performed at most O(n. log (min Ila>* II) -1) times.

Since the other steps of the algorithm also take only a finite amount of time, either
the algorithm produces an infinite sequence B(k) of bases of Zn or it stops in step 4 and
outputs a vector Cn. By Lemma 2b the vector Cn is an integer relation for z; hence, an in-
finite sequence of bases of Zn is produced if xl,..., Xn- 1, 1 are Z-linearly independent.

If (x1,..., Zn-1, 1) are Z-linearly dependent, the straight line z R cannot be ap-
proximated arbitrarily closely with bases of Zn by (7). So by part b of the theorem, the
algorithm does not output an infinite sequence of bases in this case. Hence, the algo-
rithm produces an integer relation Cn for z (xl,..., Zn-1, 1) if there is one. We show
IIcll = _< 2-2 ()=.

The vector Cn is defined by [cl,..., cn] ([bl,..-, bn]t) -1. Here {bl,..., bn} is a

basis obtained from some B(k)by interchanging b( and b(). Since Cn R+/- b R+/- =<<
z, bl,...,bn_l >> and < cn, b >=< cn, bn >= 1, we have Cn +b IIb[I and,
therefore,

Now, let rn E Zn be an integer relation for x such that Ilmll (x). Let i0 be the
minimal/such that < m, b) > 0. Then < m, b) > l- < m, b)* > > 1; thus,

Ilmll >_ IIbo)*ll-x, We obtain from (15) and (13)

(16)
a(k), 2n-2 bo ), -2Ilcnll = Ilbnll -= IIn--xll -= --<

_< 2--=. Ilmll = 2-=, (x)2.

This finishes the proof of part (a) of our theorem. [3

4.3. Proof ofTheorem 7(c). The proof of part (c) of the theorem is the main contri-

bution of this paper. We have to show that the first basis vector b) := (p, , p,_ 1, q)
of each basis/3() fulfills

Ilxll" 2(+)/_<
Iqll/l/(2n(n-1))
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To this end, we first show that

(17) IIb*ll" Ilmllmax
1<i<n-1 Iql

Proofof (17). Since I1@)*11 is the distance between bk) and x R, we have

(18) max dist((pi, q), (Zl, 1) R) < IIb*ll.
l<i<n--1

Moreover, we have

(19)

< (xi, 1), (pi, q) >
dist((pi, q) (xi, 1)) R II(pi, q)

xi+l
(Pi xiq)2

2xi+l
Equations (18) and (19) imply (17).
It remains to show [[bk)* _< 2(n+2)/4 [ql-1/(2n(n-1)). This will be done by showing

IIb)*ll 2(’*+)/4 IIb)[I-1/(n(’-l))
which is equivalent to Proposition 10.

PROPOSITION 10. Thefirst vector b) ofeach output basis ofthe generalized cfa fulfills

(20) IIbk)ll 2n+l. 2n(n--1)(n--2)/2. IIb),ll-:,(n-1).

The proof of Proposition 10 fills the rest of this section. We must bound [Ib) 2

IIb)*ll + I’-1,01 I111 = in terms of IIb>*ll. We outline how to bound’l#1,01.() IIll, the

length of the component of b) parallel to z R.
(k)We shall bound #(k) := maxl<i<n It*i,O [IXll This will be done by induction on

k, the number of exchange steps n 1 n. The induction will bound simultaneously
/z(k)and V(k), the norm of a linear map fB() xR+/- -- R.

For any basis B {b,..., bn} of the algorithm (not only output bases) we define
ft x R+/- --. R by defining f(Trbi) #i,0" [Ix[[ for 1 < < n- 1. The map fw depends
only on << bl,..., bn-1 >>; we have

x R+/- }y + fs(y). "y 6 x =<< bl,..., bn-1 >>.

For b E<< bl,..., bn >> the length of the component of b parallel to x R is ilfw(Trb)ll.
The length of this component is bounded by IIrbll V, where V is the norm of ft.

We have already observed that exchange steps n- 1 n interchange bn-1 and bn
without size reduction. Hence, they do not change # maxl<i<n Ira,01 Ilzll. All the
other basis transformations performed by the algorithm do not change << bl, , bn-
Hence, they leave ft and thus V unchanged. These observations will enable us to
bound by "parallel induction" #(k) and V(k), the values of # and V for the bases B(k)

(Lemma 11).
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We now present the preceding sketched proof completely and first recall what is the
norm of a linear map. Let E c_ p’ be a linear subspace, and let f E - tt be a linear
map. Then the normllfll of f is defined by Ilfll :- supyeE, IlyJl=x If(Y)l. If {Ol,..., or)
is an orthonormal basis of E such that f(o) T for all i {1,..., r}, then by Riesz’s
lemma ([32], p. 43) we know Ilfll I1(’1,"’, T)II. The vector (T1,..., Tr) is called the
representing vector of f with respect to {o, , or }.

Now we turn to the previously mentioned maps fts" Every basis B(k)output by our
algorithm fulfills b, 0, since otherwise the algorithm would have stopped previously.
As the reader may verify, the representing vector of ft with respect to (bT/llbTII, "",

b-x/ll b-xll} is V.Nt.D, where V Ilxll’(l,O,""", #n-l,O), D

and N (#i,j)l<_i,j<_n_ Here iij is the Kronecker delta. This implies

(21) IIfll- IIV-Nt" DII.
As in the proofofpart (a), we shall also denote in the sequel by A(k) {ak), a()}

the basis of the algorithm After the kth exchange step n 1 n, so ,4() {b{)
b()-2, b(k) b(k_) 1} for k _> 1. By ,4(0) we denote the standard basis consisting of the unit
vectors el,.. ,en.

Then the value of/z is the same for B()and A(). Moreover, the maps ft(-* and
ft(k, and thus their norms, are equal. We shall bound #() by looking at B() and V()

by looking at ft(k-l. Figure 4.1 illustrates the situation.

Exchange step n 1 n no.

0 1 2 k-1 k

Basis

V

.4(0

V(1)

(1)

(1)

.4( B(2)

#(2)

FIG. 4.1. Exchange steps n 1 nfor Theorem 7(c).

LEMMA 11. Thefollowing inequalities hold:

(22) V(1)-< II Ile’l1-1;
i=1

n--1

(23) #(1) _< (n + 1). II Ilel1-1;
i=1

(24) V(k) _( 7(k-l) +

(25)

(n- 1) 1/2. (1.5)’-2. #(k-l) forall k >_ 2;

,(k-),#(k) < #(k-l) + v(k) 2n-1 [[’n-1 forall k > 2.



920 BETI’INA JUST

Proof of Lemma 11.
Proofof (22). For all y E x R+/- we have ft(o)(y)" x/l[zll + y E<< el,.’., en-1 >>;

hence fut(o)(Y) en/llzll + Y << e,...,e_l >>. This implies IlYll > I[fut(o)(Y)
(n/llxll)ll If(o)(Y)I/IIxlI, SO we have proved 7(1) Ilxll.

The claim follows from 1 det(L(x,
eroofof (23). Since (Trbl), 7rb(1)} is size reduced, we have IIb) II <_ (,- x)1/2

for all j {1,..., n}. Since bl) e<< el,..., e,-i >> for these j, this implies

(26)

(1) llTrbl)max I,01" 1111
l<i<n--1

< (n- 1) 1/2-
i=1

which follows from (22).
It remains to bound’ (1) b(l)In,Ol’llxll" We have e,+v forsome v e<< el,." ,en-1 >>.

The bounds IIrb)II _< (n- X)1/2 and IIrenll _< 1 imply IIrvll _< 1 / (n- 1)1/2, and thus
< v,x/llxll > <- (x / (n- x)x/2), v(). So we have

(27)

x x
.,0[" I111 _< < ,i > I+1 <, i- >1

_< 1 + (1 + (n- 1)1/2) 7(0)

n--1

< (n + 1) 1/2. H IIZll-i=1

Equation (23) follows from (26) and (27).
Proofof (24). Let g (gl,’", g,-l) be the representing vector of ft(k-l with re-

spect to bk-1)*/llbk-l)* II,’", Vn--1 /lI.,-i Let t (91,.", n--1) be the rep-

{ ...(k--I)* )* }resenting vector of ft,-) with respect to a-)*/lla-1)* II,’", ".-1 /lla(.-
Then V(-) 11911 and V() II911. Since

(ak- 1) o(k-1) (bk- 1) /(k-1)b(nk-1)’’’’,’n--1 )-- ,’’’,’n--2 ),

we have g v. N D and ft. t. d, with the following notations:

v- IIll" (,kO-1) (k-1),
n-l,0/

9 I111" (,kO-1) (k--l) (k-l)
’n-2,0/Zn,O

/’, (k--l) )--1N ,t, )_<,_<,-1
N (,^(k-l)t,#i,j )-1 where i,j)l<_i,j<_n-1

n,j, if i n- 1

O-- (di,j)l<_i,j<_n-1

di,j <i,j <_n_
di,j,

where di,y
n-l,j/Ila(-1)* II,

if i#n-1
if i=n-1

The matrices D and/3 are diagonal matrices, and N and are lower triangular
matrices. One easily checks 9i Oi for all E { 1,..., n 2}. This implies

(28) I101,"" ,n-2ll < Ilgll-< v(k-1).



GENERALIZING THE CONTINUED FRACTION ALGORITHM 921

We shall now bound [t),-x 1. To this end, we need the following general fact, which is
proven readily by induction on n.

Fact. Let M (m.)x_<j<_,_x be a lower triangular matrix such that m, 1 and
Imp,j[ <_ m (say) for all 1 < i < n 1 and j < i. Let T (ti,j)l_<i,j_<,_l be the inverse

matrix of M. Then It,l _< (1 /m)- for all i,j E {1,...,n- 1}.
Application of this fact on (fti,j) shows that each entry of the matrix fir is of absolute

value at most (1.5)’-z. With this observation one checks

(29) I-11 (n- 1):/. (1.5)-z./z(k-:).

Since V() I11[, the inequalities (28) and (29) yield the desired bound.
Proofof (25). This proof is similar, but not the same as the proof of (23). We shall

use the following inequalities:

(30) ()*117rb)ll z < 2-: IIb_:ll z for all/E {1,...,n} and k >_ 1,

h(k), 2n-2 /(k-- 1), 2(31) IIv,,- 2 -- II’n--1 II for all k >_ 2.

Inequality (30) holds, since 2n-l’’(k)* 2 b)* (Trb),,_xll maxl<i<n
2 and since ,...,

II/(k)7rb } is size reduced. Inequali (31) holds, however, byvirtue ofthe fact that
_

2

ml<i<n IIbk)*ll2 2n-211bX)*ll 2.
To prove (25), we first boundm_ Ilxll" I,01, For those j we have b)

<< a-) ," ", n- >>. Thus,

(32)

by (30) and (31).
It remains to bound Ilxl] (k) b(nk) (k-l)I#n,Ol" We have an -+- v for some v <<
,""

(k-) IIb(k) ll,wea-l) a-l)>>. Since IIvll < I1,,-1 / get

(33)

/(k-1), (n-l)/2 h(k),IIrvll < 2(n-1)/2" IIn_x / 2 I1-111
h(k-1), 2(2n_3)/2 h(k-1),< 2(n-1)/2" Ilk’n-1 II-4- II-x II

-< 2n- b(--1>*

from (30) and (31). So we have

(34)

(k) (k-) X X
Ilxll" In,0l <l< Vn_l Ilxll >1/1< v,l >1__

(k-X)
__

V(k). IIvll
(k-1),< #(k--l)_.[_ v(k) 2,- ii,n_

from (33).
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Inequalities (32) and (34) yield the desired bound. This completes the proof of
Lemma 11.

We now turn the bounds of Lemma 11 into noninductive bounds for V(k) and/(k).
LEMMA 12. For all k > 1 we have

-2
(),

(35) V(k) < 1 /=1 2(k-1)(2n-1)
n-1 k-1 (l),

i=1 /=1

and

k-1
,()*

(36) #(# < 1 /=1 .2n. 2(k_D(2n-1)
n--1 k-1 (t),H I1<11 H I1,,-11
i:1 /:1

Here the emptyproduct as usual is defined to be 1.

ProofofLemma 11. The proof is an induction on k. For k 1, equations (35) and
(36) follow from (22) and (23).

For the induction step k 1 k, we need

,,(-),
(37) IIn- /

(k-2),
< 20*-4) for all k > 2,

lib(0)where ,,-11 1,

Equation (37) is obvious for k 2, since llar)-xll <- 1 for all r >_ 1. For k >_ 2 it
holds since by (31)

..(k-), ),Ila--)*ll I1<,,<- IIb(--11 1 (n-a)/2< 2(n-2)/2 2
h(k-2)* h(k-2)*II,-,,-1 IIb---/)*ll II’-’n-1 2

Now we perform the induction step k 1 k. For V() by substituting the induction
hypothesis in (24) we obtain

k-2

h(l*)

1 2)(2n-1) /=1v() -< H I1*11"
2(k-

k-1 ,,b(k_2),, + t(n)

n II<)--*lii

where t(n) (n 1) 1/2. (1.5)’-2- 2n. Application of (37) yields the desired bound for
V(), since 2(n-4)/2 + t(n) < 22n-1 for all n > 2.

For #(), by substituting the induction hypothesis in (25) we obtain
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This yields the desired bound since _< 1/2. Ilb(k__-11)* II. [:]

Now we are ready to complete the proof of Proposition 10 [equation (20)].
We define D, := det(L(Trbt),’" ",7rb))) det(L(Tra-)," ,n-l’(/-1)))for/_> 1.

n--1 (l)*Then we have D I-I= Ile and IIb)_*ll/llan_ll Dt/Dt+. This enables us to

rewrite inequality (36) as it(k) < 2n.2(k-1)(2n-1)/Dk. Thus, since IIbk’) < Ilbk)* Ilq-it(k),
we have

(38) Ilb) _<
2,+. 2(k-1)(2n-1)

Dk

for all > 1 by Claim 6, we knowSince D1 < 1 and DI/Dt+I <

(39) k- 1 < logD-1.

Moreover, since {Trbk), 7rb(nk_) } is a reduced lattice basis, we know from (6)that

(40) r)1/(n-1)[Ibk)*l[ < 2("-2)/4.._.
k

Applying (39) and (40) to (38) yields

2n+. 2n(n--1)(n--2)/4

IIb)* 112r(n-1)

This is equation (20), so Proposition 10 is proven. We already showed that Proposition
10 implies part c of Theorem 7. [3

5. Remarks on the algorithm.
(A) If we apply inequality (40) of the last section to (38) without using (39), we

obtain the bound

and thus

2n+l. 2(n-1)(n-2)/4. 2(k-1)(2n-1)

[Ibk)*tln-1

p Ilxll, const(n)- 2(k-1)(2n-1)
(41) max

1<i<n--1 -- 1--r---i’)-
Thus, the vectors bk) produced by our algorithm fulfill the Dirichlet bound up
to some constant depending on n and x and up to a latter factor increasing with
k. Maybe the latter factor comes from the inductive proof technique and maybe
the algorithm really meets the Dirichlet bound up to a constant depending on
n (and Ilxll).

(B) Let us further discuss the gap beeen the Dirichlet bound and our bound (41).
The factor Ilxll is somewhat disturbing, but for diophantine appromation prob-
lems we may assume 0

The gap of a factor const(n) is inherent in the lattice reduction technique
used.

(C) The problem of diophantine appromations alone, without the intention to
generalize the cfa, was investigated by Lagarias [24] in 1982. He proposed an al-
gorithm for rational inputs, which can immediately be carried over to real ones.
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The algorithm on input zl,..., z,,_l and Q > 0 produces in polynomial time a
diophantine approximation (p,..., p,,_x, q) for zx,..., z,_x such that [q[ < Q
and

p 2n/2 n
max x <

i<<-i " -[qli+i/(n-i)

So the Dirichlet bound is satisfied up to some constant factor. Moreover, La-
garias proved several NP-completeness results that suggest it may be hard to
find approximations within the Dirichlet bound.

(D) The vector b E Z’ is called best approximation [7] for x,- , x,_, if dist(b, z It)
< dist(g, x R) for all g E Z’ with Ilgll < Ilbll and dist(b, x R) < dist(g, x R) for all
g E Z’ with Ilgll Ilbll. Best approximations fulfill the Dirichlet bound. It is not
known how good the diophantine approximations produced by our algorithm
are compared to the best approximations.

(E) We consider the performance of our algorithm for the dimensions n 2 and

In the case of two dimensions the algorithm is the so-called centered cfa and
so is the Bergman-Ferguson-Forcade algorithm. This algorithm constructs only
best approximations (but not all of them). The cfa constructs both all and only
best approximations.

Also, in three dimensions our algorithm and the Bergman-Ferguson-Forcade
algorithm are the same. Brentjes [7] showed that the algorithm (for n 3) pro-
duces all best approximations (but also other vectors). The proof uses geomet-
rical tools of R.

Vall6e [37] presents and analyzes algorithms to reduce low-dimensional lat-
tice bases. These algorithms are also based on low-dimensional geometry.

(F) In part (b) of Theorem 3.1, we bound the number of elementary basis trans-

formations performed until B(k) is output. The bound depends on IIb)* II. It
would be more desirable to have a time bound of the type "For each p > 0,
after f(p) elementary basis transformations a basis {b,..., bn} is output such
that max dist(b, x R) _< p." However, the costs of step 2 depend on how short
b* is when step 2 is entered. The shorter it is, the longer step 2 can take butn--1
the smaller is maxl<i<n-1 Ixi P/ql for the first vector of the basis output in
step 3.

A priori, it is not possible to bound from below the length of b_ on enter-
ing step 2. However, it would be interesting to show whether for "most" inputs
Xl Xn-- these b*

_
are "short." This would be a metrical theory for our

algorithm. Such a metrical theory exists for the cfa [35].
One could vary the algorithm in order to decrease the costs of step 2. But

recall that in order to obtain the result on diophantine approximation, we had
n--1to bound I-Ij=l IIb from below by IIb for the output bases [equation (40)].
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guided by Professor C. P. Schnorr. Thanks to him for many helpful discussions.
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LAYING OUT GRAPHS USING QUEUES*
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Abstract. The problem of laying out the edges of a graph using queues is studied. In a k-queue layout,
vertices of the graph are placed in some linear order and each edge is assigned to exactly one of the k queues
so that the edges assigned to each queue obey a first-in/first-out discipline. This layout problem abstracts a

design problem of fault-tolerant processor arrays, a problem of sorting with parallel queues, and a problem of
scheduling parallel processors. A number of basic results about queue layouts of graphs arc established, and
these results are contrasted with their analogues for stack layouts of graphs (the book-embedding problem).
The 1-queue graphs (they arc almost leveled-planar graphs) are characterized. It is proved that the problem
of recognizing 1-queue graphs is NP-complete. Queue layouts for some specific classes of graphs are given.
Relationships between the qucuenumbcr of a graph and its bandwidth and separator size arc presented. An
apparent tradcoff between the qucucwidth and the number of queues allowed in layouts of complete binary
trees is indicated.

Key words, queue layout, stack layout, book embedding, graph embedding, bandwidth, separators, NP-
completeness, fault-tolerant computing, scheduling parallel processors
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1. Introduction.

1.1. The problem. We study the use of queues to compute linear layouts of graphs,
in the following sense. A k-queue layout of an undirected graph G (V, E) has two
aspects. The first aspect is a linear order ofV (which we think of as being on a horizontal
line). The second aspect is an assignment of each edge in E to one of k queues in such
a way that the set of edges assigned to each queue obeys a first-in/first-out discipline.
Think of scanning the vertices in order from left to right. When the left endpoint of
an edge is encountered, the edge enters its assigned queue (at the back of the queue).
When the right endpoint ofan edge is encountered, the edge exits its assigned queue (and
must, therefore, be at the front of the queue). If a queue is examined at any instant, the
edges in the queue are in the order of their right endpoints, with the leftmost of those
right endpoints belonging to edges at the head of the queue. The freedom to choose
the order of V and the assignment of E so as to optimize some measure of the resulting
layout constitutes the essence of the queue layout problem.

More formally, a k-queue layout QL of an n-vertex undirected graph G (V, E)
consists of a linear order of V, denoted cr 1,-.., n, and an assignment of each edge in
E to exactly one of k queues, ql,- , qk. Each queue qj operates as follows. The vertices
of V are scanned in left-to-right (ascending) order. When vertex i is encountered, any
edges assigned to q that have vertex i as their right endpoint must be at the front of
that queue; they are removed (dequeued). Any edges assigned to qj that have vertex i
as left endpoint are placed on the back of that queue (enqueued), in ascending order
of their right endpoints, k is the queuenurnber of the layout. The queuenumber of G,
QN(G), is the smallest k such that G has a k-queue layout; G is said to be a k-queue
graph. Let w(i, q) be the number of edges in q just before vertex i is encountered.
Then the queuewidth of q is QW(q) maxiev w(i, qj). The maximum queuewidth

Received by the editors October 15, 1990; accepted for publication (in revised form) September 11, 1991.
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Of the layout is QW(QL) maxj QW(qj). The cumulative queuewidth of the layout is
CQW(QL) - QW(qj).

As an example of a 1-queue layout, consider the graph G in Fig. 1.1. A 1-queue
layout of G is shown in Fig. 1.2. The linear order of V is a, f, b, e, c, d. The order in
which edges pass through the single queue is

(a, f), (a, b), (f, b), (f, e), (b, e), (b, c), (b, d), (e, d), (c, d).

Note that edges having the same left endpoint enter the queue in an order determined by
their right endpoints. For example, edge (a, f) must enter the queue before edge (a, b)
since f is to the left of b.

FIG. 1.1. Example graph G.

FIG. 1.2. 1-queue layout.

Dually, a k-stack layout of graph G also has two aspects. The first aspect is again
a linear order of V. The second aspect is an assignment of each edge in E to one of k
stacks in such a way that the set of edges assigned to each stack obeys a last-in/first-out
discipline. Unlike a queue layout, edges do not exit a stack in the same order in which
they enter it.

More formally, a k-stack layout SL of an undirected graph consists of a linear order
of V and an assignment of each edge in E to exactly one of k stacks, Sl,..., sk. Each
stack s operates as follows. The vertices of V are scanned in left-to-right (ascending)
order. When vertex i is encountered, any edges assigned to s that have vertex i as their
right endpoint must be on the top of that stack; they are removed (popped). Any edges
assigned to sj that have i as left endpoint are placed on the top of the stack (pushed),
in descending order of their right endpoints, k is the stacknumber of the layout. The
stacknumber of G, SN(G), is the smallest k such that G has a k-stack layout; G is said
to be a k-stack graph. Let w(i, s) be the number of edges in s just before vertex is
encountered. Then the stackwidth of sy is SW(sy) maxiev w(i, sj). The maximum
stackwidth of the layout is SW(SL) maxy SW(sy). The cumulative stackwidth of the
layout is CSW(SL) -y SW(sy).
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As an example, Fig. 1.3 shows a 1-stack layout of the graph G in Fig. 1.1. The linear
order of V is a, b, c, d, e, f. The order in which edges enter the stack is

(a, f), (a, b), (b, f), (b, e), (b, d), (b, c), (c, d), (d, e), (e, f).

The order in which edges exit the stack is

(a, b), (b, c), (c, d), (b, d), (d, e), (b, e), (e, f), (b, f), (a, f).

FG. 1.3. 1-stack layout.

The queue (respectively, stack) layout problem generalizes the problem of permut-
ing a sequence using parallel queues (respectively, stacks) that was studied by Even and
Itai [7] and Tarjan [26]. Let 7r be a permutation defined on {1,..., n}. Define the bipar-
tite graph G by

V {al,’’’, an, b,..., b,},
E- {(a,b) 1 _< i _< n};

G is a perfect matching on 2n vertices. Then realizing 7r by k parallel queues (respec-
tively, stacks) is equivalent to laying G out using k queues (respectively, stacks) when V
is ordered al,..., an, b(1),..., b(,).

1.2. Motivation. Our study and the particular questions we focus on have a tripar-
tite motivation.

Comparing queues and stacks. Queues and stacks are, intuitively, dual in "power"
as computing mechanisms, in that queues epitomize a first-in-first-out discipline while
stacks epitomize a last-in-first-out discipline. This intuition is strengthened formally
when queues and stacks are used to compute fixed permutations (Tarjan [26]), largely
as a consequence of the 1936 theorem of Erd6s and Szekeres [6] about monotonic se-
quences in permutations. However, the intuition is called into doubt when queues and
stacks are used as worktapes for Turing machines, because a single queue endows a Tur-
ing machine with universal computing power, whereas two stacks are needed to achieve
comparable power. Here, we compare the powers of queues and stacks as devices for
linearizing graphs: one "loads an edge" into the linearization device when its left end is
laid out, and one "unloads" it when its right end is laid out. We find this comparison of
the powers of queues and stacks to be much more complicated than the other two. To
wit,
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1. Stacks appear to be simpler than queues, in that the task of recognizing 1-stack
graphs is computationally easy (in fact, linear time), while the analogous task
for 1-queue graphs is NP-complete;

2. Queues appear to be simpler than stacks, in that, when the linearization of the
vertices is preordained, the task of determining the queuenumber of the graph
is computationally easy (almost linear time), while the task of determining the
stacknumber is NP-complete;

3. Queues appear to be dual in power to stacks, in that a tradeoff inequality of
the Erd6s-Szekeres type holds for the queuenumber and stacknumber require-
ments of a graph when the linearization of its vertices is fixed [16];

4. Queues appear to be more powerful than stacks, in that there exist graphs whose
minimum queuenumbers are exponentially smaller than their minimum stack-
numbers.

These comparisons are a central theme in this paper. Note that stack layouts have
been studied extensively, under the aegis of the problem of embedding graphs in books
[2], [5], while ours is the first major study of queue layouts.

The DIOGENES design methodology. In DIOGENES [24], an array of communi-
cating processors is implemented in a conceptual line, and some number of hardware
queues and/or stacks pass over the entire line. The queues and/or stacks implement the
communication links among processors in such a way that faulty processors are ignored,
and all good processors are utilized. If the processors and their connections are repre-
sented by an undirected graph, then the DIOGENES layout problem is equivalent to a
graph layout problem, where edges are assigned to conceptual queues and/or stacks. The
variant of DIOGENES in which only stacks are used is one motivation for the studies
of the book embedding problem: Bernhart and Kainen [2]; Buss and Shor [4]; Chung,
Leighton, and Rosenberg [5]; Games [8]; Heath [11], [12], [13]; Heath and Istrail [14],
[15]; Obreni6 [21]; and Yannakakis [27]. Note that only Rosenberg [24] has considered
queues before. The present research intends to investigate the same issues for queues
that [5] does for stacks. In particular, we find significant instances of divergence between
queue and stack layouts.

Scheduling parallel processors. Consider the following simple model of schedul-
ing parallel computations in an architecture-independent fashion; cf. [22]. We represent
the computation to be scheduled as a directed acyclic graph (dag) whose nodes repre-
sent the processes to be executed and whose arcs indicate computational dependencies:
a process-node cannot be executed until all of its predecessors in the dag have been exe-
cuted. Processes are queued up in a FIFO Processor Queue (PQ) as they become eligible
for execution; each idle processor "grabs" the process at the head of the PQ. Our study
focuses on the management of data in this scenario: where will the inputs to process P
be when P is "grabbed"by a processor? Our solution is to have the PQ be coordinated
with a Data Manager (DM), which itself is a collection of FIFO queues: When a process
terminates, it places its "outputs" on the queues of the DM in such a way that when pro-
cess P is "grabbed" by a processor, all inputs to P are at the heads of the DM queues.
Our queue-based graph linearization problem idealizes this approach to the scheduling
problem: The computation dag is the graph to be linearized; the linearization process
implicitly specifies the loading of the PQ; the queues that control the linearization com-
prise the DM. In this abstract we idealize the problem even a step further by replacing
the computation dag by an ordinary (undirected) graph. In subsequent work, we plan to
study a more faithful version of the scheduling problem.
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1.3. Results. Investigating queues at this level of generality has proved a fruitful
enterprise. The harvest comprises a number of fundamental results for queue layouts as
well as some surprising contrasts with stack layouts.

We summarize the highlights that are included in this paper and in the companion
paper [16]. A new class of planar graphs, arched leveled-planar graphs, is shown to be
a characterization of the 1-queue graphs. While 1-stack (outerplanar) graphs are easy
to recognize (in fact, can be recognized in linear time), the recognition problem for 1-
queue graphs is NP-complete. On the other hand, the number of queues in afixed-order
layout of an arbitrary graph is easily minimized in polynomial time, while the same prob-
lem for stacks is NP-complete [10]. Any 1-queue graph can be laid out with 2 stacks, and
any 1-stack graph can be laid out with 2 queues 16]. An obvious generalization of these
results fails: there is a class of graphs, the ternary hypercubes, that require exponentially
more stacks than queues [16]. We investigate the queuenumber of some specific fami-
lies of graphs and compare these to known stacknumber results. We show relationships
between the queuenumber of a graph G and both the bandwidth and separator size of
G. Finally, we expose an apparent tradeoff between queuenumber and queuewidth for
layouts of complete binary trees.

The paper is organized as follows. Section 2 contains results on fixed-order layouts,
including our polynomial-time algorithm for determining the queuenumber ofsuch a lay-
out. Section 3 characterizes 1-queue graphs and proves that recognizing 1-queue graphs
is NP-complete; none of the later results depends on the NP-completeness proof. In
4, we investigate queue layouts for a number of familiar classes of graphs. In 5, we
show relationships between the queuenumber of a graph and its bandwidth and separa-
tor size. Section 6 indicates an apparent tradeoffbetween queuenumber and queuewidth
for complete binary trees. In the final section, we conclude with some open problems and
a table comparing queuenumber and stacknumber for some specific classes of graphs.

2. Fixed-order layouts. In this section, we fix an order a 1, 2,..., n of V and
examine the difficulty ofminimizing the number ofqueues or stacks required to complete
cr to a layout. Results include an optimal and efficient algorithm for fixed-order queue
layouts. We contrast the existence of this efficient algorithm with the NP-completeness
of the analogous problem for stack layouts.

We concentrate on sets of edges that are obstacles to minimizing the number of
stacks or queues. A k-rainbow is a set of k edges

{e-- (a,b), 1 < < k}

such that

al < a2 <’" < ak-1 < ak < bk < bk-1 <"" < b2 < bl;

in other words, a rainbow is a nested matching. A k-twist is a set of k edges

{e (a,b), 1 _< i < k}

such that

al < a2 <... < ak-1 < ak < bl < b2 <"" < bk-1 < bk;

in other words, a twist is a fully intersecting matching.
A rainbow is an obstacle for a queue layout because no two nested edges can be

assigned to the same queue.
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PROPOSITION 2.1. Assume that tr has a k-rainbow. Then every queue layout of cr uses
at least k queues. There exists a stack layout of r in which all edges of the k-rainbow are
assigned to the same stack.

A twist is an obstacle for a stack layout because no two intersecting edges can be
assigned to the same stack.

PROPOSITION 2.2. Assume that cr has a k-twist. Then every stack layout of cr uses at
least k stacks. There exists a queue layout of tr in which all edges ofthe k-twist are assigned
to the same queue.

The largest rainbow in tr determines the smallest number of queues needed in a
queue layout of r.

THEOREM 2.3. Ifor has no rainbow ofmore than k edges, then there is a k-queue layout
for r. Such a layout can befound in time O([E[ log log r).

Proof. We describe an algorithm for assigning the edges of G to k queues, denoted
q, q,..., q. The algorithm uses an (n+ 1)-position array R[0..n]; initially, R[0] n+ 1,
and all other R[i] 0. At each step of the algorithm, each array position R[i], for
1 < i < n, contains the larger of 0 and the name of the rightmost vertex of any edge that
has been assigned to queue q to that point; the assignment R[0] n + I simplifies the
algorithm, by creating the fiction that there is an edge in fictitious queue q0 connecting
fictitious vertices 0 and n/ 1. The algorithm maintains the invariant that nonzero entries
in R are in strictly decreasing order: if R[i 1] > 0, then R[i 1] >/[i]. Clearly, the
initial assignment to R satisfies this condition.

We actually maintain the array R in the balanced search tree data structure of John-
son [18]. The specific purpose of his data structure is to maintain a subset of a bounded
set of integers { 1, 2,..-, m}. It does so with O(log log m) worst-case time for insertions,
deletions, and accesses. As the entries in R are between 0 and r + 1, the O(log r) time
to perform a traditional binary search in R is reduced to O(log log n).

Process the vertices in order, left to right. At each vertex s, scan the edges having
s as left endpoint twice. When edge (s, t), s < t, is reached in the first scan, perform a
binary search in R to find the queue q such that

R[i- 1] > t >_ R[i].

Assign edge (s, t) to queue qi. In the second scan of edges leaving s, update R to reflect
the assignment of edges to queues. Clearly the algorithm maintains the conditions on
R, and the edge assignment yields a queue layout.

It remains to show that, if some edge is assigned to queue qk, then a has a k-rainbow.
Suppose (s, t) is assigned to queue qk. Since R[k 1] > t when vertex s is processed,
edge (s, t) must nest inside some edge (v, R[k 1]) in queue qk-1. Since t is assigned
to queue k in the first scan, while R[k 1] is updated in the second scan, the two scans
at vertex s guarantee that v < s. By an easy induction, this observation extends to show
that there are k nested edges, i.e., a k-rainbow.

The time complexity follows from the O(log log n) search time for each edge. ]

We might expect the dual result for stacks to hold; that is, if the largest twist in cr is a
k-twist, then the stacknumber of a is k, and a k-stack layout can be found in polynomial
time. However, this is far from being true. For the fixed order a, assigning edges to
stacks is equivalent to coloring circle graphs [7]. While it is possible to determine the
largest twist size for a in polynomial time (Hsu [17]), minimizing the number of stacks
cannot be done in polynomial time unless P NP because coloring circle graphs is NP-
complete (Garey, Johnson, Miller, and Papadimitriou [10]). To summarize, we have the
following.
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PROPOSITION 2.4 (see [7], [10]). The problem of minimizing the number of stacks
required by a fixed order tr is NP-complete.

In this minimization sense, fixed-order queue layouts are easier than fixed-order
stack layouts.

3. One-queue graphs. This section studies the class of 1-queue graphs, with the fol-
lowing results. Just as the 1-stack graphs admit a complete characterization as a class
of planar graphs, so do the 1-queue graphs. However, whereas the 1-stack characteri-
zation is in terms of a known strengthening of the property of planarity (namely, outer-
planarity), the 1-queue characterization employs a new strengthening (namely, arched-
leveled planarity). Neither of these subclasses of the planar graphs includes the other.
Whereas the 1-stack graphs can be recognized in linear time, we show that the recogni-
tion problem for 1-queue graphs is NP-complete. Thus, the recognition problem con-
trasts with the fixed-order layout problem, in that it points out a sense in which queues
are more complicated than stacks.

3.1. Characterizing 1-queue graphs. Bernhart and Kainen [2] give the following
characterization of 1-stack graphs.

PROPOSITION 3.1 (see [2]). G is a 1-stack graph ifand only if G is outerplanar.
(An outerplanar graph is a planar graph having a planar embedding in which all ver-

tices appear on a common face.) We show that the 1-queue graphs that have a particular
kind of planar embedding are also planar graphs.

Consider the normal cartesian (z, y) coordinate system for the plane. For i an inte-
ger, let e be the vertical line defined by { (i, t) It E Reals}. A graph G (V, E) is
leveled-planar if V can be partitioned into levels V1, V2, , V, in such a way that

G has a planar embedding in which all vertices of V are on the line g;
Each edge in E is embedded as a straight-line segment wholly between and
+1 for some i.

Such a planar embedding is called a leveled-planar embedding. Figure 3.1 shows a
leveled-planar graph having 3 levels. Henceforth, we assume that a valid (but arbitrary)
leveled-planar embedding is given along with a leveled-planar graph.

FIG. 3.1. A leveled-planargraph.

A leveled-planar embedding induces an order (the induced order) on V as follows.
As i takes the values 1, 2,-.., m, scan line from bottom to top. Label the vertices
1, 2,..., n as they are encountered. For 1 _< i _< m, let bi be the (bottom) first vertex in
level i, and let t be the (top) last. Let s be the first vertex in level that is adjacent to
some vertex in level i + 1, or, if there are no edges between levels i and i + 1, let s t.
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Consider augmenting G with new edges. A level-i arch for G is an edge connecting vertex
ti with vertex j, where bi < j < min(ti 1, si). A leveled-planar graph G, augmented by
any number of arches, can be embedded in the plane by drawing the arches around level
1; because of the leveling, the arches do not cross. See Fig. 3.2 where (3, 5) and (6, 8) are
arches. A leveled-planar graph augmented by (zero or more) arches is called an arched
leveled-planar graph. The edges that are not arches are called leveled edges. An arched
leveled-planar graph that cannot be augmented with further arches or leveled edges is
maximal. See Fig. 3.3 for an example. The above definitions for bi, si, and ti will be used
throughout the paper to refer to vertices in arched leveled-planar graphs.

FIG. 3.2. Drawing arches.

FIG. 3.3. A maximal arched leveled-planargraph.

We can now state the characterization of 1-queue graphs.
THEOREM 3.2. A graph G is a 1-queuegraph ifand only ifG is an arched leveled-planar

graph.
We develop the proof of the theorem through three lemmas.
LEMMA 3.3. Every leveled-planar graph is a 1-queue graph. The induced order ofver-

tices yields a 1-queue layout.
Proof. Given a leveled-planar graph G (V, E) with m levels V1, V2,- , V,,, order

V in the induced order 1,..., n. We claim that this order yields a 1-queue embedding of
G. It suffices to show that no two edges nest. If two edges have a vertex in common, then
the edges cannot nest. So consider two edges (u, v) and (u, vg.) such that u < v,
u2 < , ul < u, and . If u and u are in the same level V, then and 2 are
in the same level V+, and vl < v because the edges do not intersect in the leveled-
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planar embedding. Ifu and u are in different levels, g and m > g, respectively, then
and v are in different levels, g + 1 and m + 1, respectively, and again v < v. In either
case, the two edges do not nest. Hence, the given layout is a 1-queue layout of G.

LEMMA 3.4. Every arched leveled-planargraph is a 1-queue graph. The induced order
ofvertices yields a 1-queue layout.

Proof. Let G (V, E) be an arched leveled-planar graph. By the previous lemma,
it suffices to show that no arch nests with another edge.

Let (Ul, ti) and (u2, tj) be two arches. If ti tj, then the arches do not nest since
they have a vertex in common. If t t, say t < t, then u < t < u2 < t, and the
arches do not nest.

Now say that (u3, v3), u3 < v3, is a leveled edge between levels k and k + 1. Since
every arch is between two vertices on the same level, no leveled edge can nest inside an
arch. Conversely, for the arch (u, h) to nest inside (ua, va), we must have ua < Ul <
t < v3. There are two cases:

1. If u3 is on the same level as the arch, then ul < u3, a contradiction to u3 <
2. If v3 is on the same level as the arch, then v3 < ti, a contradiction to t <

Thus, (ul, t) and (u3, v3) do not nest. We conclude that we have a 1-queue layout
for G.

LEMMA 3.5. Every 1-queue graph is an arched leveled-planar graph.
Proof. Let G (V, E) be an arbitrary 1-queue graph, and let a 1, 2,..., n be the

order of a 1-queue layout of G. It suffices to describe an arched leveled-planar embed-
ding of G. Without loss of generality, we may assume that G is connected.

Partition V into levels, as follows. Level V1 is the singleton {1 }, so that bl s
t 1. For i > 1, until each vertex is placed in some level, set

bi t-I + 1;
ti equal to the rightmost vertex incident to some vertex in V_1;

Vi {bi,’",ti};
s equal to the leftmost vertex in V that is adjacent to some vertex to the right
of ti; si ti if ti n.

Let the resulting partition be V1, V2,..., Vm. This partition breaks the sequence
into m contiguous subsequences that end at 1 tl, t2,..., tm n, respectively. By
the construction of V, it is clear that no edge connects a vertex in V with a vertex in
Vj if li Jl > 2. Let Ee be the subset of E consisting of edges that connect vertices at
consecutive levels; that is,

Ee {(u, v) for some i, u e Vi, v e V/+I}.

Construct a leveled-planar embedding of Ge (V, Ee). Place the vertices of V on
line g in the order b, b + 1,..., t from bottom to top. Draw the edges in Ee as line
segments. We must show that this is indeed a leveled-planar embedding of Ge. It suffices
to show that any two distinct edges, (Ul, Vl), Ul ( Vl, and (u2, v2), u2 < v2, do not cross
in the embedding. Without loss of generality, say that U ’//;2. If ul u2, then the
edges do not cross because they share an endpoint. So say that U <
are embedded on different lines, then the edges cannot intersect because all edges go
between adjacent lines. If U and u2 are on the same line, say line gi, then the queuing
discipline guarantees that ’0,1 < U2 < Vl

_
V2 and that Vl and v2 are both embedded on

line gi+l. Therefore, edges (Ul, Vl) and (u, v2) do not cross.
It remains to show that E Ee contains only arches for Ge. Let

where u3, v3 V/, u3 < v3. Clearly, u3 _< min(ti 1, si) since otherwise there is an edge
from s to some vertex in V+I that nests over (ua, va). Since t is adjacent to some vertex
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Z V/_l, we must have va ti, for otherwise (z, t) and (ua, va) nest. We conclude that
(ua, va) is an arch for Ge. Since that edge was arbitrary, it follows that E Ee contains
only arches, so we have constructed an arched leveled-planar embedding of G. [3

Theorem 3.2 follows from Lemmas 3.4 and 3.5.
The structural result of Theorem 3.2 allows us to determine the maximum number

of edges in a 1-queue graph. It is well known that a maximal outerplanar graph on n
vertices contains 2n- 3 edges. A similar result is now shown for maximal arched leveled-
planar graphs. These bound are useful for establishing lower bounds on queuenumber
or stacknumber; cf. Proposition 4.11.

THEOREM 3.6. Let G (V, E) be a 1-queue graph having a maximal arched leveled-
planar embedding of m levels. Assume that A of the levels V1,..., Vm-1 are singletons.
Then G has exactly

2lVl- 1 -lEvi- A < 2lVl- 3

edges.
Proof. Partition E into levels E,..., Em, where an edge is in level E if its left

endpoint is in V. Then all level-/arches are in Ei, and E, contains only arches. For
convenience, let to 0.

First we count the arches in the given embedding. By maximality of the embedding,
E contains s t_ arches if s t and s t_ 1 arches if s t;
If bi ti (i.e., if [VI > 1), then there is a leveled edge connecting ti 1 to level
i + 1, so that s t.

Thus Ei contains si ti_ 1 0 arches only when V is a singleton.
Now we count the leveled edges in the embedding. Each leveled edge in E, 1 <

i < m 1, has one endpoint among t s + 1 vertices in level and one endpoint
among t+x t vertices in level i / 1. By planarity, there is a bottom-to-top order on
the set of leveled edges in E. Scanning these edges in order, the first edge connects two
vertices, and each subsequent edge connects a new vertex to a previously encountered
vertex (because of maximality). Thus, the number of leveled edges in Ei is

(t+ t) + (ti- si + 1) 1 ti+l si.

Combining the counts of the preceding two paragraphs, for 1 < < m 1,

ti+l ti_ 1 if IV l 1.

By analogous reasoning,

IE.l=t.-t._-l.

The cardinality of E is, therefore,
m

IEI- IE,
i=1

m--1

t, t,_ 1 A + (ti+x ti-1)
i=1

=tm tin-- 1 A + t. + tin-1 t

2t. 1 t A
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2IV[- 1 -[V[- A

Thus the greatest number of edges that can be assigned to a single queue is 2IV[ 3.
This value immediately yields a lower bound on the queuenumber of a graph.

CO OLL Y 3.7. QN( ) > [IEI/(2IVI 3) 3.
3.2. Recognizing 1-queue graphs. The 1-stack graphs are exactly the outerplanar

graphs and, therefore, can be recognized in linear time (Syslo and Iri [25]). In contrast,
we show that the problem of recognizing 1-queue graphs is NP-complete (see Garey
and Johnson [9]). Formally, the recognition problem for 1-queue graphs is the following
decision problem.

ARCHED LEVELED-PLANAR.
Instance. A graph G (V, E), represented by adjacency lists.
Question. Does G have an arched leveled-planar embedding?
Rather than prove the NP-completeness of ARCHED LEVELED-PLANAR di-

rectly, we introduce a seemingly simpler decision problem.
LEVELED-PLANAR.
Instance. A graph G (V, E), represented by adjacency lists.
Question. Does G have a leveled-planar embedding?
Notice that it is not immediate that either of these problems reduces to the other.

Using a rather elaborate reduction, we show that LEVELED-PLANAR is NP-complete.
At the end of the section, we indicate how the reduction should be modified to show that
ARCHED LEVELED-PLANAR is NP-complete.

We now present the known NP-complete problem which, via reduction, establishes
the NP-completeness of LEVELED-PLANAR and, thereby, ofARCHED LEVELED-
PLANAR. An instance of 3-SAT [9] is a boolean formula in conjunctive normal form
such that each clause contains at most 3 literals. Let {vl, v2,..., v, } be the variables of, and let {cl, c2,..., Cm) be the clauses. Each cj is a set containing at most 3 literals,
where each literal is either a variable v or the complement of a variable; call a clause
containing exactly k literals a k-clause. The graph of , G() (V(), E()) has vertex
set

V() {cjll < j _< m} v {vll _< i _< n}
and edge set E() E1 LA E2, where

E1 ( (cj, vi) [vi e cj or - e cj},

11 < i < n- 1}

The edges of E2 form a cycle called the ratable cycle. The graph in Fig. 3.4 represents
the graph ofthe formula having clauses Cl {Vl, v-, v5 }, c2 {KS, v-, v5 }, c3 {i-, v2 },
c4 {v2, v3, v4 }, and cs {v2, v4, -}.

Lichtenstein [19] shows that the following restricted version of3-SAT is NP-complete.
PLANAR 3-SAT (P3SAT).
Instance. An instance of 3-SAT such that G() is planar.
Question. Is satisfiable?
It always suffices to consider only instances such that each clause contains either

two or three literals. From Lemma 1 of [19], we may assume that G() has a planar
embedding such that, for each v, all clauses containing the literal v are on one side of
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FIG. 3.4. Example ofPLANAR 3-SAT.

the variable cycle, and all clauses containing the literal are on the other side. Call this
property of the planar embedding of G(b) consistency. The planar embedding of Fig. 3.4
is consistent.

While LEVELED-PLANAR is as simple a recognition problem as we could formu-
late for queue layouts, we show that it is NP-complete in the next theorem. The proof
is a long reduction from P3SAT to LEVELED-PLANAR. At the end of the subsection,
the NP-completeness of ARCHED LEVELED-PLANAR is resolved by a slight modi-
fication of this reduction.

THEOREM 3.8. LEVELED-PLANAR is NP-complete.
Proof. We reduce P3SAT to LEVELED-PLANAR. As LEVELED-PLANAR is

easily in NP, this suffices to prove the theorem.
Let V {vl,..., v,} and C’ {cl,..., c,} be an instance of P3SAT. Fix a planar

embedding of G(b) that is consistent. We will construct an instance H of LEVELED-
PLANAR, which is a biconnected planar graph.

Here is an overview of our reduction strategy. We start with a consistent planar
embedding of G(b) in which the vertices in the variable cycle are in order on a vertical
line (e.g., as in Fig. 3.4). Our strategy is to replace all vertices and edges in G(b) by
gadgets that have restricted leveled-planar embeddings. The graph H resulting from
these replacements is "rigid" in the sense that in any leveled-planar embedding ofH the
relative levels of any two clause gadgets are fixed. A variable gadget has the flexibility
of being in one of two different levels to represent true and false values of the variable.
The gadget for an edge (called a rod) is "rigid" in the sense that the number of levels
between its two ends is constant. Rods are used both to make H rigid and to transmit
the truth value of a variable from the variable gadget to the gadgets of the clauses that
use the variable.

As an example, consider Fig. 3.5, the rigid version of the graph from Fig. 3.4. New
vertices uo, , u5 have been interspersed among v, , vs. New vertices c0 and c6 have
also been added as dummy clauses. All vertices and edges in Fig. 3.5 represent gadgets
used in the construction of H. The construction is such that the subgraph represented
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by the cycle Co, uo, c6, us, co is a fixed framework that has essentially only one leveled-
planar embedding (assuming the co gadget occupies earlier levels than the c6 gadget).
The subgraphs representing u0,..., u5 must all appear in the same 3 adjacent levels.
The subgraphs representing variables v,..., v5 have the freedomto be in 2 different
positions in a leveled-planar embedding depending on their truth values. The edges that
go generally left to right are replaced by rods of appropriate lengths. This is done in a
way that fixes the levels occupied by the gadget of any clause. The clause gadgets have
the ability to evaluate a boolean OR, in the sense that any clause gadget can successfully
be placed in a leveled-planar layout if and only if at least one of its corresponding literals
is assigned true. H has the property that it has a leveled-planar embedding if and only
if b has a satisfying assignment. The truth values in a truth assignment for 4 specify a
leveled-planar embedding for the variable cycle that can be extended to a leveled-planar
embedding for H in the case that the assignment is a satisfying assignment.

FIG. 3.5. Rigid PLANAR 3-SAT.

We begin the proof with some useful building blocks. Consider the copy of K2,a in
Fig. 3.6. Suppose this copy is in a leveled-planar embedding. Then a and a2 are exactly
two levels apart, and b, b2, and b3 are all on the level in between. Further, only two
of b, b2, and ba can have any additional edges incident to them. In a leveled-planar
embedding, the leveling of any copy of K2,a is forced. If b, b2, and ba are thought of as
a single vertex, then K2,a is thought of as a path of length 2. In a leveled embedding,
K2,a differs from a path of length 2 in the sense that it cannot "bend" in the middle in
order to bring the ends together; its two endpoints must appear two levels apart. We
think of K2,a as a rigid path of length 2. By joining k 1 copies of K2, in the manner
illustrated in Fig. 3.7 for k 3, rigid paths of any length k can be obtained. In general,
we call a rigid path of length k a k-rod. (A 1-rod is an edge.) We draw a k-rod as a thick
hollow line with intermediate vertices as needed (Fig. 3.8). Note that what appears to
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be a single intermediate vertex is actually two different vertices, one on the top and one
on the bottom of the rod (the third vertex is inaccessible, hence ignored).

FIG. 3.6. A 2-rod.

FIG. 3.7. A 3-rod.

FIG. 3.8. Representation ofa k-rod, k 4.

A second building block is called a semi-rod. It consists of a 3-rod and a 2-rod con-
nected by 2 edges. See Figs. 3.9 and 3.10. A semi-rod has one degree of flexibility that
a 5-rod does not have: if z is in level t and y in level t 1, then z is either in level t 5
(Fig. 3.9, where the semi-rod is extended to its greatest length) or t 3 (Fig. 3.10, where
the semi-rod is compressed); note that z is always at a lower level than y. We draw a
semirod as a 5-rod with a textured interior (Fig. 3.11).

In the construction of H, some vertices will be called fixed. If z is a fixed vertex, we
intend that, in any leveled-planar embedding of H, the level containing z is always the
same (given that a particular vertex, to be specified later, is on the first level). The level
in which z should appear is its preferred level E(z). If we fix the two ends of a rod, then
the intermediate vertices of the rod are also fixed, with preferred levels derived in the
obvious way. During the construction, we designate certain vertices z as fixed and give
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FIG. 3.9. A semi-rod extended.

FIG. 3.10. A semi-rod compressed.

FIG. 3.11. Representation ofa semi-rod.
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a value to (z). We show later that there is a leveled-planar embedding ofH if and only
if there is such an embedding where each fixed z indeed appears on level Z(z).

To begin the construction for formula b, we represent each variable vi by a 2-rod
VROD[i] having left and right endpoints S[i] and T[i]. (In other words, think of S[i] ap-
pearing in an earlier level than T[i].) Represent the edge (vi, vi+l) of G(b), 1 < i < n- 1,
by a 2-rod EROD[i] having left endpoint V[i] and right endpoint W[i], as shown in Fig.
3.12. Partially represent the edge (v,, vl) by a 2-rod EROD[O] connected to VROD[1]
and by a 2-rod EROD[n] connected to VROD[n] (the representation of the edge will
be completed later). Call the graph constructed so far P. P may be thought of as a path
of thickness 3 from EROD[O] to EROD[n]. The vertices of each EROD are fixed, and
the vertices of each VROD are not fixed. Note that, in any leveled-planar embedding
containing P, the levels of T[i] and of W[i] differ by exactly one level. Further, if W[0] is
to the right of V[0], then each W[i] is to the right of V[i], and vice versa. By symmetry, we
may assume that any leveled-planar embedding of P has each W[i] to the right of V[i],
and, therefore, each (V[i]) =/(W[i]) 2, 0 < < n. The intention of the construc-
tion (not yet realized) is that all W[i]’s appear on the same level, namely, A Z(W[0]).
For the time being, we use the level A as a relative reference for other/ values. Call the
property of all W[i]’s appearing on level A line up.

S[i] T[i]

v[] w[]

S[i+l] T[i+l]

FIG. 3.12. Representing the variablepath.

Because the embedding of G(b) is planar, the variable cycle partitions the clause set
C into two subsets, C and C2, in such a way that the clauses in Ct nest and the clauses in
C2 nest. We will place the clauses in C to the left of P and the clauses in C to the right.
(In Fig. 3.4, C {cl, c} and C {c3, c4, c5}. Clause c is nested under clause c, and
clause ca is nested under clause c5.) A clause cj E C2 is associated with the 2 or 3 T[i]’s
that correspond to its variables. (Similarly, a clause in C1 is associated with 2 or 3 S[i]’s.)
Because the embedding of G(b) is consistent, each T[i] can be associated consistently
with either vi or vS (the corresponding S[i] is associated with the complementary literal).
If the W[i]’s line up (on level A), then each T[i] appears either on level A + 1 or A 1.
If T[i] is on level A 1, then we say that T[i] is intruded and S[i] is extruded; otherwise
(i.e., T[i] is on level A + 1), T[i] is extruded and S[i] is intruded. We interpret the literal
associated with each T[i] (or S[i]) as true orfalse, respectively, according as whether T[i]
(or S[i]) is intruded or not.

We need gadgets for each clause in C. By mirror-image symmetry in P, we consider
only clauses in C and place their gadgets to the right of P. Construct the gadgets for
the clauses in C in any order that obeys the nesting of clauses, taking the more deeply
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nested clauses earlier. (In Fig. 3.4, construct the gadget for ca before the gadget for
c5; the gadget for ca is unconstrained.) Figure 3.13 shows the gadget for a clause. The
gadget contains two semirods that share an edge. U[j], X[j], and Y[j] (among others)
are fixed vertices. X[j] and Y[j] must appear in the same level, which is 4 levels before
the level of U[j]. Q[j, 1], Q[j, 2], and Q[j, 3] are connected to the literals in the clause by
rods. They may be either 3 or 5 levels before U[j], depending on the truth value of the
corresponding literal.

Q[I,1]

Q[I,2]

011,31

FIG. 3.13. The gadgetfor a 3-clause.

We first assume that cy C2 is a 3-clause. Let cy be associated with T[i], T[i2],
and T[i3] in order from top to bottom. By the construction regimen, the gadgets for any
clauses nested inside cy have already been constructed. The gadget for each c C2 con-
tains a fixed vertex U[s] that is visible on the right side of the gadget. If no clauses nest
under cy, then/:(U[j]) A+6. If there are one or more clauses nested under cy, let c be
one that maximizes Z;(U[s]). Put/2(U[j]) =/2(U[s])+6. Let k L;(U[j])-A-4. Place a
k-rod on each of T[i], T[i2], T[i3], and connect them to Q[j, 1], Q[j, 2], Q[j, 3], as shown
by the k-rods on the left in Fig. 3.13. Q[j, a] is intruded (extruded) exactly when T[ia] is
intruded (extruded). X[j] and Y[j] are fixed with L:(X[j]) L:(Y[j]) /::(U[j]) 4.
There will be U[s]’s or W[i]’s visible under X[j] (or Y[j]). Connect a rod of the appro-
priate length from X[j] (or Y[j]) to each visible U[s] and W[i]. For example, between
X[j] and U[s], connect a (L:(X[j]) L:(V[s]))’rod.

In the case that cj is a 2-clause, the gadget is the same. There are only two vertices,
T[il] and T[i2], associated with cj. Connect T[il] to Q[j, 1] and T[i2] to Q[j, 3] with rods
as before. There will be at least one fixed vertex visible under X[j], Y[j], and Q[j, 2]
(that is, some U[s] or W[i]). Connect rods of appropriate lengths between one such
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fixed vertex and X[j], Y[j], and Q[j, 2], so that Q[j, 2] is always extruded. Then cj is
represented by the gadget in the same manner as a 3-clause in which the second literal
is always false. This allows us to treat every clause as though it were a 3-clause.

Once gadgets have been constructed for each clause to the right of P, cap the right
end of H with a path around the right end, in the following sense. Let c8 E C2 have
maximum level (U[s]). (If C 0, by abuse of notation, take (U[s]) A.) Let
k (U[s]) A + 3. Place a k-rod at each of W[0] and W[n]; identify their free ends
(Fig. 3.14). Notice that two edges, one from each rod, are also identified as the edge
(X[m + 1], Z[right]). X[m + 1] is a fixed vertex with E(X[m + 1]) A + k- 1. Some
U[s]’s or W[i]’s will be visible from X[m + 1]. Connect X[m + 1] to each of them with a
rod of appropriate length. The cap around the right end may be thought of as a dummy
clause containing no literals whose purpose is to provide a rod for any U[s]’s and W[i]’s
that have yet to be connected to a rod.

v[o] w[o]

Z[left]

x[o] X[m+l]

Z[right]

V[n] W[n]
FIG. 3.14. Capping the left and right ends.

After the gadgets for the clauses to the left of P are constructed, cap the left end by
two rods from V[0] to X[0] and from V[n] to X[0] in a manner similar to the preceding
paragraph. This completes the construction of H.

So far, all the/: values have been relative to A I:(W[0]). Now fix (Z[left]) 1,
so that

A C(W[0]) C(Z[Z yt])+

Remaining Z: values are adjusted according to the value of A.
Clearly, the construction can be accomplished in polynomial time. Also, H is a

planar graph with a planar embedding that is essentially unique except for some incon-
sequential freedom in embedding the intermediate vertices in k-rods.

Every V[i], W[i], and U[j] in H has a rod connecting it to either an X[j] or a Y[j].
If H has a leveled-planar embedding, then it has a leveled-planar embedding in which
(1) Z[left] is in level 1; (2) every vertex in the capping cycle

Z[left],..., V[0],..., W[0],..., Z[right],..., Win],..., V[n],..., Z[left]

is in its preferred level; (3) W[0] is above W[n] in level A. Because the capping cycle
has only one leveled-planar embedding satisfying these constraints, all other vertices are



LAYING OUT GRAPHS USING QUEUES 945

forced to be inside the capping cycle. In such an embedding, we want each fixed vertex
to be in its preferred level. We show in the following two claims that this must be the
case. In Claim 1, we assume that, for a particular clause cj E C2, U[j] is in level t, X[j]
and YL’] are in level t 4, the rod connected to U[j] goes right, and the rods connected
to Q[j, 1], X[j], Q[j, 2], r[j], Q[j, a] go left.

CLAIM 1. The gadget for cj has such a leveled-planar embedding if and only if at
least one of QIi, 1], Q[i, 2], Q[i, 3] is intruded.

Proof. If Q[j, 1], Q[j, 2], and Q[j, 3] are all intruded, Fig. 3.13 shows such an em-
bedding. If only Q[j, 2] is intruded, Fig. 3.15 shows such an embedding. If only Q[j, 1]
(or, by symmetry, only Q[j, 3]) is intruded, Fig. 3.16 shows such an embedding. If two
of Q[j, 11, Q J, 2], and Q[j, 3] are intruded, moving an appropriate Q J, a] in one of these
figures easily gives an embedding. From these three figures, it is clear that there is no
leveled-planar embedding of the gadget if all three vertices Q[j, 1], Q[j, 2], and Q[j, 3] are
extruded.

Q[I,1]

O[I,2]

O[I,3]

FIG. 3.15. Q[j, 2] intruded.

CLAIM 2. If H has a leveled-planar embedding such that each vertex in the capped
cycle is in its preferred level, then each fixed vertex of H is in its preferred level.

Proof. Say that there is a fixed vertex not in its preferred level. If there is such a
vertex in an EROD, let i be a smallest index for which EROD[i] contains such a vertex.
By left-right symmetry, it suffices to consider the case that W[i] is in a level t > A.
Because i is minimum, t A + 2. W[i] is connected by a rod to either an X[j] or a Y[j].
Without loss of generality, say that the rod is to X[j]. The rod forces X[j] to be in level
(X[j]) / 2 (U[j]) 2. We claim that U[j] is in a level higher than (U[j]).

Suppose U[j] is in level (U[j]). The semi-rod to Q[j, 1] forces Q[j, 1] to be in level
(U[j]) 3. (Otherwise, W[i] could not be in level A / 2.) The rods of X[j] and Q[j, 1]
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011,11

Q[I

Q[I,3I

FIG. 3.16. Q[j, 1] intruded.

force Q[j, 1] to be above X[j]. Therefore, it is not possible to embed the paths from
Q[j, 1] to U[j] properly in levels.

We conclude that U[j] is in level > I(U[j]) + 2. The above argument repeats with
the rod from U[j] connecting to some X[j’] or Y[j’], shifting U[j’] to a level higher than
(U[j’]). Repetition of the argument ends at X[m+ 1], which must be in level (X[m+
1]), not higher. This contradiction proves that each W[i] is in level A.

A similar argument shows that any fixed vertex that is not a W[i] must also be in its
preferred level.

We need to show that b is satisfiable if and only ifH has a leveled-planar embedding.
Assume that b is satisfiable. Choose a satisfying assignment for b. Embed P first.

Place all fixed vertices of P on their assigned levels. If vi is true, let whichever of S[i]
and T[i] corresponds to the literal vi be intruded. If vi is false, let whichever of S[i] and
T[i] corresponds to the literal be intruded. Then each u[j] has at least one intruded
Q[i, j] and can be level embedded by Claim 1. Thus H has a leveled-planar embedding.

Now assume that H has a leveled-planar embedding. By Claim 2, we may assume
that each fixed vertex F is on level Z(F). Let Z[i] be whichever of S[i] and T[i] corre-
sponds to the literal vi. If Z[i] is intruded, assign vi the value true; otherwise, assign
the value false. By Claim 1, every U[j] has an intruded Q[i, j]. Therefore, each clause
c contains a literal that is true under this assignment. This truth assignment satisfies
that is, b is satisfiable.

Thus P3SAT reduces to LEVELED-PLANAR. As P3SAT is NP-complete, we con-
clude that LEVELED-PLANAR is NP-complete.

It appears that the graph H is arched leveled-planar if and only if it is leveled-planar.
To be certain of this, we modify the construction slightly by adding an arched cap on the
left and right ends of H. The cap on the right end is shown in Fig. 3.17. The rightmost
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edge of the right cap and the leftmost edge of the left cap must be arches, and no other
edges may be arches. With this change to H, H is an arched leveled-planar graph if and
only if is satisfiable. This proves the following corollary.

X[m+l] Z[right]

FIG. 3.17. An arched cap.

COROLLARY 3.9. ARCHED LEVELED-PLANAR is NP-complete. Thus, theprob-
lem ofrecognizing 1-queue graphs is NP-complete.

4. Layouts for specific graphs. In this section, we present queue layouts having
small queuenumber for a variety of specific families of graphs. We make contrasts with
the corresponding stack layouts. The intuition that an easily leveled graph has a good
queue layout is supported by most of these families. Some details are left to the reader.

4.1. Trees and meshes. We begin with trees and meshes, two natural leveled-planar
families of graphs.

A tree T is a connected graph that has no cycles. Choose an arbitrary vertex r to
be the root of T. Each vertex in T has a well-defined depth, i.e., distance from r. Let
DEPTH(i), i >_ 0, consist of all vertices at depth i.

PROPOSITION 4.1. Every tree T is a leveled-planar, hence 1-queue, graph. T has a 1-
queue layout such that thefirst level is {r} and the queuewidth ofthe layout is the cardinality
ofthe largest DEPTH(i), i > 0.

Proof. Lay T out breadth-first starting from the root r. The result is a 1-queue layout
of the tree with the stated properties. [3

An m n mesh is a graph with vertices

{vj 1 < < m, 1 <j < n}

and edges

{(vii, vi,j+l) ll <_ j <_ n- 1} W {(v/j, Vi+l,j) 1 _< i < m 1}.

PROPOSITION 4.2. An m x n mesh is a leveled-planar, hence 1-queue, graph. There is
a 1-queue layout QL ofthe mesh having queuewidth QW(QL) < min{m, n}.
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Proof. An rn x n mesh has a natural embedding in the plane with vertices in m rows
and n columns. If this embedding is rotated 45, vertices line up on m + n 1 vertical
lines. The result is a leveled-planar embedding with the stated queuewidth.

For m > 2, n > 2, an m n mesh is not an outerplanar graph and, in fact, has
stacknumber 2 [5]. Thus, the mesh provides an example of a 1-queue graph that fails to
be a 1-stack graph.

4.2. Unicyclic graphs. A unicyclic graph is an undirected graph in which each con-
nected component contains at most one cycle. The family of unicyclic graphs includes
trees, forests, and cycles of all lengths.

PROPOSITION 4.3. A unicyclic graph is an arched leveled-planar, hence 1-queue, graph.
Each connected component contributes at most one arch.

Proof. Let G (V, E) be a unicyclic graph. We may assume that G is connected. By
Proposition 4.1, we need only treat the case that G contains a cycle. Let

C Ul z/,2

bc that cycle. If k is even, level C into + 1 levels

a leveled-planar embedding of C results. If k is odd, level C into - levels

U1 {1, lzk}, U2 {u2, Ztk-1},’’’, Vi {ui, k-i+l},""", V(k+l)/2

an arched leveled-planar embedding of C results, with the single arch (Ul, uk).
Let G be G without the edges of C. G contains one connected component for each

ui; this connected component is a tree Ti, which we root at ui. We convert the (arched)
leveled-planar embedding of C into one for G by expanding Ti from ui in a breadth-first
manner, as prescribed in Proposition 4.1.

4.3. X-trees. The depth-d complete binary tree CBT(d) has vertex set

{1,2,...,2d+- 1}

and edge set

{(a, 2a), (c, 2a + 1) 11 _< a _< 2a- 1}.

The root of CBT(d) is 1, and CBT(d) has d+ 1 levels in the leveling starting at the root.
The depth-d X-tree X(d) is the supergraph of CBT(d) that has edges added across each
of the levels from left to right. See Fig. 4.1.

Every X(d) is a 2-stack graph; when d < 2, X(d) is a 1-stack graph [5]. In contrast,
even small X-trees require two queues.

PROPOSITION 4.4. For d > 1, X(d) admits a 2-queue layout with queuewidths 2d and
1. For d > 2, X d) is not a 1-queue graph.

Proof. For the upper bound, choose the order a 1, 2,..-, 2d+l 1. The edges
of CBT(d) are assigned to one queue and the edges across each level are assigned to a
second queue.

For the lower bound, since X(2) is a subgraph of X(d), d _> 2, it suffices to show
that X(2) is not a 1-queue graph.
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FIG. 4.1. X-tree X(3).

We exploit an alternate means of constructing X(2). Given any graph G and any
edge (z, y) in G, define the operation of hatting (z, y) as adding a new vertex (thepeak)
z and new edges (z, z) and (y, z). Start with a cycle of length 4:

C Ul ?2 u3 ?4 Ul.

Choose any three of the four edges of C. Hat each of the chosen edges. The resulting
graph is isomorphic to X(2).

To obtain a contradiction, suppose that X(2) has a 1-queue layout. Let a be the
order of the vertices. Without loss of generality, assume that ul is the leftmost vertex of
C in a. Neither u nor u4 can be the rightmost vertex of C in a, for then two edges of
C would nest. By symmetry we may assume that the order of the vertices of C in a is
ul, u2, u4, u3. Three of the four edges of C must be hatted. In particular, either ul or
ua has both of its incident edges hatted. By symmetry, we may assume that (u, u4) and
(Ul, U2) are hatted. Let w be the peak of (Ul, U4).

There are five possible placements of w within the order u, u, u4, u3. Only place-
ment ofw between u and u fails to yield two nested edges. But, with w between u and
u, there is no placement of the peak of (Ul, u) that does not yield two nested edges.
This is a contradiction to a giving a 1-queue layout of X(2).

Since X(2) is outerplanar, we have the following corollary.
COROLLARY 4.5. X(2) is a 1-stack graph that is not a 1-queue graph.

4.4. DeBruijn graphs. The order-d deBruijn graph DB(d) has vertex set

{0, 1,...,2a- 1}

and edges connecting each vertex z with vertices 2z mod 2a and 2z + 1 mod 2a. See Fig.
4.2. Note that multiple edges and loops are discarded.

PROPOSITION 4.6. DB(d) admits a 2-queue layout with queuewidths 2a-x. DB(d),
d >_ 4, does not admit a 1-queue layout. DB(3) does admit a 1-queue layout.

Proof. The edges of DB(d) of the forms (x, 2x) and (x, 2x+ 1), x {1, 2,..., 2d-1

1}, are the edges of a depth-(d- 1) complete binary tree rooted at vertex 1 and containing
all vertices except O. Similarly, the edges ofthe forms (2a- +x, 2z) and (2a- +x, 2x+1),
x {0, 1,..., 2a-1 2}, are the edges of a depth-(d 1) complete binary tree rooted
at vertex 2a- 2 and containing all vertices except 2a-1 1. Choose the order a
O, 1,. , 2a 1. Assign edges of the forms (x, 2x) and (x, 2x + 1) to one queue and edges
of the forms (2a- + x, 2z) and (2a-1 + x, 2z + 1) to a second queue. (When edges are
assigned to both queues, break ties arbitrarily.)
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FIG. 4.2. The deBmijn graph DB(3).

DB(d), d > 4, is not planar, hence not a 1-queue graph. The order

a 1, 0, 2, 3, 4, 5, 7, 6

yields a 1-queue layout of DB(3).
4.5. Complete graphs. The completegraph K, has a vertex set of size n and an edge

connecting every pair of vertices.
PROPOSITION 4.7. QN(K,)=
Proof. Every vertex order for K, is symmetric, so fix any order a 1, 2,..., n. The

maximum size of a set of nesting edges is exactly In/2J. By Proposition 2.1 and Theorem
2.3, the result follows.

An explicit assignment of edges of K, to queues is easily described. In the fixed
order a, every edge (i, j) has length li Jl- There are edges of every length from 1 to
n 1. For i E {1, 2,..., [n/2J }, assign all edges of lengths 2i 1 and 2i to queue qi. No
two edges having the same length or having lengths differing by 1 can nest.

4.6. Complete bipartite graphs. The complete bipartite graph K,,, has m + n ver-
tices, partitioned into two sets:

{a, a2,..., am} t2 {bl, b2, bn };

its edges connect every a vertex with every b vertex.
PROPOSITION 4.8. QN(Km,n) min([m/2], n/2]).
Proof. Without loss of generality, assume that m < n. We need to show that

QN(K,,,) [m/2].

Upper bound. Choose the layout order

O" 41,42,-.., a[m/2q, b, , bn, a[m/2+l,’’’, am.

Partition the edges of K,,n into [m/2] sets, each of which will be assigned to a dis-
tinct queue. The ith set, 1 < i < [m/2], comprises all edges of the form (ai, by) and
(a,+1_, bj), for 1 < j < n. Since none of the edges in the ith set nest, they can all be
assigned to a single queue, whence [m/2] queues suffice.

Lower bound. Let a be an order of the vertices in a QN(Km,,)-queue layout of
Km,. By symmetry, we may assume that the ai’s appear in the order 41,42,..., a, in a
and that the bj’s appear in the order bn, b_,..., bl in a. Because we may reverse a and
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still have a QN(K,,i)-queue layout, we may assume that br,.,.,/: appears after ar,.,,./: in
or. Then the set of edges

{(o,, b) Il < i < rm/:-I}

nest. By Proposition 2.1, QN(K,,,) > [m/2].
This straightforward determination of QN(K,,,) contrasts with the current status

of SN(K,,,) as reported in [20]. Even after much effort, the exact stacknumber of
or even of K,,,, has not been determined, though Muder, Weaver, and West [20] have
obtained nontrivial bounds.

4.7. FFT and Benel networks. We now consider two related families of graphs that
have importance as computational networks. The FFT network represents the data de-
pendencies of the Fast Fourier Transform algorithm. The Beneg rearrangeable permuta-
tion network is a switching network capable of realizing at its n outputs any permutation
of its n inputs (Benel [1]).

The n-input Bene network B(n), n 2", is defined inductively as follows.
1. B(2) is the complete bipartite graph K2, on the two input vertices I[1, 1] and

I[1, 2] and the two output vertices O[1, 1] and O[1, 2].
2. B(n) is obtained from two copies of B(nl2), together with n new input vertices

I[m, 1], I[m, 2],..., I[m, n] and n new output vertices O[m, 1], O[m, 2],. ., O[m, hi. In
the second copy of B(n/2), each vertex l[k, i] is relabeled I[k, i + n/2], and each vertex
O[k, i] is relabeled O[k, i + n/2]; all vertices then have distinct labels. For 1 < i < n, add
edges to create a copy of Kz,z on vertices I[m, i] and I[m, i +n/2] and vertices I[m- 1, i]
and I[m- 1, i + n/2]; also, add edges to create a copy of K2,z on vertices O[m, i] and
O[m, i + hi2] and vertices O[m 1, i] and O[m 1, i + n/2].

As shown in Fig. 4.3, the Benel network has a natural level structure with 2m levels.
The n-input FFT network is the graph consisting of the first m + 1 levels of B(n).

FIG. 4.3. The Beneg network B(4).

As B(n), n > 2, is not planar, its queuenumber is at least 2. The level structure (of
either network) provides a straightforward 3-queue layout: order the vertices level by
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level, going up each level; one queue for the "cross" edges, one queue for the "upward"
edges, and one queue for the "downward" edges suffices. A more complicated 2-queue
layout of B(n) is due to Reibman [23].

PROPOSITION 4.9 (see [23]). The Beneg network B(n) admits a 2-queue layout with
each queue of width r The layout is optimal in queuenumber and within a factor of 2 of
optimal in queuewidth.

Proof. The layout of B(n) follows its inductive definition. The inductive hypothesis
is that B(n) has a 2-queue layout which respects the leveling of B(n); that is, all level
i vertices appear before any level i / 1 vertices, though no restriction is placed on the
relative order of vertices within each level.

1. The vertex order for/3(2) is I[1, 1], I[1, 2], O[1, 1], O[1, 2]. The two edges incident
to I[1, 1] are assigned to one queue and the two edges incident to I[1, 2] are assigned to
the second queue. The layout satisfies the inductive hypothesis.

2. We assume that B(n/2) has a 2-queue layout satisfying the inductive hypothesis.
Let B1 and B2 be two copies of/3(n/2). Lay each out in the 2-queue order that is
guaranteed by the induction. Merge the two layouts level by level so that the level-/
vertices of/32 always appear immediately to the right of the level-/vertices of B1. In
particular, I[k, i + n/2] (respectively, O[k, i + n/2]) is always n/2 vertices to the right of
I[k, i] (respectively, of O[k, i]). Because the leveling of B(n) is honored in the layout,
each level-/edge of B1 crosses every level-/edge of B2, and vice versa, so no nesting
results from the merging; hence, a 2-queue layout of the "sum" of B1 and B2 results.
Add n new input vertices to the left and n new output vertices to the right of the entire
layout. View the n new inputs as consisting of n/2 consecutive pairs of vertices. Add
edges from the first pair to the first vertices of Bx and Bz to form a copy of K,z. In
general, add edges from the ith pair to the ith vertices of B1 and B2. Assign the added
edges incident to B1 (which form a twist) to the first queue and the added edges incident
to Bz (which also form a twist) to the second queue. Similarly, connect the n new outputs
to the last vertices of B1 and B2. The result is a 2-queue layout of B(n).

Because the FFT network is a subgraph of the Bene network, it also has a 2-queue
layout. This compares favorably with the stacknumber optimal 3-stack layouts of the
Bene and FFT networks in Games [8]. The natural leveling of these networks is a defi-
nite advantage in constructing queue layouts that are good, at least in the sense of queue-
number.

4.8. l-lypercube. The d-dimensional hypercube Q(d) has vertex set {0, 1}a, the set of
all bit strings of length d; its edges connect every pair ofvertices that differ in exactly one
bit position. View the vertex set of Q(d) as the set of integers {0, 1,..., 2a 1} by iden-
tifying a d-bit string with the corresponding integer in binary notation. The hypercube
admits a very regular layout strategy.

PROPOSITION 4.10. For d > 2, Q(d) admits a (d 1)-queue layout with queuewidths

2d-1 2d-2,... 22 21

Proof. We lay out Q(d) inductively. The order a 0, 1, 2, 3 gives a 1-queue layout
of Q(2) with queuewidth 2. To obtain a layout for Q(d), d > 2, inductively lay out two
adjacent copies ofQ(d- 1), similarly ordered. By induction, each ofthe copies ofQ(d- 1)
uses d 2 queues with queuewidths

2d-2 2d-3 22 21I**



LAYING OUT GRAPHS USING QUEUES 953

hence, their disjoint sum does also. The 2a-1 edges connecting one copy of Q(d 1)
to the other form a 2a-l-twist; hence they require only one additional queue of width
2d-1.

The queuenumber of the preceding layout is optimal to within a constant factor.
PROPOSITION 4.11. QN(Q(d)) f(d).
Proofi Q(d) has d2d-1 edges. By Corollary 3.7, therefore,

d2a-1 ]QN(Q(d)) >_
24+1_3 fl(d).

5. Queuenumber and graph structure. We now explore two structural properties
of graphs that provide bounds on queuenumber. These properties are bandwidth and
separator size.

5.1. Bandwidth. Let a 1, 2,..., n be any order of the vertices of G. The band-
width of a is the length of the longest edge; that is,

BW(a) max li- Jl.
(,.i)eE

The bandwidth of G is the minimum bandwidth of any a; that is,

BW(G) minBW(a).

Assume that n > B + 1. The maximal bandwidth-B graph on n vertices M(B, n) has
vertex-set { 1, 2, , n}; its edges form a copy ofthe complete graph KB+I on each subset
of vertices

{i,i+l,...,i+B}, l<_i<_n-B.

See Fig. 5.1.

FIG. 5.1. Maximal bandwidth-B graph M(3, 8).

The following theorem establishes a relationship between bandwidth and queue-
number.

THEOREM 5.1. QN(M(B, n)) VB/2]. Hence, if BW(G) B, then QN(G) <

Proof.
Upper bound. Choose the order a 1, 2,..., n for the vertices of M(B, n). There

are edges of every length from 1 to/3. Assign all edges of lengths 2i 1, 2i, 1 < i <
[B/2], to queue qi. No two edges having the same length or having lengths differing by
1 can nest. A /3/2]-queue layout of M(B, n) results.

Lower bound. M(/3, n) contains complete graphs on B + 1 vertices. By Proposition
4.7,
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Since every bandwidth-B graph G is a subgraph of some maximal bandwidth-B
graph M(B, n), QN(G) < [B/2]. U

5.2. Separator size. Let S(z) be a nondecreasing integer function. A graph G
1 )-vertex-separator of size S(z) (or just separator of size S(x)) if either(V, E) has a (,

IVI < 3 or if there is a subset of cardinality at most s(IVI) whose removal leaves con-
nected components of cardinality less than or equal to IvI, each having a separator of
size S(z).

Suppose G has maximum degree d and has a separator of size S(x). Let R be the
following function of S:

R(x) (d + 1) S(x/2).

A bucket treefor G is a complete binary tree whose level-j buckets (vertices) have bucket
capacity

C(j) cdR(IVI/2Y),

where c is a constant. Bhatt et al. [3] demonstrate the following.
LEMMA 5.2 (see [3]). IfG (V, E) is a graph ofmaximum degree d that has a sepa-

rator ofsize S(z), then V can be mapped onto the bucket tree for G in such a way that
1. At most C(j vertices are mapped to each level-j vertex ofthe bucket tree;
2. Iftwo vertices that are adjacent in G are mapped to two distinct buckets, then these

two buckets are at most distance d apart in the bucket tree, and one ofthe buckets
is an ancestor ofthe other

The following relates the separator size of a graph to its queuenumber and stack-
number.

THEOREM 5.3. IfG (V, E) is a graph ofmaximum degree d that has a separator of
size S(x), then G has queuenumber and stacknumber O(d2R([VI)).

Proof.
Queuenumber. Construct a queue layout of G in two steps. First, use Lemma 5.2 to

map V onto the bucket tree for G, and lay out the bucket tree in a breadth-first order.
Second, use this 1-queue layout of the bucket tree to obtain a queue layout of G; replace
each bucket B by the contents of B placed contiguously in any order. We analyze the
number of queues needed in this layout of G. The two endpoints of any edge of G are
mapped to a pair of buckets B1 and B2 such that B is an ancestor of B2, and B1 and
B2 are at most distance d apart in the bucket tree; call an edge an i-edge, 0 <_ <_ d,
if i is the distance between B1 and B2 in the bucket tree. If the endpoints of two i-
edges are mapped to different pairs of buckets, then the two edges cannot nest. Fix i,
0 < i < d. Since each bucket contains O(dR(IV[)) vertices, O(dR([VI)) queues suffice
for all/-edges. Since has d/ 1 possible values, the queue layout for G has queuenumber
O(dR(IVl)).

Stacknumber. A similar construction that begins by laying out the bucket tree in
preorder suffices to show the bound on stacknumber.

We remark that Theorem 4.5 of Chung, Leighton, and Rosenberg [5] gives an up-
per bound on the stacknumber of a graph as a function of its bifurcator, rather than
separator, size.

6. A queuenumber/queuewidth tradeoff. In this section, we provide evidence of an
apparent tradeoffbetween queuenumber and queuewidth for queue layouts of complete
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binary trees. Then we relate the queuewidth of a graph G to the diameter of (7, i.e., the
greatest distance between any pair of vertices of (7.

By Proposition 4.1, a depth-d complete binary tree has a 1-queue layout with queue-
width 2a. This queuewidth is exponentially greater than the O(d) stackwidth of a 1-stack
layout of a complete binary tree [5]. We consider the question ofwhether a larger num-
ber of queues can be traded off for a smaller (cumulative) queuewidth. The following
theorem suggests an apparent tradeoff.

THEOREM 6.1. A depth-d complete binary tree T with n 2a leaves has a k-queue
layout QL with CQW(QL) O(knl/a).

Proof. We give the proof for k 2. To simplify the construction, we assume that
d 2d’ is even. Let n’ 2’ x/. Let T* be the upper d’ + 1 levels of T, and let
1, 2,..., n’ be the leaves of T* in canonical order. Each leaf i is the root of a subtree Ti
of depth d. Order the vertices of T* in breadth-first order from the root, so that vertices
1,..., n’ appear rightmost in the order. For each i, 1 <_ i <_ n’, place the vertices of Ti in
breadth-first order immediately to the right of its root i. Assign the edges of T* to one
queue and the edges of T, T:,..., T,, to a second queue. Each queue has queuewidth
n’ x/. The cumulative queuewidth of the 2-queue layout is 2n O(2n/u).

For general k, 2 < k < d, cut T every [d/k] levels, and use one queue for the edges
in each of the produced "meta-levels." Details are left to the reader. [3

To show that the apparent tradeoff is a real one, we need lower bound techniques
for queuewidth. The next theorem provides a lower bound on queuewidth as a function
of diameter for arbitrary 1-queue graphs.

THEOREM 6.2. Suppose G (V, E) is a connected 1-queue graph having diameter D.
Let QL be a 1-queue layout of G. Then,

IEIQW(QL) _>
2D + 1

Proof. By Theorem 3.2, layout QL yields an arched leveled-planar embedding of G;
denote the induced levels by V1, V2, , V,. Since each edge of G connects vertices that
are either in the same or adjacent levels, it is immediate that D > m 1. Consider now
the following 2m 1 < 2D / I cuts of layout QL:

CUT(t1 1), CUT(t),..., CUT(ti 1), CUT(ti),..., CUT(tm 1).

Since every edge of G either has some ti as its right endpoint or passes over some ti, the
enumerated set of cuts collectively exhausts E. The proof is completed by appealing to
two facts:

The queuewidth of the layout QL is (clearly) as big as the biggest cut.
The biggest cut contains no fewer edges than the average cut. [3

For a depth-d complete binary tree T, there are n 2a leaves, IVI 2n 1,
IEI 2n 2 and D 2d 2 log n. We have this corollary.

COROLLARY 6.3. Any 1-queue layout ofa depth-d complete binary tree has queuewidth
at least (2n 2)/(4d + 1) ft(n/log n).

The breadth-first layout ofT starting at the root has queuewidth n. The lower bound
on queuewidth in the corollary is close to this upper bound. We do not know how to
achieve this lower bound and doing so appears difficult. The higher width of queue

1CUT(i), the cut at vertex i, is the set of all edges whose left endpoint is less than or equal to and whose
right endpoint is greater than i.
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layouts over stack layouts suggests that stack layouts of trees are preferable to queue
layouts.

We do not yet have a lower bound on cumulative queuewidth for arbitrary k-queue
layouts of T, along the lines of Theorem 6.2 for the case k 1. Thus, we do not know
whether there is a real tradeoffbetween queuenumber and queuewidth here, butwe con-
jecture that there is. We further conjecture that the cumulative queuewidth announced
in Theorem 6.1 is within a factor of O(d) of optimal.

7. Future directions. In Table 7.1, we summarize our queuenumber results for spe-
cific graphs alongside the corresponding stacknumber results. Further comparison of
the relative merits of queues and stacks is warranted. In particular, queues appear to
be more appropriate than stacks for graphs with a leveled structure; can this insight be
formalized? Chung, Leighton, and Rosenberg [5], and Heath [13] show that there are
tradeoffs between stacknumber and stackwidth in the sense that, for certain graphs, de-
voting more stacks to a layout decreases the cumulative stackwidth. We expect analogous
tradeoffs between queuenumber and queuewidth. We conjecture the following.

CONJECTURE 1. There are graphs that exhibit a tradeoffbetween queuenumber and
queuewidth, and Theorem 6.1 exposes such a tradeoff.

TABLE 7.1
Queuenumbers ofspecific graphs.

Graph Class Queuenumber Stacknumber

Trees

X-trees

DeBruijn Graph

Complete Graph Kn
Complete Bipartite Graph Km,n

FFT Network

Bene Network

Boolean n-cube

Ternary n-cube

1

2

2

/,/1

1 [5]
2 [5]

_< 5 [21]

Ln/J [5]

Planar Graphs

min(r /Zl,
(Exact)

2

2

<n-1

<2n--2
[161

Unknown
(Conjecture
bounded)

_< F(, +
[2o]

[8]

[81
_<n--1 [5]

(), < t/9
[16]

4 [27]

Often, good queue layouts seem easier to obtain than good stack layouts. Planar
graphs maybe an exception to this. However, in harmonywith the fact that planar graphs
can be laid out in a bounded number of stacks (Yannakakis [27]), we conjecture the
following.

CONJECTURE 2. Planar graphs can be laid out in a bounded number of queues.
The notions of stack and queue layouts may be generalized in several directions.

One approach is to define layouts that simultaneously utilize queues and stacks. We
conjecture the following.

CONJECTURE 3. Each planar graph admits a 1-stack, 1-queue layout.
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Another approach is to utilize deques or more general permutation mechanisms. In
the realm of such generality, it becomes necessary to consider relative cost measures for
the various mechanisms.

Note added in proof. The interested reader should be aware of the Ph.D. thesis of
Sriram V. Pemmaraju (Exploring the Powers of Stacks and Queues via Graph Layouts,
Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA, 1992). It contains further results in the theory of queue and stack lay-
outs. The thesis develops a number of new tools for studying such layouts. It also initi-
ates the study (promised in 1.2) of queue and stack layouts ofdags. Copies are available
from the first author.
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OPTIMAL ON-LINE SIMULATIONS OF TREE MACHINES BY RANDOM ACCESS
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Abstract. This paper shows that every tree machine of time complexity can be simulated on-line by a
log-cost random access machine (RAM) oftime complexity O((t log )/log log Q. Using information-theoretic
techniques, it is shown that this simulation is optimal. It is also shown that every tree machine can be simulated
by a unit-cost RAM in real time.

Key words. Kolmogorov complexity, on-line simulation, random access machine, real-time simulation,
time complexity, tree machine
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1. Introduction. The random access machine (RAM) and the Turing machine are
the standard models for sequential computation. Research into the use of time and
space by these and other models gives us insight into their computational power. This
research includes analyzing how two different models use time and space, and comparing
time and space within a single model. Another avenue of investigation is determining
how altering the definitions of time and space (for example, log-cost versus unit-cost)
for a model affects its computational power. Slot and van Emde Boas [13], for example,
showed how space equivalence of RAMs and Turing machines is affected by varying the
definition of space complexity for RAMs.

A tree machine is a Turing machine whose worktapes are complete infinite rooted
binary trees. It is a natural model of sequential computation on hierarchical structures
such as heaps and balanced trees. Paul and Reischuk [10] used tree machines to inves-
tigate the relationships between time and space for random access machines and multi-
dimensional Turing machines. They presented a simulation of a log-cost RAM of time
complexity t by a tree machine of time complexity O(t). They also showed that a tree
machine of time complexity t can be simulated off-line by a unit-cost RAM of time com-
plexity O(t/log log t). Loui [8] showed that a multihead tree machine of time complex-
ity t can be simulated on-line by a tree machine with only two worktape heads in time
O((t logt)/loglogt). Reischuk [11] and Loui [7] studied the relationship between tree
machines and multidimensional Turing machines.

We begin by showing that every tree machine can be simulated by a unit-cost RAM
in real time. We then present our main results, which concern on-line simulation of
tree machines by log-cost RAMs. We show that every tree machine of time complexity
can be simulated on-line by a log-cost RAM of time complexity O((t log t)/log log t).

Using the notion of incompressibility from Kolmogorov complexity [6], we show that this
simulation is optimal. This appears to be the first application of Kolmogorov complexity
to sequential RAMs. It is significant because few algorithms have been shown to be
optimal.

All logarithms in this paper are taken to base 2.
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2. Machine definitions. All machines that we consider have a two-way read-only in-
put tape and a one-waywrite-only output tape. The principal differences in the machines
are in their storage structures.

A tree machine, a generalization of a Turing machine, has a storage structure that
consists of a finite collection of complete infinite rooted binary trees, called tree work-
tapes. Each cell of a worktape can store a 0 or 1. Each worktape has one head. A work-
tape head can shift to a cell’s parent or to its left or right child. Initially, every worktape
head is on the root of its worktape, and all cells contain 0.

Let W be a tree worktape. We fix a natural bijection between the positive integers
and cells of W. We refer to the integer corresponding to a particular cell as that cell’s
location. Write cell(b) for the cell at location b. Define cell(l) as the root of W. Then
cell(2b) is the left child of cell(b) and cell(2b + 1) is the right child of cell(b).

Each step of a tree machine consists of reading the contents of the worktape cells
and input cell currently scanned, writing back on the same worktape cells and (possibly)
to the currently accessed output cell, and (possibly) shifting each worktape head and the
input head. When the tree machine writes on the output tape, it also shifts the output
head.

The time complexity t(n) of a tree machine is defined in the natural way, namely, the
maximum number of steps taken by the tree machine on inputs of size n.

The depth complexity of a tree machine is d(n) if every worktape head remains within
distance d of the root of its worktape on every input of size n. It is possible to limit the
depth complexity of a tree machine with respect to its time complexity.

THEOREM 2.1 (see [8], [10]). Every tree machine running in time t(n) can be simulated
on-line by a tree machine running in time O(t(n) and depth O(log t(n) ).

The random access machine (RAM) [2], [3], [5] consists of the following: a finite se-
quence of labeled instructions, a memory consisting of an infinite sequence of registers,
indexed by nonnegative integer addresses (register r(j) has address j), and a special reg-
ister AC, called the accumulator, used for operating on data. Each register, including
AC, holds a nonnegative integer; initially all registers contain 0. Let (x) denote the con-
tents of register r(x) and (AC) denote the contents of AC. Each cell on the input tape
contains a symbol from a finite input/output alphabet. The following RAM instructions
are allowed.

input. Read the current input symbol into AC and move the input head one cell to
the right.

output. Write (AC) to the output tape and move output head one cell to the right.
jump 0. Unconditional transfer of control to instruction labeled 0.
jgtz 0. Transfer control to instruction labeled 0 if (AC) > O.
load =C. Load integer C into AC.
load j. Load (j) into AC.
load .j. (Load indirect) Load ((j)) into AC.
store j. Store (AC) into r(j).
store .j. (Store indirect) Store (AC) into register r((j)).
add j. Add (j) to (AC) and place result in AC.
sub j. If (j) > (AC), then load 0 into AC; otherwise, subtract (j) from (AC) and

place result in AC.

The length of a nonnegative integer i is the minimum positive integer w such that
i < 2TM 1 (approximately the logarithm of i). The binary representation of i has w bits.



OPTIMAL ON-LINE SIMULATIONS OF TREE MACHINES 961

We consider two time complexity measures for RAMs, based on the cost of each
RAM instruction. For the unit-cost RAM, we charge each instruction one unit of time.
For the log-cost RAM, we charge each instruction according to the logarithmic cost crite-
rion [3]; the time for each instruction is the sum of the lengths of the integers (addresses
and register contents) involved in its execution. The time complexity t(n) of a RAM is the
maximum total time used in computations on inputs of length n. It is possible, of course,
to define time complexity in other ways; e.g., we could charge some other function f(j)
for access to register j [1].

In our simulations, we group the registers into a finite number of memories, each
memory containing an infinite number of registers. This does not increase the cost in
time by more than a constant factor, since we could simply interleave these memories
into one memory [5].

Two RAM operations used in this paper are the pack and unpack operations. Let
r, r,-.., rb be contiguous registers in RAM R’s memory containing, respectively, Zl,

Z2,""", Zb, where each zi is a single bit. R packs rl, r2,..., rb by computing the single
b-bit value 2b-137 d- 28-2372 +.." d- 378 and placing this value into the accumulator. The
unpack operation is the inverse of the pack operation; R takes a single value in the accu-
mulator and stores its bits into contiguous registers. Each operation has as parameters
the beginning and ending addresses of the registers involved in the operation.

We use a technique of Katajainen, van Leeuwen, and Penttonen [5] to pack and
unpack registers in order to find the bit representation of a number and vice-versa. This
divide-and-conquer strategy involves precomputed shift tables.

LEMMA 2.2 (see [5]). If the proper tables are available, then it is possible to compute
the u-bit representation ofan integer n < 2’, and the numec value ofa u-bit string, both
in O(u log u) time on a log-cost RAM.

LEMMA 2.3 (see [5]). The tables necessaryforLemma 2.2 can be built in O(u2’ time
on a log-cost RAM.

A machine M of time complexity t is simulated by a machine M’ on-line in time f(t)
if for every time step t, where M reads/writes a symbol, there is a corresponding time
step t where M’ reads/writes the same symbol, and t <_ f(ti).

3. Simulation by unit-cost RAMs.
THEOREM 3.1. Every tree machine can be simulated by a unit-cost RAMin real-time.
Proof sketch. We design a unit-cost RAM R that simulates tree machine T with

worktape W. R has a contents memory, aparent memory, and several working registers.
Let contents(z) (respectively, parent(z)) be the register with address 37 in the contents
(respectively, parent) memory. Contents(z) at address 37 contains the contents of cell(z)
at location 37 in the worktape of T. If cell(x) is visited by T, thenparent(37) contains the
worktape location of the parent of cell(z). The working registers are used as temporary
storage and to keep track of which cell is currently accessed by T.

R simulates one step of T with a constant number of accesses to the two memories
and the working registers. For example, if the head moves from cell(z) to a child of
cell(z), then R computes location 237 for the left child or 237 + 1 for the right child with
one or two additions and stores 37 in parent(237) or parent(237 + 1). Thus to simulate t
steps of T takes O(t) time on R. [3

4. Simulation by log-cost RAMs.

4.1. Upper bound. By Theorem 2.1, without loss of generality, we may assume that
every head ofT remains within distance O(log t) of the root. Thus every address used by
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R has length O(log t), and under the log-cost measure, R runs in time O(t log t); however,
we describe below a more efficient simulation by log-cost RAMs.

For simplicity, we consider tree machines with only one worktape, but our results
generalize to multiple worktapes. Let T be a tree machine of time complexity t with
one worktape W. We show that there is a RAM R that simulates T on-line in time
O((t log t)/log log t).

Since this is an on-line simulation, we do not know n or t(n) ahead of time. To solve
this problem, we use a technique of Galil [4], adopted by Loui [7], [8] and Katajainen,
van Leeuwen, and Penttonen [5]. Let t’ be the elapsed time ofT (as recorded by R), and
let t be R’s current estimate of the total running time of T. R begins the simulation with
t 2. When t exceeds t, R doubles t and restarts the entire simulation. R continues
this process of doubling t whenever t exceeds t until the simulation is finished. R
records the input in a separate memory as described below so that for each value of
t > 2, it is unnecessary to move the input head until t > t/2. We show that for each
value of t, the time of the simulation is O(te(log t)/log log t). It is easy to show that
the sum of the simulation times for all values of t is O(t(log t)/log log t), since the total
running time for T is t.

We first provide a brief description of the simulation. We choose parameters h and
u such that u 2zh+ 1. We specify the values of h and u later. As noted earlier, R has
several memories. R maintains in the main memory the entire contents of W. The main
memory represents W as overlapping subtrees, called blocks. R represents the contents
of each blockW in one register r of the main memory. When the worktape head is in
a particular block W, R represents W in the cache memory. Step-by-step simulation is
carried out in the cache, which represents the block Wz in breadth-first order, one cell
ofW per register of the cache.

Because blocks overlap, when the worktape head exits Wz, it is positioned in the
middle of some other block Wu. At this time R packs the contents of the cache back into
r in the main memory and unpacks the contents of ru into the cache.

The details of the simulation follow.
Let W[z, s] be the complete subtree of W of height s rooted at cell(z). A block is

any subtree W W[z, 2h+ 1] such that the depth of cell(z) is a multiple of h+ 1. Since
a block has height 2h + 1, it contains 2h+ 1 u cells. Let the relative location of
a cell within a block be defined in a manner similar to the location of a cell, where the
relative location of the root of the block is 1, the relative locations of its children are 2
and 3, and so on.

Call a block Wp theparent block ofW if cell(p) is the ancestor of cell(z) at distance
h + 1 from cell(z). IfW is the parent block of We, then Wc is a child block of W. Each
block has 2h+l child blocks. The topmost block of W, which contains the root of W, is
called the root block.

Define the top half of a block W as W[z, h], and define the bottom half of Wx as
the remaining cells of the block. Note that the top half of the block Wx is part of the
bottom half of Wp, its parent block, so that the blocks overlap. Call the portion of Wx
shared by Wv (i.e., the subtree W[z, h]) the common subtree ofW and Wv.

R precomputes in separate memories two tables, half and translate. We explain later
how R uses these tables. Here we describe their contents and how they are computed.
Let half(z) (respectively, translate(z)) be the register in half (respectively, translate) at
address z.

Half(z) contains [z/2J. To compute half, for z 1,..., u/2, R stores z in half(2z)
and half(2z + 1).
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For z 22h+1, u, translate(z) contains (z mod 2h+l) + 2h+l. R never refers to
any register in translate with address less than 2zh+. Translate is computed as follows:

i "= 2h+l

for z 22h+l to u do
translate(z) := i
i:=i+1
if i 2zh+2 then i "= 2h+l.

We now show how R simulates the tree machine using the cache. Assume the head
of T is currently scanning a cell in block W. Let cache(z) be the register in the cache
with address z, and let cell(z, z) be the cell in W with relative location z. For each z
1,.-., u, register cache(z) contains the bit in cell(z, z); for example, cache(l) contains
the contents of cell(z, 1) cell(z), the root of W. Thus R uses u registers of the cache,
each register containing one bit.

While the head of T remains in Wx, R keeps track of the head’s location with the
cache address register in the working memory, a memory maintained by R for storing
information necessary for miscellaneous tasks. If the cache address register contains z,
then cell(z, z) is currently being accessed in T.

To simulate a tree machine operation at cell(z, z), R loads the contents (one bit) of
cache(z) into AC. Once the contents are in AC, R simulates one step of T by storing
either 0 or i in cache(z).

If the head of T moves to a child of cell(z, z), then the new address for the cache
address register, as well as the relative location of the new block cell being read, is either
2z or 2z + 1. With one or two additions, R computes this new address and places it in the
cache address register. When the head ofT moves to the parent of cell(z, z), the address
of the corresponding cache register is [z/2J. Because R has no division operation, it
accesses the proper register of table half to retrieve the new address in cache.

To describe what happens when the worktape head moves out of the current block,
we first show how the blocks are stored in main memory. Main memory is divided into
pages consisting of 2h+ + 3 registers each. A page corresponds to a visited block of W.
Letpage(z) be the page representing W. Define the address of a page to be the address
of the first register in the page. The first register in page(z) is the contents register. For
the page representing the root block, the contents register contains the entire contents
of that block. For every other block Wu, the contents register contains the contents of
the bottom half of Wu. The contents of cells in a block are kept in breadth-first order;
i.e., reading the binary string in the contents register from left to right is equivalent to
reading the bottom half of the block it represents in breadth-first order. Initially, all cells
of a block contain 0, so all contents registers initially contain 0.

Following the contents register is the rank register, containing a number g between 1
and 2h+l, indicating that Wx is the gth child of its parent block. The next register is the
parent register, containing the address of the page representing the parent block of W.
The next 2h+l registers are the child registers of W. The ruth child register ofpage(z)
contains the address of the page representing the ruth child block ofW or 0 if that child
block has not been visited (see Fig. 1).

The first page in main memory corresponds to the root block. Blocks are then stored
in the order in which they are visited. The page address register, a register in working
memory, contains the address of the page in main memory corresponding to the cur-
rently accessed block.

LetW be the currently accessed block and let W, be the parent block of W. When
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FIG. 1. Worktape W (head movesfrom W to We).
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the tree worktape head moves out ofW so that it is positioned in the middle of a child
block We, R makes the proper changes to main memory and loads the cache from the
contents register ofpage(c).

In main memory, R updates the contents registers ofpage(x) andpage(p). To update
page(x), R packs the contents of the registers of the cache that correspond to the bottom
half of Wx into a single register in working memory (call it the transfer register, denoted
by tr). R then copies tr into the contents register ofpage(x) via AC (see Fig. 2).

Updatingpage(p) consists of changing the bits of its contents register correspond-
ing to the common subtree of W and Wp. R first saves the contents of the cache that
encode the common subtree ofW and W in a portion of working memory, since this
information is needed in the cache as the top half of We. R also saves the contents of
the cache that encode the common subtree of Wx and Wp. R then loads the contents
register ofpage(p) into tr and unpacks the contents into the cache. The bits in working
memory corresponding to the common subtree ofW and Wp are then written into their
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FIG. 2. Updating page(p) in main memory.

page(p)

proper locations in the portion of the cache representing the bottom half of Wp. R then
packs the contents of the cache into tr and copies tr into the contents register ofpage(p).

R then determines whether Wc has been visited before by checking the contents of
the child register ofpage(z) corresponding to We. If the child register contains a valid
(i.e., nonzero) address, then R uses that address to access page(c). R then loads the
contents register ofpage(c) into the cache. This action is similar to the manipulation of
page(p) discussed above. R loads the contents of the common subtree of Wx and W
saved in working memory into the registers of the cache representing the top half of the
block.

If the child register ofpage(z) contains 0, then R allocates a new page to maintain
the information on W.

R modifies the page address register to reflect the fact that the worktape head is now
scanning block W. The address currently in this register is that ofpage(z). R writes the
address ofpage(c) in main memory into the page address register. R determines from
the cache address register the quantity such that W is the gth child of Wx. Then by
accessing the gth child register of page(z) in the main memory, R can determine the
address ofpage(c).

To modify the cache address register to reflect the relative location ofthe head within
block W,, R first translates the relative location of the leaf cell(z, z) in W to its relative
location in We. Since leaf cell(z, z) in W is the same as cell(c, (z mod 2h+l) + 2h+l)
in W, R uses the table translate described above. Using one or two additions, R then
calculates the relative location in W of this cell’s left or right child, depending on which
branch the worktape head used to exit W. R then writes this new relative location into
the cache address register.

A similar sequence of operations occurs if the worktape head moves out of a block
(and further) into its parent block instead of into a child block. Then R uses the par-
ent register to determine the address of the page representing the parent block, and R
uses the rank register to determine the relative location of the worktape head within the
parent block.

As described earlier, R maintains an estimate t, of the total running time of T. R
doubles t, whenever the elapsed time exceeds t, and restarts the simulation with this
new value. The portion of the input string read by T up to time t,/2 is maintained in
R’s input memory in registers of length h. Input symbols read from time 1 to time h are
contained in the first register of input memory; those read from time h / 1 to time 2h
are contained in the second register, etc. Each register is unpacked into the input cache
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at its appropriate time, and the input symbols are read by R. After t/2 steps of the tree
machine have been simulated, input is read from the input tape. This new input is stored
in the same manner as previous input.

When it is necessary to restart the simulation with a new value of t, R reorganizes
the input memory using packs and unpacks so that register lengths reflect the updated
value of h.

To simulate tree machines with more than one worktape, R maintains a main mem-
ory, a cache, and a working memory for each worktape.

By evaluating the cost of the simulation on a log-cost RAM, we derive the following
result.

THEOREM 4.1. Every tree machine running in time t(n) can be simulated on-line by a
log-cost RAMrunning in time O((t(n) log t(n) /log log t(n) ).

Proof. Because the blocks have height 2h + 1 and overlap by height h + 1, each
time the worktape head moves out of a block it is exactly in the middle of another block;
i.e., it will take at least h h + 1 steps before it exits this new block. Since the tree
machine computation has at most t steps, the work of updating main memory from cache
(packing), loading a new block into cache (unpacking), and directly simulating h’ steps
is performed at most t/h’ times.

Updating main memory and loading a new block into cache involve the pack and
unpack operations and a constant number of accesses to main memory. By Lemma
2.2, the time for each pack and unpack operation is O(u log u). Since registers in main
memory have addresses no larger than (t/h’)(2h+l + 3), each access to main memory
takes time O(log t + h).

By Lemma 2.3, the time to create the tables necessary for the pack and unpack op-
erations is O(u2). The time to compute tables half and translate is O(u log u).

Simulating one step of the tree machine consists of a constant number of accesses
to cache, taking time O(log u). Thus simulating h’ steps takes time O(h’ log u).

Simulating h input operations (those up to step t/2) takes time O(h log h). Record-
ing h input operations (those past step t/2) also takes time O(h log h). Packing and un-
packing take time O(h log h). Thus the time to simulate t/2 input operations and record
t/2 additional input operations is (t/h)O(h log h). Reconfiguring the input memory for
a new value of t also takes time (t/h)O(h log h). Building the necessary tables for input
simulation and recording takes time O(h2h).

The total time required for R, then, is

(t/h’)(O(logt + h)+ O(ulogu) + O(h’logu)) + O(u2) + O(tlogh).

Since h O(log u), the total time is

O(((t log t)/log u) + tu + t log u + u2").

Choose h so that u (log t)/loglogt.
O((t logt)/log logt). q

Then the total time for the simulation is

4.2. Lower bound. We now show that the time bound of Theorem 4.1 is optimal
within a constant factor. We begin with an overview of Kolmogorov complexity, which
we use to prove the lower bound.

Let cr and 7- be strings in {0, 1}*, and let U be a universal Turing machine. Define
the Kolmogorov complexity of (r given 7- with respect to U, denoted K(crlT-), as follows:
let # be a symbol not in {0, 1}*; then K(crl- is the length of fl, where fl is the shortest
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binary string such that U(3#r) tr. Informally, K(crlr) is the length of the shortest
binary description of r, given r. If r is the empty string, then we write K(cr) for K(cr[r).

We say a string cr is incompressible if K(cr) > [r[. Note that for all n there are 2’
binary strings of length n, but there are only 2’ 1 strings of length less than n. Thus
for all n, there is at least one incompressible string of length n.

A useful concept in Kolmogorov complexity is the self-delimiting sting. For natural
number n, let bin(n) be the binary representation of n without leading zeros. For binary
string w, let be the string resulting from placing a 0 between each pair of adjacent bits
in w and adding a 1 to the end. Thus 110 101001. We call the string bin([wl)w the self-
delimiting version of w. The self-delimiting version of w has length Iw[ + 2 [log(lw[ + 1)].
Whenwe concatenate several binary string segments of differing lengths, we can use self-
delimiting versions of the strings so that we can determine where one string ends and the
next string begins with little additional cost in the length ofthe concatenated string. Note
that in such a concatenation it is not necessary to use a self-delimiting version of the last
string segment.

Kolmogorov complexity has recently gained popularity as a method for proving lower
bounds. Li and Vitanyi [6] provide a thorough summary of lower bound (and other
complexity-related) results obtained using Kolmogorov complexity.

THEOREM 4.2. There is a tree machine T running in time n such thatfor any log-cost
RAM R, R requires time t(n) f((n log n)/log log n) to simulate T on-line.

Proof. For simplicity, we omit floors and ceilings in this proof.
Tree machine T has one tree worktape and operates in real time. T’s input alphabet

is a set of commands of the form (e, ), where e {0, 1, ?} and indicates whether the
worktape head moves to a child or parent of the current cell or remains at the current
cell. Suppose T is in a configuration in which the cell x at which the worktape head is
located contains e’. On input (e, ), machine T writes e’ onto its output tape, and the
worktape head writes e onto cell x if e E {0, 1}, but it writes e’ (the current contents of
x) onto x if e =?. At the end of the step the worktape head moves according to . For
every n that is a sufficiently large power of 2, we construct a series of n tree commands
for which R requires time f((n log n)/log log n). As in [7], the string of tree commands
is divided into afillingpart of length n/2 and a querypart of length n/2.

Let W be the worktape of T, and let x0 be the root of W. Let d log(n/8). Denote
the complete subtree of W of height d whose root is x0 by Wd. Let N n/8. We
consider the complexity of the simulation in terms of N.

We fill Wd with an incompressible string T of length 2N 1 such that T can be
retrieved by a depth-first traversal of Wd. This takes time 4N 4 on T. We move the
worktape head four more times (without writing) so that the total length of the filling
part is n/2.

The query part consists of a series of questions. A question is a string of 2d 2 log N
tree commands that causes the worktape head to move from the root x0 of the tree work-
tape to a cell at depth d and back to x0 without changing the contents of the worktape.
As the head visits each cell during a question, T outputs the contents of that cell. T pro-
cesses 2N/log N questions Q1, Q2,’" during the query part. Thus the query part takes
time 4N n/2. We show that after each question Qj, there is a question Qj+I such that
R takes time f((log2 N)/log log N) to process Qj+I, and Theorem 4.2 follows.

Assume that R has just processed question Q. Let P(N) be the maximum time nec-
essary to process any possible next question. We show that some next question takes time
((log N)/log P). Consequently, by definition, P ((log N)/log P). To determine
a lower bound on P, we consider two cases:
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(1) P <_ logz N; hence, log P <_ 2 log log N. Thus we have the following:

P > c(logz N)/log P, for some constant c (since P ft((log9 N)/log P))
>_ c(logz N)/(2 log log N);

(2) P _> logz N.
In either case, P ft((logz N)/log log N).

We first determine i, the sum over all possible next questions q, of the time required
for R to process q.

Divide worktape W into S (log N)/(2 log P) sections, each of height 2 log P. For
s 0, 1,..., S 1, there are P+z exit points (bottom cells) in section s. We refer to
any initial segment of a question as a partial question and the portion of the question
that is processed while the worktape head is in one section as a subquestion (see Fig. 3).
To compute , we compute for s 0, 1,..., S I the total time required for R to
process all possible subquestions in section s. Since the depth of Wa is log N, there are
N possible next questions. Each of the PZ+z bottom cells of section s is visited during
NIP+ of these questions.

partial question
through section s

section

x0

Xk subquestion

FIG. 3. Processing section s ofworktape W.

2 log P

Let a8 be the string defined by the contents of the bottom cells of section s, from
left to right; clearly,

LEMMA 4.3. The string a8 is incompressible up to a term of O(s log P); i.e., K(a) >_
lal O(s log P).

Proof The incompressible string T, which gives the contents of W, can be specified
by a string composed of the following segments:

1. a self-delimiting string encoding this discussion (O(1) bits),
2. a self-delimiting version of a binary string of length K(a) that specifies a

(g(as) + O(s log P) bits),
3. self-delimiting versions of the values of s and P (O(log 8) + O(log P) bits),
4. a string specifying the bits in T but not in a (2N 1 P+ bits).

Thus K(T) _< K(a) + (2N 1 pg.+) + O(s log P). But K(T) > 2N 1; therefore,
K(a) >_ p2s+2 O(s log P).

LEMMA 4.4./fg >_ 1, then Y]=I log/_> (1/2)glogg.
Proof For all i such that 1 < i _< g, clearly (i 1)(g- i) _> 0; hence i(g i + 1) _> g.

Consequently,
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i (1/2) y(log i + log(g- i + 1))
i=1

(1/2)Z log(i(g- i + 1))
i=1

>_ (1/2) logg
i=1

(1/2)g log g.
LEMMA 4.5. For s 1, 2,..., S 1, the number ofregisters accessed dung the pro-

cessing ofallpartial questions through section s 1 is at most 4P2s+1/log P.
Proof Let C 4P/log P. By Lemma 4.4, for P sufficiently large, c=1 log i > P.

The processing of each partial question through section s 1 could involve no more
than C distinct registers; otherwise, because of the total cost of addresses of registers, R
would exceed time P for some next question. There are p28 different partial questions
possible through section s- 1, so there are no more than 4P28+1/log P registers accessed
for all possible partial questions.

Let us consider a particular section s. Let r, r,..., r, be the registers, in order of
increasing address, that R accesses to produce the same output that T produces when
its worktape head is in section s, excluding those registers accessed to process partial
questions through section s 1. The address of r is at least i. To compute a lower
bound on , we assess for each i the contribution to of accessing ri.

To determine the contribution of ri to ,, we calculate the minimum number of pos-
sible questions for which R accesses r. For every bottom cell v, let q be the partial
question that causes T to visit cell v of the tree worktape. For 1 _< i < m, let X be
the set of bottom cells x of section s such that x X if R accesses r to process qz (see
Fig. 3). Thus if T visits a cell in X when processing a question in section s, R accesses
register r when processing the same question. We say that r operates on the bottom cells
in Xi. Since T visits one cell of Xi while processing one of NIP2+2 possible questions,
R accesses r during the processing of at least [X[(N/P+) possible questions.

For i < i < m, the total access time for register r in section s is at least the product
of log i (since the address of ri is at least i), [Xi (the number of bottom cells that ri
operates on), and NIP+ (the number of questions during which one of these bottom
cells is visited). Summing the time incurred by access to each register yields

m

(4.1) > y(logi)[Xil(N/P+).
i=1

Using Lemma 4.7 below, we can determine a lower bound for i,, but we first intro-
duce the following technical lemma.

LEMMA 4.6 (see [9]). Let J and M be integers such that M > J. A sorted J-member
subset of {0, , M} can be represented with no more than 2J log(M/J) + 4J + 2 bits.

Let h (1/7)P+1.
LEMMA 4.7. Eim=h IXil

_
(1/23)P2s+2.

Proof Assume that the conclusion is false. Then rl,..., rh-1 operate on at least
(22/23)P28+2 bottom cells in section s. We can specify the string a as follows: we
obtain the bits of Xh,’", Xm explicitly. We obtain the other bits of a by simulating
R on each partial question to a bottom cell of section s not in Ukm__h Xk, On each such
partial question, R uses only registers r,.’.,rh-1 and registers accessed in sections
1,..., s 1. Thus a can be specified with a string composed of the following segments:
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1. a self-delimiting string encoding the program of R and this discussion (O(1)
bits),

2. self-delimiting versions ofthe addresses and initial contents ofregisters accessed
in sections 1,..., s- 1 (at most 8P+/logP+O(s log P) bits-by Lemma 4.5,
at most 4P+1/log P registers are required, and for each register, the contents
and the address could each require P bits),

3. self-delimiting versions of the addresses and initial contents of r,..-, rn_ (at
most (2/7)P+ + O(s log P) bits),

4. a string specifying positions of cells in X for k > h (we use Lemma 4.6 with
J (1/23)P2+ and M pz+z; this requires at most (14/23)Pz+z bits, and
the encoding used to achieve Lemma 4.6 is such that the beginning and end of
this string can easily be determined),

5. a string specifying the contents of cells in X for k > h (at most (1/23)P+9
bits).

This means that the number of bits needed to specify cr is at most (151/161)P++
O(p+/log p) < p+2 O(s log P) for sufficiently large P. Thus we have a contra-
diction of Lemma 4.3.

Thus we have
m

>_ y((logi)lXl(N/PU+u))
i=1
m

>_ y((logillXil(N/Pg+u))
i=h

>- (N/PZs+Z)(lgh) E IX l

>_ (N/P+)(log h)(1/2a)P+

(Inequality (4.1))

(Lemma 4.7)
> (1/23)N((2s + 1) log P log 7) (definition of h)
>_ (1/23)Ns log P.

Now sum 8 over all s to compute a lower bound for , the total time required for R
to process all possible next questions:

S-1

> E((1/23)NslogP)
s=0

>_ (1/23)N(logP)((log2 N)/(41og2 P) O((logN)/logP))
_> (1/92) (N log2 N)/logP- O(logN)).

Since there are N questions, we divide t by N to derive the average time needed
by R to process the next question, t((log2 N)/log P). Some next question must require
time greater than or equal to this average time. Since P is the maximum time for some
next question, P >_ f((log2 N)/log P); hence, P gt((log2 N)/log log N).

Thus for each question Qj, we can choose a next question Qj+I that takes time
Ft((log2 N)/loglog N). Since the query part has N/(2 log N) questions, our choice of
questions means the query part takes time t (N/(2 log N))t((log2 N)/log log N)
f((N log N)/log log N). The entire simulation takes at least time t. Since N n/8, the
lower bound holds for n in place of N.
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Because the lower bound proof considers only the time involved in accessing regis-
ters, the lower bound holds for RAMs with more powerful instructions, such as Boolean
operations and multiplication.

5. Conclusions. Because the log-cost RAM is considered a "standard" among mod-
els of computation, it is important to determine its relationships to other models. Here
we have shown an optimal on-line relationship between log-cost RAMs and tree ma-
chines. We hope that this work will lead to further study of relationships between other
models of computation.

Some further areas of research include:
1. finding an off-line simulation that is faster than our on-line simulation of a tree

machine by a log-cost RAM,
2. finding an optimal simulation of a pointer machine [12] by a log-cost RAM,
3. finding an optimal simulation of a unit-cost RAM by a log-cost RAM.
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Abstract. Apoint location scheme is presented for a dynamic planar subdivision whose underlying graph is
only required to be connected. The operations supported include: reporting the name ofthe region containing
a query point, inserting/deleting an edge, and inserting/deleting/moving a degree-2 vertex. The scheme uses
O(n) space, has a worst-case query time of O(log2 n), and a worst-case update time of O(log n), where n is
the number of vertices currently in the subdivision. Insertion (respectively, deletion) of an arbitrary k-edge
chain inside a region can be performed in O(k log(r + k)) (respectively, O(k log n)) time in worst-case. The
scheme outperforms the solutions given in works by Fries, Mehlhorn, and Naeher and by Overmars and also
handles more general subdivisions than the schemes given in works by Preparata and Tamassia. The result
is based on a new solution to a dynamic visibility problem for a set of line segments in the plane that are
nonintersecting, except possibly at endpoints. The scheme is then extended to speed up the insertion/deletion
of a k-edge monotone chain to O(log2 n log log n + k) time (or O(log r log log n + k) time for an alternative
model of input), but at the expense of increasing the other time bounds slightly. Additional results include
a generalization to subdivisions consisting of algebraic segments of bounded degree and a persistent scheme
that allows point location queries in the past and updates in the present.

Key words, computational geometry, dynamic data structure, planar subdivision, point location, priority
search trees, trees of bounded balance
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1. Introduction. Given a planar subdivision, the point location problem is to deter-
mine the region in the subdivision that contains a given query point. Numerous results
are known for the static version of this problem [1], [2], [3], [5], [7], [18], [22]. Recently,
there have been a number of results for the dynamic version of the problem, where the
subdivision can be changed by insertion/deletion of edges and vertices. Define a con-
nected subdivision to be a planar subdivision whose underlying graph is connected. Let
n be the number of vertices currently in the subdivision. Fries, Mehlhorn, and Naeher
[4] reported a technique for connected subdivisions that achieves O(n) space, O(log2 n)
query time, and O(log4 n) amortized update time for inserting/deleting a vertex or an
edge. If only insertions are considered, the amortized update time can be reduced to
O(log2 n) [10, pp. 135-143]. Later, Overmars [16] obtained another scheme for any sub-
division in which the regions have a bounded number of edges. His scheme makes use
of a dynamic segment tree and achieves O(n log n) space, O(log n) query time, and
O(log2 n) worst-case time for inserting/deleting an edge or a vertex. (Overmars’ scheme
can also be used for connected subdivisions with no restriction on the region size.) Very
recently, Preparata and Tamassia proposed efficient schemes for two special cases of the
problem. One scheme is designed for convex subdivisions in which the n vertices lie
on a fixed set of N horizontal lines [20]. It uses O(N + n log N) space and achieves
O(log n + log N) query time and O(log n log N) worst-case time for inserting/deleting
an edge or a vertex. The other scheme is designed for monotone subdivisions with no
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restriction on the coordinates of vertices [19]. It uses O(n) space and supports the fol-
lowing operations:

1. Locate(p): Given a query point p, report the name of the region containing p.
2. Insertpoint(v, e; el, e2): Split the edge e {u, w} into two edges el {u, v} and

ez {v, w} by inserting vertex v.
3. Removepoint(v; e): Let v be a vertex of degree 2 whose incident edges, e {u, v}

and e2 {v, w}, are on the same straight line. Remove v, and replace e and ez with
edge e (u, w}.

4. Movepoint(v; z, t): Translate a degree-2 vertex v from its present location to point
(z, t). (The operation is allowed only if the subdivision so obtained is monotone and
topologically unchanged.)

5. Insertchain(7, v, v, r; r, r): Add the monotone chain 7 vlw...wk_v

inside region r, which is decomposed into regions r and r2, with rl and rz to the left
and to the right of 7, respectively, when 7 is directed from v to v2.

6. Removechain(7; r): Let 7 be a monotone chain whose nonextreme vertices have
degree 2. Remove 7 and merge the regions rl and r2 formerly on the two sides of 7 into
region r.

Monotonicity is required to be preserved after all the, operations, and it is proved
in [19] that the time complexities of the operations are (1) O(log n), (2) O(log n), (3)
O(log n), (4) O(log n), (5) O(log2 n + k), and (6) O(log n + k). All complexities are
worst-case.

The main results in our paper are as follows.
First, we show that a very general class of subdivisions, namely, connected subdi-

visions, can be maintained efficiently in optimal O(n) space. Connected subdivisions
include the monotone subdivisions considered in [19] as a special case.

Second, in addition to supporting the above-mentioned operations Locate, Insert-
point, Removepoint, and Movepoint efficiently, our scheme also supports the following
two operations.

Insert_edge(u, w, r; rl, r). Insert the edge {u, w} into region r, which contains u
on its boundary. If w is also a vertex on the boundary of r, then the new edge (u, w}
splits the region r into two regions r and r2 such that r and rz are to the left and right
of {u, w}, respectively, when {u, w} is directed from u to w. (If the subdivision is initially
empty, then we simply create a subdivision consisting of {u, w}.)

Remove_edge(e; r). Remove an existing edge e. If e is on the boundary of two
adjacent regions, then the two regions merge into a single region r.

The above repertory of dynamic operations is complete for connected subdivisions,
i.e., a connected subdivision with n vertices can be assembled or disassembled with O(n)
operations from the repertory. Starting from an empty subdivision, we can assemble an
n-vertex connected subdivision as follows. We first grow a spanning tree of the under-
lying graph by inserting the edges incrementally and then insert the rest of the edges
arbitrarily. Conversely, we can disassemble an n-vertex connected subdivision by first
deleting all the nontree edges with respect to a spanning tree of the underlying graph
and then shrink the spanning tree remaining by deleting one edge at a time.

In our scheme, the query Locate(p) takes O(log2 n) time in worst-case, while the
time complexity of each of the update operations is O(log n) in worst-case. The update
time for a single edge is an improvement on all solutions known previously [4], [10], [16],
[20], [19], and the update time for a vertex matches the bound given in [19]. By repeated
insertion (respectively, deletion) of edges, our scheme also allows insertion (respectively,
deletion) of an arbitrary k-edge chain in O(k log(n + k)) (respectively, O(k log n)) time.
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For k o(log n), the time bound becomes o(logz n), which improves upon the result in
[19], which applies to monotone chains only. We call this scheme Scheme I.

Third, we show how to modify Scheme I to speed up the insertion/deletion time of
a k-edge monotone chain to O(logz n log log n + k), but at the expense of increasing the
other time bounds to O(log n log log n). We call this Scheme II. The insertion/deletion
of monotone chains was explicitly addressed before only in [19] for monotone subdivi-
sions. We also consider a less general model of input for Scheme II, where the updates
specify pointers to the appropriate vertices and edges in the underlying graph rather
than coordinates as assumed throughout the rest of the paper. For this less general
model, the update time for a monotone chain is O(log n log log n + k), the query time
O(log2 n log log n), and the other update times O(log n log log n).

Table 1 compares our schemes for dynamic point location with previously known
results.

We should emphasize that our schemes are mainly of theoretical interest because
they involve rather complex manipulations of data structures, such as incremental re-
building of auxiliary structures in a BB(c) tree [25] and global rebuilding [15], [17],
which have large overhead. The design of a practical scheme that matches or improves
our time bounds remains a challenging problem. In addition to the above-mentioned
contributions, we also show how our scheme can be extended quite easily to accommo-
date subdivisions consisting of algebraic segments of bounded degree. Finally, we also
present a persistent version of Scheme I, which allows point location queries in the past
and updates in the present. No results were previously known for this problem, which
was first posed by Sarnak and Tarjan [22].

The rest of the paper is organized as follows. Section 2 gives an overview of our
basic approach. In 3, we solve a dynamic visibility problem that is closely related to
the problem of planar point location. In 4.1, we show how to use the result in 3 to
obtain Scheme I. We discuss Scheme II in 4.2. In 4.3, we discuss the generalization
to subdivisions consisting of algebraic segments of bounded degree. We present the
persistent point location scheme in 5. Finally, we conclude in 6 with a discussion of
some directions for future work.

2. An overview ofthe basic approach. We derive our dynamic point location schemes
by solving the following dynamic visibility problem: we are to maintain a set of line seg-
ments in the plane that are nonintersecting (except possibly at endpoints) under inser-
tions and deletions such that given a query point we can report efficiently the first seg-
ment that is hit when the point is moved horizontally to the right. If we store with each
line segment (i.e., edge) of the subdivision the name of the region to its left, then the
region containing a query point p can be found easily by answering a visibility query for
p in the subdivision.

In [9] McCreight solves a restricted version ofthe above visibility problem, where the
line segments are all vertical and the//-coordinates of their endpoints are in the range
[0, k 1] for some integer k. The solution in [9] uses a two-level tree structure: the
outer tree B is a binary tree built by recursively bisecting the//-interval [0, k 1]. Each
segment is stored at the highest node of B for which the segment intersects the node’s
bisector. The inner tree structure consists of two priority search trees (PSTs) at each
node v, one each for the endpoints above and below v’s bisector. A query is answered
by binary searching down B, applying the PST query procedure MinXinRectangle [9] at
each node visited to find the leftmost segment to the right ofp at that node, and picking
the leftmost of all such line segments found in the search down B. Updates are handled
by simply inserting or deleting in the appropriate PST; no rebalancing of B is necessary
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TABLE 1
Comparison ofdynamic point location schemes. (All bounds given are "big-oh." "lg" denotes logarithm to

the base 2.) For lack ofspace, thefunction lg n lg lg n is abbreviated as L(n) in the table.

Edge
Update

Vertex
Update

Insert/delete
k-edge chain

Preparata
et al. [19] n lg2 n

Mon. subdiv.

Fries
et al. [4] n lg9 n

Conn. subdiv.

Overmars [16] n lg n lg9 n
Conn. subdiv.

This paper n lgz n
Scheme

Conn. subdiv.

This paper
Scheme II

Conn. subdiv.
(Pointer access)

This paper
Scheme II

Conn. subdiv.
(Coord. access)

n L(n)lgn

L(n) lg n

lg2 n

lg4 n
amortized

lg2 n

lgn

L(n)

L(n) lg n

lgn

lg2 n

lgn

L(n)

L(n) lg n

lg2n + k
mon. chain only

k lg2(n + k) (ins.)
k lg2 n (del.)

k lg(n + k) (ins.)
k lg n (del.)

L(n) + k
mon. chain

k L(n -+- k) (ins.)
k. L(n) (del.)

any chain

L(n) lg n + k
mon. chain

k. L(n + k)lg(n + k) (ins.)
k L(n) lg n (del.)

any chain

as the y-coordinates of the segment involved are in [0, k 1] and so are already in B.
We use a similar approach for the general problem, with the following key differ-

ences.
First, the procedure MinXinRectangle can no longer be used if segments are not ver-

tical because the segment corresponding to the endpoints that MinXinRectangle returns
need not be to the right of p (as was the case for vertical segments in [9]). Instead, we
devise a new PST querying procedure, Find, which searches the PST level by level and
carefully prunes the search so that at most two nodes are examined at any level.

Second, in our case updates will require that B be rebalanced by means of rotations.
These rotations will make it necessary to rebuild the PSTs at each affected node v. Doing
the rebuilding all at once will be time-consuming. Instead, we spread the work over a
sequence of future updates. We adapt a result due to Willard and Lueker [25], which
essentially shows that if B is implemented as a BB(a) tree [14], [25], then it is possible
to do only a constant number of rebuilding steps at v during each future update and still
have the PSTs at v ready before v needs to be rotated again.

However, in order to realize our O(log n) update time for edges and vertices, we
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must spend only O(1) time per rebuilding step at v. Rebuilding the PSTs at v top-down,
by repeated insertions, will be too expensive. Thus, a third key idea is to rebuild the PSTs
bottom-up. Since a PST is essentially a heap, the total time spent in rebuilding it is linear
in its size, and we can show that only O(1) time is spent per rebuilding step.

Unfortunately, the bottom-up reconstruction gives rise to the following problem.
While the reconstruction proceeds, we must still be able to answer queries and support
updates on-line. While the PSTs at v are being rebuilt, we can still answer queries by
suitably querying the old PSTs. Once the construction at v has been completed, the
new PSTs take over. However, we cannot do updates on the PSTs under construction
at v because they are being built bottom-up. Instead, we handle incoming insertions
by inserting into a new PST (which is initially empty) at v. Deletions are even more
problematic since they may specify a segment in the partially built PST, and we cannot
delete efficiently from such a PST. Therefore, we perform a weak form of deletion where
no rebalancing is done, and yet the query/update time does not deteriorate too much.
We then apply the technique of global rebuilding [15], [17] to reconstruct the entire two-
level structure before the original structure becomes too unbalanced.

In closing this section we mention that the idea of doing point location by means
of visibility was first proposed by Overmars [16]. Overmars solved the problem by using
a dynamic segment tree (implemented as a BB(a) tree). However, the fact that each
segment gets split into O(log n) pieces in a segment tree leads to an O(n log n) space
bound and an O(log2 n) update bound in [16].

3. Solving a dynamic visibility problem. Let S be a set of line segments in the plane
that are nonintersecting (except possibly at endpoints). Given a point p, we want to
report the first segment in S hit by the horizontal ray, rayp, that emanates from p to the
right. If p happens to lie on one or more line segments, then one of them is arbitrarily
chosen and reported. We present a solution for this problem that uses O(n) space and
supports the following operations.

1. Locate_seg(p): Return the first line segment hit by rayp.
2. Insert_seg(s): Insert a line segment s into S assuming that s does not intersect any

line segment currently in S.
3. Delete_seg(s): Delete a line segment s from S.

3.1. The data structure. For each node v in a binary tree T, we denote its par-
ent, its left child, and its right child by parent(v), left(v), and right(v), respectively. We
denote the subtree rooted at a node v by T(v). We first present in 3.1.1 a preliminary
structure with O(log n) amortized update time and then describe in 3.1.2 the necessary
modifications to turn the amortized bound into worst-case.

3.1.1. The basics. We assume that we have started with an empty set and have per-
formed a sequence of insertions and deletions to arrive at the current set S containing
line segments. We store S in a data structure ,, which we describe below. The endpoints
of a line segment s are denoted by (z(s), !1(s)) and (zr(s),//r(s)), where// (s) >

Each endpoint of a line segment in S is represented by a leaf in a BB(a) tree [14],
[25], where 0 < a < 1 1/x/-. We denote this tree by B. Each node v of B is assigned
two numbers rank(v) and p(v). The number rank(v) is one more than the total number
of nodes in T(v), including v. The number p(v) is the ratio of rank(left(v)) to rank(v).
A node v is a-balanced if and only if p(v) E [a, 1 a]. As in [25], the range of balance
at v is extended by choosing another value a’ < a, so that v can be a’-balanced if not
a-balanced. Formally, a value 3(v) is defined as follows:

fl(v) 2(a a’)-lmax(O, p(v) (1 a), a p(v)).
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Thus v is a’-balanced if and only if/3(v) < 2, and a-balanced if and only if (v) 0.
Each leaf w stores a value y(w), which is the y-coordinate of the endpoint repre-

sented by w. The leaves are ordered left to right by nonincreasing y(.) values, with ties
broken arbitrarily. Every internal node v also stores a value y(v), which is in the range
[y(w2), y(wl)], where wl (respectively, w2) is the rightmost (respectively, leftmost) leaf
in the subtree rooted at left(v) (respectively, right(v)). The value y(v) is chosen at the
time when v is first created and remains fixed throughout its lifetime. A horizontal line
Y(v) y y(v) is also defined for each node v. Let S(v) consist of those line segments
of S that intersect Y(v) but not Y(u) for any proper ancestor u of v. Note that each line
segment of S is in S(v) for exactly one v. Clearly, -, IS( )l for all descendants u of v
(including v) is at most rank(v)/4. For each line segment s E S(v), let (xs(v), y(v)) be
the point where Y(v) intersects s.

At each internal node v, we store two balanced priority search trees (PSTs) [9], [10]
L(v) and R(v). The underlying tree of L(v) is chosen to be a leaf-oriented red-black tree.
L(v) stores the pairs (xs(v), yt(s) y(v)) for all nonhorizontal line segments s S(v).
Each leaf of L(v) stores an x(v) value, and the x(.) values appear in nondecreasing
order from left to right. With each node a of L(v), we associate two fields: a.y yt(s)
y(v) and a.s s, where a.y is the priority field [9], [10]. To be a priority search tree, the
priority field of a node must be larger than or equal to those of its children. To this end,
we store each nonhorizontal line segment s in S(v) at exactly one ancestor a of the leaf
storing x(v) (i.e., we set a.y to yt(s) y(v) and a.s to s) such that the above property
is satisfied. R(v) is defined similarly for the pairs (x(v), y(v) yr(s)). Each horizontal
line segment s in S(v) lies on Y(v) and can be viewed as an interval [xs, y] on Y(v).
We represent each such interval [x, y,] by the pair (y, x) and store it in another PST
denoted by C(v).

During the insertion/deletion of segments, leaves will be inserted/deleted in B, and
B may possibly become unbalanced. In this case, we try to perform a rotation to restore
the balance. Figure l(a) shows a single rotation and Fig. l(b) shows a double rotation.
We say that the nodes u and v in Fig. l(a) or u, v, and w in Fig. l(b) activelyparticipate in
the rotation. In both cases, we call the position of v before the rotation and the position
of u after the rotation the focus of the rotation. Note that the previous values of y(v),
y(u), and y(w) are still valid after the rotation. Consider a node v that is not a-balanced
but such that all the nodes in the subtree rooted at v are a-balanced. Without loss of
generality, suppose that p(v) < a. It is shown in [25] that there exists a constant %
a’ < q, < 1 a’, such that we can perform a left single rotation at v (Fig. l(a)) if
p(right(v)) < - or a left double rotation at v (Fig. l(b)) if p(right(v)) > " to make the
nodes that actively participated in the rotation a-balanced again. The symmetric case
when p(v) > 1 a can be handled similarly. In Fig. l(a), the single rotation at v will
cause those line segments in S(v) that intersect Y(u) to migrate to S(u), thus making
the PSTs at v and u obsolete (except for C’(v) and C(u)). Similarly, the double rotation
in Fig. l(b) will cause migration to S(u) of those line segments in S(v) and S(w) that
intersect Y(u), thus making the PSTs at v, u, and w obsolete (except C(v), C(u), and
C(w)). Therefore, we reconstruct, all at once, the PSTs L(.)’s and R(.)’s of the nodes
that actively participate in that rotation. Otherwise, if/3(v) is greater than 2, then we
rebuild the entire subtree T(v) and also the PSTs C(.)’s, L(.)’s, and R(.)’s in T(v) all
at once. If the PSTs are built by repeated insertions, then it can be proved that the
amortized update time for inserting/deleting an edge is O(log n). The proof is similar
to the proof for Lemma 2.5 in [25]. The amortized update time is improvable to O(log n)
if the PSTs are constructed by merging in a bottom-up fashion.
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FIG. l(a). Single rotation.

FIG. (b). Double rotation.

3.1.2. Refining the basic structure. To achieve a worst-case update time, we spread
the bottom-up reconstruction of the PSTs over a sequence of future updates. Therefore,
the time span in which the PSTs of some nodes of B are obsolete may spread over a
sequence of updates. To signify that the PSTs of some nodes ofB have become obsolete,
we associate a flag, FLAG, with each node. For each node u, FLAG(u) is set to zero
when the PSTs at u are up-to-date. It is reset to 1 after u has actively participated in a
rotation. FLAG(u) may also take on values 2 and 3 subsequently, as explained in 3.3. A
node u is disunified if FLAG(u) is nonzero; otherwise, u is unified. (A similar definition
was given in [25]. However, in [25], the children of a disunified node were required to be
unified in order to do the kinds of queries considered in [25]. We are able to drop this
restriction here because our queries are different,) To identify the focus of a rotation
and the node(s) that actively participated in that rotation, we associate another field
MARK(u) with each node u. MARK(u) is undefined initially and is set as follows. After
the single rotation in Fig. l(a), we set MARK(u) to singleL. For the symmetric variant
of Fig. l(a), we set MARK(u) to singleR. After the double rotation in Fig. l(b), or its
symmetric variant, we set MARK(u) to double. FLAG(.) and MARK(.) will be useful
in constructing the new PSTs for nodes that have actively participated in a rotation.

During the reconstruction, we still have to accommodate incoming insertions. In-
sertions cannot be performed in the PST being reconstructed because the reconstruction
is bottom-up. Instead, we perform incoming insertions on a new (initially empty) PST.
In fact, we let this new PST accommodate all the insertions at any time. Specifically,
we keep two PSTs, L1 (v) and L2(v), instead of a single L(v). L2(v) is organized as de-
scribed before, and insertions will be performed in it. The underlying tree of L1 (v) is
just a leaf-oriented balanced binary tree and not necessarily a red-black tree. For each
nonhorizontal line segment s in S(v), s is stored in either L (v) or L(v), but not both.
R(/3) is similarly replaced by/1 (/3) and R(/3). Moreover, to facilitate the reconstruc-
tion, we also keep two doubly linked lists, Leaf (/3) and Leaf (/3), of line segments stored
in L (/3) and L(/3), respectively. Leaf1 (/3) and Leaf(/3) are sorted by the z8(/3) values,
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and each leaf in L (v) (respectively, L(v)) has a pointer to the corresponding entry in

Leaf1 (v) (respectively, Leaf2 (v)).
We must keep the old PSTs around for querying until the new ones are ready. Take v

in Fig. l(a) as an example. After the rotation, we rename Li(v) and Leaf(v) as Li+2(v)
and Leaf+2(v), i 1, 2. Li(v) and Leafi(v), i 1, 2, are then initialized to empty. Then
we extract from Leaf3(v and Leaf4(v) those line segments that now belong to S(v), put
them into Leafl (v), and construct Lx (v) from Leaf (v) in a bottom-up fashion. Incoming
insertions into S(v) will be accommodated by Lz(v) and Leaf2(v). Once L (v) is com-
pleted, L3(v) and L4 (v) are no longer needed and are discarded. The treatment of the
Ri(v)’s is similar. The discussion of deletion will be postponed to 3.4.

Define the near descendants of a node to be itself, its children, and its grandchildren.
After a rotation, the PSTs at the nodes that actively participated in the rotation will need
to be updated. They should also be disallowed from actively participating in any further
rotation before their PSTs are completely reconstructed. To this end, we define a node
to be eligible for rotation if and only if all of its near descendants are unified; otherwise,
it is ineligible. (Similar definitions were given in [25].)

3.2. Performing a visibility query. Let the query point bep (Xp, yp). We first
give a procedure Find(p, r, y(v)), which when applied at a node v of B to a PST Li(v)
or R(v) with root r returns the first segment, s*, in the PST that is hit by rayp. If there
is no such segment s*, then the line x is returned. (Note that if the line segments
in the L(v)’s and Ri(v)’s were all vertical, then the procedure MinXinRectangle given
in [9] could be used. However, MinXinRectangle will not work in our case because a
comparison between Xp and xs(v), for some line segment s, cannot tell whether p is to
the right or to the left of s (see Fig. 2(a)). Nor is it true that a comparison between p and
the supporting line of s can guide the search (see Fig. 2(b)).)

Y(v)
x,(v xr

F. 2(a). :c > z(v), but p is to the left of s.

Find explores the PST level by level from r, always maintaining the invariant that at
most two nodes are examined at any level, and s* (if it exists) is in the subtree rooted at
one of these nodes. To facilitate this, the two nodes to be examined are maintained in a
queue, Q. Q is initialized to contain r and Find terminates when Q becomes empty. A
variable, answer, is initialized to the line z and at termination contains the answer to
Find. IfQ is not empty, then a node, a, is deleted from the front of Q. Let A [/p-/(v)[.
If a./ > A and p is to the left of a.s, then answer is reset to the leftmost of answer
and a.s. Then Q is updated according to the following cases: (i) if A > left(a).l and
A > right(a).!1 (Fig. 3(a)), then the subtrees T(left(a)) and T(right(a)) cannot contain
s* since the PST is a maxheap. So Q is left unchanged; (ii) if A < left(a).l and p is to
the left of left(a).s (Fig. 3(b)), then s* cannot be in T(right(a)) since the segments are
nonintersecting. However, s* can be in T(left(a)) and so we insert left(a) at the end of



980 SIU WING CHENGAND RAVI JANARDAN

r(v) Xp2

s’ / P
FIG. 2(b). Both Pl and p2 are to the left of the supporting line of s. But, no segment to the left of s can be

the answerfor pl, while no segment to the right of s can be the answerfor p2.

Q. Similarly, for the symmetric case. (iii) If A < left(a).y and p is to the right of left(a).s
and A > right(a).y (Fig. 3(c)), then s* cannot be in T(right(a)) but can be in T(left(a) ).
So we insert left(a) into Q. Similarly for the symmetric case. (iv) If A < left(a).y and
A < right(a).y and p lies between left(a).s and right(a).s (Fig. 3(d)), then s* cannot be
to the left of left(a).s or to the right of right(a).s. Thus, s* can only be in T(left(a)) or
in T(right(a)) and so we empty Q and then insert left(a) and right(a) into it.

S1

Sl=left(a).s
s2=right(a).s

FIG. 3(a). No need to search A and B.

s OR

S1 S1
$2

FIG. 3(b). No need to search candidate subtrees that are to the right ofA.

LEMMA 1. Find(p, r, y(v) correctly locates in O(log n) time thefirst line segment hit by
rayp among those line segments stored in T(r), where T(r) is a PST associated with v and
n is the number ofleaves in T(r).

Proof. The cases listed exhaust all possibilities. Furthermore, it is clear from the
above discussion that Find maintains the invariant throughout its execution and is hence
correct. Since Find spends O(1) time per level and the PST has height O(log n), its
running time is O(log n).

Locate_seg(p) does a binary search down B using yp until the search either runs
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FIG. 3(c). No need to search B.

S $2

FIG. 3(d). Restrict the search to A and B.

off B at a leaf or reaches a node u such that /p /(u). At each node v visited we do
the following: If//p =//(v), then we query C(v) as described in [9], [10]. If a segment
of C(v) is found to contain p, then Locate_seg(P) terminates. Otherwise, we proceed
as follows: Suppose that v is unified. If//p _> t(v) (respectively,//p < //(v)), then we
call Find on L (v) and L(v) (respectively, R (v) and R(v)). On the other hand, sup-
pose that v is disunified. If//p > //(v), then we call Find on Lz(v), Lz(v), and La(v).
Moreover, since some of the segments in S(v) may be stored in some child of v, we
also do the following. If MARK(v) equals singleL, then if !lp >_ !l(left(v)) (respec-
tively, /p < l(left(v))), then we also call Find on Lz(left(v)) and La(left(v)) (respec-
tively, Rz(left(v)) and Ra(left(v))) because some of the segments stored there may ac-
tually belong to S(v) now. If MARK(v) singleR, then we call Find on Lz(right(v))
and La (right(v)) (since we have !Iv >_ !1(right(v)) also). If MARK(v) double, then
we query the PSTs at both left(v) and right(v), following the steps above for singleL and
singleR, respectively. The remaining case of v being disunified and//p < //(v) can be
handled symmetrically as above.

When Locate_seg(P) terminates, if a segment has been found to contain p, then we
report that segment. Otherwise, among the segments found by the Finds, we report the
leftmost.

LEMMA 2. Suppose a set, S, of line segments in the plane that are nonintersecting
(except possibly at endpoints) is stored in . Then given a query point p, Locate_seg(p)
correctly determines the first line segment hit by rayp in O(logz n) time.

Proof. Let s* be the first line segment hit by rayp. Let w and w be the leftmost
and rightmost leaves in B such that [//(w),//(w)] coincides with the projection of s on
the t-axis. Then we have the inequality//(w) <_//(p) _<//(w). This inequality and the
choice of w and w imply that the lowest common ancestor v of w and w must be
visited during the binary search down B. Since//(w) _< t(v) <_ t(w), s* must intersect
Y(v) and s* S(u) for some ancestor of v (u may possibly be v itself). By the querying
strategy described, if u is unified, we query some PSTS at u and locate the leftmost line
segment in S(u) hit by rayp. Otherwise, we also query some of the PSTs at a child u of u
if MARK(u) singleL or singleR or both children u’ and u" of u if MARK(u) double.
Since an ineligible node is not allowed to actively participate in a rotation, s* must be
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stored either at u or possibly at u’ (respectively, u’ or u") if MARK(u) singleL or
singleR (respectively, if MARK(u) double). Therefore, s* must have been reported
after we finished the querying at v. This proves the correctness of Locate_seg(p). By
Lemma 1, we spend O(log n) time at each node visited. Since B is a’-balanced, at most
O(log n) nodes are visited, and hence Locate_seg(p) takes O(log2 n) time.

3.3. Performing Insert_seg(s).

3.3.1. The algorithm. We follow the approach introduced by Willard and Lueker
[25] to insert s efficiently into ,. In procedure Insert_seg, we first invoke Insert_leaf to
insert two leaves corresponding to the horizontal lines through the two endpoints of s
into B. Then we locate the node v such that s E S(v) and insert s into C(v) or into
L2(v), R(v), and Leaf2(v). In procedure Insert_leaf, we have to handle the possibility
that B becomes unbalanced after the insertion of a leaf. If a node v on the path from
root to the newly inserted leaf becomes unbalanced, then we will perform a rotation at
v if fl(v) is in the range (1, 2] and v is eligible. Otherwise, if (v) > 2, then we do a brute
force reconstruction of an entire subtree rooted at v. Hence, it is guaranteed that B is
a-balanced at all times. We also perform a constant number of steps in the incremental
reconstruction of PSTs for the disunified near descendants of ineligible nodes on the
path from root to the newly inserted leaf. For each disunified node u, the incremental
reconstruction is divided into three phases that are carried out by the procedures Fixupl,
Fixup2, andFixup3, respectively, which are given below. Fixup1 collects the line segments
in S(u) in several lists, each sorted by the z(u)’s values. Fixup2 merges these lists into
Leafl(u). Fixup3 constructs the new L (u) and R1 (u) from Leaf1 (u) in a bottom-up
fashion.

Procedure Insert_seg(s
call Insert_leaf(y s
call lnsert_leaf(y s
locate the highest v in B such that s intersects Y(v)
if s lies on Y(v) then

insert s into C(v)
else

insert s into L2(v) and R2(v)
insert s into Leaf2(v); this can be done in 0(1) time as the

proper position for s can be determined during the searching in L2(v)
end if

end Insert_seg

Procedure.Insert_leaf(y)
binary search down B using y
let w be the leaf at which the search terminates and

let P be the search path to w
replace w by a new internal node u
create a new leaf w’, store y in w’, and make w and w’

the appropriate children of u
choose a value between y(w) and y(w’) for y(u)
if any node v on P has/3(v) > 2 then

PANIC: Let v be the highest node on P with/3(v) > 2.
Rebuild the subtree rooted at v into a BB(a) tree and rebuild
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C(.)’s, Li(.)’s, Ri(.)’s, and Leafi(.)’s 1, 2. (Li(.)’s, Ri(.)’s, and
Leafi (v)’s, i 3, 4 are not needed).

end if
for each node v on P do

if v is ineligible then
(* In what follows, let c be a constant whose value will be
chosen later *)
fori= lto3do

call Fixupi(u) for a disunified near descendant u of v such that
FLAG(u) until no such u exists or c calls have been made

end for
end if
if v is eligible and/3(v) > 1 then

ROTATE:
rebalance v by a single or double rotation
set MARK(v’) appropriately, where v is the node replacing v
for each node u that has actively participated in the rotation do

set FLAG(u) to 1
rename L(u), Ri(u), and Leaf(u) as L+(u), R+(u),

and Leafi+e(u), 1, 2
set Li(u), R(u), Leafi(u) to empty, i 1, 2
set Out(u, left(u)), Out(u, right(u)), Inz(u), and In(u) to empty
(* Out(., .) and Inj(.) will be used in Fixupl and Fixup2 *)

end for
end if

end for
end Insert_leaf

Fixupl(u), where u is a disunified node, works as follows. Using MARK(u), we
first determine the focus of rotation and set u to it. For each child v of u that ac-
tively participated in the rotation, a call to Fixupl(u) identifies one line segment from
Leaf3 (v) A Leaf4 (v) that should migrate to u, as follows. We delete the leftmost line seg-
ment s in Leaf3(v)t2Leafa(v), and if s intersects Y(u), then we append s to a list Out(u, v)
associated with u; otherwise, we append s to one of the lists, In3(v) or In4(v), depending
on whether s came from Leaf3 (v) or Leaf4 (v). These lists will be used by Fixup2. After
Leafz(v and Leafa (v) have been exhausted for each child v of u that actively participated
in the rotation, we set FLAG(u) and FLAG(v) to 2 to signal the start of the second phase
in the incremental reconstruction.

Procedure Fixupl (u)
if MARK(u) undefined then u := parent(u) end if
case MARK(u) of

singleL :Vl :-" left(u)
singleR Vl := right(u)
double: vx := left(u); v2 :-- right(u)

end case
if MARK(u) double then

for i := 1 to 2 do
if Leaf(v) 0 or Leafa(v 0 then
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choose s such that xs(vi) is least in Leaf3(vi t2 Leafa(v
let s be picked from Leaf(vi), j 3 or 4
delete s from Leafj (vi)
if s intersects Y(u) then

append s to Out(u, v)
else

append s to Iny (vi)
end if

end if
end for
if Leaf3 (vl) Leaf4 (vl) Leaf3 (v2) Leaf4 (v2) q} then

set FLAG(u), FLAG(v), and FLAG(v2) to 2
end if

else
if Leaf3 (v) or Leafa (v) = then

choose s such that x8 (v) is least in Leaf3 (vl) t2 Leaf4 (v)
let s be picked from Leafy (Vl), j 3 or 4
delete s from Leafy (Vl)
if s intersects Y(u) then

append s to Out(u, Vl)
else

append s to Iny(vl)
end if

else
set FLAG(u) and FLAG(v1) to 2

end if
end if

end Fixupl

Each call to Fixup2(u), where u is disunified, performs one step in the incremental
reconstruction of the new leaf list Leafl(u). If MARK(u) is undefined, then the desired
list Leaf (u) is the merge of Ina(u) and Ina(u). Thus we move the leftmost line seg-
ment from In3(u) t2 In(u) to Leaf (u). Otherwise, the desired Leaf (u) is the merge
of Leafz(u), Leafa(u), Out(u, left(u)), and Out(u, right(u)). We move the leftmost line
segment from these four lists to Leaf (u). Note that this will involve computing the in-
tersection with Y(u) of the first line segment in each Out(u, .) list. Once the relevant
lists of candidate line segments at u have been exhausted, we set FLAG(u) to 3 to signal
the start of the third phase.

Procedure Fixup2(u)
if MARK(u) undefined then

ifln3(u) or In4(u) is not empty then
delete the segment s with the least x(u) value in the lists

Inz (u) and Ina (u)
append s to Leafl (u)

else
set FLAG(u) to 3

end if
else
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if Leaf3 (u) or Leaf4 (u) or Out(u, left(u)) or Out(u, right(u)) not empty then
delete the segment s with the least z,(u) value in the lists

Leaf3(u), Leaf4 (u), Out(u, left(u)), and Out(u, right(u))
append s to Leafl(u)

else
set FLAG(u) to 3

end if
end if

end Fixup2

Procedure Fixup3(u), where u is disunified, performs one step in the bottom-up con-
struction of each of L1 (u) and R1 (u) using the list Leaf (u) built in the previous phase.

Procedure Fixup3(u)
Perform one step ofthe following construction ofL (u) andR (u). Build a binary
search tree bottom-up from the ordered list of line segments in Leaf (u). Then
fill in the nodes bottom-up, using a knockout tournament much like the heap
construction in Heapsort. Specifically, set the fields a.s and a.//of a leaf a of
L(u) (respectively, R(u)) that stores (u) to s and /(s) -//(u) (respectively,
/(u) /(s)). Once the fields of the children of a node a’ have been computed,
copy the fields of the child of a’ with the larger priority field to a’. Then compute
the fields of the vacated child from that of its children in a similar fashion; once a
leaf is reached, set its priority field to -o. When the construction is completed,
set FLAG(u) to 0 and MARK(u) to undefined. Also remove Li(v) and Ri(v),
i 3,4.

end Fixup3

3.3.2. Analysis of Insert_seg. Except for the block PANIC in Insert_leaf, it is clear
that each call to Insert_leaf takes O(log n) time plus the time for c calls each to Fixupl,
Fixup2, and Fixup3, which is O(log n) as each call to Fixupl, Fixup2, and Fixup3 takes
constant time. By adapting the proof for a similar result due to Willard and Lueker [25],
it can be shown that PANIC will only be invoked at a node of constant rank and thus
takes O(1) time. In [25], range restriction capability is added to an arbitrary dynamic
data structure as follows. The objects are sorted by some value associated with them
and are stored at the leaves of a range tree organized as a BB(c) tree. Each node in the
range tree is augmented with an instance of that dynamic data structure consisting of all
the objects stored at the leaves descending from that node. The range tree is rebalanced
after an insertion mainly by rotations, but it is necessary to rebuild an entire subtree from
time to time. Willard and Lueker [25] prove that this rebuilding step takes O(1) time.

In the following, we describe the underlying intuition for proving that PANIC takes
O(1) time.

We first make the following definitions (which parallel those in [25]). An update is
a complete execution of Insert_leaf. Suppose that t and t’ are points in time between
updates (not during an update). Let min(v, t, t’) (respectively, max(v, t, t’)) denote the
minimum (respectively, maximum) rank of v at any time from t to t, excepting times
when an update execution was partially finished. A node v is said to be involved in an
update if a leaf is inserted into the subtree rooted at v. We call v thefocus of PANIC if
PANIC is applied to v.

If PANIC is invoked at a node v, it is because v has been ineligible for some time,
thus prohibiting rotation and allowing 3(v) to gradually increase to greater than two.
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Recall that for each update involving a node v, we perform a constant number of steps
of incremental reconstruction for the disunified near descendants of v. Our goal is to
prove that if rank(v) is bigger than some constant to be specified later, then there must
be sufficient number of updates involving v to increase fl(v) from less than or equal
to one to close to two such that the incremental reconstruction at the disunified near
descendants of v should have finished by then. Thus, v becomes eligible before it is
necessary to invoke PANIC at v. It follows that PANIC is invoked only at nodes whose
rank is bounded from above by some constant.

Intuitively, given a certain number of updates involving v, the larger the value of
rank(v), the smaller will be the ratio of the number of these updates to rank(v). There-
fore, a smaller increase in (v) would be expected for a larger rank(v). On the other
hand,/(v) would be expected to increase with the number updates involving v. This
is formalized in Lemma 3 below (Lemma 4.2 in [25]). Lemma 3 implies that in order
to increase /(v) from a value less than or equal to one to a value close to but less than
two (i.e., just before it becomes necessary to apply PANIC to v), there must have been
f(rank(v)) updates involving v.

LEMMA 3 (Lemma 4.2 in [25]). There exists a constant such that ifi updates involv-
ingnode v occurbetween t and t, then (v) will increase byno more thani/ rain(v, t, t2)
during this period (including/3(v)’s value during the execution of the updates). Further-
more, if no update other than possibly the last in this period triggers a rotation or PANIC
that changes rank(v), then the increase in (v) will also be bounded by i/ max(v, tx, t).

Furthermore, as stated in Lemma 4 below (Lemma 4.4 in [25]), within the above
f(rank(v)) updates there cannot be more than a constant number of times when a near
descendant of v is subject to a rotation or PANIC. This can be explained by the fact that
rank(v) and the rank of a near descendant of v differ only by a constant factor. Lemma 4
implies that there are f(rank(v)) consecutive updates within the above sequence of i
updates such that no rotation or PANIC is applied to a near descendant of v.

LEMMA 4 (Lemma 4.4 in [25]). Suppose that between times t and t2, node v never
actively participates in a rotation or PANIC. Suppose further that at most [rain(v, tx, tz)
(a’)/] updates involving v occur between times t and tg.. Then there can be no more than
ten occasions when a child orgrandchild ofv is thefocus ofa rotation or PANIC during this
time interval.

Finally, in Lemma 5 below, we prove that at most O(rank(v)) steps of incremental
reconstruction are needed to render v eligible, provided that the incremental reconstruc-
tion is uninterrupted by any rotation or invocation of PANIC at some near descendant of
v. Lemmas 3-5 together imply Lemma 6, the desired result, i.e., PANIC is only applied
to nodes of some constant rank. A formal proof for Lemma 6 can be adapted from-the
proof of an analogous result, Lemma 4.5, in [25].

LEMMA 5. Let rank(.)t denote the rank of a node at time t. There exists a constant
,k > 0 such that if at time t a node v is ineligible, then a total ofno more than . rank(v)t
calls to Fixup1, Fixup2, and Fixup3 will be neededfor v’s disunified near descendants before
v becomes eligible, assuming that no neardescendant ofv is thefocus ofa rotation or PANIC
during these calls.

Proof. Let u be a disunified near descendant of v. By the assumption of the lemma,
we know that once u becomes unified, it remains so during this incremental reconstruc-
tion. Therefore, we shall construct a L (u) and a R (u) for u exactly once. Note that
rank(.) is nondecreasing with respect to time (because we never remove a leaf during
deletion as we shall see later). Thus, the sum of the sizes of the relevant Leafz(.)’s and
Leafa (.)’s that need to be examined for incremental reconstruction at u after time t is
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bounded by rank(parent(u))t/4 < rank(u)t/4a’. Hence, Fixupl(u) needs to be called
at most rank(u)t/4a’ times before FLAG(u) becomes 2. Then Fixup2(u) needs to be
called at most [S(u)l < rank(u)t/4 times before FLAG(u) becomes 3. Fixup3(u) resem-
bles the bottom-up construction of a heap and requires at most A’. rank(u)t/4 steps for
some fixed ,k’ > 0. Thus no more than A". rank(u)t calls of Fixupl(u), Fixup2(u), and
Fixup3(u) are needed before u becomes unified, where ,k" (1 + c + )’at)/4cd. Sum-
ming up for all the near descendants of v, we get the bound 3A". rank(v)t ). rank(v)t,
where- 3". [:]

LEMMA 6. There exists apositive constant cforInsert_leafsuch that ifPANIC is applied
to a subtree T(v) of B, then rank(v) does not exceed max(3(, 9), where is the constant in
Lemmas 3 and 4.

We may now conclude that the PANIC block takes O(1) time. Then the O(log n)
bound for the insertion time follows immediately from the discussion at the beginning
of this section.

LEMMA 7. Insert_seg(s) takes O(log n) worst-case time.
COROLLARY 1. The data structure for a set of n line segments can be built in time

P(n) O(n log n).
Proof. Starting with empty, repeatedly insert each segment using Insert_seg.

3.4. Handling deletions. In doing Delete_seg(s), we have to delete s from some
Li(v)’s. If s is stored in L1 (v) or L3(v), then the deletion becomes problematic. First,
the underlying trees of L1 (v) and L3 (v) may not be red-black trees due to the bottom-up
construction in Fixup3. Therefore, a deletion may cause more than O(1) rotations, and
hence the time required may be more than O(log n). Second, LI (v) may still be under
construction, and, therefore, a deletion will interfere with the incremental reconstruc-
tion. Similarly, for deleting the item representing s in Ri(v)’s, i 1, 3. To avoid this
problem, we define an operation, Weak_Delete(s), which deletes all the occurrences of s
in but does no structural change to L(v) and R(v), i 1, 3. Weak_Delete(s) is a weak
deletion [15], [17], i.e., it does not rebalance the data structure but it still guarantees the
correctness of subsequent queries. Furthermore, after 6n deletions for some 0 < 6 < 1,
the insertion time (respectively, query time, weak deletion time) of the "unbalanced"
structure are still bounded by k times the insertion time (respectively, query time, weak
deletion time) of a corresponding balanced structure on the remaining (1-6)n elements,
where k6 is a constant depending only on 6.

Procedure Weak_Delete(s)
We assume the existence of a global dictionary which allows us

to access the locations where s is stored in O(log n) time
for each node v storing s do

(* there are at most two such nodes *)
if s is in L(v) and R(v), i 1, 3, then

set the priority fields of nodes storing s to -cx
demote (x(v),-o) to the leaves for s in Li(v) and Ri(v)
note that demotion can be done even when L (v) or R (v)

is under construction
end if
if s is in C(v) or in L(v) and Ri(v), i=2 or 4, then

do a PST deletion of s in C(v) or in Li(v) and Ri(v).
end if
if s is in Leafi (v) for some i, or s is in Out(v, u), for u left(v) or right(v),
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or s is in In(v), for some j, then
delete s from those doubly linked lists in O(1) time

end if
end Weakelete

LEMMA 8. The operation Weak_Delete(s) on is a weak deletion and takes O(log n)
time, where n is the number ofline segments currently stored in .

We then apply global rebuilding [15], [17] to convert the weak deletions to strong
ones, i.e., to Delete_seg(s), without affecting the insertion time and query time. Essen-
tially, the construction of a fresh copy of to replace the old "unbalanced" one is trig-
gered from time to time, and the work is spread over sufficiently many future updates so
that each update can still be performed efficiently.

LEMMA 9. A line segment can be strongly deletedfrom in O(log n) worst-case time.
Hence, we have obtained the desired structure for the dynamic visibility problem.
THEOREM 1. Using , we can dynamically maintain a set ofline segments in theplane

that are nonintersecting (except possibly at endpoints) in O(log n) worst-case update time
and using O(n) space, so that given a querypoint p, the first line segment hit by rayp can be
located in O(log2 n) time.

4. Dynamic point location. We first give an overview of our structure for dynamic
planar point location, which consists of two modules. One is the main structure for sup-
porting queries and updates. It is essentially the data structure discussed in 3 subject
to some modifications. The other module is an interface between the main structure and
the user. It is an adjacency list representation, AL, of the underlying graph of the pla-
nar subdivision. For each vertex, v, we store its coordinates, and for each of its incident
edges we store pointers to the other end vertex in AL and to the occurrences of that edge
in the main structure. The edge list of each vertex is organized as a balanced search tree
sorted by the angles between the incident edges and a horizontal line through that ver-
tex. Thus, a new edge {v, w} can be inserted in O(log n) time, and its two adjacent edges
incident to v (or w) can also be located in O(log n) time. Moreover, insertion/deletion
of a k-edge chain in AL takes O(log n + k) time since intermediate vertices on the chain
have degree two.

For some applications that also maintain the underlying graph of the subdivision,
the structure AL suffices because the input can then be specified as pointers to vertices
and/or edges in AL. We can then access the occurrences of the corresponding vertices
and/or edges in the main structure by following certain pointers. Otherwise, if a vertex is
only specified by its coordinates and an edge by the pair of coordinates of its end vertices,
then we need two dictionaries, Dv and D,. Dv is searched using the coordinates of a
vertex as key and provides a pointer to the corresponding node in AL. Dworks similarly
for edges. Clearly, both Dr and D use O(n) space and can be maintained in O(log n)
time per update.

In 4.1, we shall present Scheme I that supports point location query, insertion/dele-
tion of an edge, and insertion/deletion/moving of a degree-2 vertex. Scheme I has the
same performance in both models of input mentioned above. We then present Scheme
II in 4.2, which is an enhancement of Scheme I. Scheme II allows more efficient updates
of chains that are monotone. (Insertion/deletion of a single edge is now treated as an
insertion/deletion of a monotone chain of length 1.) However, the other time bounds
increase slightly. The performance of Scheme II is better if the input is specified as
pointers to vertices and/or edges in AL. In 4.3, we generalize our scheme to subdivi-
sions consisting of algebraic segments of bounded degree. Lastly, we extend Scheme I
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tO obtain a persistent planar point location scheme in 5.
4.1. Scheme I. Given a connected planar subdivision with n vertices, we store all

the edges of the subdivision as well as a vertical line at z in . Given a query point
p, we use Locate_seg(p) in 3 to find the first edge that is hit by rayp. Let the edge be e.
If e is the vertical line at z o, then p must be in the exterior region of the subdivision.
Suppose that e is an edge in the subdivision. If e contains p, then we just report e as
the answer. Otherwise, the region containing p is the region immediately to the left of
e. In order to report the name of this region and to allow efficient update of regions,
we use a concatenable queue augmented with parent pointers to store the boundary of
each region. Specifically, let {vl, v2,..., v} be a clockwise ordering of vertices on the
boundary of a region r. We store the edges (vl, v2}, , {_, v}, {, v} in this order
at the leaves of a concatenable queue. The name r is stored at the root. Since each
edge e in belongs to the boundary of two regions, we keep two copies of e in two
concatenable queues. We also store at e two pointers to these copies. We assume that
only coordinates are given in the input, and we obtain access to the occurrences of the
vertices and/or edges in ( and the concatenable queues using Dv, Dg and AL. Updating
these three structures takes O(log n) time trivially, and so we will omit further discussion
of this in what follows.

Consider Locate(p). Let e be the edge reported by Locate_seg(p). We follow the
pointer at e to the leaf of the concatenable queue that represents the boundary of the
region to the left of e. Then we follow parent pointers to go to the root of the queue and
report the name stored there.

ConsiderInsert_edge(u, w, r; r, r). We first insert the edge {u, w} into in O(log n)
time. We then create a node, arc, for the arc directed from u to w and another node,
arc, for the arc directed from w to u. We use the dictionaries to locate in O(log n)
time the two leaves storing the two boundary edges of r that are incident to u. If {u, w}
does not split r into two regions, then {u, w} extends the boundary of r. We split the
concatenable queue for r in between the two edges incidentwith u into two pieces, qa and
qa, where qa may be empty. The split is done bottom-up by following pointers from leaf
to root. Thenwe merge qa, arc, arcv, and q4 in this order to form the new concatenable
queue for r. Suppose that {u, w} splits r into two regions, r and r. Then we split the
concatenable queue for r as above into three pieces, qa, q4, and qs, where q may be
empty. Without 10ss of generality, let qa, arc, and q5 form the boundary of r. We
merge qa, arc, and q in this order to obtain the concatenable queue for r. Similarly,
we merge arc and q4 in this order to obtain the concatenable queue for r. Finally, we
store the names r and r at the respective roots of the concatenable queues obtained.
This step involves a constant number of splittings and mergings of concatenable queues
and thus runs in O(log n) time. Remove_edge(e, r) is simply the reverse of the above.

Intuitively, we can implement Insertpoint(v, e; e, e) and Removepoint(e, r) by using
Insert_edge andRemove_edge. However, explicit calls to Remove_edge cannot be made be-
cause the underlying graph for the subdivision maybecome disconnected during the pro-
cess. Therefore, we will manipulate the data structure directly to simulate the effect of
Insert_edge and Remove_edge. Insertpoint(v, e; el, e), where e {u, w}, is implemented
by deleting e followed by inserting e and e in . We then locate the two copies of e
in the corresponding concatenable queues, split each into two leaves for e and e, and
rebalance if necessary. Removepoint(v; e), where e {u, w}, is implemented by delet-
ing {u, v} and {v, w} from , followed by inserting {u, w} in . We then delete the two
copies of {u, v} in the corresponding concatenable queues and rename the two copies
of {v, w} as {u, w}. Clearly, Insert49oint and Remove4oint run in O(log n) time.
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Movepoint(v; z, t) is implemented by deleting from the two old edges incident to
v and inserting the two new ones in .. Since the resulting subdivision is topologically
unchanged, no concatenable queue needs to be updated. Thus, Movepoint(v; x, t) runs
in O(log n) time.

THEOREM 2. There is an O(n)-space data structure for dynamically maintain a con-
nected subdivision. The data structure supports a Locate(p) query in O(log2 n) time and the
update operations Insert_edge(u, w, r; r, r2), Remove_edge(e; r), Insertpoint(v, e; el, e2),
Removepoint(v; e), and Movepoint(v; x, y) in O(log n) time. All time bounds are worst-
case.

COROLLARY 2. An arbitrary chain oflength k can be inserted (respectively, deleted) in
O(k log(n + k)) (respectively, O(k log n)) worst-case time.

Proof. Perform an insertion/deletion of each edge of the chain in succes-
sively. q

Hence, inserting/deleting a chain of length o(log n) can be done in o(log2 n) time.
This is an improvement upon the result presented in [19] when k is o(log n). Moreover,
in [19] the chain is required to be monotone, whereas the chain can be arbitrary in our
case.

4.2. Scheme II: Efficient insertion/deletion of monotone chains. We first
assume that the input is specified as pointers to vertices and/or edges in the structure
AL. If necessary, this assumption can be removed, as shown later, with a slight decrease
in performance.

A chain is monotone if the /-coordinate is nondecreasing or nonincreasing when we
walk along the chain from one end vertex to the other. Define a maximal monotone
chain in the current subdivision to be a monotone chain that is not a proper subchain of
a longer monotone chain.

A first attempt is to store maximal monotone chains instead of individual edges in
the PSTs of . It then becomes possible to insert/delete a monotone chain as a single
entity instead of as individual edges. Each maximal monotone chain, 7, stored in the
PSTs is represented as a concatenable queue that is sorted by the y-coordinates of the
vertices of the chain. For each node v E B, we extend the definition of S(v) such that
S(v) is the set of maximal monotone chains that intersect Y(v) but not Y(u) for all
proper ancestors u of v. Each maximal monotone chain, -y E S(), intersects Y(v) at
a point (z.(), t(v)). Let the endpoints of - be (zz(’y), tz (’)) and (zr (’), tr(’y)), where
tt (’y) > t(’y). Then we store the pair (z.(v), tt (7) t(v)) in L1 (v) (or L(v)) and the
pair (z(v), t(v) t(’)) in R1 (v) (or R2(v)). The rest of the organization is similar to
that of Scheme I.

In both Find and Fixup2 we were able to check the position of a point relative to an
edge and compute the intersection of an edge with a horizontal line in O(1) time, but
now these have to be done by binary searching on a maximal monotone chain and may
take up to O(log n) time. Therefore, the modified Fixup2 takes O(log n) time, and the
modified Find takes O(log2 n) time. Hence, a point location query now takes O(log3 n)
time and a single insertion/deletion operation in . takes O(logz n) time. (To insert a
chain -y into ., we locate the node v such that - S(v) by spending O(1) time per node
visited. We then compute x(v) in O(log n) time by binary search on % However, the
insertion time for is still dominated by Fixup2.)

Consider inserting a monotone chain, .y z z2, of length k. It is possible that
-y extends a maximal monotone chain, or -y joins two maximal monotone chains to be-
come a longer maximal monotone chain, or - is a maximal monotone chain by itself.
Furthermore, -y may split another maximal monotone chain that contains an end vertex
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of 7. Therefore, we may have to do a constant number of splittings/mergings of con-
catenable queues for the maximal monotone chains involved. Also, we have to delete
the corresponding old maximal monotone chains from and insert the new ones into ..
Clearly, it takes O(log2 n) time to do all this. We then update the concatenable queues
for the regions in O(log n + k) time by a simple generalization of the strategy discussed
in 4.1. Hence, the total time for inserting a monotone chain is O(log2 n + k). Deletion
is essentially the reverse of insertion, and can also be implemented in O(log2 n+ k) time.

Thus, we have extended Scheme I so that insertion/deletion of a k-edge monotone
chain takes O(log n + k) time, while a point location query takes O(log3 n) time. The
log n blow-up comes from the fact that we may have to do a binary search on a maximal
monotone chain of length O(n). This suggests that it may be possible to improve both
time bounds ifwe divide a maximal monotone chain into smaller pieces and store these.
However, the division should not be so fine that we end up spending more than O(k)
time to insert/delete a k-edge monotone chain.

Formally, we introduce a parameter b and choose its current value to be some pos-
itive integer no. Suppose that no/4 < n < 3n0, where n is the number of vertices
currently in the subdivision. Let h(n) be the function max{log n log log n, 1}. Each max-
imal monotone chain of length at least h(b) is divided into subchains whose length is in
the range [h(b), 2h(b)]. Each such subchain is called a monotone subchain. Every maxi-
mal monotone chain of length less than h(b) is also defined to be a monotone subchain.
We call this an h(b)-split of the subdivision. Then, analogous to the previous approach,
we store monotone subchains in instead of individual edges. Each monotone sub-
chain, a, stored in the PSTs is represented as a concatenable queue that is sorted by the
y-coordinates of the vertices of the subchain.

Computing x(v) for a monotone subchain a, while inserting a into PSTs at v, now
takes O(log log no) O(log log n) time, and so a single insertion operation into takes
an extra O(log log n) time. The time complexities of a Find and Fixup2 will now increase
to O(log n log log no) O(h(n)) and O(log log no) O(log log n), respectively. Hence,
a point location query takes O(h(n) log n) time and a single insertion/deletion operation
in . takes O(h(n)) time.

We first describe an updating method that is not quite correct but provides the basic
intuition. Subsequently, we show how to fix the flaw. Also, the updating of the con-
catenable queues for the regions in the subdivision is not very difficult and can be done
in O(log n+ k) time, so we shall omit the details. Consider inserting a monotone chain of
length k. If k < h(b), we simply consider it as a single monotone subchain. If k > h(b),
we chop off at one end a monotone subchain of length h(b). In either case, let cr be the
monotone subchain obtained. We insert a into the data structure according to the fol-
lowing cases. Note that we have to maintain an h(b)-split of the subdivision. To this end,
we use the procedure Resplit.

1. a joins only one monotone subchain a to form a longer monotone chain crier

(or tral). If I1 < h(b) or [a[ < h(b), then delete al from . and call Resplit(aa) (or
Resplit(aa)). Otherwise, insert a into .

2. a joins together two monotone subchains, a and a, to form a longer mono-
tone chain aaa. If [a < h(b) and Icr21 < h(b), then delete a and cr and call
Resplit(alcrcr2). Else, if < h(b), i 1 or 2, then delete a from . and callResplit(acr)
if i 1 or Resplit(aa2) if 2. Otherwise, if I1 < h(b), then delete a from and call
Resplit(a). If none applies, then insert cr into ..

3. tr is a maximal monotone chain by itself. Insert a into .
Furthermore, if an end vertex u of a lies on a monotone subchain or’ a, then
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we delete tr’ from , split or’ into two pieces, tr and cry, at u, and call Resplit(tr’) and
Resplit(cr). If the two end vertices, u and uz, of cr lie on the same monotone subchain
tr’ tr, then we delete or’ from , split r’ at u and u into three pieces cry, cry, and
r (cr has u and uz as end vertices), and call Resplit(cr’) and Resplit(cr). We repeat
the operation of chopping the monotone chain and processing of monotone subchains
obtained until a monotone chain of length less than 2h(b) is obtained. We then take this
chain as a monotone subchain and process it as in the above.

Procedure Resplit is as follows. It is assumed that the length of any chain -y passed
to Resplit is at most 4h(b), but not in the range [h(b), 2h(b)]. If 7 is a maximal monotone
chain, then we just insert it into . Otherwise, we merge ,y with some adjacent monotone
subchains, if necessary, and then resplit the resulting monotone chain into two monotone
subchains of the correct lengths.

Procedure Resplit 7
done:= false
While not done do

done: true
if 171 < h(b) then

if there is a monotone subchain r attached to 3’ such that
a-y (or 7a) is a monotone chain then
delete r from
7 r7 (or
done:= false

else
insert 7 into

end if
else

if 171 > 2h(b)then
split 7 into two equal-sized pieces
insert 7 and

else
insert ,y into

end if
end if

end while
end Resplit

Ifn/k does not exceed 3n0, the value of b can be fixed to be n0 throughout. Since we
have an h(b)-split before the insertion, a chain -y passed into Resplit will not go through
more than two iterations of the while loop in Resplit. Therefore, Resplit runs in O(h(n))
time. Thus, we insert O(k/h(no)) O(k/h(n)) monotone subchains, and each takes
O(h(n+k)) h(n) time. This gives aworst-ease time bound of O(h(n)+k) for insertion.

Let r u...u be a monotone chain to be deleted. In general, r is of the form
u ...vr...crv...u, where cry, 1 < _< m, is a monotone subchain in the current
h(b)-split. Each r is deleted from .. If Icril O(h(n)) for all i, then we would be
deleting O(k/h(no)) O(k/h(n)) monotone subchains, and each takes O(h(n)) time.
There are two cases for deleting ux...v"

1. If Ul...v is a monotone subchain by itself, then delete u ...v from .. If the
degree of u does not become two, then we are done. Else, if the two monotone sub-
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chains or’ and or" attached to u cannot be joined together to form a monotone chain,
then again we do nothing further. Otherwise, if either Itr’l or Icr"l is less than h(b), then
we delete tr’ and tr" from and call Resplit(tr’tr");

2. If ul...vx is the sut of a longer monotone subchain tr’, we delete or’ from .
Thenwe split a’ at Ul into two pieces, a" and u...v, and callResplit(a") if la"l < h(b).

Again the call to Resplit in either of the two cases involves no more than two itera-
tions of the while loop, and thus both cases take O(h(n)) time. We handle v2...u2 in an
analogous fashion. This gives a worst-case time bound of O(h(n) + k) for deletion.

Notice that an insertion/deletion of a monotone subchain may cause extra updates
in because of the calls to Resplit. We call the insertion/deletion of a monotone sub-
chain with the extra updates in that follow a complete update. (We shall also use the
more refined terms, complete insertion and complete deletion, which have obvious mean-
ings.) Moreover, the extra updates induced do not modify the underlying subdivision,
and hence n, the number of vertices in the current subdivision, is also not changed by
these extra updates.

The updating strategy in the above has a major flaw as pointed out below. After
a sequence of complete insertions, n may have increased to the extent that the length
of some existing monotone subchains may become much less than h(n). Therefore, a
complete deletion operation may then involve deleting more than O(k/h(n)) monotone
subchains, and thus the O(h(n) + k) bound is no longer valid. On the other hand, after
a sequence of complete deletions, n may have decreased to the extent that the length
of some existing monotone chains may become much more than O(h(n)). Therefore, it
may then take more than O(loglog n) time for a call to Fixup2 and more than O(h(n))
time for a call to Find. This will cause both the future update time and query time to de-
teriorate. As a remedy, we must adjust the parameter b whenever necessary. Changing
the value of b will then force us to redo the decomposition of some maximal monotone
chains currently stored. We introduce two additional structures that will facilitate the
redecomposition. We maintain a doubly linked list, LONG, of those monotone sub-
chains whose lengths are in the range [h(b), 2h(b)]. Therefore, the size of LONG is at
most n/h(b) at any time. The remaining monotone subchains, whose lengths are less
than h(b), are stored in a max heap, SHORT, according to their lengths. All the mono-
tone subchains in SHORT are maximal monotone chains. Monotone subchains should
be inserted/deleted in LONG or SHORT as they are inserted/deleted in .. (insertions of
monotone subchains into LONG take place at the front ofLONG). We associate point-
ers from subchains in . to their copies in LONG or SHORT to avoid searching. Thus
updates in LONG and SHORT take O(1) time and O(log n) time, respectively.

We pick a new value for b and start the redecomposition as soon as n exceeds 2b or
drops below b/2. Note that throughout the redecomposition, n must not exceed 2b’ or
drop below b’/2, where b’ is the new b, to avoid starting a new redecomposition before
the previous one ends.

Let the initial value of b be no. If n exceeds 2b at some point of time, we assign b
the value 2n0. Note that n is at most 2n0 + 2h(n0) at this point. The lengths of some
monotone subchains in LONG may become less than h(b), but their lengths can still be
generously bounded from below by h(b)/4. We walk through LONG, and for each such
monotone subchain a, we delete cr from LONG, call Resplit(a), and add the two new
monotone subchains generated to the front of LONG. Since every monotone subchain
in the subdivision has length at least h(b)/4, a call to Resplit(a) will not involve more
than four iterations of the while loop. Therefore, each call takes O(log n log log b) time
because the skeleton B of has height O(log n), and each monotone subchain stored in
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the PSTs of has length at most 2h(b). We spread the processing ofLONG over the next
no/2h(b) 1 complete updates. Since LONG contains at most n/h(no) < 12no/h(b)
elements, the number of elements in LONG checked after each such complete update
is bounded by a constant. After we have scanned the entire list LONG, the value of n
must be in the range [no, 3n0] [b/2, 3b/2]. As a result, during this period the length
of each monotone subchain processed is O(h(n)), each complete update takes O(h(n))
time, and a new h(b)-split is obtained at the end.

On the other hand, if the initial value of b is n0 and n becomes less than b/2 at
some point of time, we assign b the value no/2. Note that n is at least no/2 2h(no) at
this point. The lengths of some monotone subchains inLONG may become greater than
2h(b), but they can still be generously bounded from above by 8h(b). Then, as before, we
walk throughLONG and split all such monotone subchains. Moreover, some monotone
subchains in SHORT may become long enough to be put in LONG. We move them to
LONG by repeatedly deleting the monotone subchain stored at the root ofSHORT and
adding it to front ofLONG until the length of the monotone subchain stored at the root
is less than h(b). This processing is spread over the next no/8h(b) 2 complete updates.
Since the total number of monotone subchains we have looked at inLONG and SHORT
must be at most n/h(b) < 3no/h(b), the number of monotone subchains that need to be
checked after each complete_update is bounded by a constant. After we have scanned
the entire list LONG and extracted all the eligible monotone subchains in SHORT, the
value ofn must be in the range In0/4, 3n0/4] [b/2, 3b/2]. Consequently, each complete
update during this period takes O(h(n)) time, and a new h(b)-split is obtained at the end.

In summary, we have proved that a k-edge monotone chain can be inserted/deleted
in O(log n log log n + k) time. Since a single edge can be treated as a monotone chain of
length one andInsertpoint, Removepoint, andMovepoint involve simulations of a constant
number of insertions and deletions of edges, they take O(log n log log n) time.

THEOREM 3. There is an O(n)-space structurefordynamically maintaininga connected
planar subdivision. Ifthe input is specified aspointers to vertices and edges in the underlying
graph, then the structure yields a query time of O(log2 n log log n) for answering a point
location query, an update time ofO(log n log log n)forinsertingofa degree-
2 vertex, and an update time ofO(log n log log n+k)forinsertinga monotone chain
oflength k. All bounds are worst-case.

If the chain is not monotone, then we split it into monotone pieces and invoke the
above procedures for inserting/deleting each of those monotone pieces.

COROLLARY 3. If the input is specified as pointers to vertices and edges in the under-
lying graph, then an arbitrary chain can be inserted (respectively, deleted) in O(k log(n -+-
k) log log(n + k)) (respectively, O(k log n log log n)) worst-case time.

If only coordinates are given in the input, then at first sight it appears that we could
access the corresponding vertices and edges in AL by using the dictionaries Dv and D.
However, we cannot keep all the vertices and edges of the subdivision in Dv and D
since otherwise we need to spend O(k log n) time to update Dv and Dv after an in-
sertion/deletion of a k-edge monotone chain. The lack of efficient access to the data
structure makes the updating of the data structure problematic. For instance, consider
inserting a monotone chain ,), u...uz. Suppose that u is a nonextreme vertex of a
monotone subchain or. We then need to split the concatenable queue for tr. However,
we do not know where to do the splitting since we do not have access to the two edges
in cr that are incident to Ul. This problem can be solved by performing a point location
query for u using our data structure before inserting the input monotone chain -y. This
query will locate in , one of the two edges of r that are incident to Ul. By following the
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appropriate pointers associated with that edge in , we can thus locate the position to
split the concatenable queue for tr (and also the concatenable queue for the region con-
taining 3’ if necessary). Because of the point location query, the insertion time becomes
O(logz n log log n+ k). Deletion of a monotone chain can be handled similarly and takes
O(logz n log log n + k) time.

THEOREM 4. There is an O(n)-space structure for dynamically maintaining a con-
nected planar subdivision. If only coordinates are specified in the input, then the struc-
ture yields a query time of O(log n log log n) for a point location query, an update time of
O(logz n log log n) forinsertingofa degree-2 vertex, and an update time of
O(logz n log log n + k) for inserting a monotone chain oflength k. All bounds are
worst-case.

COROLLARY 4. If only coordinates are specified in the input, then an arbitrary
chain can be inserted (respectively, deleted) in O(k log (n + k) log log(n + k) (respectively,
O(k logz n log log n)) worst-case time.

4.3. Generalizing to algebraic segments. Scheme I can be generalized to han-
dle planar subdivisions that consist of algebraic segments of bounded degree d. Alge-
braic segments of bounded degree are also considered in a different context by Mul-
muley [11]. We follow the same purely algebraic approach presented in [11]. A mono-
tone algebraic segment, s, satisfying the equation f(z, y) 0 can be specified uniquely
by its two extreme points (z,//) and (z’,//), where / >_ //, and the orientation of
the tangent to s at (z,//). If s is not monotone, then we divide s into O(d) mono-
tone pieces by cutting at the local extrema on the segment where the tangents become
horizontal. These points satisfy the equations f(z,//) 0 and - 0, and can be
computed as described in [11]. We then find out, using the strategy given in [11], how
these monotone pieces are topologically connected together. Hence, we can treat the
subdivision as a collection of monotone algebraic segments and store these segments
in .. An algebraic segment can thus be inserted/deleted by dividing it into monotone
pieces as above and then inserting/deleting each monotone piece in . Note that Find
and Fixup2 will involve computing the intersection between a monotone algebraic seg-
ment, s, and a horizontal line. Except for the operation of moving a degree-2 vertex,
whose semantics are not well defined in this case, all the other operations supported by
Scheme I can be handled analogously. Let T1 (d) be the time to compute the intersection
between a monotone segment and a horizontal line, and let Tz (d) be the time to divide
an algebraic segment into monotone pieces. Then the above discussion implies that the
variation uses O(dn) space, takes O(T1 (d). log(dn)) time for answering a point lo-
cation query, O(T2(d) + T1 (d). d log(d2n)) time for inserting/deleting a segment, and
O(T(d) + Tl(d) dz log(dZn)) time for inserting/deleting a point on a segment. Fur-
thermore, it is in fact possible to maintain subdivisions consisting of any type of curve
oegm.ents as long as there are efficient ways to divide those curve segments into a few
monotone pieces and to compute the intersection between a monotone segment and a
horizontal line.

5. Persistent planar point location. In this section, we showhow to extend Scheme I
to support a point location query with respect to the subdivision at any time t’ in the past,
while updates are allowed in the present. In other words, we seek to develop apersistent
representation of connected subdivisions. The problem of maintaining a subdivision
persistently was first proposed by Sarnak and Tarjan [22]. The extension is based on
applying the techniques ofpath copying [6], [12], [13], [21], [23] and limited node copying
[22]. Let n be the number of vertices in the subdivision, and let m be the number of
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updates that have occurred so far. We assume that we start with an empty subdivision,
and thus m is greater than or equal to n at all times. To avoid ambiguity, we use t to
denote the current time, subscript t’ to denote the latest version of an object at time t’
in the past, and accent to denote the latest version of an object.

is organized as in the amortized version of Scheme I (3.1.1), namely, each node
v of/3 has two PSTs L(v) and R(v) for storing the edges in S(v). To insert an edge e, we
first insert into B as before the two leaves corresponding to the two end vertices of e. We
then insert e into L(v) and R(v), where e S(v). Since we are to support querying in the
past, the insertion/deletion must be done in such a way that we do not lose the old L(v)
and R(v). Take L(v) as an example. We binary search down L(v) to insert the leaf, w,
for (z(e), yt(e)) and then duplicate the path from w to the root to produce Lt(v). The
root of Lt(v) is then stamped with the current time t, and a pointer to it is inserted into
a dictionary, D(v), sorted in decreasing order of time stamps. Next, we have to maintain
the heap order on the priority field. Let a’ be the node from w to the root of Lt (v) such
that a’.y < w. but parent(a’).] > w.]. Therefore, a’ should be filled with the content
of w’, which in turn forces us to fill an appropriate child of a’ with the content of a’ to
make room for w. This down-shifting step repeats until we reach a leaf. In general, the
down-shifting may first follow the path from a’ to w and then deviate to continue along
a totally separate path. Since the path traversed after the deviation belongs to the pre-
vious version of L(v), we must copy the nodes visited to preserve the past information.
It should be clear that the total time taken is O(log m). (It takes O(log m) time to insert
the two leaves into B, O(log h) time to do path copying, and updating in L(v) and/(v),
as well as O(log m) time to insert a pointer to the root of Lt(v) into D(v).) The space
needed is O(log h) worst-case due to copying at most two paths in each of L(v) and/(v).
B may become unbalanced after this insertion, and, therefore, we may need to perform
rotations at certain nodes visited. We need to reconstruct the structures Lt, (v), Rt, (v)
and D(v) for all t’ for each node v that actively participates in a rotation. Moreover,
the reconstruction of a PST cannot proceed in a bottom-up fashion as before since, oth-
erwise, it becomes impossible to distinguish among the different versions of L(v) and
R(v) at different times. Therefore, we implement the reconstruction by repeatedly in-
serting the edges in the order of increasing time stamps. As proved in [25], this insertion
strategy takes O(log2 m) amortized time. The space needed by the reconstruction can
similarly be proved to be O(1) amortized. To delete an edge e, e E (v), we first dupli-
cate the path from the root to the leaf for (x(e), y(e)) (respectively, (xr(e), yr(e))) to
.generate Lt(v) (respectively, Rt(v)), and then we actually delete (zt(e), t(e)) (respec-
tively, (z(e), y(e))) from Lt(v) (respectively, Rt(v)). B is not modified at all. Clearly,
the deletion process takes O(log h) worst-case space and O(log h + log m) O(log m)
time.

Querying at time t’ proceeds as follows. We traverse a root to leaf path in B as be-
fore. At each node v visited, we query D(v) in O(log m) time to access the root of Lt, ()
(or Rt,(v)). We then query Lt,(v) (or Rt,(v)) in O(log rtt,) time, which is dominated by
O(log m). Thus, the overall query time is O(log2 m).

We can reduce this bound to O(log rtt, log m) by layering the dictionaries. This
would have the effect of reducing the dictionary access time from O(log m) to O(1) for
the nonroot nodes on the path traversed. Specifically, at each node v that is not the root
of B, D(v) is organized as a linked list of pointers in sorted order of decreasing time
stamps. Moreover, we keep two down pointers at each entry time stamped t’ in D(v)
to the two entries time stamped tl and t in D(left(v)) and D(right(v) ), respectively,
where tl max{x’x < t’, and x is a time stamp in D(left(v))} and tg. max{x’x <
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t’, and x is a time stamp in D(right(v))}. At the root r of B, D(r) is organized as an
balanced search tree. However, since insertion/deletion of an edge e takes place at a
single node v of B, the time stamps of all the entries in D(parent(v)) are less than t,
and thus there is no down pointer from D(parent(v)) to the new entry added to D(v). If
more updates occur at v, then the possibility of reducing the access time for D(v) to O(1)
will be ruled out. We can add dummy entries time stamped t to the dictionary of each
ancestor of v after every update at v, but this has the undesirable effect of increasing
the space bound per update from O(log h) to O(log m). Instead, we apply limited node
copying [22] to obtain an O(1) amortized space bound per update for layering the dictio-
naries. Specifically, at each node v, whenever both the first and second entries of D(v)
(i.e., the entries with the largest and second largest time stamps) are not pointed to by
down pointers from D(parent(v)), we add a dummy entry to the front of D(parent(v)),
assign it a time stamp equal to that of the first entry of D(v), and associate with it two
down pointers to the first entries of D(left(parent(v))) and D(right(parent(v))). If nee-
essary, we propagate the addition of a dummy entry to the parent of parent(v), and so on.
To analyze the amortized space needed, we follow the banking account paradigm [24].
We maintain the following invariant: At each node of B, the most recent dictionary entry
that is not pointed by a down pointer has a token stored at it. Let an update occur at a
node v of B. There maybe a propagation of additions ofdummy entries to dictionaries at
some ancestors of v. Suppose that the propagation stops at a node u and adds a dummy
entry item to D(u). For each u u on the path from v to u, adding a new dummy entry
to D(u) can be paid for with the token stored at that entry’s predecessor (the token
must exist since the predecessor cannot be pointed to by a down pointer). Moreover,
no token needs to be stored at this new dummy entry because it must be pointed to by
a down pointer. At u we store a new token at item to preserve the invariant. It follows
that the amortized space cost for an update is O(1). During querying, we may reach at a
dummy entry in D(v), therefore, we keep a shift pointer at each dummy entry of D(v) to
the nearest nondummy entry with a smaller time stamp so that we can access the roots
of the desired version of L(v) and R(v) in O(1) time.

The final procedure for querying at time t works as follows. We traverse a root
to leaf path in B as before. We query D(r) to retrieve an entry item. Let v be r initially.
If item is nondummy, then we can access the roots of Lt, (v) and Rt, (v). Otherwise, we
follow the shift pointer to locate the nearest nondummy entry with a smaller time stamp.
We then query either Lt, (v) or Rt, (v) as appropriate. Next, we follow the down pointer
stored at item to get an entry candidate in the dictionary at the next node v on the path.
It must be the case that either candidate or the entry just in front of candidate has the
largest time stamp smaller than tr. We set item to the appropriate one of these, set v to v,
and then repeat the above. Hence, we spend O(log m) time in querying D(r) and O(1)
time, plus the time for querying either Lt,(.) or Rt,(.) at each of the O(log m) nodes on
the path. The query time thus sums up to O(log nt, log m).

Insertion/deletion of an edge e at a node v of . then involves the additional steps
of adding an entry time stamped t to the front of D(v), setting its down pointer equal to
that of the second entry, and adding dummy entries time stamped t to the dictionaries
at its ancestors whenever necessary. These additional steps clearly take O(log m) worst-
case time, and the amortized space needed is O(1) as mentioned above. Hence, we have
improved the query time from O(log m) to O(log nt log m) without affecting the time
and space bounds for insertion and deletion in ..

Note that the O(logz m) amortized time bound for insertion can be turned into
worst-case by spreading the reconstruction over a sequence of future updates. Both
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the delete and query procedures have to be changed slightly, but the respective time and
space bounds will not be affected. The details resemble the strategy presented in 3.3,
and we omit the discussion here.

In summary, we have obtained a persistent structure for the dynamic visibility prob-
lem, yielding a query time of O(log rzt. log m), an insertion time of O(log9 m), a deletion
time of O(log m), and using O(log h) worst-case plus O(1) amortized space per update.
All time complexities are worst-case.

The concatenable queues representing the regions can similarly be made persistent
by applying path copying. The space needed per update is thus O(log) worst-case. A
node in the concatenable queue may now have more than one parent (with different time
stamps), and we store the parent pointers of a node in a dictionary sorted in decreasing
order of time stamps. Because of path copying, we may need to insert new parent point-
ers into as many as O(log h) such dictionaries during a join or split operation. If the
dictionary of parent pointers at each node is organized as a balanced search tree, then it
takes a total of O(log h. log m) time, which dominates the run time of ajoin or split oper-
ation. Note, however, that we know the actual position of each new parent pointer in the
corresponding dictionary because its time stamp is larger than any existing one. There-
fore, we can organize the dictionary using the data structure developed recently in [8],
which supports member and neighbor queries in O(log m) worst-case time and allows
for O(1) worst-case update time once the position of element to be inserted or deleted
is known. Hence, the time for a join or split operation can be improved to O(log h).
To report the name of a region to the left of an edge e at time t’, we simply traverse a
leaf to root path via the proper parent pointers. Retrieving each. such pointer from the
dictionary at each node takes O(log m) time, and hence a total of O(log zzt. log m) time.

Combining the persistent structure for the dynamic visibility problem with the per-
sistent concatenable queues, we obtain the following result.

THEOREM 5. Starting with an empty subdivision, there is apersistent structureformain-
taining connected subdivisions, supporting an O(log nt, log m)-time query with respect to
the subdivision at time t’, an insertion time of O(log2 m), and a deletion time of O(log m),
and using O(log h) worst-case plus 0(1) amortized space per update, where m is the to-
tal number of updates that have occurred, h is the number of vertices in the subdivision at
present, and nt, is the number ofvertices in the subdivision at time t. All time complexities
are worst-case and updates are allowed only in thepresent.

6. Conclusion and discussion. We have presented an efficient dynamic point loca-
tion scheme for connected planar subdivisions. It extends and/or improves upon existing
dynamic planar point location schemes. In particular, we show a remarkable update time
of O(log r) for inserting/deleting an edge, while still being able to answer a point loca-
tion query in O(log2 r) time. We then show how to speed up the insertion/deletion time
for a k-edge monotone chain at the expense of increasing the other time bounds slightly.
Moreover, our result can be generalized to cope with connected subdivisions consisting
of algebraic segments of bounded degree, and it can also be extended to support persis-
tent planar point location. The main component of the above results is a new structure
for a planar dynamic visibility problem for line segments that are nonintersecting, ex-
cept possibly at endpoints. In fact, this structure can be used even when the subdivision
is nonconnected. The reason that our technique is limited to connected subdivisions is
the lack of an efficient structure to maintain a nonconnected subdivision and report the
name of the region on one side of a given edge. Obtaining such a structure is an interest-
ing research problem. Another open question is whether the query time can be reduced
to o(logz n) with little or no increase in the update time.
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ADDENDUM:
MINIMUM WEIGHTED COLORING OF TRIANGULATED GRAPHS, WITH
APPLICATION TO MAXIMUM WEIGHT VERTEX PACKING AND CLIQUE

FINDING IN ARBITRARY GRAPHS*
EGON BALAS AND JUE XUE

This note is meant to answer the numerous queries we have received about the de-
tails of implementing Algorithm 3 in 5 of [1], in particular its version that produced the
computational results of 6.

Algorithm 3 was implemented and tested in several versions. The version that proved
most efficient, and on which the computational results of 6 are based, differs from the
outline given in 5 in three respects:

1. In Step 0, an edge-maximal triangulated subgraph (EMTS) of G is gener-
ated, and its maximum weight clique is used to initialize the lower bound w(K*). The
EMTS is generated with an O(IEI A) algorithm described in [3], which is an improve-
ment over Algorithm 1 of [2]. (Here A is the maximum degree in G.)

2. ThestatedversionofStep2isappliedonlywhenw(K*) < w(It) or Vt <
30; otherwise, Step 2 reduces to choosing an arbitrary ordering at of Vt.

3. Step 3 uses a modified version of Algorithm 2 that starts with the sequence
at and generates a maximal induced subgraph G(Wt) ofG alongwith a weighted coloring
of G(Wt) equal to w(K*).
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REDUCING THE STEINER PROBLEM IN A NORMED SPACE*

D. Z. DUt AND F. K. HWANG$

Abstract. Consider a set P of points in a normed space whose unit sphere is a d-dimensional symmetric
polytope with 2d extreme points. This paper proves that there always exists a Steiner minimum tree whose
Steiner points are located only at points whose coordinates appear in points of P. This generalizes a recent
result of Snyder on d-dimensional rectilinear space, which itself extends Hanan’s well-known and much
quoted result On the rectilinear plane. Furthermore, the proof in this paper is much simpler than Snyder’s
proof, even considerably shorter than Hanan’s proof. A consequence of this result is that the Steiner problem
for P in such a space is reduced to a Steiner problem on graphs and is solvable by any existing Steiner
graph algorithms. The paper also conjectures that such a reduction is impossible if the polytope has more
than 2d extreme points and provides partial support for the conjecture.

Key words. Steiner tree, Minkowski space, normed space

AMS(MOS) subject classifications. 51M05, 52A21, 90B99

1. Introduction. Let P be a given set of points in a space S. A Steiner minimum
tree (SMT) for P is a shortest network interconnecting P. A point in a tree interconnect-
ing P with degree at least three and not in P is called a Steiner point. Some spaces
have the nice properties that there exists an SMT whose edges all follow some specified
directions, or whose Steiner points all belong to a specified set of points. For example,
it is clear that we need only consider vertical and horizontal edges in two-dimensional
rectilinear space. Hanan [4] proved that the Steiner problem is finite in that space by
showing that there exists an SMT with no Steiner point having coordinates (x, y) such
that either x or y does not appear as a coordinate for some point in P. Recently,
Snyder [7] extended this result to general dimension rectilinear space. In this paper,
with a much simpler argument, we further generalize these results to any normed space
whose unit sphere is a d-dimensional symmetric polytope with 2d extreme points
satisfying certain regularity conditions We also conjecture that the 2d extreme points
is a necessary condition.

2. Direction of edges. Consider a normed space Sd whose distance function is
specified by a unit sphere that is a d-dimensional polytope symmetric with respect to
the original point. Assume that the polytope has 2m extreme points. Then the m lines
connecting the original points with the 2m extreme points are called diagonals, and
their directions are called diagonal directions.

THEOREM 1. Let P be a set ofpoints in Sd, d >= 2. Then there exists an SMT using
only edges in diagonal directions.

Proof. Since any polytope is the convex hull of its extreme points, any point x
on the boundary of the unit sphere can be represented as a linear function of extreme
points Xl, , Xk

2 a121+. + ak,k,

where ai >- 0 and a -t-. + ak 1. For any edge [A, B], let x be a boundary point such

* Received by the editors April 4, 1991; accepted for publication (in revised form) September 11, 1991.
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of Applied Mathematics, Academia Sinica, Beijing, China.
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that is parallel to [A, B]. Then

at [AB[ [AB[alYa +’’" + [AB[akk.
Therefore, we find a path from A to B consisting_ of k segments, where the ith segment
is parallel to 2i and has length ai[AB[. Since i1 ai 1, the path length is

3. Retlueing Sa to a gritl. The approach used here is similar to the one used by
Snyder [7] for d-dimensional rectilinear space, but much simpler and more general.
Consider a given set P of points in Se whose unit sphere has 2m extreme points,
m ->_ d, such that any d diagonal directions are linearly independent. Call a hyperplane
.diagonal if it is parallel to the span of d 1 diagonal directions. Let GI(P) be the grid
formed by the (din_a) diagonal hyperplanes through each P-point. Define a grid point
to be a point where d distinct diagonal hyperplanes intersect.

THEOREM 2. If rn d, then there exists an SMT for P whose Steiner points are all
grid points of G1 P).

Proof Call a coordinate listed if it appears in a P-point. Then a grid point has
only listed coordinates. By Theorem 1 there exists an SMT T using only edges in
diagonal directions. Let U be the set of unlisted coordinates occurring in Steiner points
of T. Suppose that U is nonempty. We show that we can always reduce the cardinality
of U by one. This completes the proof.

Let s be a Steiner point with an unlisted coordinate x in the ith diagonal direction.
Consider the diagonal hyperplane parallel to the span of the other d-1 diagonal
directions at s. Clearly, there exists no P-point on this hyperplane or xi would be
listed. Since the d diagonal directions are linearly independent, we can move this
hyperplane with all edges on it along the ith diagonal direction (either side) until it
hits a P-point. Firstly, we note that such a move is permissible since no P-point has
been moved. Secondly, the number of segments of the ith diagonal direction touching
the hyperplane on the two sides must be equal or we could move it towards one side
to reduce the total length; a contradiction to the assumption that T is an SMT. Thus
moving the hyperplane does not change the length of T. Finally, when the hyperplane
hits a P-point, the new x is listed, but no new unlisted coordinate has been created.

The following corollary was first proved by Snyder [7] (d 2 case by Hanan [4]).
COROLLARY. For P a set ofpoints in the d-dimensional rectilinear space, there exists

an SMT whose Steiner points are all grid points of GI(P).
Theorem 2 reduces the SMT problem to a finite problem and opens the door for

using SMT graph algorithms to attack the SMT problem in Sd.
We conjecture that tn d is also a necessary condition for Theorem 2.
CONJECTURE 1. If m > d, then there exists a set P in Sd such that every SMT for

P contains a Steiner point that is not a grid point of GI(P).
As partial support to Conjecture 1, we show that for every d->_ 2 there exists a

space Sd with m > d and a set P in Sd such that every SMT for P contains a Steiner
point that is not a grid point of G(P).

A splitting tree T for n points in the Euclidean plane is defined [5] as
(i) T3 is an SMT for three corners of an equilateral triangle;
(ii) Tn, n > 3, can be obtained from Tn-a by splitting an endpoint w of Tn_l into

two new edges [u, w] and [v, w], where u and v are new endpoints of Tn, such that
(a) The three edges meet at 120 at the splitting point;
(b) The lengths of these two new edges are equal and less than h,_a/4 with._ min {IR._[- T_]},

Rn-

where Rn_ # Tn_ is a Steiner tree for the endpoints of T,_.
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It was proved [5] that a splitting tree is the unique SMT for its endpoints in the
Euclidean metric. Now consider the metric induced by the unit sphere, which is a
regular hexagon with diagonals parallel to edges of the splitting trees. Since the unit
sphere of the Euclidean metric contains that of the hexagonal metric, a tree cannot
have greater length in the Euclidean metric than in the hexagonal metric. But splitting
trees have identical length in both metrics. Hence a splitting tree must be the unique
SMT for its endpoints in the hexagonal metric.

We now consider a subset of splitting trees {ti:i--1, 2,’’’ } in the hexagonal
metric, where ti is T3.2 with a symmetrical topology. The topologies of tl, 12, and
are shown in Fig. 1. It is clear that the middle Steiner point of ti, i>= 2, is not a grid
point of GI(P). Therefore, such ti are counterexamples for d 2.

tl

FIG. 1. Topologies for t, t2, 3.

For d> 2, we construct a unit sphere by using the three directions parallel to the
edges of the splitting tree and d- 2 other orthogonal directions perpendicular to the
previous three .directions. For the Sa with this unit sphere, the splitting tree is still a
unique SMT for its endpoints. As before, there is a Steiner point that is not a grid
point. However, the three directions are dependent, which does not meet our condition
that every d directions are independent. We will perturb one of the three directions
such that our requirement on independence holds.

First, we note that the locations of Steiner points vary continuously as the unit
ball varies. Suppose that the minimum Euclidean distance between any grid point and
a Steiner point not in the grid is D. Let OA be a diagonal parallel to one direction of
the splitting tree. By a continuity argument we can choose a positive number e such
that when A varies within Euclidean distance e, every Steiner point varies within
Euclidean distance D/2. This means that when A varies within Euclidean distance e,
the minimum Steiner tree for endpoints of the splitting tree must have a Steiner point
not in the grid.

Next, we note that the rest of the d directions other than OA are linearly
independent. For any d- 1 of the d directions, if OA forms a linearly dependent set
with them, then A lies in the subspace generated by the d-1 directions. However,
such finitely many d 1 subspaces can not cover a d-dimensional neighborhood of A.
So, we can perturb A within Euclidean distance e such that the resulting OA together
with the rest d directions induces a unit sphere meeting our requirement.

4. Other grids. For j 2, 3,... let Gj(P) be the grid formed by running the
diagonal hyperplanes through each grid point of G_(P). Define a grid point of Gj(P)
to be a point where d distinct diagonal hyperplanes intersect. The question is, for
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m > d, whether there exists an SMT whose Steiner points are all grid points of Gj(P)
for some j.

Note that for any fixed j, themiddle Steiner point of ti, i> j, is not a grid point
in G(P). Thus such ti provide counterexamples for d 2. A perturbation argument
extends these counterexamples to d > 2 cases. Thus we propose the following stronger
conjecture.

CONJF.CTURE 2. If m > d, then for every fixed j there exists a set P in Sa such that
every SMT for P contains a Steiner point that is not a grid point of G(P).

Amid these sweeping negative results and conjectures, we show that finite reduction
is possible if the unit sphere is a hexagon in the plane such that there exist three unit
vectors, parallel to the three diagonals, summing to zero. We denote this space by H.
If the hexagon is regular, we denote the space by H.

THEOREM 3. There exists an SMT whose Steinerpoints are all gridpoints ofGn-z(P)
if P H is a set of n points.

Proof See the appendix.
For two lines parallel to a diagonal define their distance as the length (in H) of

the segment lying between the two lines of a line parallel to another diagonal (the
choice of which diagonal is immaterial). If P is such that the distance of any two
adjacent parallel lines of GI(P) is a multiple of a constant c, then there exists a k such
that Gk(P) is a regular triangular lattice (each side has length c in H), and Gj(P)=
Gk(P) for all j> k.

THEOREM 4. There exists an SMT whose Steinerpoints are all grid points of Gk(P)
if P H is such that Gk(P) is a regular triangular lattice.

Proof The proof for P H was given in [3] (the result is a crucial step in proving
the Steiner ratio conjecture). Theorem 4 follows by a linear transformation on H.

Extensions of Theorems 3 and 4 to higher dimensions are still open. We state
them as conjectures.

Let S] denote the d-dimensional space, where the unit sphere is a polytope with
d + 1 diagonals such that there exist d + 1 unit vectors, parallel to the d + 1 diagonals,
summing to zero.

CONJECTURE 3. There exists an SMT whose Steiner points are all grid points of
G,-d(P) if P sOd.

CONJECTURE 4. There exists an SMT whose Steiner points are all grid points of
Gk(P) if P SOd is such that Gk(P) is a lattice of d-dimensional simplices.

5. Conclusion. The Steiner problem in normed spaces appeared in early literature.
For example, Cockayne [1] gave some fundamental properties of SMTs in a normed
space whose unit sphere is a symmetric convex surface. Then followed a long gap of
void. Recently, there has been a revival of interests on this topic. Du, Graham, and
Liu [2] studied the Steiner problem for the plane where the unit disk is a symmetric
polygon, and Sarrafzadeh and Wong [6] did it where the unit disk is a regular polygon.
In this paper we gave some results that reduce the SMT problem in a normed space
to a finite and graphical problem. Our results generalize a recent result of Snyder for
rectilinear spaces. We also raised some conjectures as open problems.

Appendix. In H an edge is a path between two vertices (P-points or Steiner points).
Thus, an edge can contain several straight segments. An edge is called a straight edge
if it contains only one straight segment and is called a nonstraight edge if it is not a
straight edge. Note that an edge with more than two straight segments can always be
replaced by an edge with at most two straight segments. Thus, we assume in the
following that every edge has at most two straight segments. A Steiner tree for n points
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is said to be full if it contains exactly n- 2 Steiner points. Any Steiner tree that is not
full can be decomposed into edge-disjoint unions of smaller full Steiner trees, called
full subtrees.

LEMMA. There exists an SMT in H such that each of its full subtrees contains at

most one nonstraight edge.
Proof For simplicity, a nonstraight edge is said to be unexpected if it is incident

to a Steiner point. Consider SMTs with the minimum number of Steiner points. Among
them, the tree T with the minimum number of unexpected nonstraight edges will be
shown to have the desired property in the lemma. To do so, we show the following
two facts.

(1) If two nonstraight edges meet at a Steiner point, we can decrease the number
of unexpected nonstraight edges without increasing the number of Steiner points.

(2) If a nonstraight edge and a straight edge meet at a Steiner point with the third
edge being straight, then we can decrease the number of Steiner points, or decrease
the number of unexpected nonstraight edges without changing the number of Steiner
points, or shift the nonstraightness from one edge to another edge without increasing
the number of Steiner points and the number of unexpected nonstraight edges.

We first show fact (1). Suppose that two nonstraight edges ACJ and BDJ meet
at the Steiner point J. There are four subcases as shown in Figs. 2 and 3. (It may be
worth mentioning that by the minimality of the length, the subcases in Fig. 4 or subcases
that can be reduced to those in Fig. 4 are impossible.) In Fig. 2, suppose without loss

Ao
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J

J
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d

A --’J B
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J

A

J

FG. 4

of generality that the third edge at the Steiner point J meets J in the direction of CJ.
If IJCI >= IJDI, then extending BD to intersect JC at E and deleting JD, we will obtain
a new SMT with fewer unexpected nonstraight edges; if IJC] <-IJDI, then connect C
and D, and deleting JD, we can also obtain an SMT with fewer unexpected nonstraight
edges. All subcases in Fig. 3 can be reduced to the subcases in Fig. 2. Thus, fact (1)
is proved.

Next, we show fact (2). Suppose that the straight edge AJ and the nonstraight
edge BDJ meet at the Steiner point J. There are four subcases as shown in Figs. 5, 6,
7, and 8. In Fig. 5, if IJA <= IJDI, then we can connect A and D and delete JD so that

C

d

C

J Ao \

C

Ao---cr :: ::
\

oB
A

FIG. 5

J

A \’- B

FIG. 6
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FIG. 7

FIG. 8

the resulting tree has one less Steiner point; if [AJ >-IJDI, then we extend BD to
intersect JA at E and delete either JD or JE depending on the direction of the third
edge at J, so that the resulting tree has either fewer unexpected nonstraight edges or
a nonstraight edge at A but not at B. The subcases in Figs. 6 and 8 can be reduced to
those in Figs. 5 and 7, respectively. How to deal with the subcase in Fig. 7 is shown
in the figure. We leave the details to the reader.

Now, by (1), the tree T cannot have a Steiner point incident to two or more
nonstraight edges. Furthermore, by (2), in each full subtree of T, we can move all
nonstraight edges to meet at the same Steiner point, and hence each full subtree
contains at most one nonstraight edge. This completes the proof of the lemma.

We now prove Theorem 3 for P e H. Theorem 3 can then be obtained by a linear
transformation on H.

Note that a Steiner point adjacent to two P-points by straight edges appears in
G(P). In general, a Steiner point adjacent to two grid points of Gi(P) appears as a
grid point of Gi+I(P). Let T be an SMT with at most one nonstraight edge on each
full subtree. Let s be a Steiner point on a full subtree T’ with m P-points. Then at
least two branches of s contain only straight edges in T’, and each Gi(P), 1, 2,. .,
contains at least one new Steiner point lying on these two branches until all such
Steiner points have been included. Since T’ has only m 2 Steiner points, s e G,,_z(P)

_
Gn-2(P).

REFERENCES

[1] E. J. COCKAYNE, On the Steiner problem, Canad. Math. Bull., 10 (1967), pp. 431-450.
[2] D. Z. Du, R. L. GRAHAM, AND Z. C. LIU, Minimum Steiner trees in normed plane, preprint, 1991.
[3] D. Z. Du AND F. K. HWANG, A proofof the Gilbert-Pollak conjecture on the Steiner ratio, Algorithmica,

7 (1992), pp. 121-135.
[4] M. HANAN, On Steiner problem with rectilinear distance, SIAM J. Appl. Math., 14 (1966), pp. 255-265.
[5] F. K. HWANG, J. F. WENG, AND D. Z. Du, A class offull Steiner minimal trees, Discrete Math., 45

(1983), pp. 107-112.
[6] M. SARRAFZADEH AND C. K. WONG, Hierarchical Steiner tree construction in uniform orientations,

preprint, May 1991; IEEE Trans. on Computer Aided Designs, to appear.
[7] Z. SNYDER, O/1 the exact location of Steiner points in general dimension, SIAM J. Comput., 21 (1992),

pp. 163-180.



SIAM J. COMPUT.
Vol. 21, No. 6, pp. 1008-1025, December 1992

(C) 1992 Society for Industrial and Applied Mathematics

O02

ON THE COMPUTATIONAL COMPLEXITY OF APPROXIMATING
SOLUTIONS FOR REAL ALGEBRAIC FORMULAE*

JAMES RENEGAR

Abstract. Upper bounds on the complexity of approximating solutions of general algebraic formulae
over the real numbers are established; included are systems of polynomial equations and inequalities.
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1. Introduction1. This paper is concerned with the computational complexity of
constructing solutions to a very general class of algebraic problems defined over the
real numbers. The class includes many nonlinear problems from numerical analysis
and mathematical programming. The class is naturally defined in terms of the classical
decision problem for the first-order theory of the reals.

The decision problem for the first-order theory of the reals is the problem of
determining if expressions of a certain form are true or false. Although a more general
form is allowed, all allowable expressions can be reduced to the form

(1.1) (QIX[1]ERnl)(Q2x[2]cRn2) (O,oX[’] C [")P(x[1], x[’]),
where

(i) Each Qk is one of the quantifiers El or V;
(ii) P(xtll, .., x’) is a quantifier free Boolean formula with atomic predicates

of the form

gi(x[1], X[’])AiO,
each gi" (= nk --> being a real polynomial and A being any one of the "standard
relations"

(1.2) >,->_, =, _-<,<.
Such an expression is referred to as a sentence. While catenating blocks of variables,
it may be assumed that for each k, Qk and Q+ are not the same quantifier. Hence,
w- 1 is the number of quantifier alternations.

As a simple example of a sentence, consider

(.3) (y ")[(g(y)->_ 0) ^...^ (gin(y)--> 0)],
where g,. , g,," R" are polynomials. This sentence asserts that the "feasible set"
{x" gi(x) >-_ 0 Vi} is nonempty. Depending on the specific coefficients of the polynomials
gl,’’’, gin, this sentence is either true or false.

A more interesting example is provided by the following sentence in which
f, g,..., g,, ""- are assumed to be polynomials:

(y ")(Vx ")[(g,(y) _-> 0) ^... ^ (g (y) _-> 0)
(1.4) ^

[(gl(X) O) V’’" V (gm(X) O) V (f(y)-f(x) _-< 0)]].

* Received by the editors October 23, 1989; accepted for publication (in revised form) August 15, 1991.
This research was supported by National Science Foundation grant DMS-8800835.

? School of Operations Research and Industrial Engineering, College of Engineering, Cornell University,
Ithaca, New York 14853.

Through Theorem 1.1, the introduction has much overlap with the introduction of Renegar [19].
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This sentence asserts something about the algebraic nonlinear programming problem
(NLP)

min f(x),
(1.5)

s.t. g,(x) >-_ O, 1,. ., m.

The sentence asserts that there exists y En such that y is feasible for the NLP and
for all x En, either x is infeasible or the objective function value at y is at least as
good as at x. In other words, the sentence asserts that the NLP has an optimal solution
y. Depending on the specific coefficients of the polynomials f, g, , g,,, this sentence
is either true or false.

The collection of all true sentences constitutes the first-order theory of the reals,
denoted by Th (E). A deision method for Th (E) is an algorithm that, given a sentence,
determines whether sentence is in Th (E). Tarski [23] was the first to present a decision
method for Th (E). Regarding computational complexity, much better algorithms than
his are now known.

A brief survey of results on the complexity of the decision problem can be found
in Renegar 19], [22]. Important results have been established by Collins [8], Grigor’ev
[12], and Heintz, Roy, and Solern6 [13], among others.

The sentence (1.1) is said to be in prenex form; all quantifiers occur in front. As
already mentioned, sentences are allowed to be of a more general form, but all sentences
can be reduced to equivalent sentences in prenex form. The reduction can be accom-
plished efficiently, as is discussed in the introduction of [19]. In the present paper we
focus on sentences in prenex form.

Traditionally, attention has been restricted to sentences for which the coefficients
of the polynomials gi are rational numbers. Consequently, a decision method for Th (E)
is an algorithm in the usual Turing machine sense. However, there is no ambiguity
regarding what is meant for a sentence of the form (1.1) to be true or false if we allow
the coefficients of the polynomials gi to be real numbers. Borrowing a phrase from
Blum and Smale [4], we will refer to the resulting collection of true sentences as "the
extended first-order theory of the reals" and denote it by ETh (E). Thus, we view
Th (E) as the subset of ETh (E), consisting of those sentences for which all of the
polynomials occurring in the atomic predicates have rational coefficients.

An appropriate model of computation for defining what is meant by a "decision
method for ETh (E)" is the model developed by Blum, Shub, and Smale [3]. This
model formalizes and extends what researchers often refer to as "arithmetic com-
plexity." Computations are restricted to the arithmetic operations +, , all assumed
to be performed exactly on real numbers with no rounding errors (i.e., infinite precision),
and branching decisions are made using the comparison operations > and =. (A
complete formalization of the model requires developing an appropriate notion of
"uniform algorithm," etc.; these issues are dealt with in [3].)

When speaking of a decision method for Th (E) in the usual Turing machine
sense, we will, for brevity, speak of the "bit model" of computation. When speaking
of a decision method for ETh (E) as an algorithm in the arithmetic complexity sense,
we will speak of the "real number model" of computation. Some discussion of the
significance of the real number model of computation as regards the decision problem
is presented in [19].

In defining the sentence (1.1), we merely required that P be a "quantifier free
Boolean formula." Now we state more precisely the form we will be assuming P to have.

Given an arbitrary Boolean function P: {0, 1}" - {0, 1} and m atomic predicates
gi(x)A0, there is an obvious and natural way to define a 0-1 valued function P(x),
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namely,

where

P(x) := P(BI(X), ", B.(x)),

1 ifgi(x)AiO,
Bi(x):=

0 otherwise.

The perspective we take in this paper is that P is given, and the function P appearing
in (1.1) is then defined as above.

In some way a measure of the cost of evaluating the Boolean function P must
enter into the cost of a decision method. Traditionally, P has been assumed to be of
restricted forms. Rather than requiring P to be of a restricted form, we assume that a
procedure (i.e., oracle) is available for evaluating P when arbitrary values 0 or 1 are
substituted for the variables Bi. A component of the bounds we state will be the number
of "calls to P," meaning the number of times the procedure for evaluating P is used.
Of course we could restrict P to be of a specific form, but doing so would reduce the
versatility of our results.

When stating time bounds for parallel computation, we will use Time (P, N) to
denote the worst-case time (over all 0-1 vectors) required to compute P using N
processors.

When we refer to "operations" it will be in the context of ETh (R). Formally, for
the sequential operation bounds that follow, "operations" can be taken to refer to
those allowed in the real number model of computation developed by Blum, Shub,
and Smale [3]. For readers unfamiliar with that paper, "operations" can simply be
taken to refer to the ordered field operations +, , >, and (and operations for
storing and retrieving data). Although a model for parallel computation over the reals
is not formalized in [3], the uniform and elementary nature of the algorithms designed
for proving the "real number model parallel bounds" that follow guarantee that the
bounds will hold for any reasonable real number model of parallel computation.

When we refer to "bit operations" it will be in the context of Th (N) and will refer
to Turing machine operations. As with the real number model algorithms, the uniform
and elementary nature of the algorithms designed for proving the "bit model parallel
bounds" that follow guarantee that the bounds will hold for any reasonable bit model
of parallel computation, of which there are several (e.g., the circuit model commonly
used in defining NC).

In what follows we assume that P(x[], x[]) has rn atomic predicates and
we assume that d >_- 2 is an upper bound on the degrees of the polynomials occurring
in the atomic predicates. Also recall that nk is the number of variables occurring in x[k.

When referring to a decision method for Th () we may assume that the coefficients
of the polynomials are integers; we then let L denote the maximum, over all of the
coefficients, of the number of bits required to specify the coefficient.

The data specifying a sentence is to, nl, , no, Q1, , Q.,, m, A, , Am, d the
coefficients of the polynomials g, , gin, and the Boolean function P.

THEOREM 1.1 (Renegar [19], [20]). There is an algorithm for the decision problem
for ETh () that requires only

(md)2(o)Ilk nk operations and (md)(E n,) calls to P.

The algorithm requires no divisions. The algorithm can be implemented in parallel,
requiring time

2 nk log (md) + Time (P, N)
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if md 2o Ilk nk processors are usedfor the operations and N md (2k ,k) processors are
used for the calls (for any N >= 1).

When restricted to sentences involving only polynomials with integer coefficients, the
algorithm becomes a decision method for Th (R) requiring only

L(log L)(log log L)(md)2(IIknk

sequential bit operations and md)(k ,k) calls to P. When implemented in parallel the
algorithm requires time

log (L) 2 [I
k

nk log (md) + Time (P, N)

if L2(md)2)Ilknk processors are used for bit operations and N(md) (2kk) processors
are used for the calls (for any N >-_ 1).

A similar theorem was established by Heintz, Roy, and Solern6 [13].
As an application of the theorem, recall the two examples of sentences that we

gave. Applying the algorithm of the theorem to the first sentence shows that in the
real number model we can determine if the feasible region of the NLP(1.5) is nonempty
with (md)(’) operations performed in time [n log (md)](1) using (md)() parallel
processors, assuming that the degrees of the polynomials are at most d. Applying the
algorithm to the second sentence shows that we can determine if the NLP has an
optimal solution with (md)(2 operations performed in time In log (md)](1) using
(md)(2) parallel processors. The theorem provides analogous bounds for the bit
model assuming that the coefficients of f, gl,""", g, are integers.

There are many, many interesting decision problems that can be reduced to the
problem of deciding if a particular sentence is true or false. Indeed, the importance
of the decision problem for the first-order theory of the reals is largely a consequence
of its generality and the fact that decision methods for it exist. We list a few more
problems, motivated by nonlinear mathematical programming, that the reader may
find of interest. With a little practice, the reader can undoubtedly construct many others.

In the examples, we use "AB" as shorthand for "(---A) v (A ^ B)," and we use
"x is feasible" as shorthand for "(gl(x)--> 0) ^...^ (g,(x)>= 0)," i.e., x is feasible for
the NLP (1.5).

The following sentence is true if and only if (1.5) has a local optimum:

(=lye R")(=I6 N)(Vx N")[(6 > 0) A (y is feasible)
A

([(x is feasible) ^ (llx yl12 <= 62)]=>(f(x) f(y) >- 0))].

Here, denotes the Euclidean norm.
For the next example assume that the objective polynomial f is dependent on an

additional parameter p. Assume that for the situation of interest this parameter is only
known to lie within the range [0, ]. The following question is then natural: given
6 > 0, does there exist y such that if p is fixed at any value in the interval [0, #],
then the resulting NLP (1.5) has an optimal solution within distance 6 of y? The
answer is yes if and only if the following sentence is true"

(=lye R")(Vp e R)(Zlx e R")(Vz e R")[(p > 0) ^ (O --< #)]

[(x is feasible) ^ ([[y- xll2- 62_-< 0)
A

[(z is feasible) =:> (/(p, z)-f(p, x) >= 0)]].
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Similarly, we can construct interesting sentences when the constraint polynomials
depend on additional parameters. We can construct a sentence to determine if there
is a nondegenerate optimal solution. We can construct sentences to determine which
constraints are redundant. We can construct sentences to determine if the feasible set
is convex and if the objective and constraint polynomials are convex. We can also do
all of these things if the functions involved are only piecewise polynomial, assuming
that the underlying decomposition of the domain space is defined via polynomial
equalities and inequalities. With only a little thought, we can also do the same things
for rational functions (i.e., quotients of polynomials). By introducing additional vari-
ables and atomic predicates, we can also introduce radicals into the sentences, e.g., a
new variable y and an atomic predicate requiring that y2-x- 0 allows y to be used
as the square root of x. (Of course adding new variables can be disastrous in terms of
the complexity bounds provided by Theorem 1.1.) Finally, we remark that deciding if
an algebraic "min-max" problem has a solution can often be easily recast into deciding
if a particular sentence is true or false, etc.

In the above examples we have been primarily concerned with determining if a
solution of an algebraic problem exists. (Is there a solution to the feasibility constraints
of the nonlinear programming problem? Does the NLP have an optimal solution?)
The present paper is concerned with the computational complexity of approximating
such solutions when they do exist.

To be precise, we first introduce the definition of a formula. A formula is defined
exactly the way a sentence is, except that in a formula not all variables are required
to be quantified. The variables that are not quantified are referred to as the free
variables; when specific values are substituted for the free variables, the formula
becomes a sentence.

Consider a formula

(1.6) (Qlxllnl) (Q,oxtn)P(y,xlJ, ,x)
with free variables y (yl, , Yl). We say that 37 I is a solution for the formula if
the sentence obtained by substituting 37 into the formula is true. We say that 33 t is
an e-approximate solution for the formula if there exists a solution 37 for the formula
such that 1133-3711 <= e, where the norm is the Euclidean norm on i. This paper is
concerned with the computational complexity of constructing e-approximate solutions.

As an example, a point 37 is an e-approximate solution for the quantifier free
formula

[(gl(y) <- 0) A’’’A (gm(y)<--O)]

if and only if it is within distance e of a feasible point for the algebraic NLP (1.5).
Similarly, a point 37 is an e-approximate solution for the formula

(Vx Nn)[(gl(y >- O) A A (g,(y) >-- O)
A

[(gl(x) < 0) v’’’ v (g,,(x) < O) v (f(y) -f(x) < 0)]]

if and only if it is within distance e of an optimal solution of the NLP.
Given a formula (1.6) and r->0, define SOLUTIONS (r) to be the set of all

solutions 37 satisfying 119711- r. The following theorem is our main result.
THEOREM 1.2. There are algorithms which, given 0< e < r and a formula (1.6),

construct a set {y(i)}i of (md)2(1 rig nk distinct e-approximate solutions with the property
that for each connected components of SOLUTIONS (r), at least one of the points, y(i)
is within distance e of the component.
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One such real number model algorithm requires

md 2O’)l lqk "klog log ( 3 +)
sequential operations and md)211-Ik n calls to P.

Another such real number model algorithm requires

(md)2)lH nlog ( l +)
operations (no divisions), and (md)2(’IHknk calls to ; this algorithm is significant
because it can be implemented in parallel, requiring time

]0(1)[Iknk log (md) log (1 +) +Time (P’, N)

if (md)’lFlknk processors are used for operations and N(md)’lrI "" processors are
used for calls (for any N >- 1).

Assuming 0 < e < r are integral powers of 2, there is such a bit model algorithm
which, when implemented in parallel, requires time

2"1 nk log (mdL+ Ilog (e)l + Ilog (r)l) + Time (’, N)

if (L+|l_og(e)l+llog(r)l)(md)’’n"" processors are used for operations and
N(md)2tO)lHknk processors are used for calls (for any N >-1). The e-approximate
solutions constructed will then have rational coordinates with numerators and denominators
bounded in bit length by O(log (1) + Ilog (e)l + [log (r)l).

Of course the theorem provides upper bounds on the computational complexity
of approximating solutions to the various problems already discussed. We leave
determination of the bounds implied to the reader.

The bit model algorithm of the theorem relies heavily on the recent algorithm of
Neff 16] for approximating all roots of univariate polynomials. Neff resolved positively
the longstanding open problem of whether approximating all roots can be done quickly
in parallel.

Neff [16] dealt specifically with bit complexity; however, it seems that slight
modifications of his ideas lead to an efficient parallel real number model algorithm
for approximating roots of univariate polynomials; namely, given 0< e < r, it seems
that e-approximations to all roots within distance r of the origin can be obtained in
time log (d + log (1 + (r/e))) o(1) using (d + log (1 + (r/e))) O(1) parallel processors,
where d is the degree of the polynomial. If this is indeed true, then Theorem 3.2
implies a corresponding parallel time bound for approximating solutions of general
formulae; namely, time

if (md)")lH"(log(l+(r/e)))(1) processors are used for operations and
N(md)rI"k processors are used for calls (for any N-> 1). Since a rigorous
extension of Netf’s algorithm to the real number model computation has not been
written, we cannot claim this bound for general formulae to be proven. Moreover,
even if true, contrasting this parallel time bound with the sequential time bound for
the first algorithm in the theorem leads to the open question of whether there exists a
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real number algorithm achieving the same parallel time bound using only (md) 2(’)/[Ik nk

processors for operations and (md)2’lnknkN processors for calls.
In terms of e and r alone, the bound provided by the first algorithm of the theorem

is optimal for a very general model of computation. More precisely, the following
lower bound is known. Let ag denote an algorithm which, given any s e [0, r2], constructs
a value within distance e of v/. In 2 of Renegar [17] it is proven that if ag is an
algorithm in terms of a very general model of computation that allows the operations
+, -,., +, >, and =, then the following is true: there exists s e [0, r2] such that when
algorithm ag is applied to s, it will require at least C log log (3 + (r/e)) operations,
where C > 0 is independent of ag, r, and e. The optimality claim follows.

Theorem 1.2 is somewhat unsatisfactory in that r is given a priori. It would be
nice to also have an upper bound on the computational complexity of obtaining a
single e-approximation solution when only e and the formula (1.6) are input, and not
r. The previously mentioned lower bound of 17] implies that an additional parameter
must occur in any such upper bound. More specifically, defining

r(e)=inf {r; r> e and SOLUTIONS (r)

the lower bound result implies that in terms of e and r(e) alone, the best upper bound
possible (for a very general model of computation), would grow like log log (3+
(r(e)/e)).

If we could design an algorithm which, given e > 0 and a formula (1.6) for which
the solution set is nonempty (a condition that can be efficiently verified using the
algorithm of Theorem 1.1), efficiently constructs a good upper bound (e) to r(e),
then combined with the algorithms of Theorem 1.2, we would have methods for
efficiently constructing an e-approximate solution where the only input to the methods
would be e and the formula. However, it is easy to design an algorithm for determining
a good upper bound (e) to r(e) using Theorem 1.1.

First check if SOLUTIONS (e) is nonempty. If it is nonempty, let r(e):= e.

Otherwise, replace e with 2e and try again. Assuming that on the ith iteration it is
determined that SOLUTIONS (sic)= for a specific number si, replace s with s+l
(&)2 and try again. Terminate with the first value of s thus obtained for which
SOLUTIONS (sic) , and define (e):= se.

Combining this procedure with the first algorithm of Theorem 1.2 yields a method
for constructing an e-approximate solution with operation count, in terms of e and
r(e) alone, growing only like loglog(3+(r(e)/e)). By the previous remarks, this is
optimal in terms of e and r(e) alone (for a very general model of computation), among
all algorithms depending only on input e and the formula (1.6).

The author wishes he knew how to design an efficient real number model algorithm
for determining a relatively sharp upper bound on the infimum of those values r for
which every connected component of the solution set intersects {y; IlYll --< r}. For the
bit model of computation, we do have the following proposition, which is established
in 3.

Given a formula (1.6), let SOLUTIONS denote the set of its solutions.
PROPOSITION 1.3. Ifformula (1.6) has only integer coefficients, each of bit length

at most L, then every connected component of SOLUTIONS intersects {y; IIYll-<- r}, where
r satisfies log (r)= L(md)2’111".

A similar, but weaker bound can be found in Vorobjov [24].
Our proofs are not lengthy because the bulk of the mathematics needed to establish

them has already been developed in Renegar [19]-[21]. In 2 we collect the proposi-
tions from those papers that we will rely on. In 3 we reduce the problem of designing
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algorithms to establish Theorem 1.2 to the problem of designing efficient algorithms
for approximating zeros of real univariate polynomials; the results in 3 are phrased
to be applicable to any univariate polynomial zero approximation algorithm. In 4
we recall some known facts regarding the computational complexity of approximating
the real zeros of real univariate polynomials. The results of 3 and 4 together give
the theorems.

Several researchers have considered the problem of obtaining worst-case computa-
tional complexity bounds for approximating solutions of systems of polynomial
equations, including Lazard 15], Chistov and Grigor’ev [7], Renegar 18], and Canny
[6]. Grigor’ev and Vorobjov [11] considered the problem of approximating solutions
of real polynomial inequalities. (Except for [18], the analyses and algorithms in these
papers rely on structure provided by the bit model of computation that is not available
in the real number model.) When specialized to systems of polynomials, Theorem 1.2
provides bounds at least as good as those obtained by all of these researchers, except
for the fact that the constants in the exponent are unspecified.

An understanding of the decision methods of Collins [8], Grigor’ev [12], and
Heintz, Roy, and Solern6 [13] lead to algorithms for approximating solutions of
formulae, similar to the way in which the algorithms in the present paper are developed
from [19]-[21]. (Both Collins and Grigor’ev deal only with bit complexity and do not
present efficient parallel decision methods.) However, in the same ways that the
complexity bounds in [19] are superior to those found in these other works (see [19]
or [22] for a comparison), the resulting bounds for approximating solutions are also
superior.

Finally, as will become obvious to anyone who proceeds, this is strictly a theoretical
work. Although the ideas underlying the algorithms may someday lead to "practical"
algorithms, the algorithms herein are constructed solely as means to proving the
theorems.

2. Preliminaries. In this section we introduce definitions and record several pre-
viously established propositions.

The notation used in this and subsequent sections may strike the reader as odd;
it has been chosen to conform with the notation of [19]-[21], where the reader is
referred for many of the proofs.

Whenever we speak of "constructing" something, we mean that there is a real
number model algorithm for doing so. Each of the algorithms in the following proposi-
tions and lemmas yield bit model algorithms when restricted to integer inputs, assuming
that the underlying operations are carried out "bit by bit."

Let hi," ", h :l _.) be arbitrary polynomials of degree at most @. We use {hi}
to denote the set ofthese polynomials. A vector r {-1, 0, 1} is said to be a "consistent
sign vector" for {hi}i if there exists 37 El such that the sign of hi(y) is tri for all i. The
"sign vector of {hi}i at )7" is the vector in {-1, 0, 1} whose ith coordinate has the
same sign as hi(Y).

The following proposition is a restatement of Proposition 4.1 from [19].
PROPOSITION 2.1. Any set {hi}i of polynomials hi: [ - , ofdegree at most >- 2,

has at most (Ate)o() consistent sign vectors. The entire set of consistent sign vectors can
be constructed from the coefficients of {hi}i with (At)(l) operations (no divisions)
performed in time log(A//)](1) using (A/)(t) parallel processors. If the coefficients
of {h}i are integers of bit length at most L, the construction can be accomplished with
L(log L)(log log L)(I/t)() sequential bit operations, or in time (log L)
[l log (A/)](1) using L2()() parallel processors.
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The "connected sign partition" CSP {hi} generated by a finite set {hi}i of poly-
nomials hi" t.._> is the partition of E whose elements are the maximal connected
subsets with the following property" if 37 and 39 are in the same element, then the sign
of hi()) is the same as the sign h() for all i.

The following proposition is a restatement of Proposition 6.2.2 from [20]. The
polynomials {g} occurring in the proposition are assumed to be those occurring in
the formula (1.6).

PROPOSITION 2.2. Given a formula (1.6), there exists a set {h}i of (md)2(>rI’
polynomials hi" l._> , of degree at most (md)2(rIk nk, with the property that if.9 and

are in the same element of CSP{hi}i, then )SOLUTIONS if and only if fie
SOLUTIONS. The set {h}i can be constructed from the coefficients of {gi}i with
(md)2(IrIkn operations (no divisions) in time [2"l([Iknk) lOg(md)](1) using
(md)2(ll-Ik parallel processors. If the coefficients of {gi}i are integers of bit length at
most L, then the construction can be accomplished with L(log L)(log log L)(md)21 rI n
sequential bit operations, or in time (log L)[2l(I-[k nk) log (md)](1 ifL2(md):(Irlk n
parallel processors are used; moreover, the coefficients of { hi} will then be integers of bit
length at most (L+ l)(rnd)2II.

For :, U CI+1 define :. U= U. If satisfies :1+1 0, define

1
Aff() := (1, ’) Cl,

the "affine image" of . Let

e+ := (0, , O, 1) e +.
For a polynomial R" I+1__) in the variables U1, gl+l, define

VR:
OUI

The following proposition is a paial restatement of Proposition 3.8.1 from [19].
PROPOSITION 2.3. Assume that hi, , h" 1 are polynomials ofdegree at most

2. ere exists a set {hi}i of ()oi) polynomials R" i+1 of degree at most
D ()o1) with the following properties:

(i) For each element of CSP {h} there exists R {h} such that R is not identically
) U, wherefor some i, Aft (i))zero andfactors linearly over the complexes R(U) i

is well defined and is in the element;
(ii) For each fl 1+1 the entire set of univariate polynomials

R(fl + tel+),

d
t--vg(+te,+l), j=0,... ,

obtained from all R {hi}i can be constructed from fl and the coefficients of {hi} with
()o!) operations (no divisions) in time [/log ()]o1) using ()o1) parallel
processors; if the coefficients of {hi} and are integers of bit length at most L, then all
numbers occurring during the construction will be integers ofbit length at most L( )o1).

The significance of the bound on the bit length of the integers occurring during
the construction is that bit operation bounds are easily deduced from it and the real
number model operation bounds of the proposition; this is made especially easy
because the construction avoids divisions. For example, because two integers of bit
length at most L can be multiplied in sequential time O(L(log L)(log log L)), the
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proposition gives an overall sequential bit operation bound of L(log L)(log log L)-
()o(i). Similarly, a parallel time bound for the bit model is easily deduced from
the fact that two integers of bit length at most L can be multiplied in time O(log L)
using O(L) parallel processors.

Define

(l+l,D):={(il-l,i ’-2,. .,i,1,0)’, i7/ and0<i<lD2}.

Thus, (1 + 1, D) l/1.
The next proposition is a partial restatement of Proposition 2.3.1 from [19].
PROPOSITION 2.4. Given any real polynomial R: 1+ of degree at most D that

is not identically zero and factors linearly over the complex numbers R( U)= I-Ii (i). u,
the following is true: for each () for which Aft (so(g)) is well defined and real there exist

(l+ 1, D) and O<-_k<=D such that the univariate polynomial t-- R( + tel+l) is

not identically zero, and for some real zero of R(fl + tet+), the vector

d k

satisfies Aft (sc-) Aft (7(i)).
The following easily proven proposition is a restatement of Proposition 4.1.1 of

[20]. The importance of this proposition has been recognized by others (e.g., see Coste
and Roy [10]).

PROPOSITION 2.5 (Thom’s lemma). Assume thatp 0 is a real univariatepolynomial
of degree d. If t’, t" are such that t’ < t" and for some 0 <= < d there is a real zero of
the ith derivative p() contained in the interval t’, t"], then for some i<-j < d the sign of
p()(t’) differs from the sign ofp(J(t").

As a simple consequence ofthe proposition, note that ifp O, t’ t", p( t’) p(t")
0, then the sign vector of {p(J}]j at t’ differs from that at t". Hence, the sign vectors
of {p(J)}]--0 at the real zeros of p serve as representatives of the zeros; the sign vectors
distinguish the zeros from one another.

Let p(t)= ydi=o ait,i q(t) E i=0e biti be univariate polynomials of degrees at most
d and e, respectively. The "Sylvester resultant" of p and q is the determinant of the
(d + e) (d + e) "Sylvester matrix" [mij] defined by

ifj-_< e- k,
mij :=

bj_ ifj > e k.

An extremely well-known and classical result states that if the degrees of p and q are
exactly d and e, then the Sylvester resultant of p and q is zero if and only if p and q
have a common zero (among the complex numbers). A proof of this is provided by
Lemma 3.1 of [20].

Another well-known fact that we will rely on is that interpolation of a univariate
polynomial p(t)= Eid__o ait can be accomplished quickly in parallel. A proof of the
following easy lemma can be found in Appendix B of [19].

LEMMA 2.6. Assume thatp C - C is a polynomial ofdegree at most d >- 2. A positive
multiple ofp can be computed solely from the values p(-), ? {0, 1,. , d}, using d(1

operations (no divisions). The computations can be implemented in parallel, requiring
time [log (d)](1) if d (1) processors are used. If the values p({), {0, 1,. , d} are
all integers of bit length at most L, all numbers occurring during the computations will
be integers of bit length at most L+ d(1.
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Yet another well-known fact that we will use is that the determinant of a matrix
can be computed quickly in parallel. The algorithm underlying the following proposi-
tion is constructed by slightly extending ideas of Csanky [9] to avoid divisions. A
proof of the proposition can be found in Appendix A of [19].

PROPOSITION 2.7 (Csanky [9], Berkowitz [1]). There exists an algorithm which,
given any n >- 1 and any complex n x n matrix A, computes n! det (A) without divisions
in time O(log2 (n)) using n(1 parallel processors. If the coefficients ofA are integers of
bit length at most L, all numbers occurring during the computation will be integers of bit
length at most Ln(l.

Propositions similar to the following proposition are well known (e.g., Borodin,
von zur Gathen, and Hopcroft [2]).

PROPOSITION 2.8. Suppose that Pl, P2, and P3 are real univariate polynomials of
degree at most d. Let p denote the greatest common divisor of {Pl, P2, P3}. (Of course p
is unique up to a constant multiple.) Then we can. efficiently construct real polynomials
1, 2, and 3 for which there exists a common constant e # 0 satisfying cpi Pi for all
i. By "efficiently construct" we mean that the polynomials i can be constructed with d
operations (no divisions) in time [log(d)] (1) using d1 parallel processors. If the

coefficients ofpl, P2, and P3 are integers ofbit length at most L, then all numbers occurring
during the construction will be integers of bit length at most Ld).

Proof Begin by computing p. It is well known that this can be accomplished in
parallel time [log (d)]( using d processors (e.g., by relying on Brown and Traub
[5] and Csanky [9]). A complete proof of this is provided just following Proposition
8.2 in [21]. The proof there shows that this can be accomplished without divisions by
relying on Proposition 2.7 above. Moreover, the proof shows that if p, P2, and P3 have
integer coefficients of bit length at most L, then the constructed polynomial p will have
integer coefficients of bit length at most Ld l).

To construct/5i, consider the linear equations corresponding to the identity Pi
viewing the coefficients of/3i as variables. Use the algorithm of Proposition 2.7 to
efficiently compute (multiples of) the numerator and denominator determinants arising
from Cramer’s rule. Multiply the quotients by the product of the three denominator
determinants (for i= 1, 2, and 3) to obtain/i.

We close this section with a well-known and easily proven lemma that will be
relied upon in establishing Proposition 1.3.

LEMMA 2.9. Suppose that p (t) d
i=o ait is a univariate polynomial, where ad O.

Ifp()=O, then [?1_--< 1 q-maxi<d [ai/aa[.
Proof. We may assume that 171 > 1. Clearly,

d--1 ai ai a-1 ai I1"--< E I?l i--<max y I?l <max
i:0 aa i<d aa i:0 i<d aa I-I-1

The lemma follows.

3. Reduction to univariate polynomial zero approximation. In this section we show
how to reduce the problem of constructing algorithms for establishing Theorem 1.2 to
the problem of constructing efficient algorithms for approximating zeros of univariate
polynomials. The highlight of this section is a theorem that allows us to deduce
operation time bounds on the cost of obtaining e-approximate solutions from operation
and time bounds for univariate polynomial zero approximation algorithms.

Before stating and proving the theorem of this section, we present a proposition
that will be used in the proof. This proposition regards the computational complexity
of approximating the real factors of multivariate polynomials that are known to factor
linearly over the complex numbers.



APPROXIMATING FORMULAE 1019

We assume that a real number model procedure for obtaining approximations to
the real zeros of real univariate polynomials is available. We treat the procedure as
an oracle. Letting Pd denote the set of nonconstant real univariate polynomials of
degree at most d, we let Cost (d, r, e) denote the worst-case (over Pd) number of
sequential operations required by the procedure to construct a set of d (1) points that
contains e-approximations to all of those real zeros satisfying ]1 -< r. (We don’t
require that each of the d) points be an e-approximation to a zero.) We let
Time (d, r, e, N) denote the worst-case time required by the procedure if it is imple-
mented using N parallel processors. We also assume that we have an analogous bit
model procedure. Letting PL,d denote the set of nonconstant real univariate poly-
nomials, of degree at most d, whose coefficients are integers of bit length at most L,
we let Cost (L, d, r, e) denote the worst case number of sequential bit operations
required by the procedure, and we let Time (L, d, r, e, N) denote the worst case time
required by the procedure if it is implemented using N parallel processors. We assume
that this procedure constructs rational points yi) with numerator and denominator
bounded in bit length by O(llog (r) + Ilog (e)l).

Recall that l( + l, D) := {( 1-2, t-2,..., i, 1, 0)’’, 7/, 0= =/D}.<.< 2

PROPOSITION 3.1. Assume that R: N+IN is a (not identically zero) polynomial,
( Uover the complex numbers.ofdegree at most D > 2, thatfactors linearly R(U) Hi

Assume that the coefficients of all of the following pairs of univariate polynomials are
available;

(3.1) -> R(fl + tel+i),

(3.2) t-> VR( + te,+),

where ranges over (1 + 1, D). (Note that we do not assume the coefficients of R are
known; we do assume that for each fl we know which pair (3.1), (3.2) corresponds to .)

Given 0 < e < r, a set {y()} t of D) points satisfying the following property
can be efficiently constructed; for each (i) satisfying li)+#O, Aff((i))t, and
I]Aff ((i))l] =< r, there exists y(J) G {y(i)}i satisfying Ily(J-Aff ((’>)11 < e.

By "efficiently constructed" we mean that the set {y()} can be constructed
with (lD)(1) Cost (D, r, el1) sequential operations, or in time [log, (lD)](1)+
Time (D, r, e l, N) using N(lD)) parallelprocessors or any N >- 1). Ifthe coefficients
of the polynomials (3.1) and (3.2) are all integers of bit length at most L, it can then be
constructed with

sequential bit operations, where = L+log (/)+llog (r)l+llog (e)] and f= LD(. It
can then be constructed in parallel, requiring time

(log L)[log (lD)](1 + Time L, D, r,-, N
if (2+ N)(lD)O( processors are used (for any N>= 1). The coordinates of the points
y(i will then be rational with numerator and denominator bounded in bit length by
O(log (l) + ]log r)l + ]log (e)l).

Proof By Proposition 2.4 there exist 0 <_- k <_- D and/3 N (1 + 1, D), which satisfy

(3.3) -> R( + tel+) 0,

d 0
(3.4) R(fl + te+ O.

dtk 0 UI+
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Moreover, such k and /3 can be efficiently determined from the polynomials (3.1),
(3.2). Fix such a pair k,/3.

Consider the system of D + 1 univariate polynomials

d-R(fl + te+) w O, D-1
dtW

d k 0
t- R( + tel+).

dt O UI+I
Assuming that the coordinates of the consistent sign vectors for this system are indexed
from 1 to D+ 1, define 3- as the set consisting of those consistent sign vectors " for
the system that satisfy both of the properties z 0, ’o+1 0. Because the coefficients
of the polynomials (3.1) and (3.2) are assumed available, Proposition 2.1 shows that
3- can be constructed efficiently.

Relying on Proposition 2.5, there is a natural one-to-one correspondence between
3- and the set consisting of those real zeros ? of t-R(+tel+) for which
Aff[(dk/dtk)VR(fl+?et+l)] is well defined. For -3-, define t(-) to be the zero
corresponding to -, and define

y(-) := Att VR(fl + t(’r)el+l)

We will show how to efficiently construct a finite subset of l that contains an
e-approximation to every point y(-) satisfying Ily(’)ll =< r. Letting {y)} denote the
union of the subsets thus obtained from all 0 <-k <= D and /3 e (l+ 1, D) satisfying
(3.3) and (3.4), Proposition 2.4 then implies that {y} satisfies the requirements of
the proposition.

We continue to assume that k and/3 are fixed and that they satisfy (3.3) and (3.4).
For each 1,. , l, consider the Sylvester resultant of the two univariate poly-

nomials

(3.5) - R(fl + tel+l),

d k 0 d k 0
(3.6) t--dtk OUi

R(fl + tet+l)-S
atk OUl+1R(fl + tet+l),

treating the second polynomial as a polynomial of formal degree e, where e is the
maximal degree achieved by the second polynomial (as a polynomial in t) as s ranges
over C. We can thus view the Sylvester resultant as a real univariate polynomial in
the variables s; let qi denote this polynomial.

From the coefficients of the polynomials (3.1) and (3.2), a real nonzero constant
multiple of qi can be computed quickly in parallel by using the algorithm of Proposition
2.7 to evaluate the determinant of the Sylvester matrix for particular values of s, and
then interpolating using the algorithm of Lemma 2.6.

Note that yi(r) is a zero of q for all i. This property of qi will be especially
important for us. However, the above construction can produce q that are identically
zero; this we must avoid. We now modify the construction to produce q 0, which
still has y(r) as a zero for all ’.

Rewrite the univariate polynomials (3.5) and (3.6) as pl(t) and -> pz(t)-
sp3(t), respectively. Using the algorithm of Proposition 2.8, replace Pl, P2, and P3 with
the polynomials/1,/, and/3 occurring in the statement of that proposition. Let qi(s)
denote the Sylvester resultant arising from the polynomials /l(t), /(t) s/3(t).
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Since/1,/2, and/3 share no common zero, qi0. Since p3(t(’))#O=pl(t(7")) for all- 3-, we have that pl(t(z))=0 for all t 3-. Consequently, since p2/P3=fi2/ff3, we
have that yi(z) is a zero of qi for all z 3-.

Henceforth, we may assume that q 0 and qi(y(z))= 0 for all z 3-.
For each i-- 1,. ., l, apply the algorithm for approximating zeros of univariate

polynomials to q to obtain a set of D(1) points {sj}j c with the propey that for
each real zero g of q that satisfies Ig[ r, there exists j such that Is-gl e/l. In
paicular, for each pair (i, ), where Ily()llr, there exists j’=j(i, ) satisfying
[y,(r) s, N e/I.

We will discuss a procedure that, given i, j, and r e if, efficiently determines if
lye(r)- si el L Applying this procedure to all triples (i,j, r), we can then efficiently
determine the set if* of those r with the propeay that for each there exists j’ =j(i, r)
satisfying lye(r)- sj,I N e/l; of course, we determine indices j(i, r) as well. (If there are
several such indices for some pair and , discard all but one of them and denote it
by j(i, r).) Then the set of points {(SI,j(I,z),’’’,SI,j(I,z)); Z if*} will contain an e-

approximation to each point y(z) (z ) satisfying [[y(z)[[ r.
Finally, to complete the proof, here is the procedure that, given i, j, and z ,

efficiently determines if [y(z)- sii[ e/l. Consider the following system of D+ 3 bivari-
ate polynomials:

VR(fl + tel+l)
dt

w=0,...,D-l,

(3.7)

d k O- R(fl + te+),
dtk 0 UI+
d k 0 d k 0

(s, t) > R(fl + tel+,)- s
dtk 0 Ui dtk 19 Ul+
2

E
s

R(+tel+l),

Relying on the algorithm of Proposition 2.1, the set of consistent sign vectors for this
system can be efficiently constructed. Using Proposition 2.5, the point t(z), s y(z)
is the unique point at which the sign vector of the system has (z, 0) as its first D + 2
coordinates. Searching through the consistent sign vectors, we can thus find the sign
vector corresponding to t(z), s y(z); the last coordinate of that sign vector is 0
or 1 if and only if lY(’) sg[ _-< e / I.

The operation and time bounds of the proposition follows easily from the proposi-
tions and lemma referred to in the construction. [3

Before continuing, we note the following. If the coefficients of the polynomials
(3.1) and (3.2) are integers of bit length at most L, then the coefficients ofthe polynomial
q occurring in the proof of the proposition will be integers of bit length at most LD(.
In particular, since yi(z) (as in the proof) is a zero of q for all re 3-, it follows from
Lemma 2.9 that log (IIAtt (:’)ll)-<log (1)+ LD’ for all such that Aft (:(i)) is well
defined. This fact will be important in establishing Proposition 1.3.

Let Cost (d, r, e), Time (d, r, e, N), Cost (L, d, r, e), and Time (L, d, r, e, N) be as
defined just prior to Proposition 3.1. We can now easily establish the following theorem.

THEOREM 3.2. Given 0< e < r and a formula (1.6), a set {y()}iof(md) 20()II-Ik nk

distinct e-approximate solutions satisfying thefollowing property can be efficiently construc-
ted" for each connected component of SOLUTIONS (r) there exists y( within distance
e of the component.
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By "efficiently constructed," we mean that the set {y(i)}i can be constructed with
(md)2<)ll-IknkCost(D, r, ell) operations and (md)2<ll-lkn calls to P, where D=
(md)9<)lI]k nk. It can be constructed in time

21 n log (rod) + Time D, r, , gl + Time (P, N)

if N(rod)on parallel processors are used for operations and N(md)on,

parallel processors are used for calls (for any N, N 1).
If the formula has only integer coecients of bit length at most L, then the set

{y(} can be constructed with

[(log)(loglog)+Cost(LD,r,)](md)2)ln
sequential bit operations, and (md)1 calls to , where =
L+log (/)+]log (e)[+[log (r)] and = LD. It can then be constructed in time

(log ) 21 log (rod) + Time L D, , N +Time (P, N)

if (+ N)(md)(n" processors are used for bit operations and N(md)n"
processors are used for calls (for any N,N 1). The points {y(} will then have
rational coordinates with numerator and denominator bounded in bit length by
O(log (l) + Ilog (r)l + log (e)l).

Proo Replace the quantifier free formula P(y, x, ,x) in (1.6) with the
formula

P(y, x[], ", x[]) := P(y, X[1], ", X[w]) A (llyll = r).
Let {h} denote the set of polynomials h" NIN as constructed in Proposition

2.2, assuming that {gi}i is replaced with {gi}i U {y I[y[] 2- r}, and let {h}i denote
the set of polynomials R" Nl+ N as in Proposition 2.3.

Propositions 2.2, 2.3, and 3.1 together easily imply that one can efficiently construct
a set {y(i}i of (rod)21’ points y(ieNl with the following propey; for each
connected component of SOLUTIONS (r) there exists y(i within distance e of the
component.

All that remains to be accomplished is the discarding of those points y( that are
not within distance e of any connected component of SOLUTIONS (r). Determining
which y(i to discard is equivalent to determining which sentences

(ay ,)(Qx e ,) Qx ,)[p(y, xl,..., x) (ly yill e)]
are false. Relying on the algorithm of Theorem 1.1, this can be accomplished efficiently.

The operation and time bounds stated in the theorem are easy consequences of
the propositions cited along with the bounds provided by Theorem 1.1.

In closing this section we complete the proof of Proposition 1.3. Let {hi}i denote
the set of polynomials hi" 1 as constructed in Proposition 2.2 (not assuming that
{g}i is replaced as in the above proof). Let {hi} denote the set of polynomials
R" NI+I N as in Proposition 2.3. Then for each connected component of SOLUTIONS,

(i U, where for somethere exists R {h}i such that R factors linearly R(U) i
i, Aft ((i) is in the component. If the coefficients occurring in the formula (1.6) are
all integers of bit length at most L, Propositions 2.2 and 2.3 show that the coefficients
of the corresponding univariate polynomials (3.1) and (3.2) obtained from R {h}i
will be integers of bit length at most L(md)21". Lemma 1.3 is now a consequence
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of the observations immediately following the proof of Proposition 3.1 along with
Lemma 2.9.

4. Bounds for univariate polynomial zero approximation. In this section we briefly
review some known upper bounds on the operations and time required to compute
approximations to the real zeros of real univariate polynomials.

Recall that Pd was defined as the set of all nonconstant real univariate polynomials
of degree at most d, and PL.d was defined as the subset of Pa consisting of polynomials,
all of whose coefficients are integers of bit length at most L.

Perhaps the best-known method for approximating real zeros of univariate poly-
nomials is via Sturm sequences (e.g., see Henrici [14]). Givenf Pa and 0< e < r, the
method proceeds by bisection and computes e-approximations to all of the real zeros
g off satisfying Igl <_- r. The number of operations required is only d1 log (1 + (r/e));
the operations can be implemented in parallel requiring time [log (dr/e)] if d
parallel processors are used.

For readers unfamiliar with Sturm sequences, similar bounds can be obtained by
invoking Theorem 1.1 to design an algorithm for approximating the real zeros of
univariate polynomials. First, the algorithm of Theorem 1.1 is used to determine if the
interval [-r, r] contains a zero of f; of course, this is equivalent to determining if the
sentence

(::Is 6 )[(f(s)=0) A (S -< r) ^ (s >--_--r)]

is true. If the sentence is false we terminate. Otherwise, we bisect the interval and
query which of the two smaller intervals contains a zero, and so on. This approach,
together with Theorem 3.2, produces the second algorithm of Theorem 1.2.

The bit complexity algorithm of Theorem 1.2 is obtained by combining Theorem
3.2 with Neff [16]. As mentioned in the introduction, Neff showed that there is an
efficient parallel bit-model algorithm for approximating all zeros of a complex univari-
ate polynomial; assuming e is an integral power of 2, he showed that e-approximations
to all zeros can be obtained in time [log(L+d+llog(e)l)]1) using (L+d+
Ilog (e)l)(1 processors. Taking the real part of each of these approximations, we
obtain a set of real numbers containing e-approximations to all of the real zeros of
the polynomial; although some of the real numbers in the set thus obtained may not
approximate any zero, Theorem 3.2 is still applicable--the algorithm developed to
prove the theorem "weeds out" points which are not approximations.

In Renegar [17], an algorithm is presented that obtains approximations to all
zeros (including the complex zeros) of a polynomial f Pal. The main results of that
paper are presented assuming that an upper bound R on the absolute values of all of
the zeros is known a priori. The operation bound presented is of the form d1) log
log (3 + (R/e )). (Specific small exponents are presented rather than relying on "O( 1 ).")
The significance of the bound is its extremely low dependence on R/e; as discussed
in the introduction of the present paper, it is proven in [17] that this dependence is
optimal.

Although the main results in [17] are stated in the introduction of that paper
under the assumption that an upper bound R on the absolute values of all of the zeros
is known a priori, the algorithm and analysis of 8 of that paper were written to
establish the following; if f Pd, X C, and r> 0 are such that no zeros of f are
contained in the region {y C; r < IlY xil <-- 8OdOr}, then e-approximations to all zeros

off in {y; Ily-xll <-_ r} can be obtained with d1 log log (3+(r/e)) operations.
In the application of the present paper we are given r > 0 and wish to obtain a

set of d points containing e-approximations to all real zeros off satisfying I1 <-- r.
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If we know a priori that the region {yC; r< Ilyll--<80dSr} contains no zeros of f,
then, by the preceding paragraph, this can be accomplished quickly (i.e., quickly in
terms of r and e). If the region does contain a zero off (as can be efficiently determined
using the algorithm of Theorem 1.1), then we can design a simple bisection algorithm,
that calls on the decision algorithm of Theorem 1.1, to construct k<=d points
XI,’’" Xk [--r, r] and radii rl,"" ", rk <- r with the properties that (i) all real zeros
of f that are contained in I-r, r] are contained in t_J [xj r, x + r] and (ii) if g C
satisfies f(g) 0 and II - x ll then II - x ll--> 80d This construction will only
require d1) operations. For these smaller intervals we can rely on the algorithm of
8 of Renegar [17] to obtain approximations to the zeros within. The observation of

the preceding paragraph shows that for each of these smaller intervals, all zeros within
the interval can be approximated quickly. In all, relying on the bounds of Theorem
1.1 and the preceding paragraph, e-approximations to all zeros within the interval
[- r, r] can be obtained with d O(1) log log (3 + (r/e)) operations. This result, combined
with Theorem 3.2 yields the first algorithm in Theorem 1.2.
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AN O(nZlog n) ALGORITHM FOR THE HAMILTONIAN CYCLE
PROBLEM ON CIRCULAR-ARC GRAPHS*

WEI-KUAN SHIH?, T. C. CHERN’, AND WEN-LIAN HSU$

Abstract. A circular arc family F is a collection of arcs on a circle. A circular-arc graph is the intersection
graph of an arc family. A Hamiltonian cycle (HC) in a graph is a cycle that passes through every vertex

exactly once. This paper presents an O(n log n) algorithm to determine whether a given circular-arc graph
contains an HC. This algorithm is based on two subroutines for interval graphs: (i) a linear time greedy
algorithm for the node disjoint path cover problem and (ii) a linear time HC algorithm. If the given graph
does not contain an HC, this paper can produce a proof either through the deletion of an appropriate cutset
or through the failure to obtain a specific type of HC.

Key words, graph, path, algorithm, Hamiltonian cycle
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1. Introduction. Circular-arc graphs are rich in combinatorial structure. Various
characterization and optimization problems on circular-arc graphs have been studied
(some of them listed in [2]). A Hamiltonian cycle (HC) in a graph is a cycle that
passes through every vertex exactly once. The problem of testing whether a graph
contains a Hamiltonian cycle is NP-complete for general graphs. It remains so for
special classes of graphs such as 3-connected planar graphs and bipartite graphs. In
this paper, we present an O(n2 log n) algorithm for the Hamiltonian cycle problem
on circular-arc graphs.

A circular arc family F is a collection of arcs on a circle. Denote by G--( V, E),
a graph with a finite vertex set V and a set E of edges connecting vertices of G. The
notations used in this paper can be found in standard graph theory text. A vertex is
also referred to as a node. A graph G is a circular-arc graph if there is a circular arc
family F and a one-to-one mapping of the vertices of G and the arcs in F such that
two vertices in G are adjacent if and only if their corresponding arcs in F overlap. If
there exists a point on the circle such that no arc in F passes through, then the
corresponding graph is also called an interval graph. For convenience, we shall consider
arcs in the family F rather than vertices in its corresponding graph G. Let n be the
number of arcs in F.

Without loss of generality, assume all arc endpoints are distinct and no arc covers
the entire circle. Label the n arcs arbitrarily from 1 through n. Starting with any
endpoint, label all the endpoints from 1 to 2n according to their clockwise order.
Denote an arc that begins at endpoint p and ends at endpoint q in the clockwise
direction by (p, q). Define p to be the head (or counterclockwise endpoint, denoted
by h(i)) of the arc, q to be the tail (or clockwise endpoint, denoted by t(i)). An
example is shown in Fig. 1.1.

The continuous part of the circle that begins with an endpoint c and ends with d
in the clockwise direction is referred to as segment (c, d) of the circle. We use "arc"
to refer to a member of F and "segment" to refer to a part of the circle between two
endpoints. An arc (p, q) of F is also regarded as the segment (p, q). Arc (p, q) is

* Received by the editors June 2, 1989; accepted for publication (in revised form) September 24, 1991.
This research was supported in part by the National Science Council of the Republic of China.
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FIG. 1.1. A circular-arc family F.

considered open, namely, it contains neither p nor q. A point on the circle is said to
be in arc (or segment) (p, q) if it falls within the interior of segment (p, q). An arc
of F is said to be contained in another arc j if every points of is contained in arc j.
When F is an interval family, we use p < q to indicate that endpoint p is to the left
of endpoint q.

Define a node disjoint path cover (NDPC) of a graph to be a collection of node
disjoint paths that cover all nodes. The NDPC problem on a graph G is to find the
minimum number (denoted by ’(G)) of paths in an NDPC of G. This problem is
NP-hard on general graphs. Linear time algorithms on interval graphs and circular-arc
graphs have been proposed by Bonuccelli and Bovet 1 ]. Their algorithm on circular-arc
graphs simply cut the circle at a point p and then apply the algorithm on the resulting
interval graphs (deleting the counterclockwise portion of every arc cut by p). However,
we believe there is a flaw in this approach as illustrated by the example in Fig. 1.2: if
a point p is chosen in segment (t(5), h(6)), then the algorithm of Bonuccelli and Bovet
will produce two paths P1 {6, 0, 1, 2, 3, 4} and P2--{5}, but an optimal cover needs
only one path P {0, 2, 4, 1, 5, 3, 6}. Nevertheless, we shall adopt their NDPC algorithm
on interval graphs in solving the HC problem for circular-arc graphs. It seems likely
that an NDPC algorithm for circular-arc graphs can be obtained by adapting our HC
algorithm.

This paper is organized as follows. Section 2 discusses the NDPC algorithm [1]
for interval graphs in detail and provides an alternate proof. Based on this algorithm,
we present a greedy HC algorithm for interval graphs in 3. A preliminary HC algorithm
for circular-arc graphs is presented in 4. If that algorithm fails to identify an HC,
we can either conclude that there is no HC in F or obtain a subset D of F such that
F\D contains ]D components. In the latter case, we analyze, in 5, possible ways to
connect those components of F\D though arcs of D in a feasible HC. Based on this
analysis, a more sophisticated HC algorithm is presented in 6.
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FIG. 1.2. A counterexample for the algorithm of Bonuccelli and Bovet.

2. An NDPC algorithm for interval graphs. Let F be a family of intervals. For
each interval i, h(i) is referred to as the left endpoint, and t(i) is referred to as the
right endpoint. A path P in F is denoted by a sequence of intervals ili2"’" it such
that is overlaps with is+l for s 1,..., t-1. When there is no confusion, P is also
used to denote the set of intervals in this sequence. Our HC algorithm on circular-arc
graphs makes use of the following two subroutines for interval graphs:

(a) A linear time greedy algorithm for the NDPC problem [1].
(b) A linear time HC algorithm [3], [4].
The greedy algorithm in (a) is described in Fig. 2.1. An example is shown in Fig.

2.2. The algorithm in (b) is quite similar to that in (a) and will be discussed in 3.

GREEDY NDPC ALGORITHM FOR INTERVAL GRAPHS

1. Sort the intervals in F into a list L according to their increasing right endpoint
order. Initially, all intervals in L are unlabeled. Let the current-path-count be 1.

2. Repeat Steps 3-5 until L is empty.
3. Let the current-interval be the first interval in L. Label with the current-path-

count and remove from L.
4. Repeat the following until no interval in L overlaps with the current interval:

label the first interval, say, j, overlapping with by the current-path-count; remove j
from L and let the current-interval be j.

5. Increase the current-path-count by 1.
6. Output a greedy NDPC {P, P2,..., Pr} (defined to be NGD(F)), where path

Pi is the ordered sequence of all intervals with label i.
FIG. 2.1. The greedy NDPC algorithm for interval graphs.

The correctness of this algorithm was first proved by Bonuccelli and Bovet [1].
Their proof is based on an inductive argument. We present an alternate proof in this
section, which utilizes an important argument used throughout this paper.

THEOREM 2.1. The size of the NDPC NGD(F) produced by the greedy NDPC
algorithm equals ’(F).

Our proof of this theorem will be given later. One disturbing fact about an NDPC
is that intervals in different paths could overlap with each other, and a connected
graph often needs to be covered by more than one path. To establish Theorem 2.1, we
shall delete a subset C* of intervals from F so that, in the remaining interval family,
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4

9

11

13

Pl ={1,2, a}

P2 ={4,5,6’7’8’9’10’11’ 12, 13

FIG. 2.2. An example for the greedy NDPC algorithm.

each connected component is covered by exactly one path. Each interval in C* connects
two components and is referred to as a connector.

Define a cutset C of a graph G to be a subset of nodes whose removal disconnects
G. The following proposition is important in proving Theorem 2.1. Since each connected
graph needs to be covered by at least one path, the proposition is easily verified by
the pigeonhole principle.

PROPOSITION 2.2. Let C be a outset of a connected graph G. Let g be the number

of connected components in G\ C. Then -(F) >- g
Define the path-end (respectively, path-start) of a path P to be the last (respectively,

first) interval of P. The path-end of path P is denoted by P-end. Define the path-gap
between two consecutive paths Pk and Pk/I of NeD(F), k 1,. ", ’(F)-1 to be the
segment (c, d), where c= t(Pk-end) and d- h(Pk+-start) (let the last path-gap be
(t(P(F)-end), oo)). Hence, there are -(F) path-gaps in NeD(F). A connected com-
ponent that can be covered by one path is called a path component. A path component
H satisfying the following condition plays an important role in our algorithm.

(2.3) Let P be the greedy path covering H. Then t(P-end) is the largest among all
arcs in H.

In general, for a path P, define I(P) to be the collection of all intervals in P whose
tails are larger than t(P-end). (t(P-end) is the right endpoint of the path-end of P.)
These are the intervals that potentially can overlap with intervals in paths after P.
Define the set of connectors C*(F) in F recursively as follows (this set can be determined
in O(n log n) time).

1. Let C denote the current set of connectors and N denote the current collection
of paths. Initially, set N N)(F), C

2. While there is a path P in N whose I(P) is nonempty, perform the following.
Let Pi be the first path in N with a nonempty I(Pi). Include I(Pi) in the current set
of connectors. Delete all intervals in I(Pi) from paths in the current collection N.
Revise N to be the collection of resulting paths ordered according to the increasing
tails of their path-ends.
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Denote the final collection of paths produced in Step 2 by N*(F). Since Ip is
empty for each path P in N*(F), each connected component of F\C*(F) is a path
component in N*(F) satisfying (2.3) (as shown in Fig. 2.3).

PROPOSITION 2.4. Suppose NGD(F {P1, ", Ps, , Pr} (namely, F has r path-
gaps). Then F\C*(F) has r/lf*(f)l connected components.

Proof Since each component in F\C*(F) can be covered by one path, it suffices
to show that the number of paths in N*(F) is r + C*(F)I. The proof is by induction
on C*(F)I.

If ]C*(F)I =0, then each component of F is covered by exactly one path in
No(F) (-N*(F)), and the proposition is trivially true. Assume it holds for interval
families with ]C*(F)] =< k- 1, and consider a family F with ]C*(F)] k. Let P be the
first path in No(F) with a nonempty I(P,). We shall apply induction on the family
F\I(Ps).

We shall show that F\I(P) has r/lI(P)l path gaps. Denote II(P)I by r’. Arrange
the intervals in F into the sequence L,(F)= PI"’" Pr (regard each path P,, as a
sequence of intervals) ordered according to the labeling sequence of the greedy
algorithm.

Claim 1. No two intervals in I(P) appear consecutively in L,(F).
Proof Suppose there are two intervals jl and j2 in I(P) that appear consecutively

in L,(F) with j before j2. Since jl cannot be a path end, it must appear before
P-end in L,(F). But then j2 cannot be labeled next because there exist intervals
(e.g., Ps-end, labeled after jl) overlapping jl whose tails are less than t(j2). [-]

6

2

3 5

8

12

13

(i) P1 1, 2, 3 }, P2= 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Delete 2 from P1, 8, 12 from P2-

(ii) P1 }, P2 3 }, P3 4, 5, 6, 7 },

P4 9, 10, 11 }, P5 13

Delete 10 from P4-
The resulting path components are

PI= }, P2= 3 }, P3= {4, 5, 6,7 },

P4 9 }, P5 11 }, P6 13}

C*(F) 2, 8, 10, 12

FIG. 2.3. The set of connectors of F.
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Let the intervals in I(Ps) appear in the order jl,j2,’’’,jr’ in LaD(F), where
r’=lI(Ps) [. By the definition of Ps, deleting I(Ps) could only split Ps into subpaths,
but does not change any path Pm for rns. Hence, Ps can be rewritten as
AljlAzj2’’" At,jr,At,+1, where A1 is the subsequence of Ps before jl; Am, for m
1,. ., r’+ 1, is the subsequence in between jm and jm+l; and At,+1 is the subsequence
after jr,. Clearly, A1 is nonempty. By Claim 1, A is also nonempty for 1 < rn_--< r’.
Finally, since Ps-end is not in I(Ps), At,+1 is nonempty. Since Ps is a path, each Ai
must be a subpath.

Thus, LGD(F) PI" Ps" Pr--PI" Ps-1aljazj2" ar,jr,ar,+lPs+l Pr.
Let N’ be the collection of paths {P1,"’, Ps-, A1,’’’, At,+1, Ps+l,’’’, Pr}.

Claim 2. The path collection N’ is the greedy NDPC ofF\I(Ps), and F\I(Ps) has
r + r’ path-gaps.

Proof To show that N’ is the greedy NDPC of F\I(Ps), we show that
LoD(F\I(Ps)) PI" Ps-1ala2" ar,ar,+lPs+l"

Clearly, the order of intervals in PI"’" Ps-IA1 in LeD(F\I(Ps)) remains
unchanged. Let lm (respectively, fro) be the last (respectively, first) interval in A,,
m 1,..., II(Ps)[. Since no interval in the subsequence A1A2’’’ Ar, can have a tail
greater than t(Ps-end), no interval in the subsequence A2’’" Ar, can overlap with
(otherwise, jl would not have been selected in LeD(F)). Furthermore, no interval in
the subsequence At,+1 can overlap with 11; for otherwise, they would be included in
I(Ps). Hence, a new path-gap is created at 11 for F\I(Ps).

By the greedy algorithm on F, the first interval f2 of A2 must have the smallest
tail among A2’’" Ar,Ar,+l. Therefore, f2 would be labeled immediately after 11 by the
greedy algorithm on F\I(Ps).

The same argument in the last paragraph can be applied to every other interval
in A2... At,At,+1. Furthermore, every li will become a new path-end in N’, and no
other new path-end will be created. Hence, N’ is the greedy NDPC of F\I(Ps), and
the number of path-gaps in F\Ps is [N’[=]NeD[+[I(Ps)[ r+ r’.

Proof of Proposition 2.4. By the definition of "connectors," the set of connectors
in C*(F\I(Ps)) is exactly C*(F)\I(Ps). Now, apply induction on the family F\I(Ps).
We have that (F\I(Ps))\C*(F\I(Ps)) has r+r’+[C*(F\I(Ps))[ connected com-
ponents. Since (F\I(Ps))\C*(F\I(Ps))=(F\I(Ps))\[C*(F)\I(Ps)]= F\C*(F)
and [C*(F\I(Ps))[ IC*(F)\I(Ps)] [C*(F)I-]I(Ps)[ ]C*(F)]- r’, we have that
F\ C*(F) has r +[C*(F)[ connected components.

Proof of Theorem 2.1. Combining Propositions 2.2 and 2.4, we conclude that
’(G)>-(r+IC*(F)I)-IC*(F)]=r. Since the greedy NDPC algorithm produces an
NDPC of size r, ’(G)= r.

The next lemma justifies the notion of "connectors" for intervals in C*(F).
LEMMA 2.5. Deleting any subset C1

_
C*(F) from F creates [Cll additional path-

gaps in F\
Proof Let z(F)= r. F\C1 has at most r+ [C1[ path-gaps. To show that there are

exactly r +[C1[ path-gaps in F\C, consider the subsequence L’D obtained by deleting
those intervals in C1 from LeD(F). Similar to the proof of Claim 2 in Proposition 2.4,
it can be shown that L’D is the labeling sequence of the greedy NDPC algorithm on

F\C1.
Let P-il’’" it be a path. The common segment I(is, is/l) of two consecutive

intervals is and is+ in P is called their overlapping segment. P is called monotone if
the tails of segments I(il, i:), I(i:, i3),..., I(i_1, it) are nondecreasing. It is easy to
verify that each path produced by the NDPC algorithm is monotone.
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3. A greedy algorithm for the HC problem on interval graphs. The HC problem
for interval graphs has been solved by Keil [3] in linear time, based on the linear
ordering of maximal cliques. Manacher and Mankus [4] proposed another simpler
HC algorithm. The approach in [4] can be considered as an adaptation of the greedy
NDPC algorithm, which leads to a correctness proof similar to that of Theorem 2.1.

The main idea of the greedy HC algorithm (as shown in Fig. 3.1) can be described
as follows. Let F be a collection of intervals, and let i* be the interval with the smallest
head. Let j* be the interval with the largest tail. Starting from interval i*, one iteratively
traces out two greedy paths to the right. The path extending strategy is always to extend
the shorter path first. The shorter path is the one whose path-end has the smaller tail.
If these two paths can be extended to reach interval j* after visiting all other intervals,
then an HC exists. Otherwise, F can be shown to have no HC. Below, we briefly
describe this greedy HC-algorithm for interval graphs. We use "current-path" to denote
the shorter path and "alternate-path" to denote the longer one. An example is shown
in Fig. 3.2.

GREEr) HC ALGORITHM FOR INTERVAL GRAPHS.

1. Sort the intervals in F\{i*} into a list L= {il,’’" ,j*} according to their
increasing "right" endpoint order. Denote the current-path by P. Denote the alternate-
path by P’. If t(i*)< t(il), let P be {i*} and P’ be {il}. Otherwise, let P be {il} and
P’ be {i*}. Remove il from L.

2. Repeat the following until j* is removed from L: If there exists an interval in
L overlapping with P-end, attach the first such interval, say to the end of P. Otherwise,
terminate the algorithm (no HC exists). If t(i)> t(P’-end), let the current-path be P’
and the alternate-path be P. Remove from L.

3. (j* has just been removed.) Apply the NDPC algorithm to L. If L can be
covered by one path, attach this path to the end of P. Otherwise, terminate the algorithm
(no HC exists).

4. Output two monotone paths P and P’ from i* to j*.

FIG. 3.1. A greedy HC algorithm on interval graphs.

2

i* j*

7

9

8

P={ i*,1,2, j*

P’={ i;3,4,5,6,7,8,9, j*

Note Interval sequence 5, 6, 7, 8, 9 would be

appended to P’ in step 4.

FIG. 3.2. An example for the greedy HC algorithm on interval graphs.
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The HC problem on circular-arc graphs is much harder than that on interval
graphs. Our HC algorithm consists of two phases. In the first phase, we apply a simple
preliminary algorithm to the given graph in 4. This algorithm either detects an HC,
shows that F does not have an HC, or identifies a subset D of arcs such that F\D
contains IDI path components. If the last case happens, we embark on the second
phase. Based on the analysis in 5, a more sophisticated algorithm is presented in 6
to determine whether an HC actually exists.

Below, we define two special types of HCs in a circular-arc family F. Let be an
arc that passes through both endpoints of arc j but does not contain j (namely, and
j together cover the whole circle). Then there are two overlapping segments for and
j. Refer to the segment containing the head (respectively, tail) of as the counterclockwise
(respectively, clockwise) overlapping segment of with respect to j. If two arcs overlap
in only one segment, then this is called their clockwise overlapping segment. An HC
in a circular-arc family is called monotone (as shown in Fig. 3.3) if

P0

9 4

FIG. 3.3. A monotone Hamiltonian cycle.

(i) The clockwise endpoints of consecutive (along the HC) clockwise overlapping
segments are clockwise ordered around the circle (two such consecutive endpoints are
allowed to be the same);

(ii) For every three consecutive arcs i, j, and k in the HC, the two clockwise
endpoints of the two consecutive clockwise overlapping segments of with respect to
j and of j with respect to k are clockwise ordered within arc j.

The second type of HCs are called crescent. Let p be any point on the circle. Any
arc passing through p can be divided into two segments (h(i), p) and (p, t(i)), called
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the head portion (denoted by [i) and the tail portion (denoted by i]) of i, respectively.
A Hamiltonian cycle Ch on a circular-arc family is called crescent if there exists a
point p on the circle so that arcs passing through p can be partitioned into V1 and V2
such that C becomes an HC of the interval graph obtained by chopping off the head
portion of every arc in V1 and the tail portion of every arc in V2. An example is shown
in Fig. 3.4. By this definition, all HCs in an interval family are crescent. In 5, we
show that if F has an HC, then there exists one which is either monotone or crescent.

7 6

FiG. 3.4. A crescent Hamiltonian cycle.

4. A preliminary HC algorithm for circular-arc graphs. From now on, we assume
that the given family F is not an interval family (otherwise, the HC algorithm in 3
can be applied). A preliminary algorithm is presented in this section, which attempts
to find a monotone HC in F. This algorithm may fail to identify a monotone HC even

when one exists. However, in that situation, additional information will be obtained
by the algorithm that enables us to embark on the more sophisticated algorithm in 6.
Specifically, at termination, the preliminary algorithm produces one of the following:
(a) a monotone HC; (b) a proof that no HC exists in F; (c) a cutset D such that F\D
contains IDI connected path components each satisfying (2.3). Those components in
(c) can then be used in 6 for further analysis. The next observations can be easily
proved by the pigeon hole principle and is used throughout the remainder of this paper.

LEMMA 4.1. Suppose F contains a cutset C such that F\C contains more than
connected components. Then F does not have an HC.

The main idea of the algorithm can be described as follows. Arbitrarily pick a

point Po on the circle. Denote by W the set of arcs passing through Po. Every arc in
W is divided by P0 into its head portion (h(i), Po) and tail portion (Po, t(i)). For any
subset W’ of W, define [W’ (respectively, W’]) to be the set of head (respectively, tail)
portions of arcs in W’. The algorithm attempts to find a suitable partition of W into

W and W such that the interval family Hw WI U W2 U (F\ W) (imagine cutting
the circle at Po and straightening all arc segments to be intervals) can be covered by
one path, and the path-end belongs to W (which winds back to Po and completes a

monotone HC). Note that intervals in W1 start from the left and of Hw and those in

WE end at the right end of Hw. For convenience, we view endpoints of intervals in
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Hw as going from "left to right" in a line, and use the usual "small or large" to compare
their relative positions.

Initially, set W1 W and W2-. If the corresponding interval family Hw cannot
be covered by a path with its path-end in W2, then we try to extend the first path P
in the greedy NDPC of Hw by moving one arc whose head portion overlaps with P-end
from W1 to W2 (this results in one less interval on the left end of Hw, but one more
on the right end). Note that intervals not in P must have a tail greater than t(P-end).
Repeat this extension process (and keep moving arcs from W1 to W2) until one of the
following situations happens: (1) we can successfully cover the current Hw by one
path P with P-end W2 (a monotone HC is obtained); (2) no arc in the current W1
has its head portion overlapping with P-end (no HC exists); or (3) after moving the
last arc from W to W2, we fail to extend the first path P beyond its previous path-end
(a cutset D is then determined). A detailed description of the algorithm is given in
Fig. 4.1.

PRELIMINARY HC ALGORITHM (for arc families that are not interval families).
1. First check that F is not an interval family. Set the iteration count, s, initially

at 0. Let W be W and W be the empty set (and gradually, move arcs from W to
W2 in Step 5).

2. Let Hs be the interval family W] t_J [WU(F\W) (for example, see Fig. 4.2).
Apply the NDPC algorithm to Hs. Terminate the algorithm as soon as the first path
(denoted ps) is completed (label those unlabeled arcs in

3. If Hs is covered by ps and PS-end [W, then a monotone HC is found
(TERMINATE).

4. If no interval in W] whose corresponding arc overlaps with is, then F does
not have an HC (TERMINATE).

5. If PS-end was not labeled in the previous iteration consider the set Bs of
arcs in W whose head portions contain t(PS-end). Let js be the arc in Bs with the
smallest tail. Let W/1 W\{js}, W/ WU {is}. Make js unlabeled. Go back to
Step 2.

6. If PS-end was labeled in the (s-1)-iteration (namely, the algorithm fails to
extend the first path beyond PS-l-end in the current iteration), consider the first path
ps- in Hs_l. Let C*(Ps-l) be the connector set of ps- in Hs_. Let {Q,..., Qt} be
the path components in ps-\ C*(PS-1) ordered by the increasing tails oftheir path-ends
in Hs_. If either L-] Q1, or L-] Q but QI\{Z-1]} cannot be covered by one
path, then F does not have an HC (TERMINATE). Otherwise, go to Step 7.

7. Determining a subset D in the case thatL_ Q and QI\{L- ]} can be covered
by one path. Find the connector set C*(Q\{js_I]}). Other details will be described in
the remainder of this section (TERMINATE).

FIG. 4.1. A preliminary HC algorithm.

We claim that, if the algorithm terminates in Step 3, then a monotone HC is found
(a trivial case); if it terminates in Steps 4 or 6, then no HC exists; and if it terminates
in Step 7, then a subset D of arcs can be produced such that F\D contains "at least"

IDI connected components. Note that in the last case, if F\D contains more than IDI
components, then no HC exists by Lemma 4.1. Below, we first consider the case that
the algorithm terminates in Step 4.

LEMMA 4.2. If no arc in W overlaps with is in Step 4, then F does not have an HC.
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Po Po

W2

FIG. 4.2. The interval family H

Proof Consider the connector set C*(PS). Let {PC1, PC2," ", PCr} be the path
components of ps\ C*(PS) ordered by the increasing tails of their path-ends. By Lemma
2.5, r=IC*(PS)[+I. Denote [F\C*(P)]\U=2{PC"} by PC’. Since arcs in
U =2 {PC,.} must have their heads different from Po, none of them belong to W. By
the assumption of this lemma, no arc in PC’ overlaps with any arc in U[,=2 {PC,.}.
Hence, the family F\C*(P)=PC’U[Ur,,=2{PCm}] contains at least r connected
components. Since there are only r-1 arcs in the cutset C*(P), F does not have an
HC by Lemma 4.1.

LEMMA 4.3. If the preliminary algorithm terminates in Step 6, then F has no HC.
Proof By Lemma 2.5, Ic*(P-)l / 1. Note that j_l (Po,t(js-)). Consider

the following two cases.
(1) Ifj,_] Q, then j_I]EC*(P-I). Since t(j_) is the smallest tail among

arcs in B,_I, B_I
_

C*(PS-1). Denote [F\C*(P-I)]\U’,.=2 { Qm} by Q’. Since Q’ does
not contain any arc in B_I, no arc in Q’ overlaps with any arc in U’,.=2 {Q,.}. Hence,
F\C*(P-1) Q’U [U m=2 { Q,.}] contains at least connected components. Since there
are only t-1 arcs in the cutset C*(P-I), F does not have an HC by Lemma 4.1.

(2) If L-1E Q1 but QI\{L-1]} cannot be covered by one path (it requires two
paths), let Q be QI\{L-1]}. Consider the ordered path components {P1,"" ", Pc} in
Q\C*(Q). By Lemma 2.5, t’=IC*(Q)I+2.

If t(L-1)< t(Pl-end), then adding L-1 back to P would result in that the tail of
the first path-end for P U {L-l]} is no larger than t(Pl-end). This would imply that
Q Q U {L-l]} requires at least two paths to cover (imagine adding intervals in
C*(Q) one by one back to {P1," ", P,,}), a contradiction. Hence, t(L-) > t(Pl-end)
and B_ C*(F’). Denote C*(F’) t.J C*(P-) U {L-} by C’. Denote
\[[u" {Pm}] U JUt ’]m=2 m=2 {Q,.}]U C by P’. By the above discussion, no arc in P’
overlaps with any arc in U" {Pro }] U U’m=2 { O,.}].

The family F\C’ P’ U U t, {Pm }] U U’m=2 m=2 { Q,.}] contains at least 1 + (t’- 1) +
(t 1) t’ + 1 connected components. Since there are only (t’- 2) + (t 1) + 1
t’+2-2 arcs in the cutset C’, F does not have an HC by Lemma 4.1.

In the remainder of this section, assume the algorithm terminates in Step 7 at the
sth iteration. Recall that this happens when the algorithm fails at the sth iteration to
extend the first path beyond i_1, the PS-l-end, at the (s-1)th iteration. Furthermore,
L-l] Q and QI\{L-1]} can still be covered by one path. Let Q be the greedy path
covering Q\{L-1 ]}.

LEMMA 4.4. t(Qi-end) < t(Q-end).
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Proof. If t( Q-end) t( Ql -end), then, without using is-1 ], the greedy algorithm
could still produce the first path-end for ps-1 at i_l (by following exactly the same
sequence for ps-1 after Q-end). But then, the head portion [js-1 could be used to
extend the first path of H beyond P-l-end, and PS-end should have been unlabeled
at the (s- 1)th iteration, contradictory to the assumption of Step 6.

Lemma 4.4 guarantees that the connector set C*(Q) is nonempty. Let {P1," ", Pr}
be the path components in Q\C*(Q) ordered by the increasing tails of their path-ends
in Hs.

LEMMA 4.5. t(Pl-end) < t(j-l).
Proof. Suppose otherwise. Then, adding is-1 back to P1 would result in the tail

of the first path-end for PIU {j-l]} being no larger than t(Pl-end). Hence, adding
j-l] back to Q would result in t(Ql-end)-< t(Q-end) (imagine adding interval in
C*(Q) one by one back to {P1,""", Pr}), contrary to Lemma 4.4.

Since t(j_l) is the smallest among arcs in B_I, we have
C*(Q)U C*(p-I)U{j_I}. Denote (F\[C*(Q)U C*(p-I)U{j_I}])\([ur=
{n.,}] U [U’ P’.== {Q}]) by Then, no arc in P’ overlaps with any one in [U = {Pro}] U

m=: {Q,}]. Let {R1, Rk} be the path components in P’\C*(P’) ordered by the
increasing tails of their path-ends in interval family P’. Let D C*(P’)U C*(Q)U
C*(Ps-l) U {j-l}. A pictorial description of the set D is given in Fig. 4.3.

THEOREM 4.6. F\D has at least ID] path components, each satisfying (2.3).
Proof. By Lemma 2.5, k >- 1 +[C*(P’)I. By the discussion above, F\D is composed

of the following path components [U k
,,=1 {g,,}] U [Urn=2 {P,,}] [--2 {Q}], the

number of which equals k+I(r-1)*(t-1)>-(I+]C*(P’)I)+IC*(Q)[+IC*(P-I)[

Clearly, if F\D has more than D components, then by Lemma 4.1, F has no
HC. Hence, assume F\D has exactly IDI components. Further analysis is necessary
in order to determine whether an HC actually exists in F. We discuss this in 5
and 6.

Hs Po

C,(ps-l)

pS-.C,(p

Q; -Js-
C*(Q’I

Q; -C*(Q’,

pS- remaining intervals

/////////,////////////

91

c.(,) ////////////

R
P’-C*(P’) [{]

[-- path components

//////JJJ/ respective connector sets

D is the union of all connector sets and the Js-1

FIG. 4.3. The set D and the path components in F\D.



1038 WEI-KUAN SHI, T. C. CHERN, AND WEN-LIAN HSU

5. Analysis of an HC in circular-arc graphs. Throughout this section, assume there
is a Hamiltonian cycle Ch in F and a cutset D such that F\D has IDI path components,
each satisfying (2.3). We shall study how an HC in F traverses these IDI components
through arcs in D. Our analysis will establish that if F contains an HC, then there
must exist either a monotone HC or a crescent HC in F. Thus, the search for an HC
in 6 can be restricted to these two types.

Our approach is to modify C h gradually to become either monotone or crescent.
Let F’= F\D. Order the path components of F’ into a clockwise circular sequence
S C1C2’’CIDIo For each component Cw, let h(Cw) be the most counterclockwise
head of arcs in Cw and t(Cw) be the most clockwise tail in Cw. Denote by (Cr, Cs)
the set of all components in a "clockwise traversal" of S from (and including) Cr to

Cs. Cr, C) is said to be covered by an arc if every point of the segment t( Cr), h( C))
is contained in i. An example illustrating these definitions is given in Fig. 5.1. Note
that in the cycle Ch each arc of D connects a unique pair of components of F’, and
every component is connected to others through exactly two arcs of D in C h. We shall
refer to the arcs of D as the connectors of C h.

FIG. 5.1. The set of components Cr, Cs).

Now, consider consecutive pairs of components in S. A consecutive pair { Cw, Cw+l}
is called a type I pair for C h if there exists an arc in D connecting two components
Cr, C in C h, such that covers (Cr, Cs), and (Cw, Cw+l)--(Cr, C). A consecutive
pair is called type II for C h if it is not type I. Our main theorem in this section is the
following.

LEMMA 5.1. F has either a monotone HC or a crescent HC. (Note that F is assumed
to have an HC in this section.)

Proof In this proof, we adopt several techniques to transform an existing HC of
F into either a monotone HC or a crescent HC if F has an HC. We first try to transform
the HC in F into a crescent HC.

Define the essential portion of a connector in a given HC to be the portion of this
connector from which we cannot remove any small segment without disconnecting the
original HC. For a given HC, if we can find a cut point (denoted by q) in the circle
such that the no essential portion of any connector crosses q, then we can transform
this HC into a crescent HC as follows: cut each connector that crosses q into two arcs
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and throw away the one which doesn’t contain the essential portion. The remaining
arcs will form an interval family, say Fq, and the original HC is an HC of Fq. A
crescent HC of Fq can be found by the algorithm in 3, which becomes a crescent
HC of the original circular arc family.

In the remainder of this proof, we assume that no such cut point exists. We show
that the arcs in D can be used to connect consecutive pairs of components of F’ in
forming a monotone HC. We apply the following four steps to modify the connecting
relationships among the components of F’.

Pick C1 as the starting component. Pick an arc d in D that connects C1 with
another component, say Cw. Either (C1, Cw) or (Cw, C1) is covered by dl. Without
loss of generality, assume (C1, Cw) is covered by dl. Initially, label only CI, Cw and
leave all other components unlabeled. We shall use the following notations throughout
the modification algorithm"

Current path P--the set of labeled components (viewed as vertices) and labeled
arcs (viewed as edges connecting those vertices), clockwise ordered between the two
end components.

Current component C--initially, Cw. (Note that there exists an arc in P connecting
C with some other component in P.)

Current arc d--the other arc of C h which connects the current component C to
an unlabeled component, say Ck.

Next component C’--Ck.
Denote the two end components of the current path P by B and B’ (as shown in

Fig. 5.2), which are constantly updated. Initially, B C1, B’ Cw, and dl covers (B, B’).
Let d be the arc in C h that connects Cw to the next unlabeled component C’. While
(B’, B) is not covered by the current arc d, perform one of the following two steps.

Step 1. C’ is not in (B, B’) as shown in Fig. 5.2. Without loss of generality, assume
B’ is contained in (C, C’). If B’ C, let d connect B’ and C’ (otherwise, d still connects
C and C’). Make C’ the new boundary component B’. Label d and C’.

d

B B’ C’

B B’ C’

(i) The operations in step for C B’

d

B C B’ C’

B C B’ C’

(ii) The operations in step for C B’

FIG. 5.2. The operations in Step 1.
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Step 2. C’ is in (B, B’) as shown in Fig. 5.3. Let Cs, C,, be the two consecutively
labeled components in P such that (Cs, C,,) contains C’ and Cs, C,, are connected
by arc d’ in C h. Without loss of generality, assume Cm is contained in (C, C). Let d
connect C’ and Cm, d’ connect Cs and C’. Label d and C’.

At the end of each step, we have a path .P consisting of all labeled components
ordered clockwise in which each labeled arc connects two consecutive labeled
components in P. Let the current arc be the other arc of C h, which connects C’ to an
unlabeled component, say Ck. Change the current component to be C’. Change the
next component to be Ck.

This procedure iterates until (B’, B) is covered by the current arc d. Note that the
latter condition must eventually be satisfied. Otherwise, since all components will be
included in P, we would end up with P being a path with B Cj and B’= C_1 for
some j. But then, (C, C_1) would not be covered by the essential portion of any
connector, a contradiction. Hence, as soon as (B’, B) is covered by the current arc d,
we adopt the following.

Step 3. (B’, B) is contained in (C, C’) as shown in Fig. 5.4. Let d connect B and
B’. Label d. Thus, the labeled components (viewed as vertices) and labeled arcs (viewed
as edges connecting vertices) form a cycle, called the current cycle Q. Label C’. Let
the current arc be the other arc of C h, which connects C’ to an unlabeled component,
say Ck. Let the current component be C’. Let the next component be Ck.

We now have a labeled cycle Q and a labeled current component outside Q. While
the next component is not C, perform the following step.

Step 4. Let C, C,, be the two consecutively labeled components in Q such that
(C, Cm) contains C as shown in Fig. 5.5. Let d’ be the labeled arc that connects C
and C,, in C h. Without loss of generality, assume C is contained in (C’, C). Now,
form a new HC by connecting C, C,, with d’, and connecting C, C with d. Label d
and C’. Place C into cycle Q. Let the current arc by the other arc of C h that connects
C’ to an unlabeled component, say Ck. Let the current component be C’. Let the next
component be Ck.

At the end of Step 4, the next component becomes the starting component C;
all components are labeled; all arcs are labeled, each connecting two consecutive
components of S (see Fig. 5.6).

Now, we have created an HC in which each arc in D is used to connect two
consecutive components of S. Next, construct a monotone HC by applying the NDPC
algorithm within each path component of F’ and using arcs in D as connectors
connecting consecutive path components. A technical detail should be noted here. If

B Cs Cm B’

B Cs Cm e’

FiG. 5.3. The operations in Step 2.
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d

d

C1

FIG. 5.4. The operations in Step 3.

C

FIG. 5.5. The operations in Step 4.

a connector d connecting { Cw, Cw+l} overlaps with the arc with the most counterclock-
wise tail in Cw/l (denoted i(Cw/)), then the NDPC algorithm on C,/ would yield
a path satisfying (2.3) by assumption. On the other hand, if a connector d connecting
{Cw, Cw+l} does not overlap with i(Cw+l), then it must be that

(a) Cw/l can still be covered by one path, say Pw/l, by applying the NDPC
algorithm with the arc whose head is h(Cw/):

(b) The connector d’ connecting {Cw+, Cw+2} overlaps with Pw+-end.
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FIG. 5.6. The operations in the final step.

If either of these is not satisfied, then the original assumption that there is an HC
is not valid, since our modification never creates such a connector d that violates one
of (a) or (b).

LEMMA 5.2. Let { Cs, Cs+l} be a dividing pairfor a crescent Hamiltonian cycle C
If there exists at least an arc in D which contains (h(i(C)), h(C+)), then F has a
monotone HC.

Proof Let {Cr, Cm} be the two path components that connects in C h such that
(t(Cr), h(C,,)) is covered by i. Then (C, C+) (C,, C,). Let i’ be the other arc of
D that connects Cr to a component C’ different from C,, in C a. We now use the
terminology in 5. Starting with the current path P whose two end components are

Cr and C’, we can iteratively apply the operations in Steps 1 or 2 of 5. Each such
operation will add one more new component to the current path P. Since no arc in
D\{i} can cover (Cs, C+), we should eventually obtain a component path P* that
contains all components in S and has the two end components C+ and C after using
all arcs in D\{i}. It is easy to verify that, following the connection in P*, we can
construct a monotone path, say P’, starting with i(C+), traversing through all com-
ponents and all arcs of F\{i} and ending with some arc, say j, in Cs. Since contains
(h(i(Cs)), h(i(Cs+l))), it must overlap with both j and i(C+). Hence, arc and path
P’ together form a monotone HC.

The following theorem is an obvious consequence of Lemmas 5.1 and 5.2. This
theorem is not used in 6 (instead, Lemma 5.2 is used). We present it here for purposes
of information only.

THEOREM 5.3. If there is no type II consecutive pairfor C h, then F has a monotone
HC.

6. The main HC algorithm. Assume the given family F contains a subset D of
arcs such that F\D has ID[ path components, each satisfying (2.3). We shall decide
whether F contains an HC by searching for either a monotone HC or a crescent HC.
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Our algorithm searches for a monotone HC first. If it fails to find one, then we search
for a crescent HC.

First, consider the test for a monotone HC. Since there are IDI arcs that are used
to connect IDI consecutive pairs of components in a monotone HC, one might be
tempted to apply a bipartite matching algorithm in this situation. However, such an
algorithm is usually not applicable because there are different ways to "connect" two
consecutive pairs, and whether certain "connection pattern" forms an HC depends
very much on the specific arc overlapping relationships. An example is illustrated in
Fig. 6.1. The idea of our algorithm is to further restrict the connecting patterns until
a useful property (condition (6.2)) of the HC emerges.

2 3

If one starts with arc 1, then the path-end would be 3

If one starts with arc 2, then the path-end would be 4

a c

b d

2 3

Cm
Suppose a, b, c, d are four connectors. If we use b to connect the

component on the left, then d cannot be used on the right end as a

connector.

FIG. 6.1. Different starting arcs resulting in different path-ends.

Pick an arbitrary path component, say C1. Let X be the set of arcs in D passing
through t(C1) (not including any arc in C1). If there exists a monotone HC Ch in F,
then there is partition of X into Xh and X, such that only the head (or tail) portion
of arcs in Xh (or X,) is used to connect two path components in C h. Note that each
arc of D must connect two consecutive path components in C h.

Since each path component Cw in F\D satisfies (2.3), if we apply the greedy
algorithm on Cw starting with i(Cw), the path-end should always be the arc with tail
t(Cw). Note that h(i(Cw)) is not necessarily h(Cw). Now, the circle is divided into ID[
segments by h(C),..., h(Ciol). The following theorem further describes certain
desirable property of a monotone HC that we search for.

THEOREM 6.1. Let C h be a monotone HC with the partition Xh and X at t( C1).
Then there exists a monotone HC, say C h*, satisfying

(6.2) There exists a pair { Cs Cs+l} connected by an arc in Xh such that in C h* arcs

in Xh (respectively, X) only connect those pairs { Cm, C,,+1} with m >- s (respec-
tively, m < s), and no arc in D\Xh that connects a pair {Cw, Cw+l} with w > s

can contain (h(i(C,)), h(i(C,+l))).
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Proof Among all monotone HCs in F, let C h* be the one for which the smallest
s* such that {Cs*, Cs*/l} is connected by an arc ih of Xh in C h* is as large as possible.
We claim that C h* satisfies (6.2).

Suppose there are violations to (6.2). Then there are two ways that a violation
can occur, and we show that each leads to a contradiction.

(1) There is an arc it of Xt in Ch* whose tail portion connects a pair {C,,, Cm+l}
in C h* with m > s*. Then, by letting h connect { C,,,, Cm+l} and it connect { C., C.+1}
(as shown in Fig. 6.2(i)), we obtain another HC C h’ such that arcs of X in C h’ only
connect those pairs {Cm, Cm+} with m >_--s*+ 1, a contradiction.

(i)

FIG. 6.2. Change of connecting patterns.
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(2) There is an arc ia in D\X that connects a pair {C,, Cm+l} in C with m > s*
and ia contains (h(Cs), h(Cs+)). Then, by letting ih connect {Cm, Cm+l} and ia connect
{C, C+1} (in Fig. 6.2(ii) and (iii)), we get a similar contradiction as in (1).

Note that the HC Ch* is constructed relative to a given HC Ch of F. The following
lemma suggests an algorithm for constructing a monotone HC.

LEMMA 6.2. Let Ch be a monotone HC with the partition Xh and Xt at t( C1). Let
{C, C+I} be a pair satisfying (6.2) for C h. Let j* be the arc in Cs with t(j*)= t(Cs).
Let Y be the set of arcs passing through t( C). Let Y be the set of arcs in Y fq X not

containing (t(C1),t(C)) and Y2 be Y\Y1. Let Y1] (respectively, [Y2) be the tail
(respectively, head) portions of arcs in Y with respect to t(C). Let HF be the interval
family Y U Y2 U F\ Y). Then, HF can be covered by a monotone path ending with j*.

Proof We shall follow the argument in the above proof. Since each interval in D
still connects the pair of path components that its corresponding arc connects in C h,
C h reduces to a monotone path of HF ending with j*.

Conversely, it is easy to see that a monotone path of Hz ending with j* gives rise
to a monotone HC in F. Therefore, a monotone HC of F can be constructed by the
greedy algorithm once the pair {Cs, C+I} satisfying (6.2) is identified. Our algorithm
for finding a monotone HC in F simply checks each consecutive pair {Cw, Cw+l} to
see if the corresponding transformed interval family with respect to t(Cw) has the
desired monotone path.

Next, consider the case that F does not have a monotone HC and the above test
fails. We shall embark on our second text for a crescent HC. The following analysis
shows that it suffices to search for crescent HCs satisfying very special properties.
Suppose F contains a crescent Hamiltonian cycle C h. By definition, there exists a

point p on the circle so that arcs passing through p can be partitioned into V1 and V2
such that C h becomes a crescent HC of the interval family V1] U [V2I,_J[F\(V1U V2)].
If p is covered by an arc in some path component Cs of F\D, then it is easy to see
that there should be at least four arcs in D that connect C to other path components
in the cycle C h, which is impossible (since in an HC every component is connected
by exactly two arcs in D to other components). Hence p must be in an open segment
between two consecutive components, say { C, C+I}, which is defined to be the dividing
pair for C h.

If F does not have a monotone HC, then by Lemma 5.2, the test for a crescent
He reduces to test if F has a dividing pair {C, C,+} such that (h(i(Cs)), h(i(C+)))
is not covered by any arc in D. This can be easily done as follows. Take each pair
{Cw, Cw/l} whose (h(i(Cw)),h(i(Cw/l))) is not covered by any arc in D. Using
h(i(C,+)) as the origin, create an interval graph Hw by chopping off the head portion
of every arcj (a, b) of D whose a is in (h(i(Cw)), h( i( Cw+l))) and the tail portion
(at h (i(Cw))) of every arc j of D whose b is in (h (i(Cw)), h (i(Cw+l))). Then test if
the resulting interval graph Hw has a crescent HC.

7. Complexity analysis. Our HC algorithm consists of three subalgorithms. In the
first step, we apply the preliminary HC algorithm in 4 whose run-time is O(n log n).
If the preliminary HC algorithm fails to determine if there exists an HC, some
components and a set of connectors are generated. We then use the algorithm in the
beginning of 6 to try to find a monotone HC. This second algorithm has at most n
iterations, and each iteration takes at most O(n log n) time. Hence, the run time of
the second algorithm is 0(//2 log//). If this algorithm fails to find a monotone HC,
we then use the algorithm at the end of 6 to find a crescent HC. The number of
iterations in the third algorithm is at most //, and the run time for each iteration is
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O(n log n). Hence, the run time of the third algorithm is O(n2 log n). Therefore, the
time complexity of our HC algorithm is O(n2 log n).
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Abstract. This paper studies the problem of maintaining the 2-edge-connected components of a graph
undergoing repeated dynamic modifications, such as edge insertions and edge deletions. It is shown how to
test at any time whether two vertices belong to the same 2-edge-connected component, and how to insert and
delete an edge in O(m2/3) time in the worst case, where m is the current number of edges in the graph. This
answers a question posed by Westbrook and Tarjan [Tech. Report CS-TR-229-89, Dept. of Computer Science,
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For planar graphs, the paper presents algorithms that support all these operations in O(v/n log log r
worst-case time each, where n is the total number of vertices in the graph.
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1. Introduction. An undirected graph G (V, E) is said to be biconnected if there
are at least two vertex disjoint paths from each vertex to every other vertex. It is well
known [2] that a graph G is not biconnected if and only if there is a vertex whose removal
disconnects G: such a vertex is called an articulation point. Given a graph G (V, E),
let El, E2,..., Eh be the partition of E into equivalence classes such that two edges e’
and e" are in the same equivalence class if and only if either (i) e’ e" or (ii) there is a
simple cycle (i.e., a cycle with no repetition of edges and vertices) of G containing both
e’ and e". For i < < h, let V be the set of vertices that are endpoints of the edges in
E. The subgraphs G (V/, Ei) are called the biconnected components (or blocks) of
G. An articulation point appears in more than one biconnected component. The set of
edges of every graph can be partitioned into biconnected components in a unique way,
and every edge belongs exactly to one biconnected component. An edge contained in
no cycle is in a biconnected component by itself and is referred to as a bridge. A graph
with no bridges is called 2-edge-connected (or bridge-connected). If the graph has bridges,
then the removal of a bridge disconnects the graph. The 2-edge-connected components
(or bridge-connected components or bridge-blocks) of a graph G are the components of
G obtained after the removal of all the bridges, q’vo edges e’ and e" are in the same
bridge-connected component if and only if either (i) e’ e" or (ii) there is a (not neces-
sarily simple) cycle (i.e., a cycle with no repetition of edges but with possible repetition
of vertices) of G containing both e’ and e". Figure 1 shows a graph together with its
biconnected and bridge-connected components.

The problem of computing the bridge-connected components of undirected graphs
arise naturally in many applications and have been extensively studied. Tarjan [47] gives
optimal linear-time sequential algorithms. Awerbuch and Shiloach [7] and Tarjan and

Received by the editors March 8, 1991; accepted for publication (in revised form) August 12, 1991. This
work was partially supported by National Science Foundation grants CCR-8814977, CCR-9014605, by the
ESPRIT II Basic Research Actions Program of the EC under contract 3075 (Project ALCOM), and by the
Italian MURST Project ’Algoritmi e Strutture di Calcolo." Portions of this paper appear in the Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, 1991.

tDepartment of Computer Science, Columbia University, 450 Computer Science Building, New York,
New York 10027, and Tel-Aviv University, Tel-Aviv, Israel.

$Department of Computer Science, Columbia University, New York, New York 10027, Universit di
Roma, Rome, Italy, and IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598.
This author’s work was partially supported by an IBM Graduate Fellowship. Part of this work was done while
visiting the IBM T. J. Watson Research Center and Universit/it des Saarlandes, Saarbriicken, Germany.

1047



1048 Z. GALIL AND G. E ITALIANO

(a)

(b)

(c)

FIG. 1. (a)A graph G (V, E); (b) the biconnected components ofG; (c) the bridge-connected components

Vishkin [50] give logarithmic-time parallel algorithms. Recently, Westbrook and Tar-
jan [52] considered the problem of maintaining biconnected components and bridge-
connected components undergoing any sequence of edge and vertex insertions. They
presented algorithms that run in a total of O(qa(q, n)) time, where q is the total number
of operations, n the number of vertices, and a the inverse Ackermann’s function. This
bound is optimal for pointer algorithms [38], [48] as well as in the cell-probe model of
computation [54].

In the last decade there has been a growing interest in dynamic problems on graphs.
In these problems one would like to answer queries on graphs that are undergoing a
sequence of updates, for instance, insertions and deletions of edges and vertices. A
problem is often said to befully dynamic if the update operations include both insertions
and deletions of edges. On the other hand, a problem is called partially dynamic if only
one type ofupdate, i.e., either insertion or deletion, is allowed. The goal of a (either fully
or partially) dynamic graph algorithm is to update efficiently the solution of a problem
after dynamic changes, rather than having to recompute it from scratch each time. Given
their powerful versatility, it is not surprising that dynamic algorithms and dynamic data
structures are often more difficult to design than their static counterparts.
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In the realm of graph problems, several dynamic data structures have been proposed
to support insertions and deletions of edges and/or vertices in a graph, in addition to
certain types of queries. In particular, much attention has been devoted to (among other
things) the dynamic maintenance of connected components [19], [20], [39], [42], [51],
[52]; 2- and 3-connectivity [15], [51], [52]; transitive closure [6], [28], [29], [30], [35],
[46], [55]; planarity [14], [15], [45]; shortest paths [5], [13], [18], [36], [40], [44], [55]; and
minimum spanning trees [12], [17], [20], [44]. Dynamic algorithms for graph problems
are both of theoretical and of practical interest in several application areas, including
communication networks, computer-aided design [3]; distributed computation, database
systems [1], [32], [53]; logic programming [4], [9]; incremental data flow analysis [10],
[11]; high level languages for incremental computations [56]; incremental generation of
parsers [27]; and programming environments [3], [26], [34].

Fully dynamic graph problems are usually much more difficult to solve than the cor-
responding partially dynamic problems. For example, the partially dynamic maintenance
of the connected components of an undirected graph can be done in O(a(q, n)) amor-
tized time per insertion using set-union data structures [49], where c is a very slowly
growing function (a functional inverse of Ackermann’s function), q is the total number
of operations, and n is the total number of vertices in the graph. Similarly, the partially
dynamic maintenance of a minimum spanning tree requires O(log m) time per inser-
tion [20] where m is the current number of edges in the graph, by using the dynamic
trees of Sleator and Tarjan [42], [43]. However, in both cases no better bound than
O(x/) is known for the corresponding fully dynamic problems [20]. Moreover, de-
spite intensive research on dynamic graphs, there are very few graph-theoretic problems
for which a fully dynamic nontrivial algorithm is known. These are mostly problems on
very restricted classes of graphs such as trees [42], [43]; series parallel graphs [13], [31];
st-planar graphs and spherical st-planar graphs with fixed embedding [45], [46]; and pla-
nar graphs with fixed embedding [17]. The only fully dynamic technique known to date
for general graphs is the algorithm by Frederickson for maintaining minimum spanning
trees and connected components of undirected graphs [20]. Although considerable ef-
fort has been spent on many other fundamental graph problems, a fully dynamic solution
of these problems has remained elusive.

In this paper we study the problem of maintaining the 2-edge-connected compo-
nents of a graph under an intermixed sequence of the following operations, starting from
the null graph (i.e., a graph with n vertices and no edges).

Same2EdgeBlock(u,v): Return true if vertices u and v are in the same 2-edge-
connected component. Returnfalse otherwise.

InsertEdge(x,y ): Insert a new edge between the two vertices x and y.

DeleteEdge(z, y): Delete the edge between the two vertices x and y.

Motivations for studying this problem arise from the design and management of
reliable networks.

As mentioned in [52], in such a fully dynamic setting there has been no known so-
lution better than a repeated application of an off-line algorithm, which yields a single
operation worst-case time complexity of O(m), where m is the current number of edges
in the graph. Reif [39] introduced the notion of complete dynamic problems, as a class
of problems with the property that if one problem can be solved in o(m) time per oper-
ation, then all the problems in the class can be solved in o(m) time per operation. Reif

1All the logarithms are assumed to be to the base 2 unless explicitly specified otherwise.
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mentioned, as examples of complete dynamic problems, the acceptance of a linear-time
Turing machine, path systems, the Boolean circuit evaluation problem, unit resolution,
and depth first search numbering of a graph. These problems seem to have no better
solution in response to dynamic changes than simply running a linear-time off-line algo-
rithm. Westbrook and Tarjan [52] ask if there are sublinear-time algorithms for the fully
dynamic maintenance of 2-edge-connected components or whether it is possible to show
that this is a complete dynamic problem. We answer this question by showing that this
problem can be solved in O(m2/3) time per operation. When the graph is planar, the
operations can be supported more efficiently in O(v/n log log n time each. We obtain
the same bounds even if we are initially given a nonnull graph, Go (V0, E0), and we
allow o(Iv01 / I 01) preprocessing time. In addition, our data structures can support
insertions of new vertices and deletions of disconnected vertices.

We remark that the fully dynamic maintenance of the connected components of a
graph differs substantially from the fully dynamic maintenance of the 2-edge-connected
components. Indeed, in the first problem a single edge insertion can merge at most two
components into one. On the other hand, for the second problem a single edge insertion
can produce a cycle in the graph that might combine as many as O(n) 2-edge-connected
components into one. As a result, by simply alternating the insertion and deletion of
the same edge, we can generate a sequence of operations that at each step changes the
number of components by O(n). This also explains why we do not maintain 2-edge-
connected components’ names: indeed, in such a scenario a DeleteEdge operation would
have to specify as many as O(n) different new names.

Our techniques combine a variety of graph properties, data structures, and new al-
gorithmic tools. Following the ideas of Frederickson [20], we partition graphs into vertex
clusters. However, this by itself is not enough to achieve efficient algorithms for our prob-
lems. We find a way to maintain a succinct encoding of each cluster that satisfies nice
properties with respect to 2-edge-connected components in the graph. This enables us
to answer queries about edge connectivity properties without having to look at the entire
graph each time.

The remainder of this paper consists of six sections. In 2 we describe our data
structure for connected graphs. Section 3 shows how to detect some particular kind of
bridges in our graph. Section 4 deals with the implementation of our operations, while

5 analyzes their time complexity. Section 6 extends the same time and space bounds to
unconnected graphs. Finally, in 7 we list some concluding remarks.

2. The data structure for connected graphs. For the sake of simplicity, we first de-
scribe algorithms dealing with connected graphs, and we then show how to extend the
algorithms to unconnected graphs. We will describe a data structure operating on graphs
with bounded degree. It is well known (see, for example, references [20] and [24, p. 132])
that each graph G (V, E) can be transformed into a graph G’ (V’, E’), whose ver-
tices have degree no greater than three, and G’ preserves the bridges of G. The transfor-
mation is as follows. For each vertex u of G of degree d > 4, where v0, vl,..., va-1 are
the vertices adjacent to u, replace u with new vertices u0, u,..., ua-, and replace edge
(u, vi) with edge (u, v), 0 _< _< d 1. Furthermore, add new edges (u, U(iw1)mod d),
0 <_ < d- 1. Notice that each edge (x, y) in G corresponds to a unique edge (x, y) in
G’ (but the converse is not always true since G’ may contain the new edges of the form
(u, u(+)mod d), 0 <_ i <_ d 1). It is easy to show that given a connected graph G
with m edges and n vertices, G’ contains at most O(m) edges and vertices, and can be
generated in O(m) time. This transformation preserves 2-edge-connected components,
as the following lemma shows.



FULLY DYNAMIC ALGORITHMS FOR 2-EDGE CONNECTIVITY 1051

LEMMA 2.1. Let (z, V) be any edge of G, and let (zi, /) be the corresponding edge in
G’. Then (z, V) is a bridge in G ifand only if (zi, Vj is a bridge in G’.

Proof. Immediate from the fact .that by construction (x, V) lies in a (not necessarily
simple) cycle in G if and only if (z, V) lies in a (not necessarily simple) cycle in G’. E]

As a consequence ofLemma 2.1 and the fact that new edges of G’ cannot be bridges,
we restrict our attention to graphs with O(m) edges and vertices and whose vertices
have degree not exceeding three. We obtain efficient algorithms for our problem by
partitioning a graph G into clusters and by maintaining a succinct internal representation
ofeach cluster. We do this as follows. We consider any spanning tree T ofG and generate
a topological partition of T of order k as defined in [20], with k being a positive integer
to be chosen later. We recall that a topological partition of T of order k consists of
O() vertex clusters of T such that each cluster contains a connected subgraph with
between k and 3k 2 vertices. As shown in [20], this can be accomplished in O(m) time.
Throughout the sequence of operations, we maintain for each vertex v of G information
about the cluster of the topological partition containing v, in such a way that we can find
in constant time the cluster containing a given vertex. This information can be easily
initialized and updated during any sequence of our operations, and we will not mention
this any further. Furthermore, we maintain the graph G obtained from G by contracting
each cluster C into a single vertex (also denoted by d). If there are more than two edges
between cluster C and in G, then we represent only two edges between C and C in
G. We refer to G as the super-graph of G. Figure 2 shows a graph G together with its
super-graph G.

C

C! C 2 C 3

(a)

(b)

FIG. 2. (a)A graph G (V, E) partitioned into clusters; (b) the super-graph of G.

Furthermore, for each cluster C in the topological partition of T we maintain a full
representation defined as follows. An edge of G with both endpoints in a cluster C is said
to be internal to C, while an edge of G with only one endpoint in C is said to be incident
to C. Consider the subgraph induced by cluster C (i.e., the graph having only vertices
and edges internal to C). Call this subgraph (C). Thefull representation of cluster C is a



1052 z. GALILAND G. E ITALIANO

graph ’(C), which consists of (C), plus the dusters adjacent to C (shrunk into vertices)
and the edges incident to C. In other words, the vertex set of’(C) consists of the vertices
internal to C and the clusters adjacent to C. The edge set of ’(C) is composed of all the
edges of G internal and incident to C. Since C contains at most O(k) vertices, each of
which has degree no greater than three, then ’(C) has at most O(k) vertices and edges
and can be computed in O(k) time. Figure 3 shows the full representation of a cluster.

FIG. 3. Thefull representation ofa cluster C.

Given the super-graph G and the full representation of each cluster in the topolog-
ical partition, we use these data structures to test whether two vertices z and /are in
the same 2-edge-connected component, as follows. Denote by Cx and Cv the clusters
containing, respectively, vertices z and V. Notice that Cx and Cv may not be necessarily
distinct. Replace in the super-graph G the vertices C and Cu with their full representa-
tion. That is, replace vertexC and the edges incident to it in G with (C) (the subgraph
induced by cluster C) and the edges of G incident to cluster Cx. Do exactly the same
for cluster Cu. Denote the obtained graph 9,u(G) and call it super-graph ofG induced
by vertices z and t. Figure 4 shows a graph G (V, E) and the super-graph induced by
two vertices.

FIG. 4. The super-graph ofthe graph in Fig. l(a) induced by vertices 4 and 11.

We now characterize some properties of ,u(G).
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LEMMA 2.2. For any two vertices z and 1, ,u(G) has at most O(k + (m/k)) vertices
and 0 k+ m /k edges and can be computed in a total of0 k timefrom the super-graph
G.

Proof. Let G be the super-graph of G. Since there are at most O(m/k) clusters in
the topological partition of the original graph G, the number ofvertices in G is O(m/k).

Furthermore, there can be at most two multiple edges between any two vertices of
(; consequently, the number of edges in is O(m/k). ,u(G) is obtained from by
replacing at most two of its vertices with the full representation of their corresponding
clusters. Since the full representation of a cluster has at most 3k 2 vertices, each of
degree at most three, this introduces at most O(k) new vertices and edges. As a result,
,(G) has at most O(k + (m/k)) vertices and O(k + (m/k)) edges. Furthermore,
once the super-graph G is given, ,u(G) can be computed in O(k) time.

Let z and//be two vertices that are not in the same 2-edge-connected component
of G. Then there is a bridge separating z and//in G. Any such bridge e can be of two
different types: type (1) if e is either internal to and Cu or is an edge between two
different clusters and type (2) if e is internal to a cluster C, C C, C

LEMMA 2.3. Let z and 1 be any two vertices of G. Then thefollowing is true:
(i) e is a type (1) bridge in G ifand only ifthe corresponding edge is a bridge in ,u(G);
(ii) If e is a type (2) bridge separating z and !1 in G, and e is internal to a cluster

(C C, C Cy), then C is an articulation point in ,(G).
Proof. To prove (i), we observe that an edge e in G,u(G) corresponds either to an

internal edge of C or Cu or to an edge connecting two different clusters. It is easy to
see that there is a cycle in G,u(G) containing edge e if and only if there is a cycle in G
containing the corresponding edge.

We now turn to (ii). If e is a bridge separating x and y in G, then its removal discon-
nects x and y in G. Since 6,u(G) can be obtained from G by contracting each cluster
except C and Cu into a single vertex and by reducing to two the number of multiple
edges, then the removal of C must disconnect x and y in 6,u (G). Therefore, C must be
an articulation point in ,u(G).

By Lemma 2.3, a type (1) bridge can be detected by simply computing the 2-edge-
connected components of ,u(G). This can be performed by using the off-line linear-
time algorithm of Tarjan [47] on ,u(G), which requires O(k + (m/k)) time because
of Lemma 2.2. The crucial task is, therefore, how to check efficiently whether there is a
bridge separating z and /within a cluster C. We will show how to perform this task in the
next subsection. First, we need to introduce some new terminology and data structures.

For each cluster C, we maintain its tree representation defined as follows. We recall
that we denote by (C) the subgraph of G induced by cluster C (i.e., the graph having
only vertices and edges internal to C). Compute the 2-edge-connected components of
(C). They form a tree T(C), whose edges are the bridges in (C). T(C) is called the
tree representation of cluster C. As a consequence of any cluster having at most O(k)
edges and vertices, the tree representation of a cluster has size at most O(k) and can be
computed in O(k) time.

For each cluster C, we root arbitrarily at any vertex the tree representation 7"(C), and
maintain it as a data structure that supports fast lowest common ancestor (in short lca)
queries [25], [41]. We assume that in a rooted tree edges are directed from the children
to the parent. We recall here that given a rooted tree T and two vertices u and v, the
lowest common ancestor of u and v, denoted by lca(u, v), is the deepest vertex in T that
is ancestor of both u and v. The data structures proposed in [25], [41] answer each lca
query in O(1) time after a linear-time preprocessing on the tree. Therefore, in our case,
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we need an extra O(k) time to organize T(C) as a fast lca data structure; but then we
can answer any lca query in T(C) in constant time. Finally, for each vertex v of T(C), we
compute size(v) as the size of the subtree rooted at v, and preorderv) as the preorder
number of v. For all vertices v in T(C), size(v) and preorderv) can be computed in a
total of O(k) time during a preorder traversal of T(C).

Furthermore, for any two clusters Ci and Cj, let Ei,j {el, e2,..., eh} be the set
of edges of the original graph G between Ci and C. We represent edges in Ei, using
two data structures: one for Ci, named E(Ci, ), and the other for C, named E(Cj, Ci).
E(Ci, C) stores information about the endpoints of edges in E, falling into cluster .
E(C, Ci) is similar. Specifically, E(Ci, Cj) contains all the vertices u in T(C) such that
there is an edge in Ei, incident to u. We recall that vertices of T(C) represent 2-edge-
connected components of (C), the subgraph of G induced by cluster Cj. Furthermore,
we maintain E(Ci, C) as an ordered set according to the preorder numbering of T(C).
To access and update E(Ci, C) and E(C, Ci) efficiently, we maintain them as balanced
search trees [2]; the key of vertex v is preorder(v).

In summary, throughout our sequence of Same2EdgeBlock, InsertEdge, and De-
leteEdge operations we maintain the topological partition into clusters together with the
following data structures:

(i) G, the super-graph of G;
(ii) For each cluster C, we maintain its full representation ’(C) and its tree repre-

sentation T(C); and
(iii) For each nonempty edge set Ei, between two clusters Ci and , we maintain

the two balanced search trees E(C, Cj) and E(Cj, C).
’(C), T(C), and all the balanced search trees E(C’, C) for clusters C’ adjacent to C

are referred to as the data structures pertinent to cluster C. The following lemma bounds
the total time required to initialize all the data structures pertinent to a cluster as well
as their space usage.

LEMMA 2.4. All the data structures pertinent to a cluster C can be initialized in a total
of O(k) time and require 0(k) space.

Proof. The full representation ’(C) of a cluster contains at most O(k) edges and
vertices and, therefore, can be computed in O(k) time. On the other hand, the tree
representation T(C) can be obtained by computing the 2-edge-connected components
of the subgraph (C) induced by cluster C. Since (C) has at most O(k) vertices and
edges this can be done in O(k) time [47]. Furthermore, the preprocessing involved in
computing size(v) and preorder(v) for each vertex v, as well as in organizing T(C) as a
fast lca data structure requires O(17r(C)[) O(k) time [25], [41].

We compute all the balanced search trees E(C’, C), for each cluster C’ neighbor of
C, at the same time. We traverse T(C) in preorder, and we build the balanced search
trees by inserting an item in E(C’, C); each time we find an edge between the vertex v of
T(C) we are currently visiting and cluster C. Since T(C) is visited in a preorder fashion,
items are always inserted at the end of a balanced search tree. Therefore, each balanced
search tree can be built in linear time [8]. The total time involved in building all these
balanced search trees is

since there can be at most a total of O(k) edges of G incident to cluster C.
Consequently, all the data structures pertinent to a cluster C can be initialized in a

total of O(k) time. Obviously, they require O(k) space. [3
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3. Testing for bridges inside clusters. The data structures given above can be used
to check efficiently whether there is a bridge inside a cluster C that is an articulation point
separating z and y in Tx,y (G).

Consider the super-graph G. Since G can be obtained from x,y(G) by shrinking
the two clusters Cz and Cu into one super-vertex and by reducing to two the number of

multiple edges; C must be an articulation point separating C and Cu in G. Thus, remov-

ing C from G breaks G into, say, s(C) >_ 2 connected components W1, W2,..., Ws(c).
Without loss of generality, let W1 be the connected component containing C, and let

W2 be the connected component containing Cu. Denote by 2:’1, Z’2, ,"Czh’rh (C) the
clusters previously adjacent to 7 and now in connected component Wh, 1 < h <

,,l,iLet k’ c i 1, 2,... rl (C) p(C) (i.e., Xd, k’ff,..., k’ff(c) are the clusters pre-
viously adjacent to C and now in the same connected component as C). Similarly, let

3 2, 3(c)c J 1, 2,... r2(l) q(C) (i.e., y, 32,..., are the clusters previously
adjacent to C and now in the same connected component as Cu). Notice that p(C) > 1,

X-’s(c)q(C) > 1 rh(C) > 1 3 < h < s(C), and p(C) + q(C) + z_,h=a rh(C) d(C), where d(C)
is the number of clusters adjacent to C, also called the external degree of cluster C.

LEMMA 3.1. Given G, all the clusters C that are articulation points separating z and B
in x,u(G), as well as their neighboring clusters X,, 1 < i < p(C), 3), 1 < j < q(C), and

c 3 < h < s(C), 1 < t < rh(C), can befound in a total ofO(m2/k2) time.

Proof. Compute the biconnected components ofG using the algorithm ofTarjan [47],
and subsequently construct the block tree of G (as defined for instance in [24]). We re-
call here that a block tree of a graph is composed of square nodes (corresponding to
vertices in the graph) and round nodes (corresponding to biconnected components in
the graph)" whenever a vertex belongs to a given biconnected component, there is a tree
edge between the corresponding square and round nodes in the block tree. As a conse-
quence, each path in a block tree alternates between square and round nodes, and the
block tree has size bounded by the total number of square nodes, i.e., by the number of
vertices in the original graph. The construction of the block tree is immediate once the
biconnected components have been found. Since has O(m/k) vertices and O(m2/k2)
edges, its biconnected components and its block tree can be computed in O(m2/k2) time.
Furthermore, the block tree has size O(m/k). Due to the property of block trees, all the
clusters C that are articulation points separating x and B in ,u(G) can be found as the
square nodes in the path between C and Cu in the block tree of G. Furthermore, each
cluster C’ can be adjacent to at most two clusters that are articulation points separating x
and y in ,u(G). Consequently, each cluster C’ can be in each of the sets {’}l<i<p(C),
{3}l_<j_<q(C), and {z)’t}a<h<s(C),l<t<rh(C) at most once for all possible choices of the
articulation point C in . As a result, all the neighbors X., 2, and "cgzh’t of all these
clusters C can be found in a total of O(m2/k2) time by visiting both G and its tree.

We now show how to check whether there is a bridge internal to a cluster C that is
an articulation point in ,u(G). Assume that a vertex v in T(C), the tree representation
of C, is colored red if there is an edge in G between a vertex in cluster , 1 < < p(C),
and v. Similarly, assume that a vertex v in T(C) is colored black if there is an edge in
G between a vertex in cluster Yc, I < j < q(C), and v. The red vertices are all the
vertices in E(2(, C), 1 < i < p(C), and the black vertices are all the vertices in E(Yc, C),
1 < j < q(C). Similarly, we denote the clusters X., 1 < i < p(C) as red clusters, and
the clusters y, 1 <_ j _< q(J) as black clusters. The other clusters, cgzh’t, 3 < h < s(C),
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1 < t < rh(C), are referred to as W-clusters. Notice that since p(C) > 1 and q(C) > 1,
we have at least one black vertex and one red vertex in T(C).

We need the following new terminology. Given the tree representation T(C) of
cluster C, and an edge e in T(C), let T and T be the two trees obtained by removing
e from T(C). We recall that W1, W2,..., Ws(c) are the connected components left in

the super-graph G after the removal of cluster C. We say that a connected component
Wh, 1 < h < s(C), is compatible with edge e if all the edges between clusters c
1 < t < rh (C), are incident to either T or T, but not to both.

LEMMA 3.2. Let C be a cluster that is an articulationpointseparating x and y in G,u G)"
There is a bridge inside cluster C that separates vertices x and y in G ifand only ifthere is an
edge e in T(C) that satisfies thefollowing two conditions:

(i) The removal of e separates red and black vertices; and
(ii) Each connected component Wh, 3 < h < .s(C), is compatible with e.

Proof. By definition of the clusters R’ and 3;, every path between x and y in G must
have the following structure. It starts with a path outside C ending at a vertex of C that
corresponds to a red vertex in T(C). It ends with a path outside C starting at a vertex of
C that corresponds to a black vertex in T(C).

Thus, there is an edge e in T(C) for which conditions (i) and (ii) hold if and only if
the removal of the edge corresponding to e in G separates x and y. Condition (i) holds
if and only if any path in C between a vertex corresponding to a red vertex and a vertex
corresponding to a black vertex contains e. Condition (ii) holds if and only if there is no
detour avoiding e through component Wh, 3 < h < s(C).

Figure 5 shows an example of an edge that satisfies both conditions of Lemma 3.2.

FIG. 5. A cluster C, its tree representation, and its neighboring clusters. Edge f satisfies only condition (i) of
Lemma 4.2, while edge e satisfies both conditions (i) and (ii).
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We remark that, in order to check conditions (i) and (ii) of Lemma 3.2, we cannot
even afford to enumerate all the red and black vertices explicitly. Indeed this can take as
much as 9t(k) time for each cluster C we need to consider. Since we may have to perform
this task in ft(m/k) different clusters, these times would sum up to a total of f(m). We
check the two conditions of Lemma 3.2 independently, and then intersect the solutions
of these two computations.

We first describe how to check efficiently condition (i). First we need few technical
lemmas. Let A,A,... ,A, g > 0, be any g clusters adjacent to cluster C. Then define
by A(Jh,A2,... ,Ae) the deepest vertex in T(C) such that all the edges between Ai,
1 _< i _< g, and C are incident below A(A,A2,... ,A).

LEMMA 3.3. The vertex A(A1, A2, Ae) can befound in O(g) time.

Proof. For 1 _< i _< g, find Ai, the lea of all the vertices in E(Ai, C). Since E(Ai,
is sorted according to the preorder numbering of T(C), this can be done by first find-
ing the leftmost and rightmost vertices u and v in E(A,C), and then by computing
A lca(u, v). Then A(A,A,... ,Ae) can be found as the lea of all the A’s by per-
forming at most O(g) lea queries. The total time required can be bounded as follows.
Finding the leftmost and rightmost item in a balanced search tree E(.Ai,C) requires
O(log [E(Ai, C)I) time. However, this can be performed in constant time ifwe maintain
extra pointers from the root of each balanced search tree to the leftmost and rightmost
items in the tree. The time required to perform an lea query in T(C) is O(1). Since we
have at most a total of O(g) queries, the time spent in finding the leftmost and rightmost
vertices in all the balanced search trees E(A, C), 1 <_ i <_ g, and in performing all the
lea queries will be O(g). Consequently, the total time required is O(g).

Define the top-red vertex p as A(X, Xff,..., Aft(c)). Notice that p is the lea of all the
red vertices in T(C). Similarly, define the top-black vertex/3 as A(Y, Y,..., y(c)), that
is, as the lea of all the black vertices in T(C). The following corollary is a consequence
of Lemma 3.3.

COROLLARY 3.1. The top-red and the top-black vertices p and/3 in T(C) can befound
in O(p(C) + q(C)) time.

After locating the top-red and top-black vertices p and/3, we compute in O(1) time
v lea(p, ). We now have four different cases depending on the relative positions of
the three vertices v, p, and/3 in T(C).

LEMMA 3.4. Let p be the top-red vertex, the top-black vertex, and let v lea(p, ).
Let 7rp, be thepath in T(C) between p and . Then

(1) If v p , no edge in T(C) can separate black and red vertices;
(2) If v p and v , then all the edges in 7r;, (and only them) separate black and

red vertices;
(3) If v p, an edge e separates black and red vertices if and only if e is in

and there are no black vertices below e;
(4) If v p , an edge e separates black and red vertices if and only if e is in

and there are no red vertices below e.

Proof. We exploit the following fact. The deletion of an edge splits the tree T(C)
into two trees. Since there is at least one red vertex and one black vertex in T(C), an edge
separates black and red vertices if and only if its removal leaves all the black vertices in
one tree and all the red vertices in the other tree. As a result, an edge that separates
either two black vertices or two red vertices cannot separate black and red vertices. We
now analyze the four different cases.

In case (1) v p -/3. By definition of lea we must have two (not necessarily distinct)
red vertices, r and r, and two (not necessarily distinct) black vertices, b and b, such
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that the path 7rR between r and r2 and the path 7rB between bl and b2 intersect in v.
Notice, however, that if bl b [r r], then it must be v b b [v r r].
Assume by contradiction that there is an edge e in 7"(C) whose removal separates red
and black vertices. Clearly e cannot be in 7rB; otherwise two black vertices bl and b2 will
be separated. For the same reason e cannot be in 7rR. But this implies that after the
removal of e, we have that a red vertex (rl or r) is still reachable from a black vertex (b
or bz), a contradiction.

We now show that in cases (2), (3), and (4) only edges in 7rp, can possibly separate
red and black vertices. Indeed the removal of an edge not in 7r,, leaves/3 and p in the
same tree. The same argument given in case (1) shows that such an edge cannot separate
red and black vertices.

Now consider case (2). All the red vertices are in the subtree rooted at p, and all the
black vertices are in the subtree rooted at/3. Since v lca(p, ) is different from both p
and/3, then all the edges in 7ro, (and as shown before only them) separate red and black
vertices.

As for case (3), let e (a, b) be any edge in 7rp,, with b being the parent of a. If
there is no black vertex in the subtree rooted at a, then the removal of e will separate red
and black vertices. Assume now there is a black vertex, say b, in the subtree rooted at
a. Since/3 is the lca of all the black vertices and it is a proper ancestor of a, there must
be another black vertex b b outside the subtree rooted at a. Therefore, the removal
of e will split T(C) into two pieces, each of which contains at least one black vertex. As
a result, e cannot separate red and black vertices.

Case (4) is analogous to case (3).
Conditions (1) and (2) of Lemma 3.4 are both easy to check once p,/3, and v are

available; furthermore, they immediately give all edges separating red and black vertices.
We still need to explain how to check conditions (3) and (4). Without loss of generality,
we restrict our attention to condition (3). We do it separately for eachY cluster inducing
black vertices in T(C). The idea underlying a fast algorithm to accomplish this task is to
use a kind of binary search instead of checking all the possible black vertices.

LEMMA 3.5. Let C’ be any cluster adjacent to C, and let v be any vertex of T(C). Then
we can check whether there are edges between C’ and C incident below v in O(log k) time.

Proof. By definition of E(C’, C), there are edges between C’ and C below v if and
only if there are vertices of E(C’, C) below v. Because of preorder numbering, a vertex
u in E(C’, C) is in the subtree of T(C) rooted at v if and only if the preorder number of
u satisfies preorder(v) < preorder(u) < preorder(v) + size(v) 1. Consequently, we
have to check whether the balanced search tree E(Cp, C) contains at least one item in
the range [preorder(v), preorder(v)/size(v)- 1]. This range query can be accomplished
by finding the smallest item of the balanced search tree E(C’, C) greater than or equal
to preorder(v), which can be done in O(log [E(C’,C)[) O(log k) time. Then E(C’,C)
contains at least one item in the range [preorder(v), preorder(v)+size(v)-l] if and only
if the item found is less than or equal to preorder(v)+size(v)-1.

LEMMA 3.6. Given a tree representation 7"(C) ofa cluster C that is an articulationpoint
separating z and !1 in x,u (G), we can find whether red and black vertices can be separated
in T(C) in O((p(C) + q(C)) log k) time.

Proof. The three vertices p,/3, and v can be computed in O(p(C) + q(C)) time by
Corollary 3.1. By Lemma 3.4, we have to check only four possible conditions. Conditions
(1) and (2) can be checked in constant time and require no further work.

We show how to perform efficiently the test implied in condition (3) for each
E(32, C), 1 < j < q(C). Notice that in order to check whether red and black vertices
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can be separated in T(C), it is enough to check that there are no black vertices in the
subtree of T(C) rooted at p. By Lemma 3.5, we can check in O(log k) time whether there
are edges between 3; and C. Since we have to test this for all the possible clusters 3;,
1 < j < q(C), condition (3) requires a total of O(q(C) log k) time.

Condition (4) of Lemma 3.4 can be checked with the same algorithm, but this time
using the clusters A’ instead, 1 < i < p(C). This requires a total of O(p(C) log k) time.

In summary, we can checkwhether there is an edge separating red and black vertices
in T(C) in a total of O((p(C) + q(C)) log k) time. 3

By Lemma 3.6, we can check in O((p(C) + q(C)) log k) time whether black and red
vertices can be separated in cluster C, i.e., whether there is an edge of T(C) that satis-
fies condition (i) of Lemma 3.2. If red and black vertices cannot be separated, then by
Lemma 3.2 there cannot be any bridge inside cluster C separating vertices z and y in G.

Otherwise, if red and black vertices can be separated, we check condition (ii) as
follows. Let p be the top-red vertex and let fl be the top-black vertex in T(C). If red
and black vertices can be separated, it means that we are either in case (2), (3), or (4)
of Lemma 3.4. As shown in Lemma 3.4, 7rp,, the path between vertices p and fl in
T(C), contains all the possible edges that separate red and black vertices and for which
condition (ii) of Lemma 3.2 has to be checked.

We first consider case (3) of Lemma 3.4. We consider each connected component
[h,t C) 1 < t < rh(C)Wh, 3 < h < s(C). We compute the lca of all the vertices in E c

and call it "/h. By Lemma 3.3, this can be done in O(rh (()) time. Thus, in a total of

time, we can compute all the vertices "a, 74,..., 78(c). If some "h, 3 < h < s(C), is not in
the path between p and the root of T(C), then the removal of any edge in 7rp,z leaves all
the vertices inE(’t, C), 3 _< t _< rh (C), on the same side. Therefore, the corresponding
component Wh is compatible with any edge in the path 7rp,. We examine all the "h
vertices and discard the vertices not in the path between p and the root. Since we can test
in O(1) time whether a vertex ’h is in the path between p and the root by simply checking
whether q’h lca(p, "h), this step can be accomplished in a total of O(s(C)) O(d(C))
time. At the end of this step, we are left with r < s(C) vertices ")/ht, 7h9.,..., h,. in
the path between p and the root of T(C), corresponding to the connected components
for which we have still to check condition (ii) of Lemma 3.2. We sort the vertices
1 < i < r, in O(r log r) time according to their preorder numbering in T(C). Notice that
r < s(C) < d(C). Furthermore, r is at most the total number of edges incident to cluster
C" r < k. Hence, r < min{d(C), k} and O(r log r) O(d(C) log k). Let 7, 7,-..,
be the resulting sorted list, with preorder(7) >_ preorder (7+1). Let % p. For 0 <

be the edge of T(C) from 7 to its parent, if 7 is not the root, and let it bei _< r, let e
undefined otherwise. Let W be the connected component corresponding to "),, and let

Zc ,t, 1 < t <_ re (C), be the clusters in Wi adjacent to C. The following lemma states
that in our search for edges satisfying condition (ii) of Lemma 3.2, without any loss of
generality, we can restrict our attention to the edges e, e,..., er.

LEMMA 3.7. Let be a proper ancestor of p. There is an edge of T(C) satisfying both
0 < i < r, satisfiesconditions (i) and (ii) ofLemma 3.2 ifand only if at least one edge %

conditions (i)and (ii).
Proof. Assume there is an edge of T(C), say, e (a, b), with b, being the parent of

a, satisfying both conditions (i) and (ii) of Lemma 3.4. By Lemma 3.4, the two vertices
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a and b must be in the path 7to,z3. Let T(1a’b) be the subtree of T(C) rooted at a, and

T(a’b) T(C) {Ta’b) tO (a, b)}. Let 9’/3, 9’,..., 7’ be the sorted list of vertices in the
path between p and the root as defined above. Let 9’, 9’,..., 9’, 0 < t? < r, be all
such vertices in the path between p and a (p and a included). Since e satisfies condition
(ii), then each W’, 1 < i < r, is compatible with e. This means that all the edges
between W;, W,..., W[, and C are incident to T’b), and that all the edges between

W+I,W’e+2, W, and C are incident to T’’3 By definition of the 7’s, the edges
between W, W,..., W, and C are all incident to vertices of 7-(C) below 7. Therefore,
each W’, 1 .<_ < r, is compatible with e, too.

We examine the vertices 9’, 1 _< i < r, according to decreasing preorder numbering,
i.e., starting with 9’I. We maintain a vertex called CANDIDATE, satisfying the following
invariant:

(I1) Before examining vertex 9", 1 <_ <_ r, CANDIDATE= 9’j, 0 _< j _< i- 1, where
either 7 is the root of T(C) or 7 is the deepest vertex such that W W,.. W.’,-1 are
all compatible with e (the edge from 9’ to its parent).

At the beginning, i 1, CANDIDATE= 9" p and invariant (I1) trivially holds.
We describe inductively how to examine vertex 9’, 1 _< i < r. Let CANDIDATE=
0 <_ j <_ 1, while examining vertex 9’. If 9’ 9’, then we set i to i + 1. Since W’ is
compatible with ei e, invariant (I1) still holds. Otherwise, we check whether all the

gzi’,tbalanced search treesEc C), 1 < t < ri, (C), have vertices in the subtree rooted at

9’j. By Lemma 3.5, this can be accomplished in a total of O(re (C) log k) time by means of

EtZe,t C) I < t < (C), have no vertices in the subtree rootedre ((J) range queries. If c r,
fromat 7, then the edge e 7) to its parent in T(C) is compatible with W. Therefore,

Again9’ is still the deepest vertex such that W,W W/ are all compatible with e.
we set to + 1, and invariant (I1) still holds. Otherwise, there is at least one vertex in

the balanced search trees E(Z’t (J), 1 < t < ri, (C) that is, in the subtree rooted at 9’
(corresponding to 9’ and all the verticesThis implies that all the edges ej, ej+l,... ei_

examined after 9’) are not compatible with W/. However, either 9’ is the root or edge e
is now compatible with W, W,..., W/. Consequently, we set CANDIDATE= 9" and
i=i+1.

This shows that invariant (I1) is maintained after each vertex 9’ is examined. Let
CANDIDATE 9’ after all the vertices have been examined. Let e be the edge from
")/to its parent. Because of invariant (I1), e’ is the deepest edge in {e, e,..., e} that
satisfies condition (ii) of Lemma 3.2. Notice that if 9’ is the root of T(C), then e is not
defined; but in this case by Lemma 3.7 no edge of T(C) satisfies condition (ii). If 9’ is
not the root, we check whether there is an edge that satisfies both conditions (i) and (ii)
asfollows.

If 9’ is an ancestor of, then e is not in 7ro, and, therefore, cannot satisfy condition
(i). This also implies that the edges in {e, e,..., e} above cannot be in 7rp, and,
consequently, do not satisfy condition (i). Since by invariant (I1) e’ is the deepest edge
in {e3 el,..., er} satisfying condition (ii), the edges in {e3 el,..., er} below do not
satisfy condition (ii). Therefore, no edge in {e3, el,..., e} satisfies both conditions (i)
and (ii). By Lemma 3.2, no edge in T(C) satisfies both conditions (i) and (ii), and by
Lemma 3.2 there is no bridge in C separating z and t in G.

Otherwise, 9" is a proper descendant of/3. By invariant (I1) e’ is the deepest edge in
{e3 el,..., e} satisfying condition (ii). To check whether e’ also satisfies condition (i),
we have to check that there are no black vertices in the subtree rooted at 9". By Lemma
3.5, this can be accomplished in O(q(C) log k) time. If there are no black vertices below
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7’, then e’ satisfies both conditions (i) and (ii), and by Lemma 3.2 the corresponding edge
of C is a bridge separating z and y in G. Otherwise, there is at least one black vertex in
the subtree rooted at -’, and, therefore, e’ cannot satisfy condition (i). Consequently,
edges in {e6, e,..., e} above e’ do not satisfy condition (i) either. By Lemma 3.7, no
edge in 7"(C) satisfies both conditions (i) and (ii), and by Lemma 3.2 there is no bridge
in C separating z and y in G.

This shows how to deal with case (3) of Lemma 3.4. Case (4) is analogous. Case
(2) can be dealt with in a very similar fashion. The only difference is that now while
searching for an edge satisfying condition (ii), we have to consider separately the two
paths 7r, between/9 and the root and 7r between fl and the root. By applying the above
algorithm at most twice, each time on a different path, we are able to check whether
there is an edge in 7rp, satisfying both conditions (i) and (ii) of Lemma 3.2.

LEMMA 3.8. Given a cluster that is an articulation point separating z and y in

x,u(G), we can find whether C contains a bridge separating z and y in G in O(d(C) log k)
time, where d(C) is the external degree ofcluster C.

Proof. We analyze the time complexity of the above algorithm as follows. Condition
(i) of Lemma 3.2 can be checked in O((p(C) + q(C)) log k) by Lemma 3.6.

We now bound the time required to check condition (ii). As explained before, the
preprocessing required to find and sort the vertices 7, 7,- " is O(d(C) log k). The
time involved in examining vertex . for some i, 1 < i < r, is the time spent in the
range queries in the balanced search trees, which is O(re (C) log k) by Lemma 3.5. Con-
sequently, the total time required to examine the r < s(C) vertices "7 throughout the
algorithm is

O (ri(C) log k) O(d(C) log k).

We now have to bound the time required to checkwhether there is an edge satisfying
both conditions (i) and (ii). This involves performing range queries to test whether there
is any black or red vertex below the vertex 7’ defined above. By Lemma 3.5, this can be
implemented in O((p(C) + q(C))log k) O(d(C)log k) time.

Since case (2) is the most expensive part of Lemma 3.4, and it requires applying at
most twice the above algorithm, we can check whether there is a bridge internal to a
cluster C in a total of O(d(C) log k) time. q

4. Implementing the operations. We perform a Same2EdgeBlock(x,y) operation as
follows. We first compute x,u(G), the super-graph induced by vertices z and y. By
Lemma 2.2, it can be computed in O(k) time from G. We then find the biconnected
components of ,u(G) by using the linear-time algorithm of Tarjan [47]. Because of
Lemma 2.2 this requires O(k + (m2/k2)) time in the worst case. If we find a bridge
separating z and y in ,u(G), then we stop and declare z and y not to be in the same
2-edge-connected component of G by returningfalse. This is correct because of Lemma
2.3. Otherwise, we have still to check whether there is a bridge separating z and y in G
that is internal to some cluster C. By Lemma 2.3, we can restrict our attention to clusters
that are articulation points separating x and y in ,u(G). We proceed as follows.

Let S be the set of clusters such that (i) they are articulation points in ,u(G), and
(ii) they separate x and y. Notice that in the worst case, S contains as many as O(m/k)
clusters. By Lemma 3.1, all the clusters in S as well as their ,E,, 3;, and "-’CTh’t neighbors
can be found in O(m2/k9) time. We run the algorithm of Lemma 3.8 on all the clusters
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in S. If either S 0 or there is no bridge in each cluster in S separating z and V, we
return tree. Otherwise, there is at least one bridge internal to a cluster and we return
false.

LEMMA 4.1. A Same2EdgeBlock(x,y) correctly returns true ifthe two vertices x and y
are in the same 2-edge-connected component of G, and returns false othemise. The total
time required is O(k + (m2/k2)). When the graph isplanar, the total time reduces to O(k +

k).
Proof. If there is a bridge separating x and y in G,u (G), then Same2EdgeBlock(x, y)

returns false. This is correct because of Lemma 2.3 and requires O(k + (m2/k2)) time
because of Lemma 2.2. Otherwise, we compute S in O(m2/k2) time as described in
Lemma 3.1 and run the algorithm given in Lemma 3.8 on all the clusters in S. This gives
a correct answer because of Lemmas 2.3 and 3.8. The total time required to test whether
there is a bridge internal to a cluster in S is

by Lemma 3.8. To bound this time, we notice that by Lemma 2.3 all the clusters in
are articulation points in G,v(G). Therefore, each cluster C’ can be in each of the sets

{X}l<_<p(c), {3}1_<<_q(c), and c ]3<_h<_s(C),l<_t<_rh(C.) at most once for all possi-
ble choices of the articulation point C in S (that is, during the whole execution of the
Same2EdgeBlock(z, y) operation). As a result, we have that

o

Hence, the total time spent in checking whether there is a bridge inside the articulation
points of 6x,v(G) is at most O((m/k) log k). This gives a total time of O(k + (m2/k2) +
(m/k) log k) O(k + (m2/k2)) for each Same2EdgeBlock operation.

If the underlying graph G is planar and insertions of new edges leave it planar, we
have that m O(n). Therefore, the topological partition contains O(n/k) clusters.
Since G is planar and contraction preserves planarity, the graph obtained by contracting
each cluster ofG into one vertex is itself planar. As a result, denoting by d(C) the external
degree of cluster C, we have

o

Then 6x,v(G) has O(k + (n/k)) vertices and edges. Therefore, each Same2EdgeBlock
operation can now be performed in O(k + (n/k) + (n/k) log k) O(k + (n/k) log k)
time.

We now show how to support InsertEdge(z, y). As usual, we denote by C and
the clusters containing x and y, respectively. When the new edge (x, y) is inserted, the
degrees of x and y in the original graph increase by one. If either the degree of x or
the degree of y becomes four, then the transformation given at the beginning of 2 has
to be applied. If either degree becomes larger than four, then the transformation has
been already applied but now must be updated. In both cases, this introduces at most
a constant number of extra vertices and edges and can be easily handled. However,
because of the insertion of extra vertices to keep a degree no greater than three, it may
happen that the size of either C or u has now become greater than 3k 2. When the
size of a cluster C becomes greater than 3k 2, we split C into two clusters C and
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LEMMA 4.2. A cluster C whose size is greater than 3k 2 but is still smaller than 4k
can be split into two clusters, C and C", such that they are connected and ofsize at least k
and at most 3k 2. The total time required to update all the data structures because ofthis
splitting is 0 k).

Proof. Since C has size O(k), two clusters, C and C", that satisfy the cluster re-
quirements, i.e., they are connected and of size between k and 3k 2, can be found in
O(k) time (see, for instance, [20]). We now analyze the time needed to update all the
data structures because of this splitting. The changes involve the data structures per-
tinent to the newly created clusters, C and C", all the balanced search trees E(C
and E(C", Cj) (for any clusters C and Cj adjacent, respectively, to C’ and C"), and the
super-graph G.

The full and tree representations of the new clusters C and C" as well as the bal-
anced search trees pertinent to C and C" (i.e., E(C, C) and E(C, C") for any clusters
Ci and C adjacent to C and C", respectively) can be recomputed from scratch in O(k),
as explained in Lemma 2.4. The other update needed is to compute the balanced search
trees E(C’, Ci) and E(C", C) for any clusters C and C that are adjacent to C’ and C".
We do this by visiting the old balanced search trees/(C, Ch) according to increasing
preorder numbers. Each visited item is inserted either in E(C’, Ch) or in E(C", Ch), de-
pending on whether the corresponding edge is incident now to C or C". Because of the
preorder numbering, items are always inserted at the end of E(U, Ch) and E(C",
As a result, these two balanced search trees can be computed in a total of O(IE(C,
time. The total time for computing all these balanced search trees is, therefore, still

O(k). Because of the splitting, the super-graph G must also be updated. But this can be
easily performed within the O(k) time bound. Consequently, all the updates needed can
be carried out in a total of O(k) time.

When the edge (z, y) has to be inserted, we apply possibly the transformation to
keep vertices of degree no more than three, and split either cluster Cx or cluster Cu if its
size exceeds 3k 2. As explained above, this can be done in O(k). Now let Cx and
denote the clusters containing x and /after the splitting has been performed. In order
to perform the actual insertion of edge (z, y), we distinguish two cases depending on
whether (z, y) is an edge internal to a cluster or an inter-cluster edge.

If C Cu C, then (z, t) is an internal edge. As a result, the insertion of (z,
changes the interior of C, that is, the full and the tree representation ’(C) and T(C) of
C. The change in T(C) may induce changes in the balanced search tree E(C’, C) for each
cluster C’ neighbor of C. But this implies that only the data structures pertinent to C need
to be updated. By Lemma 2.4, all these data structures can be recomputed from scratch
in O(k) time.

IfC Cu, then we have to insert an inter-cluster edge (z, t). The updates needed
are in the full representations of clusters, C and Cu, and in the two balanced search
trees E,(C, Cu) and E(Cu, Cx). As said before, this can be done in O(k) time by simply
reinitializing the data structures pertinent to clusters C and Cu. Furthermore, we may
have to update the edges between C and Cu in G, but this can be easily done within the
O(k) time bound.

In summary, inserting an edge (z, ) causes at most two clusters to be split and a con-
stant number of clusters to be updated. By Lemma 4.2, each cluster can be split in O(k)
time, and by Lemma 2.4 each cluster and its pertinent data structures can be recomputed
from scratch in O(k) each time an update is needed. This leads to the following lemma.

LEMMA 4.3. The total time required to update our data structure because ofan Insert-
Edge operation is 0(k).
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The deletion of an edge (z, V) can be performed as follows. Again we denote by
C and Cu the clusters containing, respectively, z and . When the edge (z, ) is being
deleted, we may have to apply the reverse of the transformation used to keep the vertex
degrees no greater than three. This can be easily taken care of, since it deletes only a
constant number ofvertices and edges and it involves only a constant number of clusters.
If because of this either C or u now has size less than k, then it is merged with an
adjacent cluster. If this adjacent cluster now has size greater than 3k 2, it must be
split into two clusters. Since the cluster resulting from this merging has size at most
(k 1) + (3k 2) < 4k, this splitting can be carried out in O(k) time because of Lemma
4.2. Notice that there is no further propagation of merging and splitting.

Merging two clusters involves updates similar to splitting a cluster and can be carried
out in O(k) time as the following lemma shows.

LEMMA 4.4. Let C be a cluster whose size is less than k and’ be a cluster adjacent to
C’. Then C and C" can be merged into a new cluster C in O(k) time.

Proof. The updates needed are in the data structures pertinent to the newly created
cluster C, in all the balanced search trees E(C, C) for any cluster C adjacent to C, and in
the super-graph G.

All the data structures pertinent to the new cluster C can be recomputed from scratch
in O(k) by Lemma 2.4. The other update needed is to compute the balanced search trees
E(C, C) for any cluster C adjacent to C. We compute E(C, C) by merging the two old
balanced search trees E(C’, C) and E(C", Ci), inserting one item at a time into E(C,
according to increasing preorder numbers. Because of this, items will always be inserted
at the end of E(C, Ci), and, therefore, this balanced search tree can be computed in a
total of O(IE(C, C)l) time. Since we can have at most O(k) edges incident to cluster C,
the total time required to compute all the balanced search trees E(C, Ci) for clusters
adjacent to C is O(k). Finally, because of the clusters merging, we may have to merge
two super-vertices of G into one. But this can be easily performed within the O(k) time
bound.

By Lemmas 4.2 and 4.4, the total time required to determine whatever splits and
merges are needed as well as to perform them along with the reorganization of the data
structures involved is O(k). Let C and Cu denote the two clusters containing
after all these possible splits and merges have been performed.

IfC : tTu, deleting edge (z, y) requires recomputing the full representations of the
two clusters and updating the balanced search trees, E(C, C’u) and E(Cu, C’). Further-
more, we may have to update the edges between d and Cv in G. As explained before,
all this can be done in a total of O(k) time.

IfC Cu C, then we have the following two cases. If the deletion of (z, /) leaves
the cluster C connected, then we need to recompute the full and tree representation of
as well as the balanced search trees E(C.’, C.) for each C’ neighbor of C. Once again, this
requires O(k) time by Lemma 2.4. Otherwise, if the deletion of edge (z, y) disconnects
C, it can no longer be a cluster. Denote by C’ and tT" the two connected components
into which the deletion of (z, y) splits cluster C. Since t7 has size O(k), this splitting may
be performed in a total of O(k) time by Lemma 4.2. If either C’ or C." has size less than
k, then we merge it with an adjacent cluster. If this adjacent cluster now has more than
3k 2 vertices, it must be split into two clusters. Note that no further merges and splits
are needed. By Lemmas 4.2 and 4.4, the total time required to determine whatever splits
and merges are needed as well as to perform them along with both the reorganization
of the data structures involved and the updates needed in G is O(k).
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In summary, deleting an edge (z, /) causes a constant number of cluster splits and
merges, and at most a constant number of cluster updates. By Lemmas 2.4, 4.2, and 4.4
all this can be done in O(k) time. Therefore, we have the following lemma.

LEMMA 4.5. The total time required to update our data structure because ofa Delete-
Edge operation is O(k).

5. Time complexity. Our implementation of the Same2EdgeBlock, InsertEdge, and
DeleteEdge operations achieve the following bounds.

THEOREM 5.1. The data structure above supports each InsertEdge, DeleteEdge, and
Same2EdgeBlock operation in O(m2/a) amortized time on a connected graph, where m is
the current number ofedges in the graph. Forplanar connected graphs, this time reduces to
O(x/’n log n ). The total space required by the data structure is O(ra).

Proof. By Lemmas 4.1, 4.3, and 4.5, each InsertEdge and DeleteEdge operation
can be performed in O(k) time, while Same2EdgeBlock requires O(k + (m2/kz)) time.
Choosing k Imz/a gives the claimed bounds. However, this choice of k depends on
the number m of current edges, which may change due to lnsertEdge and DeleteEdge
operations. We circumvent this by recomputing the topological partition of G every time
ra gets either twice larger or twice smaller than before. Since recomputing the topolog-
ical partition, as well as the full and the tree representations, and the balanced search
trees of the new clusters can be done in linear time, this can be amortized against the
number of edges inserted and deleted after the last time we recomputed the topologi-
cal partition. As a result, the times for InsertEdge, DeleteEdge, and Same2EdgeBlock
become amortized.

If the underlying graph G is planar and insertions of new edges leave it planar, the
time for Same2EdgeBlock reduces to O(k+ (n/k) log k) as shown in Lemma 4.1. Choos-
ing k [v/n log n gives the O(x/nlog n amortized bound for planar graphs.

The total space complexity ofour data structure can be analyzed as follows. Through-
out the sequence ofoperations, we maintain the super-graph G, which is ofsize O(m/k)
O(m/a). Furthermore, by Lemma 2.4 each cluster C requires at most O(k) space to

store its pertinent data structures. Since there can be at most O(m/k) clusters, the total
space required by our data structure is O(m). q

The bound for planar graphs can be further reduced, as the following theorem shows.
THEOREM 5.2. Each InsertEdge, DeleteEdge, and SameEdgeBlock operation on

planar graphs can be supported in O(v/n log log n amortized time, provided that Insert-
Edge operations leave the graph planar The space required is O(n).

Proof. The bottleneck of our algorithm for planar graphs is how to check whether
there is a bridge inside a cluster. Indeed, we accomplished this task in a total of
O((n/k) log k). The more time consuming tasks were performing range queries in the
balanced search trees E(C,) and sorting the vertices ,, 7,..., 7’ (as shown in Lemma
3.8). Notice that for each pair of clusters Ci and Cj, the set E(Ci,Cj) contains pre-
order numbers in T(C), i.e., integers in the range [1, 3k 2]. Similarly, the vertices
7, -,..., "’ have to be sorted according to their preorder numbers, again integers in
the range [1, 3k 2]. We exploit this by using Johnson’s stratified trees [33] instead
of balanced search trees to represent the sets E(Ci, C). Each range query can now
be performed more efficiently in O(log log k) time, at the expense of more space us-
age that increases from O(IE(C, C)l) to O(k). The initialization of Johnson’s stratified
tree containing O(k) items can be still accomplished in O(k) time [37], which implies
that the time required to initialize the data structures pertinent to a cluster (as ana-
lyzed in Lemma 2.4) is still O(k). Furthermore, the vertices -, ,,/,..., 7’ can be sorted
more efficiently in O(d(C) log log k) time at the expense of O(k) space. Consequently, us-



1066 z. GALILAND G. F. ITALIANO

ing stratified trees leads to a more efficient implementation of Same2EdgeBlock in time
O(k + (n/k) + (n/k) log log k) O(k + (n/k) log log k). Following exactly the same ar-
gument given earlier, it can be shown that during either an InsertEdge or a DeleteEdge
operation the time required to update a cluster, or to merge two clusters into a new clus-
ter, or to split a cluster into two is still O(k). As a result, the time required to perform
InsertEdge and DeleteEdge operations is again O(k). Choosing k [v/n log log n ],
gives an O(v/n log log n time bound per operation in case of planar graphs.

The total space required by this data structure is O(n) (as shown in Theorem 5.1),
plus the total space required by all the stratified trees. We now bound the total number
of stratified trees needed. Consider the super-graph G obtained (i) by contracting each
cluster into a super-vertex and (ii) by reducing to two the number of multiple edges
between any two super-vertices. Notice that the number of edges in G is an upper bound
on the total number of stratified trees needed. But since the original graph G is planar,
and contraction preserves planarity, G is itself planar. Because G has O(n/k) vertices,
it has at most O(n/k) edges. Therefore, we have at most O(n/k) stratified trees in our
data structure, each ofwhich requires O(k) space. Consequently, the extra space needed
is O((n/k)k) O(n).

Whenever needed, the times given in Theorems 5.1 and 5.2 can be made worst-case
as the following theorem shows.

THEOREM 5.3. The data structure above supports each InsertEdge, DeleteEdge, and
Same2EdgeBlock operation in O(m/3) time in the worst case, where m is the current
number of edges in the connected graph. Forplanar connected graphs, this time reduces
to O(v/n log log n ).

Proof. Let mt be the number of edges in the graph at time t. We claim that an
2/3update at time t for general graphs can be carried out in Om worst-case time. This

can be achieved as follows. Let k [m2/3 ]. When the value of k changes due to an

InsertEdge or DeleteEdge operation, there will be at least 1/2/,,ot more updates before
k becomes twice as large or twice as small as they were before. The idea is to adjust a
constant number of clusters each time there is an update. This sums up to a total of

O(mt/) cluster adjustments. Since there will be no more than

clusters that need to be adjusted, the adjustments may be accomplished before a new
round of adjustments is initiated. Thus every time an insertion occurs, the clusters can
be scanned to find any cluster that is too small, and a constant number of these clusters
can be combined with a neighbor if needed. Similar operations are performed during an
edge deletion. Clearly, the same argument applies to planar graphs.

6. Dealing with unconnected graphs. We end this section by showing how to deal
with unconnected graphs within the same time bounds. Let G be an unconnected graph.
If G consists of q connected components, we augment G by inserting q 1 dummy edges
that make it connected, such that there is no cycle containing two dummy edges. This
does not change the 2-edge-connected components of G, and two vertices z and y are
in the same 2-edge-connected component in the augmented graph if and only if they are
in the same 2-edge-connected component in the original graph. Furthermore, we assign
cost i to each edge of G and cost 2 to each dummy edge, and we maintain a topological
partition of a minimum spanning tree of the augmented graph.

To insert an edge e (z, y), we first check whether there is already a dummy edge
between z and y. If so, we decrease its cost from 2 to 1. Otherwise, we insert the
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edge (z, t) of cost 1 and update the minimum spanning tree in O( time using the
algorithm by Frederickson [20]. If (z, t) enters the minimum spanning tree T and a
dummy edge e’ leaves T, we delete e’. This can be accomplished within the O(m:/a) and
O(v/n log log n time bounds.

To delete an edge e (z, /), we first check whether e is in the minimum spanning
tree T. If e is not in T, we simply delete e. If e is in T, we check, by using the algorithm by
Frederickson [20], whether there is a replacement edge for e. If there is such a replace-
ment, we simply delete e. Otherwise, removing e will disconnect the augmented graph
and therefore we make e dummy by increasing its cost from i to 2. Once again, this does
not change the O(m2/) and O(x/n log log n time bounds. This gives us the following
theorem.

THEOREM 6.1. The data structure above supports each InsertEdge, DeleteEdge, and
Same2EdgeBlock operation in O(m2/3) time in the worst case on a generalgraph, where m
is the current number ofedges. Forplanargraphs, this time reduces to O(v/n log log n ).

7. Concluding remarks. In this paperwe have described efficient algorithms to main-
tain the 2-edge-connected components of an undirected graph under insertions and dele-
tions of edges. We have shown how to support each operation in O(m/3) for general
graphs, and in O(v/n log log n for planar graphs (we allow changes in the embedding).
Frederickson [21] has recently improved these bounds to O(v/- ), and to O(log3 n) for
embedded planar graphs. Very recently, we sped up Frederickson’s result and now have
an O(x/- log(rain)) algorithm for fully dynamic 2-edge connectivity [16].

We can also achieve the same O(m/) bound per operation for the fully dynamic
maintenance of the 3-edge-connected components of a graph [22].

The problem of maintaining the biconnected components of a graph during edge
insertions and deletions deserves further study. We have been able to prove that if the
graph is planar, this problem can be solved in O(n/3) worst-case time per operation [23],
and we are currently exploring the case of general graphs.

Acknowledgments. We are grateful to Greg Frederickson for his valuable comments.
We also would like to thank Dany Breslauer, Kurt Mehlhorn, Neil Sarnak, and Moti
Yung for useful discussions.
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Abstract. This paper develops shared memory algorithms for asynchronous processor systems that require
the same expected work as the best PRAM algorithms. These algorithms operate efficiently under general
asynchronous processor behavior (where individual processor speeds are allowed to vary widely over time).
This paper achieves these results by employing a methodology that uses randomization to schedule subtasks
of a parallel program. The resulting algorithms allow processors to (i) have arbitrary asynchronous behavior,
(ii) have fail-stop errors, (iii) join a computation at any time, and (iv) have no unique identifiers.

This paper develops a performance metric for asynchronous parallel computations, called work, which
is the total number of instructions (including busy-waiting instructions) performed by a collection of parallel
processors during a computation. The main result is to compute any associative function of n variables with
O(n) expected work, using up to n/log n log* n asynchronous processors, and with O(n log n) expected work
using up to n processors. These results provide a synchronization primitive that can be used to transform any
PRAM program into an asynchronous PRAM program.

Key words. PRAM, parallel computation, synchronization, fault-tolerance, randomized algorithm shared
memory
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1. Introduction. This paper addresses a problematic assumption that is implicit in
the commonly used PRAM model of shared memory parallel computation. Processors
are assumed to operate synchronously in the PRAM model. However, maintaining this
synchrony can incur severe performance penalties in practical large scale parallel sys-
tems. Hence, a number ofrecent papers have considered relaxing the PRAM assumption
of synchrony [CZ89], [CZ90b], [Gib89], [KS89], [KPS90], [KRS90], [MPS89], [MSP90],
[MS90], [SM90].

Variations in processor execution speed can arise from a number of sources such
as clock skew, varying processor load, multiprogramming, interrupts, page faults, cache
misses, and differences in processor speeds. These variations make it impractical to en-
force synchrony for a large number of parallel processors between each parallel step.
This motivates us to investigate parallel algorithms that operate efficiently in an asyn-
chronous environment.

In an asynchronous environment where processor speeds can vary widely and arbi-
trarily, running time is not an appropriate measure of performance. We measure the
performance of our algorithms in terms of work, which is the total number of instruc-
tions executed by all processors during the execution of the program. Since this includes
all busy waiting instructions, work is simply a generalization of the processor-time prod-
uct. In an asynchronous system, it is possible for faster processors to contribute a great
deal to the work, while slower processors contribute very little. If a processor working
at 10 instructions per time unit must wait three time units for an intermediate result, we
charge those 30 potential instructions as part of the computation’s work. If the proces-
sors are "close" to being synchronous (as is the case in a number of other asynchronous
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models), the running time of an n processor algorithm will be O(work/n). The relation
between work and time is described formally in 5.2.

In this paper we show that for many problems, asynchronous computations can be
performed using no more asymptotic expected work than for computations where pro-
cessors run in lock-step synchrony. We achieve these strong results with a methodol-
ogy that uses randomization to perform processor assignment in asynchronous parallel
shared memory computations. This methodology produces algorithms that operate effi-
ciently even if processor speeds vary greatly and unpredictably over time. (If a processor
is very slow, it will eventually be overtaken by a faster processor that gets randomly as-
signed to the same task.) Our use of randomization for processor assignment differs
from any results we are familiar with in this area.

Randomization also leads to algorithms that are resistant to processor failures and
produces algorithms that can accommodate a variable number of processors. As the
number of processors involved in a computation grows, the probability of processor fail-
ure also increases. For this reason it is desirable to produce parallel algorithms that are
resistant to processor failures. If a parallel algorithm can accommodate a variable num-
ber of parallel processors over time, processors can join the execution of an algorithm as
theybecome freed from other tasks or leave as they are needed elsewhere. This improves
system utilization because processors are not required to wait until a certain number of
processors become available to begin execution of a task. (Of course there is a limit to
the number of processors that can be efficiently utilized on a given problem instance.)

Much recent work has been done on models of asynchronous PRAMs. Kruskal,
Rudolph, and Snir [KRS90] first proposed an asynchronous model where all interleav-
ings of processors’ instruction streams are possible. Cole and Zajicek [CZ89] proposed
the APRAM,which is very similar to our model. They showed that summation and graph
connectivity could be solved under arbitrary asynchronous behavior. In [CZ90b], they
study asynchronous settings where in a parallel step each processor flips a biased coin.
All processors that get heads do their next instruction in the current parallel step. In
their unbounded delay model, the processors that get tails are idle in the step. In their
bounded delay model, the processors that get tails each take k time units to complete
their next instruction. Theyprove sharp expected time bounds for simple summation and
pointer jumping algorithms. However, their algorithms perform very poorly in general
asynchronous settings. By contrast, our algorithms for summation and pointer jumping
are efficient in general asynchronous settings and are fast when analyzed in the [CZ90b]
models. Nishimura proposed a model where asynchrony is modeled by the effect of dif-
ferent interleavings of instruction streams [Nis90]. She investigated tree and pointer
jumping algorithms as well as more general algorithms and showed that they perform
well when all interleavings are assumed to be equally likely. Gibbons considers a model
that charges for synchronization costs and for the time to access global memory [Gib89].
He assumes an external synchronization primitive and suggests balancing the amount of
work between synchronization steps with the cost of synchronization. The algorithms
proposed in all of these papers are efficient when all processors run at similar speeds.
However, they all perform very poorly under general asynchronous behavior.

An important motivation for developing an asynchronous model of parallel com-
putation is the hope that it can provide a bridge from an ideal, abstract model to real
machines. Valiant [Val90], Vishkin [Vis84], and others have argued for the importance
of efficient transformations from PRAM programs to programs that run on more re-
alistic models. The PRAM is an attractive choice for the abstract machine since it has
proven to be an effective model for the design of efficient parallel algorithms. We believe
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that it is particularly important to have automatic transformations from the PRAM to
an asynchronous PRAM model because of the difficulty of writing correct asynchronous
programs. It is much easier to prove a synchronous parallel program correct than an
equivalent asynchronous program.

Several researchers have investigated transformations fromPRAMs to asynchronous
settings. Kanellakis and Shvartsman [KS89] suggested a general scheme for simulating
most r-processor PRAM programs on an n-processor PRAM with stop-failures. They
devised a clever but complicated deterministic scheme that simulates a single PRAM step
using O(n logs n) work and up to n processors. Shvartsman [Shv89] improved this sim-
ulation to operate on any deterministic PRAM program, and he showed that the work
is O(n) per step using up to n/logs n processors. Independently, Kedem, Palem, and
Spirakis [KPS90] also improved the [KS89] result to get simulations of all deterministic
PRAM programs using O(n log log r) expected work per step with up to n/log n proces-
sors on a PRAM with stop-failures. Because the Kanellakis and Shvartsman simulations
are deterministic, their results hold even for adaptive adversaries that can determine
processor failures knowing all future actions of the algorithm. The KPS simulation as
well as the simulations presented in this paper use randomized algorithms that have good
expected running times against oblivious adversaries that prespecify the processors’ be-
havior.

In this paper, we develop a synchronization primitive that allows n/log n log*n
processors to execute n PRAM instructions and then synchronize using O(n) expected
work. This synchronization primitive can be used to improve the [KPS90] simulation
on PRAMs with stop-failures so that it uses O(r) expected work per step. This syn-
chronization primitive can also be used to simulate any PRAM program on a restricted
asynchronous model with no loss in asymptotic efficiency [MSP90].

The simulations of [KS89], [KPS90], [MSP90] all place some limitations on the asyn-
chronous behavior of the simulating processors. We show that computations with a very
predictable structure can be simulated with no loss in efficiency on an asynchronous
PRAM that allows arbitrary asynchronous behavior. In particular, we show that any
function computable by a bounded-degree fan-in circuit of size S can be computed with
O(S) expected work on an asynchronous PRAM. Stockmeyer and Vishkin have shown
that any PRAM computation can be transformed into a bounded degree fan-in circuit
[SV84]. However, the resulting circuit can be quite large, and may consequently lead to
a greatly increased running time for the transformed version of the computation.

Unpredictable asynchronous behavior can occurwhen processors fail, fix themselves,
and then rejoin a computation. This type of behavior is common in a number of fault
tolerant systems [Joh89]. Our algorithms work well in this setting. However, neither the
[Shv89] nor the [KPS90] simulations can be used directly to simulate a system that allows
processors to rejoin the computation or to simulate an asynchronous PRAM.

Researchers in distributed computation have also studied asynchronous processors
that communicate via a shared memory [Her88], [ALS90], [AH90]. Using atomic reads
and writes it is impossible to achieve two processor consensus and to implement wait-free
versions of many standard data structures such as stacks and queues [Her88]. However,
these impossibility results apply to settings where processors have private values. In
our applications, we assume that all data is stored in global memory and is available to
all processors. Thus the lower bounds for consensus and related problems with private
values are not directly relevant to our setting.

In 2 of this paper we define a model for asynchronous parallel computation. In do-
ing so we establish a metric for the expected "work" of parallel asynchronous algorithms.
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Section 3 describes an algorithm to compute any associative function of n numbers with
expected O(n log n) work using up to n processors. Section 4 describes a better algo-
rithm, which computes any associative function of n numbers with expected O(n) work
using up to n/log n log*n processors. Section 4.2 extends this result to hold for par-
allel prefix sums with the same bounds. Section 5 shows that the algorithm of 4 can
be used as a synchronization primitive. We also discuss how to automatically convert
PRAM programs to efficient asynchronous programs. Section 5.1 discusses methods to
improve the worst case behavior of our algorithms and describes a class of settings in
which our algorithms are fast as well as efficient. Section 6 shows that the results from
5 can be used to produce list ranking algorithms with expected O(n log n) work using up
to n/log n log* n asynchronous processors and expected O(n log n log log n) work using
up to n processors. The same work bounds are also shown to apply for sorting. Section
7 contains conclusions.

2. Model. We now introduce the A-PRAM (Asynchronous Parallel Random Ac-
cess Machine). The A-PRAM is similar to the ARBITRARY Concurrent Read Con-
current Write (CRCW) PRAM model (see [KR90], [KRS90] for excellent surveys), but
allows asynchronous processors. We assume that the A-PRAM consists of a collection of
unit cost RAMs [AHU74] that can perform atomic read and write operations to shared
memory without contention. We also assume that each processor has access to an inde-
pendent random number generator.

Our results hold for general asynchronous processor behavior, where instructions
are completed at arbitrary real points in time. However, for ease of exposition, we
present a model that is close to the standard CRCW PRAM model. In this model, time
is divided into unit length slots in which a single low level RAM instruction (read, jump,
write, ...) can be executed. However, we allow processors to have delays of an arbitrary
number of slots between instructions. As a consequence of these delays, not all proces-
sors will perform an instruction in a given slot. In a slot, a processor can perform a single
RAM instruction [AHU74], e.g., load, store, add.

Our model uses ARBITRARY concurrent writes; so if there are two or more writes
to a single variable in a slot, then an arbitrary one succeeds. A write in a slot alters the
value of the variable only after all the reads have occurred. A read in a slot returns the
value of the variable at the end of the previous slot. More formally, for a variable X, the
value returned by a read(X) in slot s is the value written to X in the largest slot < s.
If there is no such slot g, then the value returned is the value of X at the start of the
program.

Because all interleavings of processors’ instruction streams are possible, our model
gains no extra power from allowing a stronger write-conflict resolution protocol such as
Priority. In a Priority PRAM, if two or more processors write to the same variable in
the same slot, the processor with the highest priority succeeds. However, these writes
could also have occurred in successive slots, with the highest priority processor’s write
occurring first. In that case, a lower priority processor overwrites the value written by
the higher priority processor. For the same reasons, our restriction that all reads in a slot
occur before all writes in the slot is purely for expositional simplicity. It is possible that
all the memory accesses in a given slot could have occurred serially in several slots, and
any arbitrary interleaving of these accesses is then possible. Hence, this restriction does
not strengthen the model in any way. We use it only to make the discussion simpler.

Since we allow an adversary to select the delays between instruction executions, our
model allows all possible interleavings of the processors’ instruction streams. Thus, our
model is equivalent to an apparently more asynchronous model where atomic reads
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and writes occur at arbitrary real points in time. In this respect, our model is similar
to those of Kruskal, Rudolph, and Snir [KRS90]; Cole and Zajicek [CZ89], [CZ90a];
and Nishimura [Nis90]. In these models, all concurrent accesses (reads or writes) are
executed as implied by the usual interleaving semantics of concurrent processes: the
outcome of the concurrent execution of several memory accesses is as if these accesses
had occurred in some serial order. However, in [KRS90] and [CZ89], [CZ90a], all ac-
cesses are executed in one time step. Any program that is correct for our model will run
correctly under the assumptions of their models.

We now define a number of important terms.
Termination. In a completely general asynchronous setting, it is not always easy for

a processor to know when the computation terminates. With each computation, we asso-
ciate a flag in global memory called done, which is initialized to false. The asynchronous
program terminates when done becomes true.

Speed functions. We assume the most general form of asynchronous processor be-
havior. Individual processors can proceed at arbitrarily varying rates of speed during the
course of the computation. More formally, we say that each. pr.ocessor, j, po.ssesses its
own speed function, which is a possibly infinite ordered list t], t,.., where t is the slot
in which the jth processor executes its ith instruction. (See Fig. 1.)

P3

P2

P1 3

2 3 4 5 6

speed function(P1) 1, 5, 6
speed function(P2) 6
speed function(P3) 1, 2, 5

>time

FIG. 1. Example ofprocessor speedfunctions.

Correctness. We say that a program is correct if
For all possible speed functions, if the program terminates at time t (i.e., done

is set to tree at time t), all output locations contain the correct values, and none of these
values are changed after done is set to tree. Note that this implies that the program
should be correct for all possible interleavings of the processors’ instruction streams;

As long as at least one processor has the capability of doing an infinite amount
of work, the program terminates with probability 1.

Work. The work of a given run of a program is the total number of single processor
instructions performed by the collection of asynchronous parallel processors during that
run. This includes any instruction used in busy waiting. Thus, if a program begins in
slot T1 and terminates after slot T2, each processor working on the program is charged
for all instructions it executes during these slots. For each processor j, we charge one
for each t on its list such that T _< t < T2. Thus, the work, W, for n processors is

i= j=n jW ,= -= f(t ), where f(x) 1 if T < x < T, and 0 otherwise.
Work is a natural generalization of processor-time product for an asynchronous set-
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ting, and is a good measure of an algorithm’s efficiency. Kanellakis and Shvartsman
[KS89] use a very similar metric (available processor steps) to measure the performance
of algorithms on PRAMs with fail-stop errors.

Expected work. We use randomized algorithms to achieve good expected perfor-
mance for arbitrary asynchronous behavior. For a randomized program, A, we evaluate
A as follows. An adversary chooses the most unfavorable set of speed functions for pro-
gram A. In calculating the expected work for executing A, we assume this worst case
choice of speed functions and average over the random choices made by the processors.

Worst case speed functions. We assume processors have no knowledge of their own
speed functions and that our results apply for any set of speed functions. However, we
require that the processors’ speed functions should not be correlated with the results of
queries to the random number generators. Thus, our adversary is oblivious. The adver-
sary must determine the speed function of each processor before a computation begins.
Once a computation commences, the resulting processor speeds are not affected by sub-
sequent queries to the random number generator outputs. If an adversary is allowed
to correlate random number generator outputs with speed functions, then it could slow
down all processors that choose good work. We discuss the implications of a stronger
adversary in 5.1.

Failures. Afail-stop error [SS83], [KS89], [KPS90] causes a processor to stop execut-
ing, but no incorrect instructions are executed. A processor can fail before or after but
not during a write instruction. As long as concurrent writes are Common (i.e., they write
the same value), this can be extended to allow failures between bit-writes, using tech-
niques analogous to those used in [KS89]. We allow fail-stop errors in our model. They
are modeled formally by a speed function tl, t2,.., tk, with the fail-stop error occurring
at time t + 1.

Anonymous processors. While it is not essential to our model, all of our algorithms
are symmetric, which means that all processors execute the same program and are as-
sumed to be in identical initial states. Because of the random assignment of subtasks to
processors, it is not necessary for processors to possess the unique identifiers that are
required for a deterministic allocation of processors to subtasks. Parallelization is a con-
sequence of the fact that concurrently executing processors choosing randomly from a
pool of work are likely to choose different subtasks.

Notation. We shall use EO(f(n)) to denote expected O(f(n)).
3. An efficient Max finding algorithm. Our interest in algorithms that compute an

associative function of r variables arises from the fact that they can be easily adapted to
be an efficient synchronization primitive. Since all processor speed functions are possible
and A-PRAM processors are anonymous, we need an efficient mechanism by which we
can perform n actions and provide a guarantee that they have in fact been performed.

We present Maxl, a probabilistic asynchronous algorithm that computes the max-
imum of n numbers using up to n processors. It uses a binary tree, the leaf nodes of
which contain the n numbers. The interior nodes of the tree are initially set to a special
reserved value,/, which indicates that the node is unevaluated (see Fig. 2). Algorithm
Maxl proceeds as follows.

Processors first examine the root node. If the root node has been evaluated, the
algorithm is completed and the processors terminate their program. If the root has not
been evaluated, processors simply choose one of the interior nodes at random. If the
two children of the chosen node have been evaluated, the node is computed to be the
maximum of its two children. The process is then repeated. The root being set indicates
that the computation is completed (see Fig. 3).
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Input Array

Interior Nodes

FIG. 2. Data structure for Maxl.

Each processor executes the following program:

while the root is unevaluated do
select an interior node uniformly at random
if the children of the interior node have been evaluated then evaluate the node

endwhile

FIG. 3. Algorithm Maxl.

This randomized task assignment possesses several desirable attributes.
1. Processors are not required to synchronize their operations. It is possible for

multiple processors to evaluate the same node simultaneously, but this simultaneous
evaluation will not affect the result of the computation. (Of course, redundant evalua-
tion of nodes leads to wasted work, but we will show that the amount of wasted work is
relatively small.)

2. It is fault-tolerant. If processors have fail-stop errors, the surviving processors
complete the computation. As long as one processor continues to function, the algorithm
will make progress toward a solution.

3. Since all processors execute exactly the same program, processors do not need to
know the identity or the number of processors participating in the computation. There-
fore, processors do not need to possess unique identifiers. Processor utilization is im-
proved because processors can join the computation as they become available or leave
the computation when they are neeeded elsewhere.

We prove in Theorem 3.1 that Algorithm Maxl computes the maximum of r num-
bers with EO(n log r) work. In order to prove Theorem 3.1, we introduce a lemma for
analyzing the random evaluation of a graph. The proof of the lemma is in the Appendix.

3.1. A lemma on random evaluation of graphs. Let G be a directed acyclic graph
with n nodes. A node with in-degree zero is an input, and a node with out-degree zero is
an output. Let P be the total number of paths that start at some input and end at some
output. Let d, the depth of the graph, denote the longest path from an input to an output
node.

Initially, only the input nodes are colored and all other nodes are uncolored. Our
goal is to color all the nodes of the graph using the following random process. In each
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step a set of nodes is selected at random. A selected node is colored in a step if it was un-
colored prior to the step, and all of its predecessors have already been colored in prior
steps. We require that in each step, each node has at least a constant probability q of
being selected. The node selections within a step do not have to be independent. How-
ever, the selections in each step must be independent of all other steps. For example,
the nodes in a step could be selected by having every node flip a coin with probability q
of being selected. Alternatively, we could choose n random integers with replacement in
the range [1... n] and all nodes whose number is chosen are selected, or a single random
integer k in the range [1 n] could be chosen, and the nodes k, k + 1, k +
(wrapping around to 1 if node ID’s greater than n are included) are selected. The fol-
lowing lemma, first proved by Luby [Lub88] in a slightly different form, describes the
expected number of steps to color all the nodes.

LEMMA 3.1 (random circuit lemma). Consider a directed acyclic graph, G, of depth
d with P paths from the inputs to the outputs. If in each step, any node that has all its
predecessors colored has at least a constant probability q > 0 ofbeing colored in this step,
then the expected number ofsteps to color all the output nodes is at most (6/q)(d + log P),
and theprobability that more than (5c/q)(d + log P) steps are used is less than 1/P.

This lemma essentially states that the expected number of steps to color all nodes is
proportional to the depth of the graph as long as the depth is at least as large as log P.

3.2. Creating blocks of work. We now describe a methodology for partitioning an
asynchronous computation into blocks that make a minimum amount of progress. Since
p processors operate in parallel, it is possible for up to p units of work to be completed
simultaneously. It is, therefore, not always possible to divide work into blocks of a fixed
size by a delineation in time. We can, however, divide work into blocks that will vary in
size by at most p units of work. For example, we can divide work into blocks of size W
such that b < W < b + p 1 units for a fixed minimum block size of b units.

LEMMA 3.2. Let A be an algorithm that consists of a main loop in which at most k
instructions are executed in a complete loop iteration, and let p be the number ofprocessors
executing A. Then for any W > pk, the parallel execution of A can be broken up into
consecutive blocks of O(W) work such that each block contains at least W/k complete
iterations ofthe main loop.

Proof. The first block starts at time zero, and ends at the first time t when the
cumulative work is at least 3W. The next block starts at tl and ends at the first time
t2 such that the work in the interval (t,t2) is at least 3W. The remaining blocks are
defined analogously. Since up to p units of work can be performed simultaneously, we
cannot divide time into intervals with exactly 3W units ofwork, but we can form intervals
that have at least 3W units of work and at most 3W / p i units of work. For a given
block, each processor might execute the first instruction of the main loop just prior to
the start of the block and then do the rest of the loop within the block. In addition, each
processor might execute the first (k 1) instructions of the loop in the block, and the
last instruction after the block. Thus a total of at most 2p(k 1) units ofwork can count
toward loop iterations, which are not started and completed in the block. Thus a block
with at least 3W units ofwork must complete at least 3W 2p(k 1) >_ 3W 2W >_ W
units of work, which counts towards loops started and completed in the block. Dividing
by the k instructions per loop iteration yields the theorem. [3

Remark. The only part of our proofs where the number ofprocessors and their speed
functions plays a role is to guarantee that at least p loops were started and completed in a
block of O(pk) work. Processors that do not complete their loop within a block, because
of failures or slowdown, can contribute at most 2k(p 1) to the wasted work in a block.
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Thus, we can allow processors to join the computation or to leave in the middle. The
bounds we derive apply as long as the total number of processors that ever participate is
O(p). This assumes that instructions executed by a processor when it is not assigned to
the computation do not count towards the work used by that computation.

3.3. Analysis of Maxl.
THEOREM 3.1. The Max1 algorithm uses EO(n log n) work to compute the maximum

ofr numbers using <_ rprocessors.
Proof. By Lemma 3.2, we can define blocks of O(n) work that have at least n loop

completions. Each loop completion randomly selects an interior node of the tree. This
means each block contains at least n random selections of interior nodes. Since the tree
has 1 interior nodes, and at least n independent random selections in a block, the
probability that a given interior node is selected in a block _> (e 1)/e (Lemma A.7).

Thus, we can consider a block to be analogous to a step of Lemma 3.1, where each
node has a positive probability of being selected and evaluated during that block. The
number of paths from the leaves of the binary tree to the root is n, and the depth of the
tree is log n. Hence, the number of steps to evaluate the tree is EO(log n). Since each
step is equivalent to a block of O(n) work, Maxl requires EO(n log n) work. V]

The Maxl algorithm can be directly extended to compute any associative function
of n inputs using up to n processors with EO(n log n) work.

THEOREM 3.2. Let # be a constant such that the expected work to complete Max1 is
< #n log n. Then, P[ work required >_ k2#n log n] _< -Proof. Since the work to complete Maxl is a positive random variable, we can apply
Markov’s inequality. Therefore, each block of 2#nlogn work has at least

probability of completing Max2, independent of all other blocks. The theorem fol-a7
lows. [3

4. An optimal Max finding algorithm. The maximum of n numbers can be com-
puted sequentially using O(n) work. While Maxl is efficient, it is not optimal since it
requires EO(n log n) work. There exists an optimal PRAM algorithm that computes the
maximum of n numbers with O(n) work using p < n/log n processors. This motivated
us to find an optimal A-PRAM algorithm.

By using n/log n log* n processorswe are able to compute the maximum with EO(n)
work. To accomplish this we use a compound data structure that consists of an array of n
data elements connected to a binary tree that has n/log n leaf nodes. The n element data
array is divided into n/log n subarrays of length log n. Each log n subarray is associated
with one of the n/log n leaves of the tree (see Fig. 4). During the computation, the
maximum value of each log n subarray is computed and placed in its corresponding leaf
node. The complete program is specified in Fig. 5.

Note that if a processor selects a leaf node that has been completely evaluated, the
processor selects a new node. However, if a processor selects a leaf node that is currently
being evaluated by one or more processors, it will have no way of knowing this and will
thus also evaluate the leaf node.

4.1. Analysis ofalgorithm Max2. Algorithm Max2 evaluates a complete binary tree
with n/log n leaves, where evaluating a leaf requires O(log n) work and evaluating an
interior node requires O(1) work. We now show that algorithm Max2 requires EO(n)
work using up to n/log n log*n processors. To simplify the analysis, we break up the
algorithm into four phases. Initially, the number of unevaluated leaves is n/log n. The
first phase ends when the number of unevaluated leaves is less than n/8 log n log* n. The
second phase ends when the number ofunevaluated leaf cells is less than 2n/log9 n. The
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log (n) Element Sub-Arrays

log(n) [log(n) [log(n) log(n)

Final Maximum Value

FIG. 4. Data structure for algorithm Max2.

Each processor does the following:

Element Input Array

Leaves

Interior Nodes

while the root node is unevaluated do
choose a tree node at random
if the node is an unevaluated leaf then

compute the maximum of its log n element sub-array
else

if the node is unevaluated and its two children are evaluated then
evaluate the node

endif
endif

endwhile

FIG. 5. Algorithm Max2.

third phase ends when all the leaves have been evaluated. The fourth phase starts when
all the leaves have been evaluated and ends when the root has been evaluated.

We employ the following strategy throughout the analysis. We break up the compu-
tation into blocks. In each block, some amount of progress is made. If the amount of
progress exceeds a desired threshold, then we count that block as an effective block, else
we do not count any progress that occurred in that block for the analysis. We count only
the effective blocks that are required for the algorithm to terminate. We are able to prove
that there is a constant probability of an effective block occurring. So, we know that the
expected number of blocks that must occur before we get an effective one is a constant.
Thus, counting the expected number ofeffective blocks gives an asymptotic bound on the
total number of expected blocks.

In Phases 1 and 2, we break up the work done by all the processors into blocks of
O(n/log* n) work. We then show that the number of blocks needed to reach Phase 3 is
EO(log* n). It follows that the work to get to Phase 3 is EO(n).

Recall that in a single iteration of algorithm Max2, O(log n) work is done if a leaf
node is evaluated, and otherwise O(1) work is done. As in the proof of Theorem 3.1, we
divide time into consecutive intervals such that each interval contains O(n/log* n) work.
Such an interval is called a block. We also divide each processor’s instruction stream into
windows. A window consists of up to log n node selections and the evaluation of a leaf
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if an unevaluated leaf is found. Thus a window consists of O(log) work. (A window
ends, and the next window starts either after log n consecutive selections that do not find
an unevaluated leaf or after evaluating a leaf.) We now show that each block contains
O(n/log n log* n) windows, which both start and complete within the block.

Choose a constant g such that a single processor in one iteration of Max2 requires
at most g units of work if no leaf node is found to be unevaluated, and at most g log n
units ofwork if a leaf node must be evaluated from its log n element subarray. Thus each
window consists of at most 2g log n units of work.

Within a block of (6gn/log* n) work, it is possible for each of the n/log n log*n
processors to have completed all but thefirst unit ofwork in a window. It is also possible
for each ofthe n/log n log* n processors to have completed all but the last unit ofwork in
a window within this block, meaning that no more than 2 (n/log n log* n)(2g log n- 1)
< 4gn/log* n units of work can be performed that do not count toward the number of
completed windows. Thus, at least

6gn 4gn 2gn
log* n log* n log* n

units of work performed by the n/log n log*n processors during a block must count
toward windows started and completed within the block.

This means that at least n/log n log*n windows of 2g log n work are started and
completed during a block. (Some windows may use less than 2g log n work, but this only
increases the total number of windows completed.)

DEFINITION. With respect to a block, we say that a leaf is new if it was unevaluated
at the start of the block. We say that a window is successful if it finds a new leaf. If the
new leaf is unevaluated, the remainder of the window will evaluate it. However, a new
leaf might have been evaluated by an earlier window in the same block.

Preliminariesfor Phases 1 and 2. We now show that there is at least a constant prob-
ability (> 1/4) that at least 1/4 of the windows of work in a block are successful.

LEMMA 4.1. Ifat least 2n/ log2 n leaves are unevaluated at the start ofa block, then a
block ofO(n/ log* n) work has at least a 1/4 probability ofhaving n/4 log n log* n successful
windows.

Proof. Since Phase 2 ends when the number of new leaves falls below 2n/log2 n, we
can assume, that the number of new leaves is greater than or equal to 2n/log2 n. Thus,
the new leaves are at least a (2n/logen)/(2n/logn) 1/logn fraction of the total
number of nodes in the tree.

A window can use up to log n selections to find a new leaf. The probability that a
single selection fails to find a new leaf < 1 (1/log n) (since the new leaves are at least a
1/log n fraction of the total nodes). Define the random variable Xi, such that Xi 1 if
the ith window is successful, and 0 otherwise. The probability that a window is successful
P[X 1] > 1- (1- (1/logn))lg’ > (e-1)/e > 1/2. Thus, during Phases 1 and2,

each window has at least a 50 percent chance of finding a new leaf.
--i=n/log n log* nSince a block has > n/log n log* n windows, define X z_,i=l X as a

lower bound on the number of successful windows in a block. Appealing to well-known
probability results in the Appendix (Lemmas A.4 and A.2), E[X] >_ n/2 log n log* n and
P[X >_ n/4 log n log* n] > 1/2/2 > 1/4.

Therefore, there is a 1/4 -robability that a block of O(n/log* n) work will have
at least n/41ognlog*n successful windows, i.e., they will select and evaluate a
new leaf.
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DEFINITION. A block in Phase i or Phase 2 is said to be good if it contains at least
log n log* n successful windows.
We now calculate the fraction of these successful windows that are nonredundant.

4.1.1. Analysis ofPhase 1. If 2s random selections are made with replacement from
a collection of s items, then it is well known that P[at least distinct items are selected]

1 (Lemma A.8). Clearly, if the number of items selected from is greater_>
than s, the expected number of redundant selections decreases. By definition each block
in Phase 1, starts with at least n/8 log n log*n new leaves. Therefore, it follows that if
the block was good, then with probability > 5, at least n/16 log n log* n nonredundant

probability that a block is good. Thusselections were made. By Lemma 4.1, there is a
there is at least a probability that a block will evaluate _> nil6 log n log* n distinct new
leaves.

DEFINITION. A block in Phase 1 is said to be effective if at least nil6 log n log*n
distinct leaves are evaluated.

After (16 log* n 2) effective blocks, the number of unevaluated leaves

n
(16 log* n 2)

16 log n log* n 8 log n log* n-< log n

probability of being effective independent of otherSince each block has at least a
blocks, we can view blocks as independent Bernoulli trials. Therefore, the expected
number of blocks before Phase 1 is over is < 128 log*n and the work for Phase 1 is
EO(n). Note that to simplify the proofs, we have not tried to make the constants tight.
The actual constants are much smaller.

Note that in our analysis we use only effective blocks (those that have at least
n/16 log n log* n nonredundant selections), discarding progress made in other blocks,
even though we pay for their work. While this overestimates the work required to com-
plete, it simplifies the analysis.

4.1.2. Analysis of Phase 2. To simplify the algebra, define b n/8 log n log* n.
Phase 2 starts with at most b unevaluated leaves and ends when the number of unevalu-
ated leaves is less than 2n/log2 n.

LEMMA 4.2. After EO(log* b) blocks of O(n/ log* n) work in Phase 2, the number of
unevaluated leaves is less than 2n/log2 n, signaling the end ofPhase 2.

Proof. Consider a good block in Phase 2 in which there are 2b n/4 log n log*n
successful windows. Choose k such that C b/e is the number of unevaluated leaves
at the start ofthis block. Define C 0/1 randomvariables X, X2,... Xc, such that Xi 1
if the ith new leaf is not evaluated in this block and 0 otherwise. Since there are > 2b
successful windows in a good block,

(P[Xi=I]< 1-- 1- 1- <--e
Let ’]i=l Xi the number of unevaluated leaves at the end of the block. Thus,

b (1)
e [ b (1)e]and _< P

e

1 )2ekby Markov’s inequality, since d’ is a nonnegative random variable. But, 2(b/e)(-i
ek(b/e)(-i) since _> 1. Therefore, P[O <_ (b/e)(1/e)] >_ -.
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kDEFINITION. A block in Phase 2 is effective if it is good and if _< (b/ek)(-)e

where 0 is the number of unevaluated leaves at the end of the block and b/e C is
the number of unevaluated leaves at the start of the block. We have shown above that a
good block is effective with probability greater than or equal to 7.

GivenBy Lemma 4.1, the probability that a block in Phase 2 is good is at least .
that a block is good, we have just shown that the probability that it is effective is at least
!2. Therefore, the probability that a block in Phase 2 is effective is at least g.

We now show that after O(log* n) effective blocks in Phase 2, the number of new
leaves will be less than 2n/log2 n.

For simplicity of analysis, we assume that an effective block makes the minimum
amount of progress necessary for it to be deemed effective, i.e., if the number of uneval-
uated leaves at the start of the jth effective block is (7 b/e, the number of unevaluated
leaves at the end of the block is exactly (b/e)(1/e)ek. This assumption can only
increase the number of effective blocks necessary to complete Phase 2.

We can now formulate the following recurrence relation

(1) 0+1 0i le where

where ( number of unevaluated leaves after the ith effective block.
Intuitively, roughly the same number ofwindows are bng concentrated on a rapidly

diminishing number of unevaluated leaves. Substituting (70 b(= e 1) (this can
only increase the number of blocks) in (1) gives tl b(1/e) b/e. In calculating 2,
note that ek b/l e.

ekl

e e eee

Similarly, (a < b/eee’.... Therefore, within O(log* b) O(log* r) effective
blocks, the number of unevaluated leaves is less than or equal to 2r/log2 n, at which
time Phase 2 ends.

probability of being effective, independent of otherSince each block has at least a g
blocks, we can view blocks as independent Bernoulli trials. Therefore, the expected num-
ber ofblocks before Phase 2 is over is EO(log* rQ. Since each block contains O(n/log.* r)
work, the total work required for Phase 2 is EO(rQ.

4.1.3. Analysis of Phase 3. Phase 3 starts with <_ 2r/log2 n unevaluated leaves and
ends when all the leaves are evaluated.

LEMMA 4.3. Each block of O(r) work in Phase 3 has at least a 1 (1/r)probability
ofselecting all the unevaluated leaves and the work to complete Phase 3 is EO(n).

Proof. Call the leaves unevaluated at the start of Phase 3 z-leaves. For simplicity,
assume that there are in fact 2n/log2 n u-leaves. This assumption can only overestimate
the work necessary to complete the algorithm. Consider a block of O(r) work in which
at least 16r/log n windows of 2g log r work are completed. The probability that a given
window fails to find at least one ofthe 2n/log2 n u-leaves is (1- (1/log n))lgn _< < .

Following the same reasoning as in Lemma 4.1, we can show that the expected num-
ber of windows which find a u-leaf is >_ 8n/log n and that there is a 1/4 probability that
at least 1/4 of the windows in a block will find a u-leaf. Therefore, there is a 1/4 probability
that a block has at least 4n/log n windows which select one of the 2n/log2 n u-leaves.
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Since 4n/log n > 2(2n/log2 n)ln(2n/log2 n), by the well-known coupon collector
result (see Lemma A.3 of Appendix), the probability that all the 2n/log n u-leaves are
evaluated, given that 4n/log n windows select a u-leaf, is > 1 n

Since each block of O(n) work has at least a I (l/n) probability of completing all
remaining leaves independent of other blocks, the expected number of blocks to com-
plete Phase 3 is a constant. Therefore, Phase 3 requires EO(n) work.

LEMMA 4.4. The work required to select and evaluate each of the n/ log n leaves of
the binary completion tree in algorithm Max2 requires EO(n) work with < n/ log n log* n
processors.

Proof. This follows as a direct consequence of Lemmas 4.1, 4.2, and 4.3.

4.1.4. Analysis of Phase 4. In order to prove that the work required to evaluate the
completion tree of Max2 is EO(n) once the leaves are evaluated, we shall use Lemma
3.1.

LEMMA 4.5. The work to evaluate the completion tree of Max2 once the leaves are
evaluated is EO(n) using p <_ n/ log nprocessors.

Proof. By Lemma 3.2, we can define blocks of O(n/log n) work in which 2n/log n
nodes are selected. By Lemma A.7, each node is selected in a block with probability
greater than or equal to (e- 1)/e, since there are less than 2n/log n nodes and 2n/log n
selections. Therefore, we can view a block of O(n/log n) work as equivalent to a step of
Lemma 3.1.

The binary tree of Max2 has depth < log n, <_ 2n/log n nodes and n/log n paths
from the inputs to the output. By Lemma 3.1, the number of steps before the root is
evaluated is EO(log n). Thus, the work required to evaluate the completion tree after
the leaves are evaluated is O(n/log n) x EO(log n) EO(n). 1

We are now in a position to state our main theorem.
THEOREM 4.1. The work to complete Max2 is EO(n), using p <_ n/ log n log*n

processors.
Proof. This follows as a direct consequence of Lemmas 4.4 and 4.5. ]

THEOREM 4.2. Let # be a constant such that the expected work to complete Max2 is
< #n. Then, P[ work required > k2#n] < 1/2k.

Proof. Since the work to complete Max2 is a positive random variable, we can apply
probability ofMarkov’s inequality. Therefore, each block of 2#n work has at least a

completing Max2, independent of all other blocks. The proof follows. [3

COROLLARY 4.1. Let T be a complete binary tree with L leaves such that processing
a leaf requires W >_ log L work and processing an internal node requires 0(1) work and
requires that the children have been processed. On an A-PRAM, all nodes in T can be
processed with EO(LW) work using up to L/ log* Lprocessors.

Proof. The intuition is that the work done in finding an unevaluated leaf is subsumed
by the work to process it. The proof follows directly from the previous analysis with only
the following differences.

Since we have < L/log* L processors, by Lemma 3.2, we can define blocks in Phase
1 and 2 to consist of O(LW/log* L) work. Note that this is asymptotically at least as
great as the blocks of 6gL/log* L work that we defined earlier.

Phase 1 ends when the number of unevaluated leaves is < L/8 log* L. Phase 2 ends
when the number of unevaluated leaves is < 2L/log L. In Phase 3, a block consists of
O(LW) work. Phase 3 ends when all leaves have been evaluated. In Phase 4, a block
consists of O(L) work.

In Phases 1, 2, and 3, a window consists of W selections to find an unevaluated
leaf node, and if one is found, W work to evaluate the leaf node. Since W > log L,
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the probability of finding an unevaluated leaf must be at least as great as in the earlier
analysis. Hence, the expected number ofblocks for each ofthese phases must be no more
than before. Hence, Phases 1 and 2 require EO(log* L) blocks, and Phase 3 requires
EO(1) blocks.

By substituting n/log n for L it can be verified that Theorem 4.1 is just a special case
of Corollary 4.1. [3

4.2. Optimal asynchronous parallel prefix algorithm. Given
a, and an associative function o, the parallel prefix problem is to compute:
o a for i 1, 2,... n. The input is an array A of size n. The output is an arrayprefix

of size n such that prefix[i] a o a o a.
Parallel prefix algorithm. We divide the algorithm into two phases. In Phase 1, we

break up the input array A into n/log n blocks of size log n. We construct a complete
binary tree, T, with
blocks of A (similar to Fig. 4). Initially, all the nodes in T are set to 2_. Evaluating a leaf
requires computing a o a... o alog n, where al, a... alogn are elements of the block
associated with that leaf. Therefore, evaluating a leaf requires O(log n) work. Evaluating
an interior node consists of computing Ichild o rchild, where lchild and rchild are the
children of that node. Therefore, evaluating an interior node requires O(1) work.

Processors first evaluate the tree of Phase 1 using the same approach as in Max2.
When a processor sees that T1 is completed, it starts working on Phase 2.

In Phase 2, we break up the output arrayprefix into n/log n blocks of size log n. We
construct a complete binary tree, T, with n/log n leaves, each ofwhich is associated with
one of the n/log n blocks ofprefoc. Initially, all the nodes ofT are set to l. Evaluating
a leaf of Tz entails (i) sequentially computing the parallel prefix of the first element of
the block, (ii) sequentially computing the parallel prefix of the remaining elements of
the block, and (iii) setting the leaf to 1. Evaluating an interior node involves setting it to
1 if both children have been set to 1, which requires O(1) work.

Using the partial results stored in the nodes of T, the parallel prefix for the first
element, i, of any block can be computed sequentially with O(log n) work. For any
1, 2,..., n, Prefix[i] can be computed using at most one element from each level of T,
and the binary representation of i determines which elements of T are used. Once the
parallel prefix of the first element of a block is known, the parallel prefix of the other
elements of the block can be computed sequentially using O(log n) work. Therefore,
evaluating a leaf requires O(log n) work. The tree for Phase 2 is evaluated using the
same approach as in Max2.

THEOREM 4.3. The parallel prefix of n numbers can be computed using EO(n) work
with up to n/ log n log* nprocessors.

Proof. The tree of Phase 1 is similar to the tree of Max2, where evaluating a leaf
requires O(log n) work and evaluating an interior node requires O(1) work. Therefore,
by Theorem 4.1, the work for Phase 1 is EO(n), using up to n/log n log* n processors.
Using the same argument, Phase 2 also requires EO(n) work, using up to n log n log* n
processors.

5. Simulations. The algorithms of 3 and 4 are useful because they serve as good
building blocks. However, these are specific results, and it is of greater interest to find
more general results. A large body ofwork has been done on the PRAM model, which is
a clean and elegant model for parallel algorithm design and analysis. To develop and an-
alyze an asynchronous equivalent of each PRAM algorithm of interest is an unattractive
choice.
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Instead, we would like to identify those PRAM algorithms that are amenable to
automatic translations into their A-PRAM equivalent. In this section we will show that
the algorithms we developed in 3 and 4 can be used to efficiently simulate a restricted
class of PRAM computations on an A-PRAM.

On a PRAM, synchronization between steps is achieved implicitly. However, for an
asynchronous system we must explicitly detect the termination of a step before allowing
processors to proceed to the next step. The problem of completing a PRAM step and
detecting that the step has been completed can be abstracted as the Certified Write All
Problem (CWA), which is defined as follows: given an array a[1..n] and a flag f both
initialized to 0, set a[i] 1, for all i 1, 2,..., n, and then set f 1 after all array
elements are 1.

Algorithms Maxl and Max2 described in the prior sections can be easily adapted to
solve the CWAproblem with E,O(n log n) work using up to n processors and with
work using up to n/log n log* n processors.

Related work. Kanellakis and Shvartsman [KS89], [Shv89] and Kedem, Palem, and
Spirakis [KPS90] investigated simulations of PRAM programs on PRAMs, which al-
lowed fail-stop errors, but which work synchronously until an error occurs. We call this
type ofPRAM a C-PRAM (for Crash). In [KS89], deterministic simulations of a limited
class of PRAM programs on C-PRAMs were given. In [Shv89], [KPS90], it was shown
that a C-PRAM can simulate each step of any PRAM program using the work neces-
sary to solve the CWA problem. Thus, the solution to the CWA problem given in 4,
combined with the [KPS90] simulation technique, allows a C-PRAM to simulate any
processor CRCW PRAM program using E,O(n) work per step and up to n/log n log*
simulating processors. Thus, our CWA algorithm gives an optimal simulation on a C-
PRAM with only a modest reduction in the number of processors that can be used.

A C-PRAM allows only limited asynchronous behavior. However, in [MSP90], we
show that the KPS simulation technique can be extended to allow optimal simulations of
any CRCW PRAM program on a loosely atomic A-PRAM. A loosely atomic A-PRAM
has a special Fetch-Test-Store instruction (FTS). The FTS instruction is not atomic, but
is loosely atomic, which means that if a processor executes the Fetch instruction at time
tl, the Test at time t2, and the Store at time t3, the total work by all processors between
time tl and t3 must be at most n. Note that if there are n/log n log* n processors, then
it is sufficient for loose atomicity that no processor be more than log n log* n faster than
the slowest processor.

The simulation in [MSP90], however, allows any n processor CRCW PRAM
program to be simulated on a loosely atomic A-PRAM with E,O(n) work per step us-
ing up to n/log n log* n processors. The restriction of loose atomicity can be relaxed by
adding other features to the model such as a broadcast facility or tags [MSP90], [SM90]
or by using extra space [BMP91].

The simulations we have described require some limitations on the A-PRAM model.
We will now show that a restricted class ofcomputations can be simulated optimally by an
A-PRAM with no restrictions. We start by discussing a problem that must be overcome
to allow simulations on A-PRAMs. With completely asynchronous processor behavior,
it seems essential to allow more than one processor to execute the same task in order
to get efficient computations. However, this creates a setting where it is very difficult to
reuse memory. If a memory cell’s proper value is vx at one point of the computation and
v2 at a later point, the following may occur: The cell is set to v by processor P at time
tx; processor P2 is also ready to write vl at t, but suffers a long delay. The cell is then
set to v2 by processor P at time t2; processor P2 finally commits its write ofv at t3 > t2,
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thereby overwriting the correct value. The cell is then read by processor P3, and it gets
the wrong value

To avoid the problem described above, we define a class ofcomputations called Com-
putation Circuits (C-Circuits), which are highly structured. For these computations we
will be able to create programs with the property that each memory cell has a unique
value written to it in a given program execution. A Computation Circuit is similar to
a bounded degree fan-in circuit [KR90], [SV84]. Computation nodes represent simple
computations (like gates in a normal circuit), and the data nodes are inputs to the C-
Circuit, outputs of the C-Circuit, or intermediate values.

Formally, a C-Circuit is a directed acyclic graph with two types of nodes: data nodes
and computation nodes. A subset of the data nodes are input nodes that have indegree
zero and output nodes that have outdegree zero. All arcs in the graph go from data nodes
to computation nodes or from computation nodes to data nodes. Each data node, except
for the input nodes, has indegree one and arbitrary outdegree. Each computation node
has bounded indegree and outdegree. Each computation node N has associated with it
a constant length sequence of RAM instructions. These instructions read from the data
nodes that have arcs directed into N. They write a value to each data node that has an
edge directed from N. Thus each computation node represents a function computable in
constant time, whose inputs are the immediate predecessors ofN and whose outputs are
the children of N. Initially, all the input nodes contain the input values to the C-Circuit,
and all other data nodes contain a special value/, which indicates that they have not yet
been written to.

The size S of a C-Circuit is the number of computation nodes, and the depth D is the
longest path from an input to an output. For a parameter p, the C-Circuit can be divided
into L= D + S/p] layers [Bre74] such that:

1. Each layer contains computation nodes and all their children;
2. Each layer has at most p computation nodes;
3. All computation nodes in layer one have only inputs as predecessors; and
4. All the predecessors of computation nodes in layer i, 2, 3,..., L are in lower

numbered layers or are inputs.
All the computation nodes in layer one have all their input values, so it is easy for

p PRAM processors to compute all the values for the children of these computation
nodes in O(1) time. In general, after all the computation nodes in layers 1, 2,..., i 1
are processed, then all the computation nodes in layer i have their input values, and it
is easy for p PRAM processors to compute the values of all the children of computation
nodes in layer i in O(1) time. Thus, once the C-Circuit is divided into L layers, it is
easy to create a p processor CREW PRAM program that processes computation nodes
layer by layer and produces the outputs in O(L) time. The processor-time product is
Lp Dp+ S. This is a time optimal direct simulation of the C-Circuit with p processors
on a CREW PRAM since both D and Sip are lower bounds on number of parallel steps
for a direct simulation. If p < S/D, then the processor-time product is O(S), which is
optimal.

We can also create an A-PRAM algorithm that computes the outputs of the C-
Circuit, using EO(Lp) work and up to p/logp log* p processors.

THEOREM 5.1. Given a C-Circuit ofsize Sanddepth D, then there is an A-PlZAMpro-
gram that computes the outputs ofthe C-Circuit using EO(S) workand up to p/ logp log* p
processors, where p [S/D].

Proof. Partition the C-Circuit into L D + [S/pq layers with properties (1)-(4)
above. We associate with each layer i, i 1, 2,..., L of the C-Circuit a complete binary
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tree T with p logp leaves. Each leaf is associated with a block of logp computation
nodes. Processors choose random nodes in T using essentially the same algorithm used
in Max2, except that when an unselected leaf node is chosen, the processor processes
each of the logp computation nodes associated with that leaf, then sets the leaf to 1 (if
there are fewer than p nodes in a layer some leaves may have fewer than logp computa-
tion nodes associated with them). The analysis in Theorem 4.1 shows that the expected
work to process all the computation nodes in layer i, and set all the nodes in T to 1 is
EO(p) using up to p/logp log* p A-PRAM processors.

The preceding description processes a single layer. For the complete computation,
each A-PRAM processor does the following:

repeat
Find the smallest index i such that the root of T is not set
Work on tree T until the root of T is set to 1.

until the root of the last tree, TL, is set to 1.

Each processor does O(L) total work searching for the correct tree to work on, and
does at most O(logp) work on each tree after its root is set to 1. Thus the total ex-
pected work is dominated by the work to process each tree. Therefore, the total work is
EO(Lp) EO((D + [S/p])(p)) EO(Dp + S)= EO(S), since p [S/D]. [q

Any function computed by a bounded degree fan-in circuit of size S and depth D
can be easily computed by a C-Circuit, which has size S and Depth D. Thus Theorem 5.1
applies to any function computable by a bounded degree fan-in circuit. In fact, Stock-
meyer and Vishkin [SV84] have shown that any n input function computable by a Priority
CRCWPRAM (whose arithmetic instructions are restricted to addition and subtraction)
in time T using p processors can be computed by a bounded degree fan-in circuit whose
size is polynomial in p, n, and T and whose depth is O(T). The [SV84] result combined
with Theorem 5.1 shows that it is possible to convert any CRCW PRAM program to an
asynchronous program. However, the polynomial increase in work usually makes this an
impractical simulation.

5.1. Work and time. In this section we consider two additional issues related to the
analysis of our randomized A-PRAM algorithms. We first discuss the possibility of poor
performance by our algorithms, and we then consider the time complexity of our algo-
rithms.

Since we use randomized algorithms there is always the possibility that a particu-
lar run of the algorithm will use much more work than the algorithm’s expected work.
We have shown in Theorems 3.2 and 4.2 that the distribution of the work taken by our
algorithms is tightly centered around the mean. However, in their current form, our
algorithms can take unbounded work for a pathological set of random choices by the
processors. A related issue is the expected performance of our algorithms against an
adaptive adversary, which can set the speed functions as it sees the random selections
made by the algorithm. More formally, an adaptive adversary sees the random selections
made by the processors in time slot i and then determines for each processor the time slot
in which it will execute its next instruction. It is fairly easy to construct adaptive adver-
saries that force our CWA algorithms to take f(ng/polylog(n)) expected work [KS91].
From a system point of view, an adaptive adversary models a setting where the speed of
a processor depends on the instructions it selects. An oblivious adversary represents a
setting where the speed function of the processor is independent of the instructions it
executes.
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It is possible to use a standard technique to achieve the good expected times of
the algorithms we have presented, while guaranteeing that the worst case performance
will not be too bad. We can have our processors simultaneously execute both our ran-
domized algorithm and a deterministic algorithm (thus each processor executes the first
instruction of the randomized algorithm, then the first instruction of the deterministic
algorithm, then the second instruction of the randomized algorithm, ...). As soon as
either the randomized or the deterministic algorithm completes, the overall algorithm
halts. This will at most double the expected time of the randomized algorithm and the
worst case time of the deterministic algorithm. For the CWA problem there is a recent
deterministic algorithm due to Buss and Ragde [BR90], which uses O(nlg- 3) work using
up to n processors. (Essentially the same algorithm was described in [KS91].) Thus we
can combine this deterministic CWA algorithm with our randomized CWA algorithm to
get an algorithm that uses linear expected work, while using O(n1g2 3) work in the worst
case. Recently, Anderson and Woll [AW91] have shown that for any e > 0 there exists
a deterministic CWA algorithm that uses O(n+) work using up to n processors. Thus
it should be possible to get even better worst case bounds for algorithms that combine
randomized and deterministic solutions to the CWA problem.

5.2. Time complexity. We now consider the expected time to complete an asyn-
chronous algorithm when we make some assumptions about the algorithms and about
the processor speeds. For an asynchronous algorithm A, its expected work will depend
on the input size n and the number of processors p used. Let W(n, p) denote the ex-
pected work to complete algorithm A on an input of size n using p processors. We define
an algorithm A to be persistent if there exists a constant c such that an interval of time
that completes at least cW(n, p) work completes A with probability at least 1/2 regardless
of the state of the algorithm at the start of the interval. All the algorithms discussed in
this paper are persistent.

In order to make statements about the expected time of an algorithm we must have
some indication of the time required for a minimum amount of work to be completed.
Suppose that we have an A-PRAM with associated constants d < 1 and an integer 7- _> 1
such that in each time interval of length r, [1,r], [7- + 1, 27-],..., the total work performed

We assume this is true in everyby p processors is at least dpr with probability > .
interval of length 7- independent of the work performed in other time intervals. Note,
however, that the work can be distributed very unevenly within the interval. We will call
such a processor systemfixed rate with parameter 7-.

THEOREM 5.2. Any persistent algorithm .A that uses expected work W(n,p) runs
in expected time O(W(n,p)/p) on a p processor A-PRAM, which is fixed rate with pa-
rameter 7-.

Proof. Let c be the constant such that each interval of cW(n, p) work completes
A with probability at least 1/2, and let 2cW(n,p)/7-pd] A. Since the expected work
completed in an interval of length - is at least rdp/2, A is the number of intervals of
length - to complete cW(n, p) units ofwork if each interval contains its expected amount
of work. The expected work completed in each interval [1,2A7-], [2A7- + 1, 4A7-],
is at least 2cW(n, p). Thus by Lemma A.2, each such interval of length 2A7- completes
at least cW(n,p) units of work with probability at least . Since A is persistent, any
interval containing at least cW(n, p) work completes the algorithm with probability at
least 1/2. Thus each interval of length 2A7- completes t with probability at least . The
expected number of intervals of length 2A7- to complete A is thus -, a constant, so the
expected running time of 4 is O(AT-) O(W(n, p)/p).

There are many reasonable settings in which an A-PRAM would be fixed rate. One
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simple setting is where each processor completes at least one instruction every t time
units for some constant t. Clearly such a system is fixed rate with parameter t. Two other
settings of interest are the unbounded delays and bounded delays models of Cole and
Zajicek [CZ90b]. In the unbounded delays model each processor does its next instruc-
tion in the current time slot with probability q, and does nothing with probability i q.
Thus if we set 7- , then the expected work in an interval of length r is qpr > 2p.
If we set d , then each interval of length 7- does at least dp-r work with probability at
least 7.

In the bounded delay model of [CZ90b], each processor executes its next instruction
in the current time interval with probability 1 q, and with probability q executes its next
instruction after a delay of k 1 time units (so the instruction effectively takes k time
units). If the parameters q and k are constants that do not depend on the input size or
the number of processors, then a bounded delay A-PRAM is fixed rate with parameter
2k and d .

6. List ranking and sorting. In this section we show that we can apply our previous
results to get good asynchronous algorithms for list ranking and sorting. This provides
a very strong set of primitives for building efficient asynchronous algorithms. Our algo-
rithms for both list ranking and sorting require O(n log n) space rather than the O(n)
space used by the synchronous parallel algorithms. The increase in space is largely due
to the difficulty of reusing space in an asynchronous setting.

6.1. A simple asynchronous list ranking algorithm. The list ranking problem is:
given a linked list, we would like to determine, for each element in the list, its distance
from the tail. The sequential algorithm takes O(n) time. We make the standard as-
sumption that the list is stored in an array of n contiguous locations, which contain the
records that comprise the linked list in some arbitrary order. This facilitates assignment
of processors. We now describe an efficient asynchronous algorithm for list ranking.

Input. An array link that contains the original links. An array rank initialized as
Vi, i 1, 2,..., n, rank[i] =/, except for end_of_list whose rank is 0.

Output. At the end of the computation, each element of the list knows its distance
from the end of the list, entered in the rank array.

Wyllie proposed a simple algorithm (see Fig. 6) that solves the list ranking problem
on an EREWPRAM in O(log n) time with n processors [Wyl81]. It uses an array length
that contains the lengths of the links, which are initially 1. The operation of replacing
each pointer, link[i], by the pointer’s pointer, link[link[i]], is calledpointerjumping. Note
that this is not an optimal algorithm since the work is O(n log n).

More sophisticated techniques have been proposed [MR85], [CV89], [AM89], which
solve the problem in O(log n) time and O(n) work using n/log n processors.

The precedence constraints of the computation can be viewed as a directed acyclic
graph (DAG), G, as shown in Fig. 7. The top layer of the graph is the links of length 1,
the second the links of length 2, then 4,..., up to n/2. The bottom layer is the output of
the computation, the ranks. The left column represents the links computed for the head
of the list. The next column represents the links computed for its successor, and so on.
The right column represents the links computed for the tail of the list.

We cannot construct the DAG of Fig. 7 prior to the computation since it depends
on the ranks. Instead, we construct a two-dimensional array Pointer of size log n by n
which is set to _1_, except j, j 1, 2,..., n, Pointer[O, j] link[j], the location at a
distance of 1 from j in the linked list. The ith row of Pointer represents the ith layer of
the DAG G (but the jth column of Pointer need not represent any specific positions of
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for log n iterations do
in parallel for each processor i -- 1 to n do

if rank[i] +/- then
if rank[link[i]] 2_ then

length[i] - length[i] + length[link[ill
{ If rank of link[i] not known, double poimer’s length }
link[i] -link[link[ill { pointer jump }

else
rank[i] - length[i] + rank[link[i]]
{ If rank of link[i] known, compute rank[i] }
link[i] -link[link[ill { pointer jump }
{ Update pointer for that element }

endif
endif

endfor
endfor

FIG. 6. Wyllie’s PRAM list ranking algorithm.

Links

Ranks

2 3 4 n-4 n-3 n-2 n-1

/ Top

Layer

Bottom

Layer

FIG. 7. DAG corresponding to algorithm LR0.

the DAG). Therefore, Pointer[i, j] corresponds to some node k in layer i of the DAG
G. The key point is that performing the computation associated with node k in layer i
of the DAG G does not require knowing that it corresponds to Pointer[i, j]. Therefore,
we can view Pointer as representing nodes of a log n depth DAG of width n.

Outline ofalgorithm. We now show how the entries in Pointer are computed. (The
detailed program is in Fig. 8.) During the course of the computation, the entries of
Pointer will be filled in such that Pointer[i, j] points to the location at a distance of 2
from j. For 0, 1,... log n, j 1,... n, Pointer[i, j] holds the link from node j to the
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node at a distance of 2 from it, should such a node exist. If Pointer[i, j] is selected, we
try to compute the pointer of length 2 from j. This can be done only if the pointer of
length 2i-1 from j (say this points to k) has been computed and the pointer of length
2-1 from k has been computed. In other words, Pointer[i 1, j] and Pointer[i 1, k]
must have been computed, where Pointer[i 1, j] k. If Pointer[i 1, j] k and
rank[k] is known, then we can compute the rank of k, and no entries of Pointer[r, j] for
r > i- I are ever computed.

while the computation has not terminated do
Select an entry in Pointer[i, j] at random
if Pointer[i 1, j] is defined (say, Pointer[i 1, j] k) then

if rank[k] is defined (say, rank[k] r) then
rank[j] - 2- + r
{ node j is at distance 2- + r from the tail }

else { rank[k] is undefined }
if Pointer[i 1, k] is defined then

Pointer[i, j] - Pointer[i 1, k]
endif

endif
endif

endwhile

FIG. 8. Asynchronous list ranking algorithm LR0.

THEOREM 6.1. List ranking can be done in EO(n log2 n) work with up to n log npro-
cessors.

Proof. We have shown that computing the elements of Pointer is equivalent to
computing the DAG of Fig. 7, which corresponds to Wyllie’s algorithm for list ranking.
By Lemma 3.2, we can define a block of O(n log n) work, in which n log n random entries
in Pointer are selected and evaluated if possible. By Lemma A.7, each node in the DAG
of Fig. 7 has at least a constant probability of being selected in a block. Hence, a block
is equivalent to a step of Lemma 3.1. The DAG has depth log n and O(n2) paths. By
Lemma 3.1, EO(log n) steps are required to evaluate the DAG. Hence, the work for
LR0 is O(n log n) EO(log n) EO(n log2 n) using p _< n log n processors.

Termination detection. We use a complete binary tree, T, whose leaves are the
log nth row of Pointer and the Max1 algorithm of Theorem 3.1 to detect when all values
have been computed. Initially, all nodes of T are set to _t_. The ith leaf ofT is set to done
when rank[i] has been computed. An interior node of T can be set to done when both
its children have been set to done. The computation terminates when the root of T is
set to done. Processors alternate between selecting list items in Pointer and nodes in T.
Since T has O(n) nodes, n paths and depth log n, this at most doubles the work.

Note that this algorithm for list ranking, like Wyllie’s, can easily be extended to
the more general case where the links have lengths other than 1. In this case, when we
"pointerjump," the length of the new pointer is the sum of the lengths ofthe two pointers
used in its creation.

List ranking algorithm LR1. We can improve the efficiency of LR0 by reducing
the number of processors to n/log n log* n. We now introduce algorithm LR1. It is
similar to LR0 except that we evaluate Pointer row by row. To ensure that a given row
has been completely evaluated before we proceed to the next row, we use a completion
tree, similar to Fig. 4 used in Max2. Letting a row of Pointer be the input array for
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completion tree, evaluating a row of Pointer and certifying that it has been completely
evaluated requires EO(n) work using p <_ n/log n log*n processors, by Theorem 4.1.
Since Pointer has log n rows, LR1 requires EO(n log r) work using p <_
processors.

THEOREM 6.2. List ranking can be done in EO(n log
processors.

List ranking algorithm LR2. Along each column of the DAG, there is at most one
node, whose selection could lead to useful work. Hence, there are at most n nodes whose
selection could lead to useful work. This observation leads us to drop the maximum
number of processors to n.

We define an entry Pointer[i, j] as a frontier node if Pointer[i, j] is unevaluated,
but Pointer[i 1, j] is evaluated. In order to confine our selections to the frontier
nodes, instead of picking nodes entirely at random, each processor picks columns at
random. Having picked a column, say j, we perform binary search along the jth column
to find the first entry, say Pointer[l, j], which has not yet been computed. (Note that the
entries along a column must be filled consecutively, i.e., if Pointer[i, j] is defined, then
Vk, k < i, Pointer[k, j] must also be defined.) If Pointer[l, j] can be computed, we do
so. Thus we get the following.

THEOREM 6.3. List ranking can be done in EO(n log
processors.

Proof. Since p < n, by Lemma 3.2, we can break up the computation into blocks of
O(n log log n) work, consisting of

1. selecting n, not necessarily distinct, columns in the Pointer array;
2. searching the column to find the first uncomputed node; and
3. computing this node if possible.
Since a column of Pointer has log n entries, the binary search along it takes

O(log log n) work.
With respect to a block, we define a frontier node as one which is a frontier node

at the start of the block. By Lemma A.7, each column of Pointer has at least a con-
stant probability of being selected in a block. Since there can be at most one frontier
node in a column, each frontier node has at least a constant probability of being selected
and computed in a block. Since only frontier nodes can make progress, each block of
O(n log log n) work corresponds to one step of Lemma 3.1.

The circuit of Fig. 7 has O(n) paths from the inputs to the outputs and depth log
Thus, byLemma 3.1, after EO(log n) blocks all the outputs will have been computed, and
the total work is EO(n log n log log n). Detecting completion is similar to the Certified
Write All problem where one writes a I into A[i] if rank[i] has been computed. With the
log nth row of Pointer serving as the input array, Max2 can be used to determine whether
all input entries have been computed. By Theorem 3.1, Maxl requires EO(n log n) work
using p < n processors. Processors alternate between selecting list items in Pointer and
nodes in T, which at most doubles the work.

This last result demonstrates that asynchronous, randomized algorithms need not
always select work completely at random. A search for useful work may yield improved
efficiency.

The circuit of Fig. 7 is of size O(n log n), so no direct computation of it can take
o(n log n) work. However, there are alternate PRAM algorithms for list ranking which
take O(n) work using up to n/log n processors [CV89], [AM89], and it would be of
interest to try and extend these more sophisticated algorithms to our model. In [MS90]
we describe a more efficient A-PRAM list ranking algorithm. It is more complicated,
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but uses only EO(n log log n) work with up to n/log n log* n processors.

6.2. Sorting. The technique of 6.1 can be applied with some modifications to the
O(log n) depth sorting network of Ajtai, Komlos, and Szemeredi [AKS83]. The compu-
tation can be viewed as a circuit with n comparator nodes at each level, each of which
has two inputs and two outputs. This circuit can be evaluated in O(log n) time with
processors by a simple PRAM algorithm.

THEOREM 6.4. Using the AKS sorting network, sorting can be done with EO(n log
work using up to n log nprocessors.

Proof. Since we have n log n processors, we can define a trial of O(n log n) work that
consists of selecting and evaluating, if possible, O(n log n) comparator nodes. In a block
of O(n log n) work, each node in the circuit has at least a constant probability of being
selected, by Lemma A.7. Hence, we can view a block as equivalent to a step of Lemma
3.1. The AKS sorting network is equivalent to a circuit of depth O(log n), and number
of paths is polynomial in n (= n x 2clgn). By Lemma 3.1, EO(log n) steps are required
to evaluate the circuit. Since a block of O(n log n) work is equivalent to a step, it follows
that sorting can be done with EO(n log2 n) work using p <_ n log n processors.

THEOREM 6.5. Using the AKS sorting network, sorting can be done with EO(n log n)
work with up to n/ log nprocessors.

Proof. As in Theorem 6.2, we can evaluate the circuit row by row, by placing a com-
pletion tree over each row. The proof follows directly.

The expected work with n processors can be improved in a manner analogous to
LR2 (in Theorem 6.3) as follows.

Data structures. The input is the sorting network, with 2n data items at the inputs
of the n comparator nodes at the top level. The output is the outputs of the bottom level
of the sorting network, which contain the data items in sorted order.

Let c log n be the depth of the sorting network. We define a two-dimensional array
Network of size c log n by n such that Network[i, j] corresponds to comparator node j in
level i of the sorting network. Each entry ofNetwork contains two fields, port1 andport,
where the data items to be processed by this node will be placed. Each data item is associ-
atedwith its index in the input array, which is used in conjunctionwith the Progress array
defined below, to trace its progress through the network. We create a two-dimensional
array called Progress of size c log n x 2n. Initially, Progress[O, i] i/2], i 1, 2,... n,
all other entries being _1_. What this means is that the ith data item is at the input of
comparator node i/2 of the 0th row. The first entry is the layer of the circuit that it has
reached, and the second is the index of the data item, e.g., Progress[i, j] is the com-
parator node that gets data item j in level i. During the course of the computation, the
entries will be filled in such that if Progress[i, j] m _1_, then Progress[l, j] _1_

for 0, 1,..., i 1. Further, it means that the jth data item is an input of the ruth
comparator in level of the circuit.

Algorithm. Each A-PRAM processor does the following. While the computation
has not terminated, select one ofthe data items at random. Let this be j. If its final sorted
position has not been determined, then perform binary search along the jth column,
from Progress[O, j] to Progress[c log n, j] to find the last filled entry. Let the last filled
entry be i, and let Progress[i, j] m. This implies that the jth data item is an input to
the ruth comparator node in level of the sorting network.

If Network[i, m].portl _1_ or Network[i, m].port2 _1_, then abandon this random
selection since both inputs to the comparator node Network[i, m] are not available.

If Network[i, m].port _1_ and Network[i, m].port2 _1_, it means that the other
input, say the kth data item, of this comparator node is available. In that case, we per-
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form the comparison associated with that comparator node. As a result of this compar-
ison, suppose the jth data item is to be placed in the first port of the pth comparator
node of level i / 1, and the kth data item is to be placed in the second port of the
qth comparator node at the level i / 1. Then, we make these entries in Network as
follows: Network[i + 1,p].port - j and Network[i + 1, q].port2 -- k. We update
the Progress entries for those two data items as follows: Progress[i + 1, j] -- p and
Progress[i / 1, k] -- q.

We use a complete binary tree, T, whose leaves are the c log nth row of Network and
the CWA algorithms of3 and 4 to detect when all values have been sorted. As in LR2,
processors alternate between selecting data items in Network and nodes in T, which at
most doubles the work.

THEOREM 6.6. Sorting can be done in EO(n log n log log n) work with nprocessors.
Proof. Since p _< n, by Lemma 3.2, we can define blocks of O(n log log n) work

consisting of
1. selecting n, not necessarily distinct, columns in the Progress array;
2. searching the column to find the first uncomputed node; and
3. computing this node if possible.
Since a column of Progress has log n entries, the binary search along it takes

O(log log n) work. We define a frontier node as one which is itself unevaluated and
has at least one of its inputs evaluated. There can be at most 2n- 1 frontier nodes at any
time. In a block, each data item, and hence each frontier node, has at least a constant
probability of being selected. Thus, as in Theorem 6.3, each block of O(n log log n) work
corresponds to one step ofLemma 3.1. The sorting circuit has O(n2 og ,) paths from the
inputs to the outputs, and has a depth of O(log n). By Lemma 3.1, after EO(log n) steps,
all the outputs have been computed, and the total work is EO(n log n log log n). [3

7. Conclusions. We have shown in this paper that several fundamental problems
can be solved efficiently on an A-PRAM. In addition, the techniques in this paper pro-
vide the tools to convert a large class of PRAM programs to optimal asynchronous pro-
grams. We consider these techniques to be an important step in creating a bridge be-
tween PRAMs and more realistic parallel machines.

There are still many open questions in this area. One of the most important issues
relates to initializing global memory. Our algorithms and the vast majority of other al-
gorithms in this area assume that we start with global memory initialized to some special
value. We know of no way in which a system ofA-PRAM processors can initialize global
memory without some restrictions on the asynchronous behavior of the processors. An
interesting and important area of future research would be to identify restrictions on the
asynchronous processor behavior which allow global memory to be initialized efficiently.

A second important issue is the development ofwork-optimal deterministic CWA al-
gorithms. The recent results of Buss and Ragde [BR90] and Anderson and Woll [AW91]
suggest possible directions for developing work-optimal deterministic CWA algorithms.

Appendix. We now prove Lemma 3.1 for analyzing, the random evaluation of a
graph, which was introduced in 3. This lemma and its proof are based on similar re-
suits due to Luby [Lub88].

Let G be a directed acyclic graph with n nodes. A node with in-degree zero is an
input and a node with out-degree zero is an output. Let P be the total number of paths
that start at some input and end at some output. Let d, the depth of the graph, denote
the longest path from an input to an output node.

Initially, only the input nodes are colored and all other nodes are uncolored. Our



WORK-OPTIMALASYNCHRONOUS PRAM ALGORITHMS 1095

goal is to color all the nodes of the graph using the following random process. In each
step a set of nodes is selected. A selected node is colored in a step if it was uncolored
prior to the step, and all of its predecessors have already been colored in prior steps.
The selected nodes are chosen at random. We require that in each step, each node have
at least a constant probability q of being selected. (Note: the node selections within
a step do not have to be independent. However, the selections in each step must be
independent of all other steps. For example, the nodes in a step could be selected by
having every node flip a coin with probability q of being selected. Alternatively, we could
choose n random integers with replacement in the range [1... n] and all nodes whose
number is chosen are selected, or a single random integer k in the range [1... n] could

’ nodes k, k + 1 k + 7 1 (wrapping around to 1 if node IDsbe chosen and the 7
greater than n are included) are selected.) The following lemma, first proved by Luby
[Lub88] in a slightly different form, describes the expected number of steps to color all
the nodes.

LEMMA A.1 (random circuit lemma). Consider a directed acyclic graph, G, ofdepth
d with P paths from the inputs to the outputs. If in each step, any node which has all its
predecessors colored has at least a constantprobability q > 0 ofbeing colored in this step,
then the expected number ofsteps to color all the output nodes is at most (6/q)(d + log P),
and theprobability that more than (5c/q)(d + log P) steps are used is less than liPc.

Proof. We analyze the expected number of steps using an auxiliary graph G1. Each
path from an input to an output in G is an independent chain in G1. (See Fig. 9.) Thus
each node in G is associated with a unique node in G, while each node in G is associated
with a set of nodes in G.

FIG. 9. Example graph.

Suppose that we color both G and G simultaneously. In each step we choose a
random set of nodes in G, and for each node v chosen in G, we choose all the nodes in
G that are associated with v. Let tv be the step in which node v in G is colored, and let
Tv be the earliest step that all the nodes associated with v in G1 are colored. It is easy
to prove by induction that for any sequence of selections and for any node v, t T.
Thus the final output of G is colored at exactly the same step as the final node in G is
colored.

We now bound the expected number of steps to color G. We will assume that all
chains are of length exactly d, which can only increase the expected number of steps. For
a single chain, the probability that the next entry in the chain is selected in the current
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step is > q. Thus the expected number of steps to color the chain is just the expected
number of steps to. get d heads when flipping a coin with probability > q of heads. Thus
the expected number of steps is < d/q.

To calculate the probability that a chain is not done after kd/q steps (for some con-
stant k > 1), we use the Chernoff bound on the tail of the binomial distribution. Let us
focus our attention on a particular chain. First, consider the case where d > log P.

Let X i if the chain is selected in the ith step and 0 otherwise.
Let m kd/q be the number of steps. Let P[X 1] q.
Note that q is actually a lower bound on P[Xi 1], but we set P[X 1] q since doing
so simplifies the analysis without detracting from its correctness.

l--rnLet the number of steps in which the chain is selected S, Y]t= X.
A chain is completed if it is selected in at least d steps.
The probability that the chain is uncompleted after m steps qf P[S, < d].

Casting the above in the form of P[Sm < (1 e)mq] < 2(-2mq/2 In 2) from Lemma
A.5, gives us

.- 1, 1 :. q, < 2 2(-2a) - <
22d,

provided that

>1.
41n2

Choosing k 5, gives

(1-- -)2k 4
>l.

4 In 2 5 In 2

Since d > log P, q. < 1/22d < 1/P2.
Hence, the probability that a particular path is uncompleted after 5d/q steps is less

than lIP. Hence, the probability that there is at least one uncompleted path P[U i is
i=Puncompleted] < ’i= P[i is uncompleted] < lIP. Since each block of 5d/q steps has

at least a 1 (l/P) probability of completing all chains, independent of other blocks,
the probability that there is an incomplete chain after (Scd/q) steps is less than -.

For any integer constant > 1, the probability that there is at least one incomplete
chain after lm steps is < P/Pt. Let T be the number of steps until all chains are com-
pleted. It follows that E[T] < m + 2m/P3 + 3m/P5 +... < 6d/q for P _> 3.

If d < log P, the analysis holds by choosing m 5 log P/q in the above analysis.
This completes the proof of the expected number of steps to color G.

Since we showed earlier that the number of steps to color all chains is also the num-
ber of steps to color G, the lemma follows. B

We conclude this appendix by presenting a few lemmas which we use in this paper.
LEMMA A.2. LetXbe a random variable such that X < mand E[X] > amforsome

constant 0 < a < 1. Then, P[X > am/2] > -.
Proof. We shall show that if P[X > am/2] < a/2, then E[X] < am, which is a

contradiction. Without loss of generality, let P[X > am/2] a/2, since using a lower
value for a will only further lower the value for E[X].

o
E[X]<_- xm+ 1- x= c2m



WORK-OPTIMALASYNCHRONOUS PRAM ALGORITHMS 1097

But, by assumption, E[X] am. Therefore, P[X > am/2] >
LEMMA A.3. Consider the coupon collectorproblem in which a selection consists of

choosing uniformly andrandomlyfrom a set ofn coupons. Define X numberofselections
until all coupons have been selected. Then, E[X] n Inn and P[X > 2n In n] < -.

LEMMA A.4. Define m identically distributed random variables {Xi}, where P[Xi
1] >_ p and P[X 0] < 1 p. (Note that the X need not be independent for the
following to hold.) Define X -]=1 Xi. Then, E[X] >_ rap. Also, using Lemma A.2,
P[X > mp/2] > p

LEMMA A.5 [Che52]. LetX be independent and identically distributed random vari-
ables such that P[X 1] p and P[x 0] 1 p. Define Sn -j=n Xi. Then fori=1
any e < 1,

-e2np -e2np
P[Sn <_ (1- e)np] < e 2 2,2

Remark. In our settings, the X are not independently and identically distributed
random variables. However, the probability that a given X is 1 is less than p, indepen-
dent of the other Xj, so the above bounds continue to hold.

LEMMA A.6. Let X be a positive random variable. Then P[X > a] < E[X]/a for
any a > O.

LEMMA A.7 [Fe157]. If m selections are made with replacementfrom m items, the
< (1 <probability that a given item is not selected is (1 (1/m))’. Vm >_ 2,

LEMMA A.8. If 2s random selections are made with replacement from s distinct
lSitems, then P[ less than s/2 distinct items are selected <_ .

Proof. We can consider each selection of 2s items to be a vector of length 2s. Hence,
there are se such different vectors. The number of vectors with less than distinct
elements is at most

s) s
28

Therefore, the probability that less than s/2 distinct items are selected < s28/28s28
2
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Abstract. This paper studies polynomial-time approximations to intractable sets using the concept of p-
productivity. It is shown that every (deterministic and nondeterministic) supcrpolynomial-timc computable
p-productive set is p-lcvelable. All <_Pro-complete sets for any deterministic supcrpolynomial time class arc
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levelable. This settles an open problem in Homer [Theoret. Comput. Sci., 47 (1986), pp. 169-180].
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1. Introduction. This paper studies polynomial-time approximations to sets not in
P, using the concept of p-productivity. P-productive sets were first defined and investi-
gated by Ko and Moore [7] in complexity theory as part of the study of polynomial-time
approximations to intractable sets, and they showed that p-productive sets cannot belong
to the complexity class DTIME(2poy) under their definition. The idea of p-productivity
is to provide a mechanism that witnesses intractability of a set in polynomial time. In gen-
eral, a set A is p-productive for P if there is a total polynomial-time computable function
f, which provides an effective witness that A is not in P in the sense that, whenever a Tur-
ing machine Mi witnesses a language in P, L(Mi) C_ A = f(i) E A L(M). Wang [14],
[16] realized that definitions of p-productivity depend on the indexing, and that with a
slow indexing of the functions it is possible to have p-productive sets for P in E, where
E DTIME(2(n)). This is because with a slow indexing there is a universal predicate
for polynomial-time functions within E. We show that this property holds in any super-
polynomial time class as well. This allows us to study p-productivity within these classes.
We then use the concept of p-productivity to study polynomial-time approximations to
(deterministic and nondeterministic) exponential time and superpolynomial time com-
putable sets.

An often-studied type of approximation for sets not in P was introduced by Meyer
and Paterson [9]. A set A P has an approximation algorithm ,4 if it halts in polyno-
mial time and on each input z it outputs either 1 (accept), -1 (reject), or ? (does not
know the answer), where A(x) 1 implies x E A and A(x) -1 implies x A. An
approximation algorithm is optimal if no other polynomial-time algorithm can correctly
decide infinitely many more inputs. A notion that describes a set having an approxima-
tion algorithm but no optimal one isp-levelability [6]. A set A not in P is p-levelable if any
algorithm for A can be sped up by a polynomial infinitely often. More precisely, given
any algorithm M for A and polynomial p, another algorithm M’ can always be found
for A such that M accepts infinitely many inputs x A in polynomial time on which
M exceeds p(Ix[) many steps. A p-levelable set contains infinite subsets in P but it does
not contain a largest P subset. A set A is bi-p-levelable if both A and A are p-levelable.
Clearly, bi-p-levelability describes two-sided polynomial-time approximations to sets not
in P.
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P-productivity is a natural and powerful concept to study p-levelability. Let T be
a time constructible function, which dominates any polynomial. We prove that every
p-productive set for P in DTIME(T(n)) is p-levelable, and every <P-complete set for
DTIME(T(n)) is p-productive for P. Since DTIME(T(n)) is closed under complemen-
tation, the complement of every <-complete set for DTIME(T(n)) is p-productive for
P as well. Studying polynomial-time approximations to nondeterministic superpolyno-
mial time computable sets is more difficult because the class of these sets is (probably)
not closed under complementation. Whether every NE-complete set contains an infinite
subset in P is a long-standing open problem [2], where NE NTIME(2(’0). We prove
that the existence of p-productive sets for NP in NE is a sufficient condition to solve this
problem. In particular, we prove that every p-productive set for NP in NTIME(T(n)) is
p-levelable. Under the assumption that p-productive sets for NP in NTIME(T(n)) exist,
we can prove that every _<P-complete set for NTIME(T(n)) is p-levelable.

To study polynomial-time approximations to intractable problems in NP (assuming
P NP), we consider the notion of k-creativity in NE A set A E NP is k-creative if
there is a total polynomial-time computable function f, which provides a witness that

is not in NTIME(n) in the sense that, whenever a Turing machine Mi witnesses a
language in NTIME(n), L(M) C_ - = f(i) -- L(M). If moreover, f(i) A
f(i) L(M), then A is called k-completely creative. Every k-completely creative set
is NP-complete [5]. Orponen, Russo, and Sch6ning [11] proved that every honest k-
completely creative set is p-levelable. Homer [3] proved that the complement of every
honest k-completely creative set in NP contains an infinite subset in NTIME(n) for some
> 0. He asked whether the complement of every honest k-completely creative set in

NP contains an infinite subset in P. We affirmatively answer this question by showing a
stronger result. We prove that the complement of any honest k-creative set in NP is
p-levelable. Therefore, every honest k-completely creative set is bi-p-levelable.

2. Preliminaries. We assume familiarity with the standard polynomial-time many-
one reductions. All of the problems considered here will be thought of as coded by finite
strings over a fixed alphabet {0, 1}. As is customary, for a complexity class C we
call a set A C-complete if A is <P-complete for C. (Here <P denotes polynomial-time
many-one reducibility.)

Let Af {0, 1,...} be the set of all natural numbers. For each x A/’, we use
str(x) to denote the binary representation of z / I with the leading 1 omitted. This is
a bijection between Af and the set of strings in E*, and enable us to disregard the dis-
tinction between strings and representations of natural numbers. Languages are subsets
of A/’, or Af Ac, etc. Functions are from A/" to A/’, or A/" Af to A/’, etc. For z and
in Af, write x/or z //for the multiplication of z and//. For each x Af, we use Izl to
denote the length of the binary representation of z. So for all x > 0, x < 21xl < 2z.
Regan [12] constructed a pairing function from E* E* to E* such that it is both linear-
time computable and linear-time invertible. So using function str, it is easy to construct
linear-time computable and. invertible pairing function from A/" A/" to A/’. This enables
us to disregard the distinction between pairs in A/" Af and natural numbers. Without
loss of generality, we use (., .) to denote such a pairing function. If f(-, .) is a function,
we may interpret f(.,.) as f((.,.)).

We use the standard deterministic/nondeterministic multitape Turing machines [4]
as our computation model. All Turing machines can either accept languages or compute
functions. A program (index) is an integer, which simply codes up the states, symbols,
tuples, etc. of the ith Turing machine M. Let M0, M1,... be a fixed enumeration of
all (deterministic and nondeterministic) Turing machines. For convenience, denote by
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DTM a deterministic Turing machine and TM a Turing machine. Let Li L(Mi)
{z. Mi accepts z} for all i.

For each set A not in P, A is a polynomial-time approximation (in short, p-approxima-
ation) algorithm for A if:

1. There exists a polynomial p such that for any z A(z) halts within p(Izl) steps
and A(z) 1 (accepts z), -1 (rejects x), or ? (does not know the answer).

2. For every x, A(x) 1 = x E A, and A(x) -1 = x

_
A.

3. {x’.A(x) ?} is infinite.
A p-approximation algorithm A for A is optimal if there are no p-approximation

algorithms for A {x A(x) ?}. A p-approximation A is a one-sided approximation
for A if {x A(x) 1} is infinite. A notion that describes a set having a one-sided
approximation algorithm, but no optimal one, is p-levelability defined in [6], [11].

DEFINITION 2.1. Given a set A, a DTM M, and a function f on the natural numbers,
denote by E(M, f) the set {x E A" M accepts x in time f(lx])}. Aset A is p-levelable.if,
given any recognizer M for A and polynomial p, it is possible to find another recognizer
M’ for A and polynomial p’ such that the difference E(M’, p’) E(M, p) is infinite.

Let A and B be two sets./3 E P is a largest P subset of A if A B does not contain
any infinite subsets in P. So p-levelability describes the property of a set that contains
an infinite subset in P, but no largest one. A set A is bi-p-levelable if both A and A are
p-levelable. Clearly, bi-p-levelability describes a two-sided p-approximation for sets not
in P.

Apolynomial-time computable function f is polynomially honest (in short, p-honest)
if there is a polynomial p such that p(If(z)l) >_ Izl whenever f(z) is defined. A function
f is length increasing if If(z)l > Izl whenever f(x) is defined. Given any number r, we
use lrJ to denote the largest integer < r.

A function T(n) is time constructible if T(n) can be computed by a DTM in O(T(n))
steps on every input of length n. Let r0, rl, be some enumeration of recursive func-
tions. This enumeration is uniformly time constructible if all the r’s are time con-
structible and there is a DTM M such that on input (i,z) M outputs r(Izl) in time
O(r([x[)). We also assume that r(n) > n for all n. Let Tk(n) denote T(n) multiplied
with itself k times. For any Turing machine M, denote by TM(X) the number of steps M
takes on input x if it halts, and leave undefined otherwise. Without loss of generality, we
assume that if TM(X) is defined then TM(X) >_ Ixl.

3. Approximations to superpolynomial-tirne sets. To present our idea about how
to approach p-approximations to intractable sets using p-productivity, we first study p-
approximations to E sets as an example. We then generalize this idea to any superpoly-
nomial-time sets.

3.1. Approximations to E sets. We first define p-productive sets for P. To construct
p-productive sets for P in E, Wang [16] considered those machines that witness languages
in P in the following uniform way. Let pi (n) n/ + i. Define

P.M {Mi" Mi is a DTM and (Vx e L(Mi))[Mi accepts x within p(lxl) steps]}.

Clearly, P {L(Mi) Mi E PAd}. The following definition is from Wang [14], [16].
DEFINITION 3.1. A set A isp-productivefor P (with respect to PM) if there is a total

polynomial-time computable function f, which is called a p-productive function, such
that for all i, if Mi PM, then L c_ A f(i) E A L. A set A isp-creative for P if A
is p-productive for P.
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REMARK 3.2. One might argue that perhaps using time bound An[hill +lil] and
the enumeration {M M is a clocked Turing machine and its time bound is < nlil +
[il} instead of the one we are using here would be more natural. However, this is not
the case for two reasons. First, when constructing a p-creative set for P, one needs to
consider a universal Turing machine, which simulates the computation of M on input
z. In this case, both x and i become inputs to the universal Turing machine. Since
)xi[lx]lil] O(21il log Ixl), the language accepted by the universal Turing machine is not
in DTIME(2(liI+II)). So using )xi[Ix[lil + li[] does not allow us to get p-creative sets
for P in E. Second, the recursion theorem does not hold for clocked Turing machines
[14]. The recursion theorem is powerful and plays an important role in our theory (e.g.,
the recursion theorem is used to prove that p-creativeness is equivalent to p-complete
creativeness). The reader is referred to Wang [14], [16] for more details.

REMARK 3.3. As p-productive sets for P are defined under the enumeration T’A4,
we may call these sets p-productive sets for 7.A4. However, because the motivation of
defining p-productive sets for P is to provide a mechanism that witnesses that a set is
not in P, we feel that p-productive sets for P with respect to 7.M better addresses this
motivation. In this paper, when there is no confusion on which enumeration we are
working on, we use p-productive sets for P for simplicity.

Since p-productivity is indexing dependent, choosing a right indexing is important.
In summary, we require that the indexing we choose meet the following three require-
ments.

1. There is a universal predicate for all polynomial-time computable functions in
the time complexity class we consider (E in this section and DTIME(T(n)) in
the next section).

2. It is closed under the s-m-n theorem. That is, let q0, ql," be the polynomial-
time bound used in the indexing, if M on input (x, y) halts in q()(lYl) steps,
where v is bounded by a polynomial, then by applying the s-m-n theorem there is
a total, one to one, length-increasing, and polynomial-time computable function
h such that Mh(x)(y) halts in qh(x)(]Yl) steps and Mh(x)(y) M(x, y).

3. It is closed under the double diagonalization construction. That is, there is an
enumeration of all polynomial-time computable functions f0, fl,"" such that
the set ((i,x)" ix is a DTM and accepts fi(i,x) within q(Ifi(i,x)l) steps} is
in the time complexity class we consider (E in this section and DTIME(T(n))
in the next section.)

It was shown in [16] that the enumeration 79j/1 we defined above meets all these
three requirements. It is straightforward to prove the following simulation lemma [15].

LEMMA 3.4. { (i, x) Mi is a DTM and accepts x in pi(Ixl) steps} can be accepted by
a two-tape DTM in time O( 2

Consider the Kleene function defined by K(i, x, n) Mi(x), if Mi is a DTM and
halts on input x within n steps, 0, otherwise. Let fi )x[K(i, x, p(lxl))], then f0, f,
is an enumeration of all total polynomial-time computable functions. By Lemma 3.4, it
is straightforward [16] to verify that the universal function Aix[f(x)] is computable in
DTIME(2(liI+II)). Using the double diagonalization construction, Wang [16] proved
that every <-hard set for E is p-productive for P. We now prove that every p-productive
set for P in E is p-levelable.

THEOREM 3.5. Everyp-productive setfor P in E is p-levelable.
Proof The proof consists of a series of lemmas. Each of these lemmas is interesting

in its own right in terms of p-productivity.

1The version of s-m-n theorem in the polynomial setting can be found, for example, from [12], [14].
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LEMMA 3.6. Everyp-productive setfor P with a length-increasingp-productivefunction
contains infinite subsets in P.

Proof Let A be a p-productive set for P with a length-increasing p-productive func-
tion h. Then

(1) (Vi)[Mi e 7>.h/l = [Li c A = h(i) e A- L]].

Let Mh be a DTM computing h within O(n) steps on inputs of length n. Without loss
of generality, assume that Mh is one-tape. Define a two-tape DTM M such that on
input (x, y), if Mx is a DTM and accepts y within Px(lYl) steps or Mh(x) y, then M
accepts; otherwise, M rejects. From the Simulation Lemma 3.4 we have TM(X, y) <_
O(Ixl(lyl/ + x + Ixl/) 2)

_
lyl0gll+/) + O(Ixl(1 + x + Ix[)2). So bythe s-m-n

theorem, there is a total, length-increasing, and polynomial-time computable function
g such that Mg()(y) M(x, y) and TM()(y) Ti(x, y). We can pad g such that
TM(,) (y) <_ Pg(x)(lY])" That is, Mg() 79.hal for every x. From the construction we can
see that if Mx PAd, then

(2) i9() i t_J {h(x)}.

Let i0 be an index such that Lio 0 and Mio 79.M. So Lio c_ A. Therefore, since Mio

PAd, by (1), h(io) A. So, by (2), i9(o) {h(i0)} c_ A. Since Mg(io) 79]V1, by (1),
hg(io) A-ig(io),andsohg(io h(io). Again, by (2), 59.(io) ig(io)U{hg(io)} c_ A
since Mg(o) 79J. We know that M9.(o) PAd, so by (1), hg (io) A Lg.(io), and
so hg2(io)

_
{h(i0), hg(io)}. Continuing this procedure, we will obtain the following set

B {h(io),hg(io),hg2(io), .} c_ A such that hgi(io) hgJ(io)when/- j. So B is
infinite. That B is in P is obvious because h and g are both length-increasing polynomial-
time computable. This completes the proof.

LEMMA 3.7. If B P and A t3 B is p-productive for P, then A is p-productive for P.
Moreover, ifA (3 B has a length-increasingp-productive function, then so does A.

Proof. Since At3B is p-productive for P, there is a total, polynomial-time computable
function f such that, for all i, if Mi PM, then L c_ A B f(i) (A B) L.
We want to show that there is a total, polynomial-time computable function g such that
(Vi)[M 79AA [L c_ A g(i) A- L]]. Since B E P, there is a total, length-
increasing, and polynomial-time computable function h such that Lh(i) L B, and
M 79M implies Mh() 79M by padding h. Let g(i) f(i) if f(i) B, and fh(i)
otherwise. Clearly, g is total, polynomial-time computable and if f is length increasing,
then so is g. Given i, if M E TM and L c_ A, then L c_ A t2 B. If f(i)

_
B, then

f(i) A Li, namely, g(i) A Li. If f(i) B, then consider L t2 B. Since
L c_ A, L t2 B c_ A t2 B. Namely, Lh() C_ A B. So fh(i) (A B) Lh(i). Hence,
fh(i) (A B) (L 3 B). Therefore, g(i) fh(i) A Li. This completes the
proof.

LEMMA B.8. If A is p-productive.for P with a length-increasingp-productive function,
then A is p-levelable.

Proof. Let A be as described above. Suppose that A is not p-levelable. Then there
is an optimal one-sided p-approximation algorithm for the positive site of A. Let
B {x A(x) 1}, then by definition, B P, B c_ A, and there are no one-sided p-
approximation algorithms for the positive site ofA-B. However, since A (A-B) t2B,
by Lemma 3.7, A-B is p-productive for P with a length-increasing p-productive function.
By Lemma 3.6, A B contains an infinite subset in P. This is a contradiction.

LEMMA 3.9. Every p-productive set for P in E has a length-increasing p-productive
function.



POLYNOMIAL TIME PRODUCTIVITY AND APPROXIMATIONS 1105

Proof. Suppose A is p-productive for P in E, then there is a total, polynomial-time
computable function f such that (Vi)[Mi E PAd = [Li c_ A = f(i) A Li]]. For all
i and z, let

M(x), if Ixl > Iil,
M(i, x) "accept," if Ixl _< lil and x A,

"reject," otherwise.

there is a total, polynomial-time computable function h such that Mh(o(x) M(i,x)
with the same time complexity, i.e., TMh,)(x) TM(i, x). From the construction, it is

clear that TM(i,x) O(lilT, (x)) / 2clil for some constant c > 0 since A E. So if

M PAd, then TM(i,x) cllil(Ixl ffT + i)2 + 2’’ for some Cl > 0. By suitably
padding h such that h(i) > cxlil(1 + i)2 + i and Ih(i)l >_ (3/+ og Iil + Iil) 3 we have

TMh(,) (x) < Ix 1 + h(i). Hence, M PAd implies Mh(i)
Let i be an index such that M PAd and L c_ A. From the construction, we know

that L c_ A implies Lh(i) C_ A. Now we know Mi 79.A/[ implies Mh(i) P.A/[. So by
the definition of p-productive sets, L c_ A Lh(i) C_ A fh(i) A- Lh(i). We claim
that for such i, [fh(i)l > [i[. If it were not true, then by the construction of the machine
Mh(i), fh(i) is accepted by Mh(i), because fh(i) A. Namely, fh(i) Lh(i). This
contradicts the p-productivity. Thus, Ifh(i)l > li[. So, from the construction, fh(i)
if and only if fh(i) Lh(i). Hence, fh(i)

_
Lh(i) implies fh(i) L. Therefore,

(’i)[M 79A4 [L c_ A Ifh(i)l > [i[ and fh(i) A- L]].
Now for al i, let g(i) fh(i) if Ifh(i)l > Iil, and il otherwise, where il denotes

the concatenation of with 1. Then g is total, length increasing, and polynomial-time
computable. Clearly, A is p-productive for P with productive function g.

From Lemmas 3.9 and 3.8, we know that every p-productive set for P in E is p-
levelable. This completes the proof of Theorem 3.5.

REMARK 3.10. Lemmas 3.6, 3.7, and 3.8 also hold if we replace "length-increasing"
for "p-honest" in their statements.

Since E is closed under complementation, it is easy to see the following corollary.
COROLLARY 3.11. (1) Every E-complete set is bi-p-levelable [11]. (2) Everyp-creative

setfor P in E has a length-increasingp-productive function.
3.2. Approximations to DTIME(T(n)) sets. We now generalize the idea in 3.1 to

deterministic superpolynomial time class DTIME(T(n)), where T dominates any poly-
nomial. We can see from 3.1 that if there is an enumeration within DTIME(T(n)) that
meets the three requirements we mentioned there, then all the results we proved in 3.1
can be generalized to DTIME(T(n)). So our task is to construct such an enumeration.
Readers may skip most of this section if they believe such an enumeration exists and read
Theorems 3.17 and 3.19 directly.

To define a function T that dominates any polynomial for time complexity classes
nicely, T should be time constructible, monotonic, and greater than any polynomial.
Moreover, a technical assumption is needed in our proof. That is, for all k and all n,
T (n) is not greater than T(n). This assumption was first found in the proof of the main
theorem of [2]. In his proof Berman used an assumption that LT-(Ig-(T(n))A)J >_
[g-(n)J, where g is a monotonically increasing function. Taking g(n) nk we get
our assumption here. We shall see that this is a reasonable assumption because all the
natural superpolynomial-time bounds satisfy this assumption.
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DEFINITION 3.12. A function T dominates any polynomial if T is time constructible
and satisfies the following three conditions.

1. (j)[limnoo n/T(n) 0].
2. T is monotonic, i.e., (Vn)[T(n + 1) > T(n)].
3. (Vk)(Vn)[T(n) <_ T(nk)].
Now we shall show that the following natural superpolynomial-time bounds 2",

2c4/-, nn, ng() ’, ng* ’, etc. satisfy Definition 3.12. Recall that log* n min{i
log(i) n<_ 1}, where log(t) n log(log(t-) n), log() n n.

-2 2nt+l, 2cn, 2c’-, nclogn, nclog()n, nclog n, etc.PROPOSITION 3.13. Functions 2
dominate anypolynomial, where is a positive integer and c is a positive number

Proof. It suffices to show that if U(n) n"(’) is time-constructible such that/z(n)
is monotonic and lim,_-.oo #(n) oe, then U dominates any polynomial. Conditions
1 and 2 are easily seen satisfied. We present a proof for Condition 3. For any k > 0,
Uk(r) nkl(n)

_
nklz(n) (nk)tz(n) U(nk). This completes the proof.

From now on, we shall fix the use ofT to denote a function that is time constructible
and dominates any polynomial. We now present an enumeration within DTIME(T(n))
that meets the three requirements we mentioned in 3.1.

Since T(n) nlgT(n)/log n, for simplicity, we assume that log T(n)/log n is mono-
tonic. From Proposition 3.13 we can see that this is a reasonable assumption. This
assumption greatly simplifies our indexing construction, although we can construct an
enumeration without this assumption [15]. Let a(n) log T( [v/-J )/ log n, and 7(n)
IV/la(n)J/2J. For simplicity, we will eliminate the floors when there is no confusion.

LEMMA 3.14. (1) T(x/- dominates any polynomial (2) a is monotonic and
lim,__,o or(n) cx. (3) -(n) is computable in DTIME(T(x/-)).

Proof. That T(v/-) is time constructible is obvious since [v/-J is the largest integer
m such that me < n, and so it can be computed by a DTM in time O(nlml2 + T(m)) <
O(T(v/-d)) on any input of length n. It is easy to verify that T(x/) satisfies the three
conditions in Definition 3.12 and that Statement 2 is true.

We now prove Statement 3. Clearly, /a(n)J is the largest integer k such that nk <
T(v/’) since n(’) T(v/-). The following simple algorithm finds this k on input n. Let
z T(x/-), and set k 0. Loop" if nk < z and nk+l > z then stop and output k; oth-
erwise increase k by 1. Obviously, the algorithm can be carried out deterministically in
time O(T(v/-d + kln[k+). Bythe algorithm, nk <_ T(V), so k <_ a(n), n < T/k(V/-),
and Inlk+ (O(logn))k+ < O(logk+l T(v/-)). Hence, the algorithm can be car-
ried out in time O(T(v/-)). To compute 7(n) we find the largest number m such that
m2 < a(n)/4 and (m + 1)2 > a(n)/4. Ths can be carried out in deterministic time
O(ml, l + T(v/-)) < O(a(n) + T(V-d)) O(T(v/d)).

Let t{ ,kn[n’(l{I) + T(])], and g Ax[K(i,x,t{(Ixl))], where g(.,.,.) is
the Kleene function we defined in 3.1, then go, g,"" is an enumeration of all total
polynomial-time computable functions. It is clear that to, t,.., is uniformly time con-
structible, so it is straightforward to prove that { (i, x) M{ is a DTM and accepts x within
t{(Ixl) steps} can be accepted by a two-tape DTM in time O(lilt(Ixl)), as in [14].

THEOREM 3.15. The universalfunction ]kix [g{ (x)] is computable in DTIME(T(n)).
Proof. It is clear that a is monotonic, and so is O’. Hence, for any i and x, (lil +

Ixl)(1il) < (lii + Ixl)(lil/lxl) T(v/[i[ + ]xl). Clearly, the universal function Aix[gi(x)]
is computable deterministically in time o(lilt(lxl)). This is less than or equal to

2Condition 2 can be weakened to (Vn)[T(n + 1) >_ T(n)], and Condition 3 can be weakened to
(Vn)(Vk)[T;e(n) <_ T(n;)].
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O(T(lil + Ixl)T() + T([il))
O(T(lil +

at is, the universal function is computable in DTIME(T(n)).
We will now define p-productive sets for P and NP using t. t
PT {M" M is a DTM and (Vx L(M))[Mi accepts x within t(xl) steps]}.
T {M (Vx L(M))[M accepts x within t(Ixl) steps]}.
Clearly P {L" M PT} and NP {L- M T}.
DEFINITION 3.16. A set A is p-productive for P (with respect to PT) if there is

a total polynomial-time computable function f, which is called a p-productive nction,
such that for all i, if M PT, then L A f(i) A L. A set A is p-creative
for P (with respect to t) if A is p-productive for P.

We can similarly define p-productive sets for NP, and p-creative sets for NP with
respect to ffT.

In what it follows, when we talk about p-creative sets and p-productive sets in
DTIME(T(n)) we mean that they are defined with respect to PT. The following the-
orem can be similarly obtained using the double diagonalization technique introduced
in Wang [14], [16].

EOREM 3.17. (1) Eve -hardsetfor DTIME(T(n)) isp-creaavefor P. (2) Eve
-hard setfor NTIME(T(n)) is p-creative for NP.

Proof. We present a proof for Statement 1. A proof for Statement 2 can be similarly
obtained.

Define Qt {(i, x) M is a DTM and accepts g(i,x) within t(lg(i,x)l) steps}.
By a straightfoard calculation, we can veri that Qt DTIME(T(n)). This Qt will
force evew -hard set for DTIME(T(n)) to be p-creative for P. t A be an arbitraw
-hard set for DTIME(T(n)). Then there is a total, polynomial-time computable
function q such that Qt A via q. Therefore, there is a j such that q g. Let
f(x) gj(j,x), then f is a total, polynomial-time computable function. Now for all
x, if M PT, then f(x) A gj(j,x) A (j,x) Qt (by reducibiliW)
M accepts gy(j,x) within t(Igj(j,x)l steps gy(j,x) L(M) f(x) L. So

it is easy to see that A is p-creative for P.
Since DTIME(T(n)) is closed under complementation, we have the following corol-

law.
COROLLARY 3.18. Eve -hard setfor DTIME(T(n)) isp-productivefor P.
The reader can veri that the enumeration we defined above is also closed under

the s-m-n theorem, so similar to the proof of Theorem 3.5, we can prove the following.
EOREM 3.19. Evep-productive setfor P in DTIME(T(n)) is p-&velable.
The proof consists of a series of lemmas, which are given in Lemma 3.20. Their

proofs are omitted since the proof technique is the same as the one we used in Theorem
3.5. The reader may consult [15] for these proofs.
LEM 3.20. (1) Eve p-productive set for P with a p-honest p-productive nction

contains infinite subsets in P. (2) IfB P and AUB isp-productivefor P with ap-honestp-
productivenction, then A isp-productivefor P with a p-honestp-productivenction. (3)
Evep-productive setfor P with a p-honestp-productive nction is p-levelable. (4) Eve
p-productive setfor P in DTIME(T(n)) has a lenh-increasingp-productivenction.

As a direct corollaw ofTheorems 3.17 and 3.19 weowthat evew -complete set
for DTIME(T(n)) is bi-p-levelable. This result was first shown in [11] based on the main
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theorem of [2] stating that every <-complete set for DTIME(T(n)) is not P-immune
and a result in [10] stating that any non-p-levelable set is the disjoint union of an infinite
P-immune set and a set in P.

3.3. Approximations to NE sets. Whether every NE-complete set has an infinite
P-subset is a long-standing open problem, which was raised in [2]. We show that the
existence ofp-productive sets for NP in NE is a sufficient condition to solve this problem.
It is easy to prove that p-productive sets for NP exist in DTIME(22 ). It was shown
in Wang [16] that all NE-complete sets are p-creative for NP. But since we do not know
whether NE is closed under complementation, the existence of p-productive sets for NP
in NE is open. Let A/’M {M (Vx L(M))[Mi accepts x within p([xl) steps]}.
Clearly, NP {L(Mi) Mi AfA/I}. Consider the set {(i,x) Mi is an NTM and
accepts x in pi(Ixl) steps}. It is easy to see that this set can be accepted by a two-tape,
nondeterministic Turing machine in time O( 2Ilp (11)).

A set A is p-productive for NP (with respect to A/’A’/) if there is a total polynomial-
time computable function f, which is called a p-productive function, such that (Vi)[M E
N’M = [L C_ A = f(i) A- L,]].

We first show that p-productivity for NP is closed under <P-reducibility in the fol-
lowing sense.

THEOREM 3.21. IfA <_P B and A is p-productive for NP, then B is p-productive for
NP.

Proof. Since A is p-productive for NP, there is a total polynomial-time computable
function h such that (Vx)[M ArM [L c_ A = h(x) A- L]]. Let A _<P B
via f. So f(y) can be computed deterministically in time lyl k + k for some k. By the
s-m-n theorem, we can have a total, length-increasing, and polynomial-time computable
function g such that Ma() accepts y if M(f(y)) halts, is undefined otherwise, and
M A/’A//implies M() A/’A//by suitably padding g. Since z f(La()) = (y
La())[f(y) z] = f(y) n :=> z L, f(Lg()) c_ L. So for all x, if M N’A//
then Lz c_ B f(L() c_ B L() c_ A (by reducibility) hg(x) A Lg() (by
p-productivity of A) = fhg(x) B L (by reducibility and the construction of Ma()).
So B is p-productive for NP with p-productive function fhg.

COROLLARY 3.22 (to the proof). If A <P B and A is p-productive for P, then B is
p-productivefor P.

Similar to the proofs of Lemmas 3.6, 3.7, 3.8, and 3.9, we can prove the following
lemmas, which are given in Lemma 3.23. Their proofs are omitted.

LEMMA 3.23. (1) Every p-productive set for NP with a length-increasingp-productive
function contains infinite subset in P. (2) If B P and A U B is p-productive for NP
with a length-increasingp-productivefunction, then A isp-productivefor NP with a length-
increasingp-productivefunction. (3) Everyp-productive setfor NP with a length-increasing
p-productive function is p-levelable. (4) If A is p-productive for NP in NE, then A has a
length-increasingp-productive function.

REMARK 3.24. Statements 1, 2, and 3 in Lemma 3.23 are also true if we replace
"length-increasing" for "p-honest."

From Lemma 3.23, we know that if A is p-productive for NP in NE, then A is p-
levelable. So from this result and Theorem 3.21 we can easily derive a proof for the
following theorem, which holds for NTIME(T(n)) as well.

THEOREM 3.25. Ifthere exists ap-productive setfor NP in NK then every <_Pro-complete
setfor NE is p-levelable.

THEOREM 3.26. If there exists a p-productive setfor NP in NTIME(T(n)), then every
<_Pro-complete setfor NTIME(T(n)) is p-levelable.
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4. Levelable NP sets. Studying NP sets is more difficult, at least in part because it is
not knownwhether or not there is a universal predicate within NP for all polynomial-time
computable functions. Joseph and Young [5] defined a class of creative sets within NP by
considering fixed polynomial degrees. We study p-approximations to NP sets using the
concept of k-creativity. Let AfJA {Mi (Vx E L(Mi))[M accepts x within lillx[ k d-

li steps]}. Let NPk NTIME(nk). Then clearly, NPk {Li" Mi E AfAA}.
A set A is k-creative [14] if A E NP and there is a total polynomial-time computable

function f, which is called k-productive function, such that (Vi)[M ArM = [Li c_
A f(i) e A- L]].

A set A is k-completely creative [5] if A e NP and there is a total polynomial-time
computable function f, which is called k-completely productive function, such that (Vi)
[M e ArM = If(i) e A = f(i) e L]].

The complement of a k-creative set is called k-productive. All k-completely creative
sets were shown to be NP-complete in Joseph and Young [5]. However, we do not know
whether or not all k-creative sets are NP-complete. From the definition, it is easy to
see that k-completely creative sets are k-creative. But it is not known whether every k-
creative set is/-completely creative for some > 0 [14], [16]. A set is honest k-creative
(k-completely creative) if it is k-creative (k-completely creative) and has a p-honest p-
productive (p-completely productive) function.

It was shown in [11] that honest k-completely creative sets are p-levelable. On the
other hand, itwas shown in Homer [3] that the complement ofevery honest k-completely
creative set contains an infinite subset in NP for some > 0. Homer asked whether the
complement of every honest k-completely creative set contains infinite subset in P. We
settle this problem by showing a stronger result.

The following lemma, due to Book, Greibach, and Wegbreit [1] (see also [13]), will
be used to prove Theorem 4.2. The lemma indicates that for nondeterminisfic time
complexity we can get by with TMs having a fixed number of tapes. No similar result is
known for deterministic time complexity [13]. We can prove Theorem 4.2 without using
this lemma by considering one-tape Turing machines in the proof. For details see Wang
[15].

LEMMA 4.1 (see Book, Greibach, and Wegbreit [1]). For each TM M there is a 2-
tape TM M’ and a constant c such that L(M’) L(M) and TM, (z) <_ cTM(z) for every
z E L(M), where c is proportional to the number oftapes in M.

THEOREM 4.2. The complement ofevery honest k-creative set is p-levelable.
Proof. We first show that the complement of every honest k-creative set contains an

infinite subset in P. Let A be honest k-creative. Then there is a total, p-honest polynomial-
time computable function h such that for all i, if Mi E ArA//k, then Li c_ - = h(i)

Li. So for all i, if Mi AfA/tk, then we have

(3) L c_ A = h(i) A- L.

Suppose Mh is a DTM computing h within O(n) steps on input of length n. By Lemma
4.1, define a two-tape TM M such that on input (x, y), M simulates M on y. If M
accepts y within [x[ly[ k + Ix[ steps or Mh(x) y, then M accepts; otherwise, M re-
jects. Since the number of tapes ofM is less than Ix[ and the program x is read for at
most Ix[lyl k + Ix[ times during the simulation, by Lemma 4.1, we can have Tu(X, y) (_
O(Ix[2(Ixi[y[ k + Ixl) + Ixl*). By the s-m-n theorem, there is a total polynomial-time
computable function g such that Mo() is a two-tape TM, M()(y) M(x, y), and

TM() (y) <_ O(TM(X, y)).
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So for all x, TMo( (y) _<_ O(Ixlalyl / [xl max{3,/}). By padding g we can get a new
two-tape program f such that f is total, polynomial-time computable, length-increasing,
(Vx)(Vy)[My()(y) Ma()(y)], and TM,()(y) TMo()(Y) < If(x)llyl + If(x)l. That

is, MI() E A/’Ak for all x. By the construction, ifM E AfA4k, then MI() is a two-tape
TM, My() AfA//k, and

(4) LI() Lg() L: t2 {h(x)}.

From (3) and (4), similar to the proof of Lemma 3.6, the reader can easily construct an
infinite subset of A in P.

Similar to the proofs of Lemmas 3.7 and 3.8, it is easy to complete the proof of
Theorem 4.2.

COROLLARY 4.3. Every honest k-completely creative set is bi-p-levelable.

5. Final remarks and open problems. We have shown that p-productivity and k-
creativity are powerful concepts for studying polynomial-time approximations to intract-
able sets. Some open problems have been mentioned as they appear. The most inter-
esting ones among them are listed as follows.

1. Do there exist p-productive sets for NP in NE?
2. Is every k-creative set honest k-creative?
3. Do there exist k-productive sets in NP?

It was shown in [11] that sets not in P that are either paddable or self-reducible
are p-levelable. So it would be interesting to investigate what relationships hold among
p-paddability, self-reducibility, and p-creativity or p-productivity.
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OPTIMAL REDUCTION OF TWO-TERMINAL DIRECTED ACYCLIC GRAPHS*
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Abstract. Algorithms for series-parallel graphs can be extended to arbitrary two-terminal dags if node
reductions are used along with series and parallel reductions. A node reduction contracts a vertex with unit
in-degree (out-degree) into its sole incoming (outgoing) neighbor. This paper gives an O(n2"5) algorithm for
minimizing node reductions, based on vertex cover in a transitive auxiliary graph. Applications include the
analysis of PERT networks, dynamic programming approaches to network problems, and network reliability.
For NP-hard problems one can obtain algorithms that are exponential only in the minimum number of node
reductions rather than the number of vertices. This gives improvements if the underlying graph is nearly
series-parallel.

Key words, algorithms, complexity, NP-completeness, directed acyclic graph, series-parallel graph, tran-
sitive graph, triconnected components, reliability, dynamic programming, PERT network

AMS(MOS) subject classifications. 05C20, 05C75, 05C85, 68M15, 68Q20, 68Q25, 68R10, 90B25, 90C35,
90C39

1. Introduction. Duffin [9] proved that a two-terminal directed acyclic graph (st-
dag) is series-parallel if and only if it does not contain a subgraph homeomorphic from
the graph pictured in Fig. 1, the interdictive graph. Series-parallel st-dags can be effi-
ciently parsed and transformed into a decomposition tree (see [38]). Many graph and
network problems that are either intractable or have complicated solutions in the general
case are easy in the special case of series-parallel networks. Bein, Brucker, and Tamir
[4], for example, show that the minimum cost flow problem is solved by the greedy algo-
rithm if and only if the graph is series-parallel. Other examples include scheduling and
sequencing problems [1], [2], [26], [27], location problems [17], as well as many combi-
natorial problems [21], [35], [34]. All these approaches rely on the decomposition tree
(see [6] for a general formulation of this idea) or on Duffin’s characterization.

This paper introduces definitions of st-dag complexity, measures that describe how
nearly series-parallel an st-dag is. One can then, for hard problems, extend the work
described in the previous paragraph to obtain algorithms that are exponential only in
the complexity of the underlying st-dag, rather than its size.

Our primary measure is motivated by Duffin’s characterization. We eliminate all
embedded interdictive graphs by successive node reductions, and the number of node
reductions determines the complexity. Our main result is that there exists a polynomial-
time algorithm to minimize node reductions, obtained by showing that the complexity of
an st-dag is equal to the size of a minimum vertex cover in a transitive auxiliary graph.

A second measure of complexity, derived from the first and motivated by network
dynamic programming, is based onfactoring, a generalization of the decomposition tree
to arbitrary st-dags.

In 2 we introduce both complexity measures, motivate them with examples, and
show that factoring complexity is bounded by reduction complexity. Section 3 gives sev-
eral equivalent definitions of the auxiliary graph. Section 4 contains details relating a
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FIG. 1. The interdictive graph (IG).

vertex cover in the auxiliary graph to reduction complexity. In 5 we present an O(n2"5)
algorithm to compute an optimal node reduction sequence and, therefore, the reduction
complexity. Finally, 6 presents some open problems.

We conclude this section with definitions and notation that will be used throughout
the paper. We already introduced the term st-dag to refer to a two-terminal directed
acyclic graph. An st-dag always has a unique source s and a unique sink t. This implies
that an st-dag is connected, i.e., there is a path from s to any vertex and from any vertex
to t. In our notation, the st-dag G is regarded as a set of edges (multiple edges between
the same two vertices are permitted), while V(G) denotes the set of vertices in G.

When we say an st-dag is series-parallel we mean that it is two-terminal edge series-
parallel (see [38] for a description of the relationship between edge and vertex series-
parallel). More specifically, an st-dag is series-parallel if it can be obtained iteratively in
the following way:

A single edge is two-terminal series-parallel (with the tail being the source and the
head being the sink);

If G1 and G2 are two-terminal series-parallel, so is the graph obtained by identify-
ing the sources and sinks, respectively (parallel composition);

If G1 and G are two-terminal series-parallel, so is the graph obtained by identify-
ing the sink of G1 with the source of G (series composition).

The in-degree of vertex v in G is denoted by in(v, G), while out(v, G) denotes the
out-degree. The notation v < w means that there is a path from v to w in G; we use v _< w
if equality is a possibility. P(v, w) refers to a particular path from v to w, specifically to
the set of vertices on that path.

A vertex v dominates another vertex w if every path from s to w includes v. Con-
versely, if every path from v to t includes w, then w reverse-dominates v. These definitions
are symmetric in the sense that v dominates w in G if and only if v reverse-dominates
w in GR (G with directions of all edges reversed, and s and t interchanged). Vertex v
properly dominates w if v dominates w and v w. Properly reverse-dominates is defined
similarly.
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A dag H is homeomorphic from another dag H’ if H can be obtained from H’ by
repeatedly inserting vertices of in-degree and out-degree one in the middle of edges
(edges of H’ are transformed into disjoint paths of H). We say that a dag G has an IG
(interdictive graph) at ?3, w if G has a subgraph homeomorphic from the graph in Fig. 1
with 73 and w in the positions shown. It is well known that an st-dag G is series-parallel
if and only if there are no IGs in G [9].

2. Definitions of dag complexity. Our primary definition of complexity refers to a
sequence of reductions of an st-dag. Aparallel reduction at ?3, w replaces two or more
edges el,.’., ek joining 73 to w by a single edge g (?3, w). A series reduction at 73 is
possible when e (u, ?3) is the unique edge into ?3, and f (?3, w) is the unique edge
out of ?3: then e and f are replaced by g (u, w). A node reduction at 73 can occur
when 73 has in-degree or out-degree 1 (a node reduction is a generalization of a series
reduction). Suppose 73 has in-degree 1, and let e (u, ?3) be the edge into ?3. Let fl
(?3, W1)," ", fk (?3, wk) be the edges out of ?3. Replace {e, fl," , fk } by {gl,- , gk},
where 9i (u, wi). The case where ?3 has out-degree 1 is symmetric: here e (?3, w),
f (u, v), and 9 (u, w).

For convenience, let G o v denote the result of a node reduction at v, and let [G]
denote the graph that results when all possible series and parallel reductions have been
applied to G (this is well defined because series and parallel reductions obey the Church-
Rosser property: the order in which reductions are applied does not affect the final out-
come [37]). An st-dag G is said to be irreducible if [G] G.

DEFINITION 2.1. Let #(G), the reduction complexity of G, be the minimum number
of node reductions sufficient (along with series and parallel reductions) to reduce G to
a single edge. More precisely, #(G) is the smallest c for which there exists a sequence
vx,. , vc such that [-.. [[[G] o vii o v2] o vc] is a single edge. Such a sequence is called
a reduction sequence.

Finding #(G) and the corresponding optimal reduction sequence is important in
the solution of several problems defined on deterministic and stochastic networks: esti-
mating completion time in PERT networks, travel time in transportation networks, and
network reliability. More details and references relating to these applications are given
in [10]. We illustrate the basic ideas by presenting details of the simplest application,
two-terminal reliability.

Let G be an st-dag in which each edge e is assigned a failure probability p(e). Then
R(G), the two-terminal reliability of G, is the probability that there exists at least one
source-sink path with no failed edges in G. Determining R(G) is #P-complete evenwhen
G is planar with maximum degree 3, and all failure probabilities are the same [28]. If G is
series-parallel, R(G) can be computed in linear time using series and parallel reductions
[3]. For each reduction, the failure probability of the new edge can be computed so
that the network has the same reliability before and after the reduction. When a series
reduction replaces edges e and f with 9,

p(g) 1 (1 p(e))(1 p(f)).

When a parallel reduction replaces el,..-, ek with g,

p(a)

Eventually the st-dag is reduced to a single edge e* with R(G) 1 p(e*).
We extend the result of [3] to obtain an O(m2) time algorithm for computing the

reliability of complexity-c st-dags. Consider a node reduction replacing {e, f,..-, fk }
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by {91,’", 9k }. Let G be the st-dag before the node reduction; let G’ be the st-dag after
the node reduction with P(gi) p(fi),i 1,... ,k; let G" be G- {e, f1,... ,fk} (the
reduced node and all its incident edges are deleted). That is, G’ is derived from G under
the condition that e does not fail, while G" is what G turns into when e fails. To make G"
an st-dag, we also remove from it all vertices and edges that are not on any path from s
to t. Then we apply the recurrence

R(G) (1 p(e))R(G’) + p(e)R(G").

A recursive algorithm using this formulation and the rules for series and parallel reduc-
tions has a worst case running time of O(m2c) arithmetic operations when there are c
node reductions. In practice the time is likely to be much better, since G" often has
lower complexity than G’, and many series and parallel reductions reduce the size of the
st-dag between successive node reductions. (See also [32] and [39] for a description of
graph reduction techniques used for undirected reliability problems.)

We now introduce a second complexity measure, based on a generalization of the
decomposition tree to arbitrary dags. If G is an st-dag, it is possible to define a (not
necessarily unique) algebraic expression a for the set of all source-sink paths in G. The
expression a, also called afactoring of G, consists of edges and the operators + (disjoint
union) and. (concatenation, also denoted by juxtaposition when no ambiguity arises). If
G is series-parallel, + corresponds to parallel composition and to series composition,
and it is possible to obtain a unique factoring (up to applications of associative laws
see [38]).

The definition of a factoring can be made more formal, as follows. Apath expression
a is an algebraic expression for a set of paths between two specific vertices of an st-dag.
Let P(a) denote the set of paths represented by a, and let s(a) be the start vertex for
all paths in P(a) while t(a) is the terminal vertex. Any valid path expression is obtained
by recursively applying the following rules.

A single edge e from v to w is a path expression with P(e) {e}, s(e) v, and

If al and a are path expressions with S(al) S(a2), t(ai) t(a2), and P(O/1)
79(a2) O, then ai + a2 is a path expression with s(ax + a) s(ai), t(ai + a2)
t(ai), and P(ai + a2) P(ai) U P(a).

If ai and a are path expressions with t(ai) s(a), then ai a is a path ex-
pression with s(ax. a) s(ai), t(ai. a2) t(a2), and P(ai. a) {PiP[PI
E(OI), P2 e P(a2)}.

Both + and. are associative, and- has precedence over +. Afactoring of an st-dag
G is a path expression a for which P(a) is the set of all source-sink paths in G (also
s(a) s and t(a) t).

Unlike the series-parallel case (where a factoring is a linear representation of the
series-parallel decomposition tree), we allow factorings to have duplicate occurrences
of subexpressions. For example, two possible factorings of the st-dag in Fig. 2 are (ad +
b)g / ((ad + b)f / ((ad / b)e + c)h)i, which repeats the expression ad + b, and (ad +
b) (ehi + fi + 9) + chi, which repeats the expressions hi and i.

DEFINITION 2.2. We say that a duplicates an expression a if a appears more than
once, say k times, in a and any larger expression a" containing a’ appears less than
k times (i. e., a’ is a maximal duplicated expression). The cost of a factoring a is the
number of distinct expressions duplicated by a. The minimum cost of any factoring of
an st-dag G is called thefactoring complexity of G, denoted by (G).
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FIG. 2. An st-dag.

In figuring the cost, it is not relevant whether there are only two or arbitrarily many
occurrences of a specific expression. For example, the cost of the first factoring is only
1, even though ad +.b occurs 3 times. The cost of the second factoring is 2.

Factoring complexity is central to the efficient solution by dynamic programming
of many network optimization problems. We discuss one of these in detail to motivate
Definition 2.

Suppose the edges of the st-dag G (V, E) represent activities in a project, and
the duration of an activity e is given by the function (e, z), where z is the number of
units of some resource R that are devoted to the activity e. Assume is defined only
when z is an integer in the range 0... U 1, so for each fixed e the values of can be
represented by a vector of length U. The problem is to find an allocation of R among
the activities so that the overall project duration is minimized. Robinson [31] observed
that if G is series-parallel, the minimum duration over all possible allocations can be
found by dynamic programming (the optimum allocation can be derived easily from the
computation). More precisely, we can extend to path expressions as follows, where
(a, z) is the maximum total duration of any path in T’(a), given that z units of R are
allocated optimally among the activities in a.

(1) (O1 -- O2, X) min {max(G(a,r) G(a2,x r))}
0<r<x
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(2) (al’a2, x) min {(al,r)+(a2,x-r)}.
0<r<x

These formulations are correct only if can be optimized independently on al and
that is, if no activities occur in both al and ae. In this case, we say that is separable
with respect to a and

Robinson also pointed out that if the number of units of R to be allocated to certain
judiciously chosen activities is fixed in advance, g may be rendered separable even if G is
not series-parallel. Of course, in computing the minimum duration, all possible ways of
fixing the allocation of these activities must be considered, so that the algorithm based
on (1) and (2) must be executed O(Uc) times, where c is the number of activities whose
allocation is fixed in advance.

Consider, for example, the st-dag G in Fig. 3 and one of its factorings a ((ac+b)e+
ad)g + (ac+ b) f. To render (a, z) completely separable, the allocation to activities a, b,
and c must be fixed. It is possible to show that 3 is the minimum number of fixed activities
required to render any factoring of this example separable. Suppose, however, that we
consider fixing the allocation to whole subexpressions rather than just single activities.
Only two expressions ac + b and a are duplicated by a, so we can rewrite a as follows:

Cg2 lC + b,

a (a2e + ald)g + a2f.

Now we can render g(a, x) separable by fixing the allocation to a and a2. The number
of ways to do this is O(U2) rather than O(U3). Let rx be the number of units of R
assigned to a, and let re be the number of units assigned to ae (not including the rl
units assigned to aX). Then the optimal allocation for G is computed as follows (e and
ee denote two surrogate activities whose durations are fixed at 6(a, r) and G(ae, re),
respectively):

G(a2, r2) min {max(G(al a, rl) + G(c, r), G(b, r2 r))},
0<r<r2

G(ed,x) G(a,r) + G(d,x),

(e2f, x) (2,r2) + (f,x).

Intuitively a factoring of minimum cost also minimizes the number of possible fixed
allocations that need to be considered when computing project duration (we give no
formal proof here).
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FIG. 3. Another st-dag.

The two complexities, factoring complexity and reduction complexity, are related
(the idea described in the remainder of this paragraph comes from [7]). From a sequence
of series, parallel, and node reductions reducing G to a single edge, we can obtain a fac-



REDUCTION OF DIRECTED ACYCLIC GRAPHS 1119

toring as follows. Initially we label every edge e of G with the label S(e) e. Ultimately
the single edge e* to which (7 is reduced has a label S(e*) giving a factoring of G. The
new label for the edge t/resulting from a series reduction of e and f is S(/) S(e). S(f).
For a parallel reduction, S(g) S(el) + + S(ek). For each new edge t/i resulting
from a node reduction (see earlier definition), let S(i) S(e). S(f) when in(v, G) 1
or S(g) S(f). S(e) when out(v, G) 1. This has the effect of creating as many du-
plicate copies of S(e) as there are edges leading out of (into) v. Figure 4 shows the
reduction process used to derive the first factoring of the st-dag in Fig. 2. Because the
source and sink are never reduced and at least two intermediate vertices are required
for an interdictive graph, we have the following result.

THEOREM 2.3. IfG is a st-dag with n nodes, then b(G) < #(G) < n-3. We conjecture,
but have not been able to prove, that (G) #(G).

3. The auxiliary graph. The key to computing reduction complexity is an auxiliary
graph that identifies the IGs, both explicit and hidden, that need to be eliminated. Infor-
mally an edge between v and w in the auxiliary graph implies that any reduction sequence
must either reduce v or w (or both). We proceed by defining this auxiliary graph.

DEFINITION 3.1. The complexity graph, C(G), of an st-dag G, is defined by (v, w)
C(G) if and only if there exists a path P(v, w) in G such that for every z E P(v, w);
z neither properly dominates w nor properly reverse-dominates v. Equivalently,
P(v, w) {w} does not dominate w and z P(v, w) (v} does not reverse-domi-
nate v.

It is easy to see that this definition is equivalent to the following.
DEFINITION 3.2. (v, w) C(G) if and only if v < w, no z > v properly dominates

w, and no z < w properly reverse-dominates v.
We assume V(C(G)) is the set of all vertices that are endpoints of edges in C(G),

i.e., C(G) has no isolated vertices. Note that the definitions imply out(v, G) > 1 and
in(w, G) > 1. An edge of C(G) is identified only by its endpoints, i.e., there are no
parallel edges in C(G). Neither s nor t appears as a vertex of C(G), and hence C(G) has
at most IV(G) vertices. While the complexity graph is still directed and acyclic, it is
not an st-dag. It is easy to show that C([G]) C(G), from which it follows that C(G) is
empty if and only if G is series-parallel. Figure 5 shows the complexity graph for the dag
in Fig. 2.

LEMMA 3.3. G) is a transitive graph.
Proof. Suppose (u, v) and (v, w) are edges of C(G). Let P(u, v) and P(v, w) be the

paths satisfying Definition 3.1. We claim that P(u, w) P(u, v)P(v, w) also satisfies the
definition. Note that any vertex of P(u, v) that dominates w must also dominate v, and
any vertex of P(v, w) that reverse-dominates u must also reverse-dominate v.

The two definitions of C(G) are equivalent to a characterization in terms of home-
omorphic subgraphs" (v, w) C(G) if G has a subgraph homeomorphic from one of
the four dags depicted in Fig. 6 with v and w and the indicated position (we also include
cases where the edge e in the series IG or the compound IG is contracted, i.e., x co-
incides with x2). Observe that there are two types of hidden IGs in the four subgraphs.
With the series IG there are IGs at v,x and x2, w, but a node reduction at x or x
does not eliminate either; thus, a reduction at v or w is forced. With the parallel IG a
node reduction at v’ or w’ is possible, but either reduction creates a new IG at v, w. The
compound IG combines both phenomena.

The ability to reduce all cases requiring node reduction to one of these four is what
originally led us to believe in the existence ofa polynomial-time algorithm. The discovery
of the parallel IG and the compound IG forced us to reject the simple conjecture that
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FIG. 5. The complexity graph ofthe st-dag in Fig. 2.
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FIG. 6. Four cases with pairwise constraints on v, w.
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C(G) is derived by taking the transitive closure of a dag in which (v, w) is an edge if
and only if there is an IG at v, w. Using the following lemma, which gives yet another
definition of C(G), it is easy to verify that (v, w) C(G) implies existence of one of the
four homeomorphic subdags.

LEMMA 3.4. The edge (v, w) is in C(G) ifandonly ifthere existpaths P (v, w), P(v, w),
P(v, t), and P(s, w) such that P1 (v, w) f) P(v, t) {v} and P2(v, w) fq P(s, w) {w}.
Furthermore, either P (v, w) Pu (v, w) or P (v, w) fq P2 (v, w) {v, w}, and the edges
common to P(s, w) and P(v, t), ifany, form a single path.

See [5] for a detailed proof. The four dags correspond to four combinations obtained
by (a) letting P (v, w) and P2(v, w) either be disjoint or identical, and (b) letting P(s, w)
and P(v, t) either be disjoint or intersecting.

4. The auxiliary graph and node reduction. We now prove that the minimum num-
ber of node reductions required to reduce an st-dag G to a single edge is equal to the
cardinality of a minimum vertex cover in C(G). The easy part of this is showing that the
vertex cover size is a lower bound on #(G).

LEMMA 4.1. If c is the cardinality ofa minimum vertex cover in C(G), then c < #(G).
Proof. It suffices to show that, whenever (v, w) C(G), an arbitrary reduction

sequence for G must include either v or w. Suppose (v, w) C(G) and consider a
reduction sequence v,. , vk that includes neither v nor w. We argue by induction that
(v, w) C(G) for i 1,..., k, whereG [... [[[G] o v] o v2] o v]. The conclusion
is that (v, w) C(Gk), i.e., Gk is not a single edge and the sequence does not reduce G.

Obviously (v, w) C(Go) since Go G. Assume (v, w) C(Gi_), and ob-
serve that a node reduction does not introduce any new dominance relations among
the vertices that remain. Using the fact that vi t/{v, w} and Definition 3.2, we see that
(v, w) C(G_ o v). Since C(G) C([G]), we can conclude (v, w) C(G). This
completes the induction argument.

The remainder of the section shows how a node reduction sequence for G may be
computed from a vertex cover ofC(G). If V’ is a vertex cover ofC(G), we have to ensure
that at every stage of reducing G at least one vertex of V’ is eligible for node reduction
(has in-degree or out-degree equal to 1). The arguments that follow show, essentially,
that an eligible vertex is always present in some triconnected component of G.

An st-dag G(v, w) c_ G is an autonomous subdag in G if it has source v and sink w
and satisfies one additional property: For every path P from s to t in G, the set of edges
Pf G(v, w) is either empty or forms a path from v to w. Note that v may be s and w may
be t or both, but we disallow the two trivial cases where G(v, w) is a single edge or all of
G. If G(v, w) is an autonomous subdag in G, we call v and w split vertices of G. We use
the notation GIG(v, w) to denote the st-dag G, but with G(v, w) replaced by the edge

Some observations about autonomous subdags are in order. First note that v domi-
nates everyvertex in G(v, w) and w reverse-dominates everyvertex in G(v, w). If G(v, w)
has exactly two edges, then GIG(v, w) corresponds to the result of either a series reduc-
tion or a parallel reduction of G. It is not hard to show that C(G) C(G/G(v, w)) t2

C(G(v, w)), where the two terms of the union are vertex and edge disjoint.
If we assume the edge (s, t) is always present in G (this edge has no effect on our

complexity measures), then a recursive decomposition of G into autonomous subdags
(decomposing G into GIG(v, w) and G(v, w) at each level) corresponds to a decom-
position of the underlying undirected graph into triconnected components (using the
definition of MacLane [24]). A decomposition of G into autonomous subdags could,
therefore, be found in linear time using a minor modification of the Hopcroft-Tarjan
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algorithm [19]. Such a decomposition is not required for our algorithms.
Finally, in most of our applications it suffices to solve the problem separately for each

autonomous subdag, replacing the subdag by a single edge that carries the information
about the subdag. When used in practice our definition of st-dag complexity should be
modified to take this observation into account. Specifically, we should take #(G) to be
the maximum reduction complexity of any subdag encountered in the decomposition,
and apply Theorem 4.6 (below) to each component of C(G).

The following lemma allows us to conclude (within each autonomous subdag) that
sources and sinks of C(G) correspond to vertices eligible for node reduction in G.

LEMMA 4.2. If v E V(G) {s, t} is not a split vertex of G and v has in-degree (out-
degree) greater than 1 in G, then v has in-degree (out-degree) greater than 0 in C(G).

Proof. Suppose that in(v, G) > 1 (the argument for out-degree is symmetric). Then
there exists s’ < v (in G) with at least two disjoint paths between s’ and v and every
path from s to v includes s’ (note: s’ may be the same as s). Let U {u E V(G) u <
and u > s’}. There must exist u U and a path P(u, t) such that P(u, t) fq U {u},

and v P(u, t). Otherwise G has an autonomous subdag with source s’ and sink v, and
v is a split vertex. The path P(u, t) and the two disjoint paths from s’ to v ensure that no
z with u < z < v either properly dominates v or properly reverse-dominates u. Thus,
by Definition 3.2, (u, ) C(G) and v has in-degree greater than 0 in C(G).

An edge (v, w) of a dag G is said to be contractable if v has out-degree 1 and w has
in-degree 1. If (v, w) is contractable, let G/(v, w) denote the dag obtained by contracting
the edge (v, w), identifying vertices v and w. The following arguments imply that a node
reduction along a contractable edge is superfluous.

LEMMA 4.3. If (v, w) is a contractable edge of G, then C(G/(v, w)) C(G)/(v, w),
where C(G)/(v, w) denotes C(G) with vertices v and w identified.

Proof. Note that any paths including v or w must either end at v, begin at w, or
include the edge (v, w). Combining v and w into a single vertex therefore has no effect
on the dominance relations of Definition 3.2.

LEMMA 4.4. If G is irreducible and V’ is a minimum vertex cover of C(G), then
there exists v V’ such that v is a source or sink of C(G), is not a split vertex of G, and
is not the endpoint ofa contractable edge of G.

Proof. First note that if G has an autonomous subdag G(v, w), neither of the split
vertices v, w appears in C(G(v, w)). Note also that C(G(v, w)) must have at least one
edge. Otherwise G(v, w) is series-parallel and G is not irreducible. Since V’ must include
at least one vertex of C(G(v, w)), we can reduce our search to a component C(H) of
C(G) such that there are no autonomous subdags in H and C(H) is nonempty (i. e., H
is a minimal autonomous subdag of G).

To find a vertex of V’ V(H) that is a source or sink of C(H) (and thus of C(G))
and not the endpoint of a contractable edge, repeedly do contractions along every
contractable edge of H and call the resulting graph H. It follows from Lemma 4.3 that
C(//) if (, w) C(H), then (v, w) cannot be a contractable edge of H, nor can
itbecome one as the result of other contractions. Since C(//) is transitive (Lemma 3.3)
and nonempty, at least one source and one sink of C(/:/) must be connected by an edge
(, ). We claim that^(, ) is also an edge of C(H). Note that when two vertices v and w
are combined in C(H) as the result of a contraction (see Lemma 4.3), the new combined
vertex cannot be a source or a sink of C(/). Otherwise, by Lemma 4.2, one of v, w had
in-degree 1 and out-degree 1, contradicting the fact that G is irreducible. Therefore,
both and are vertices of H and not new vertices resulting from contraction. Lemma
4.3 implies that the edge (,/) could not have been added as the result of a contrac-
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tion, and hence must be an edge of C(H). This means that at least one of g,i must be
in V’. [3

The following lemma ensures that properly chosen node reductions will decrease
reduction complexity. Let C(G) \ v be C(G) with v and all incident edges deleted.

LEMMA 4.5. IfG is irreducible, v is eligible for node reduction in G (either in(v, G) or
out(v, G) is 1), and v is not the endpoint ofa contractable edge, then C(G o v) c_ C(G) \ v.

Proof. Suppose in(v, G) 1 (the argument for out-degree is symmetric). It is easy
to see that a node reduction at v, i. e., the contraction of an edge (u, v), does not remove
dominance relations among vertices other than u and v. Thus it suffices to show that
(u, w) is in C(G) whenever (u, w) C(G v). Since we know (u, v) is not a contractable
edge and in(v, G) 1, we know that out(u, G) > 1; hence v does not reverse-dominate
u in G. Thus the insertion of v into a path P(u, w) does not alter the fact that it satisfies
Definition 3.1. [3

THEOREM 4.6. If c is the cardinality of a minimum vertex cover in C(G), then

Proof. Because of Lemma 4.1 it suffices to show that #(G) < c, which we do by
induction on c. Assume, without loss of generality, that G is irreducible--recall that
C([G]) C(G) and #([G]) #(G).

The basis case c 0 is immediate from earlier remarks. If c > 0, let V’ be the vertex
cover of cardinality c in C(G). By Lemma 4.4 there exists a v V’ such that v is a source
or sink of C(G), and v is neither a split vertex nor the endpoint of a contractable edge.
From Lemma 4.2 we know that in(v, G) I or out(v, G) 1, i.e., a node reduction
at v is possible. Lemma 4.5 allows us to conclude that C([G o v]) has a vertex cover of
cardinality no greater than c 1. Hence the desired result follows by induction.

5. Polynomial time algorithms. In this sectionwe establish the time bound for com-
puting #(G), the minimum number of node reductions required to reduce an st-dag G.
We show that computing C(G) is equivalent to computing the transitive closure of G.
Because C(G) is a transitive dag, we can compute a minimum vertex cover in C(G) by
reducing the problem to finding a maximum matching in a bipartite graph (the comple-
ment of a minimum vertex cover is a maximum independent set, which in a transitive
dag corresponds to a Dilworth chain decomposition see [14] for details). The overall
time bound for computing #(G) is, therefore, O(n2"5).

Computing the actual reduction sequence for an st-dag G is straightforward.

compute C(G) as described below

compute V’, a minimum vertex cover in C(G)
while V’ 0 do

perform all series/parallel reductions possible in G and let G :=

find v V’ such that in(v, G) or out(v, G) is 1

and v is not the endpoint of a contractable edge

G ::GOV

Y’ := V’- {v}
enddo

Based on Definition 3 we observe that C(G) is the intersection of two dags, C1 (G)
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and (72 (G), defined as follows:

C1 (G) { (v, w) v < w and no z > v properly dominates w},

C(G) {(v, w) v < w and no z < w properly reverse-dominates v}.

So the problem of computing C(G) reduces to computing C(G) and Cz(G). Since
C’ (G) and Cz(G) are symmetric, we discuss only the computation ofC (G).

Suppose T(G), the tree of dominators in G, has been computed. This can be done
in time O(m + n), where m is the number of edges in G [16]. Recall that v is the parent
of w in T(G) if and only if v properly dominates w and there does not exist v’ such that
v properly dominates v’ and v’ properly dominates w. Note: s is the root of T(G). Let
C1 (v) { w (v, w) E C(G) }, and note that w E C(v) if and only if w > v and no
ancestor z of w in T(G) has z > v. It follows that for any vertex v the following two
steps compute C (v): (1) mark all w > v (all other vertices are unmarked), and (2) do
a preorder traversal of T(G) to find all marked nodes that have no marked ancestors
(v constitutes a special case and is not included in C (v)). Steps (1) and (2) can each
be done in time O(n) if the transitive closure of G has been computed (the transitive
closure is used in step (1)). We, therefore, have the following.

THEOREM 5.1. C(G) can be computed in time O(n2 + M(n)), where M(n) is the time
requiredfor computing the transitive closure ofa graph ofn vertices (a recent upper bound
for M(n) is O(n2"37) [8]).

Since minimum vertex cover in a transitive graph is equivalent to maximum match-
ing in a bipartite graph [14], we have the following (see [18] for the bipartite matching
algorithm).

THEOREM 5.2. The minimum number ofnode reductions required to reduce an st-dag
G to a single edge, #(G), can be computed in time O(n2"5).

This time bound is not likely to improve significantly unless the time bounds for
bipartite matching and transitive closure are improved. A simple reduction shows that
(a) computing #(G) is at least as hard as finding the size of a minimum vertex cover in
the transitive closure of a dag, and (b) computing C(G) is at least as hard as computing
transitive closure. Let G be an arbitrary dag, and define an st-dag G’ by adding a new
source s and a new sink t to Gwith edges (s, v) and (v, t) for every vertex v in G. It is easy
to see that (, w) C(G’) if and only if (v, w) G*, where G* is the transitive closure
of G. Thus computing the auxiliary graph is as hard as computing transitive closure. By
previous arguments #(G’) c, where c is the cardinality of a minimum vertex cover in
G* C(G’). Thus computing reduction complexity is as hard as finding the size of a
minimum vertex cover in the transitive closure.

6. Open problems. Aswe observed in 2, efficient algorithms based on series-parallel
reduction extend to graphs that are nearly series parallel. Problems that are NP-hard in
general can be solved in polynomial time for st-dags of fixed (reduction) complexity c,
where st-dags of complexity 0 are series-parallel. This paper gives a polynomial-time
recognition algorithm for complexity-c st-dags (note that the algorithm is polynomial
even when c is not fixed). In 2 a series-parallel two-terminal reliability algorithm was
extended to run in polynomial time for st-dags of fixed complexity c. Similar techniques
can be applied to some NP-hard fault diagnosis problems (see [36] for the series-parallel
algorithms), and probably many other st-dag problems.

However, these techniques are not suited to most NP-hard scheduling problems.
The dag in a scheduling problem defines a precedence relation and is in general not an
st-dag. At stake here is the relationship between activity-on-arc and activity-on-node
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(partial order or precedence) representations of activity networks (see, e. g., [11]). The
techniques of 2, when used to solve PERT network problems, assume the input to
be an activity-on-arc network. Unfortunately, the activity-on-arc representation is not
unique: a given project may have many different activity-on-arc representations while
having only one activity-on-node representation. Past research has focused on translat-
ing from activity-on-node to activity-on-arc representation so as to minimize the number
of "dummy activities," a problem that is NP-hard (see [22]). We have demonstrated that
sometimes minimizing complexity is a more suitable objective than minimizing dummy
activities. In this connection Michael [25] has recently shown that the translation to a
minimum complexity activity-on-arc network can be done in polynomial time if the node
set of the output is fixed (minimizing dummy activities is still NP-hard under the same
assumption).

Optimal translation to activity-on-arc representation is not an issue for vertex sedes-
parallel digraphs, which translate directly to series-parallel st-dags (see [38]), or for line
digraphs (see [15] for a characterization), which have a unique activity-on-arc represen-
tation with no dummy activities. While there does not appear to be any natural ana-
logue of node reduction to complement the series and parallel reductions for vertex
series-parallel dags, the decomposition into autonomous subdags used in the proofs of
4 corresponds to the modular decomposition of transitive dags defined by Spinrad [33]
(modular decomposition is defined for undirected graphs, but extends naturally to dags
defining partial orders).

The idea of using node reduction to augment series and parallel reduction appears
to be most promising for problems traditionally formulated on undirected graphs. For
problems such as independent set and dominating set, where the object is to find an opti-
mal subset of the vertices, we can simply try out two possibilities for each vertex removed
by node reduction (either the vertex is in the optimal solution or it’s not), using the tech-
niques of [21], [35] to deal with series or parallel reductions. This gives O(m2c) time
algorithms for maximum independent set, minimum dominating set, and other undi-
rected graph problems when these problems are formulated on st-dags. Similarly, we
can obtain an O(mK) time algorithm for K-coloring (see [34]).

How does the notion of complexity extend to undirected graphs? With the help of
an st-numbering, a numbering of the vertices in which vertex 1 is adjacent to vertex n
and each other vertex has at least one lower numbered and one higher numbered neigh-
bor [12], [23], each biconnected component of an undirected graph can be treated as an
st-dag. Each undirected edge is oriented from a lower to a higher st-number. The com-
plexity of an undirected graph can thus be defined as the minimum complexity given by
any st-numbering. Use the maximum complexity of any biconnected component if there
is more than one (actually, for most of these problems it suffices to use the maximum
complexity of each triconnected component). Since there are, in the worst case, up to
n! possible st-numberings, the recognition problem for complexity-c undirected graphs
may be difficult (unless c 0, when it is equivalent to series-parallel recognition). Fig-
ure 7 shows an undirected graph whose complexity is either 1 or 2, depending on which
st-numbering is used (note that both numberings have the same source and sink and that
the graph is triconnected).

It is interesting to note that for fixed c, the recognition problem for complexity-c
undirected graphs can be shown to be in P via a nonconstructive argument, using the
work of Robertson and Seymour [29], [30] (see also [13] and [20]). The key observation
is that the complexity of an undirected graph never increases when an edge is deleted or
contracted. Two open problems are: (a) find a polynomial-time algorithm for the recog-
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An undirected graph.

G a directed graph
with complexity

2

4 3

C(G,)

G a directed graph
with complexity 2

2

C(G)

FIG. 7. Extending complexity to undirected graphs.

nition of complexity c undirected graphs when c is a small fixed value, and (b) determine
whether recognizing complexity c undirected graphs is NP-complete when c is part of
the input.

There are also open problems related to the use of node reduction in various ap-
plications. We have shown, for example, that #(G) is an upper bound for (G), the
factoring complexity defined in 2. We believe it is a lower bound as well, i.e., the two
complexities are equal, but the proof is difficult because arbitrary factorings are difficult
to characterize. It is not hard to show that (v, w) e C(G) implies that every factoring of
G either duplicates an expression ending at v or one beginning at w. Factorings that are
not derived from a node reduction sequence appear to have higher cost than those that
are, but we have been unable to prove this.
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algorithm for computing C(G) in 5.
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PREEMPTIVE ENSEMBLE MOTION PLANNING ON A TREE*
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Abstract. Consider the problem of finding a minimum cost tour to transport a set of objects between the
vertices of a tree by a vehicle that travels along the edges of the tree. The vehicle can carry only one object at
a time, and it starts and finishes at the same vertex of the tree. It is shown that if objects can be dropped at
intermediate vertices along its route and picked up later, then the problem can be solved in polynomial time.
Two efficient algorithms are presented for this problem. The first algorithm runs in O(k + qn) time, where n
is the number ofvertices in the tree, k is the number of objects to be moved, and q _< rain{k, n} is the number
of nontrivial connected components in a related directed graph. The second algorithm runs in O(k + n log n)
time.

Key words, motion planning, vehicle routing, graph algorithms, directed minimum spanning tree, pre-
emption

AMS(MOS) subject classification. 68Q25

1. Introduction. Consider an undirectedweighted graphwith objects located at var-
ious vertices. Associated with each object is a destination vertex, to which that object is
to be moved by a vehicle that traverses the edges of the graph. A fundamental problem
in motion planning is to determine a tour of minimum cost for the vehicle to transport
all objects from their initial positions to their destinations. In the case of general graphs,
the problem is NP-hard, even if the vehicle can transport only one object at a time [11].
However, for special applications such as those that arise in robotics, it is reasonable to
consider more restricted classes of graphs. In this paper and a companion paper [10]
we consider problems where the graphs are trees, with a vehicle that can transport only
one object at a time. In this paper we focus on preemptive object movement. By this we
mean that objects can be dropped, and picked up and transported at some later time in
the transportation. A drop is an unloading of an object at a vertex that is not its destina-
tion.

We show that the problem can be solved in polynomial time, and present two effi-
cient algorithms for it. Let n be the number ofvertices in the tree and k the number ofob-
jects to be transported. Our first algorithm runs in O(k + qn) time, where q < min{k, n}
is the number of nontrivial strongly connected components in a related directed graph.
Our second algorithm runs in O(k + n log n) time, which is better whenever k is o(qr0
and q is v(log r). These results contrast with our results in the case in which objects
cannot be dropped at the intermediate vertices. In [10] we show that the nonpreemptive
version of our problem is NP-hard, and we give polynomial-time approximation algo-
rithms. Note that viewed from the context of discrete job scheduling problems, it is not
so surprising that the preemptive version of the problem is polynomial while the nonpre-
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emptive version is NP-hard. See, for example, the work on the problem of scheduling
independent tasks on identical processors [20], [17], [13].

Our results compare with those of others as follows. For the case in which the graph
is a general graph, Frederickson, Hecht, and Kim have shown that the problem, which
they termed the stacker-crane problem, is NP-hard [11]. For the cases in which the graph
is either a simple path or a simple cycle and preemption is allowed, Atallah and Kosaraju
have shown that the problem can be solved in O(k+n) time [1]. For the cases in which the
graph is either a simple path or a simple cycle and preemption is not allowed, Atallah and
Kosaraju have presented algorithms that find an optimal solution in O(k + n log/(n, q))
and O(k + n log n) time for path and cycle, respectively [1]. Frederickson has improved
the latter time bound to O(k + n log/(n, q)) [8].

We note that our problem appears to be a special case of exercise 7 in 5.4.8 of [19],
in which a bus moves in a tree-shaped network. However, neither Knuth nor Karp, to
whom the problem is attributed, knows of an efficient solution to this problem [16], [18].
In fact, we are able to show that, in the case that the bus has capacity greater than one,
the problem is NP-complete even if preemption is allowed [9].

We make a number of observations about the structure of an optimal tour for the
problem. In a manner similar to that in [1], we show that an optimal tour of the orig-
inal problem can be obtained by solving the balanced version of the problem. While
the structure of our approach is similar to that in [1], many additional ideas are needed
to generate efficient algorithms when the graph is a tree. We introduce the notion of
canonical tour, and show that every balanced problem has an optimal tour that is also
canonical. This leads to the reduction of our problem, to the problem of finding a di-
rected minimum spanning tree of a certain directed graph. Our second algorithm uses
a hierarchical decomposition of the tree to construct a directed graph with fewer arcs,
which thus allows the directed minimum spanning tree to be computed faster.

The rest of the paper is organized as follows. In 2, we introduce notation and defi-
nitions and discuss the transformation of the problem into a balanced version. In 3, we
characterize a canonical solution and present our O(k+qn) time algorithm for the prob-
lem. In 4, we present our second algorithm for the problem, which runs in O(k+n log n)
time.

2. Generating a balanced problem. In this section we define the problem, along
with the notion of moves, drops, and a transportation. The structure of our approach
is similar to that in [1]. Some of the definitions are repeated from [10] for the reader’s
convenience. In a manner similar to that in [1], we define a balanced version of a prob-
lem, and show that an optimal transportation for the original problem can be obtained
by solving the balanced version of the problem. Standard terminology of graph theory,
such as a directed graph and an Euler tour, is used in our paper, and can be found in
Bondy and Murty [3].

An instance P ofthe motion planning problem on trees consists of a tree T (V, E),
a nonnegative cost c(e) on each edge e E, a starting vertex s V, a set of objects O,
and an initial vertex zj, and a destination vertex yj for each object j O. Each object
j O is initially located at its initial vertex z and has to be moved to its destination
vertex y by a vehicle that traverses the edges of the tree. The vehicle can carry only one
object at a time, and the tour must start and finish at vertex s.

We observe that, for every instance P, there is an optimal transportation such that
each object visits the vertices on the path from z to y exactly once and visits no other
vertices. If this is not the case, then there is a cycle traversed by some object. We can
replace the cycle traversed by that object by a noncarrying move. This modification does
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not increase the cost of the transportation, and repeatedly doing this yields a transporta-
tion with the desired property.

A move is designated by (x, V, c), where z and y are vertices in V and c is an object
j O or 0. The vehicle moves along the unique path from z to y in the tree T, and
carries an object c in the move if c # 0, and no object otherwise. Thus, a move with
c # 0 is called a carrying move, and a move with c 0 is called a noncarrying move.

Let Q be a sequence of moves, (v, v+l,c), 0 < i < r. It is clear that two consecu-
tive moves, (u, v, c) and (v, w, c), can be expressed as (u, w, c). Although in some cases
we may want to decompose a move into a sequence of moves, we assume in general that
Vi+l vi and ci+l ci for 0 < i < r. For each object j O, let Qj be a sequence of
moves obtained from Q by deleting every move (v, v+x, c) in Q with c j. An object
j is transported from xj to yy by Q if Qy is a sequence of moves (ui, u+l,j), 0 < i < t,
with u0 xy and ut+ yy. If t > 0, then the object j is dropped by Q at vertices
u, u,..., ut; otherwise, it is not dropped by Q.

A transportation Q for P is a sequence of moves (v, v+, c), 0 < < r, such that
v0 vr s, v+ v, and every object j O is transported from its initial position
xj to its destination yy. The cost c(Q) of a transportation Q is defined to be the sum of
the costs of the edges the vehicle traverses. The motion planning problem is to find a
transportation with minimum cost for an input instance P.

FIG. 1. An example ofthe motion planningproblem in trees.

An example of the motion planning problem in trees is given in Fig. 1. There are
eight vertices in T and four objects in O. The edges of the tree T are drawn in straight
lines. An object j that has to be moved from x to y is drawn in curved arc from xj to yj
with label j. The starting vertex is 0. The cost of each edge is 1, as indicated by its label.

We assume that every vertex of degree one or two in T is either s or xj or yy for
some j O. A vertex of degree one and the edge incident at it can be deleted from T if
it is not s nor xy or yj for some j O. It is easy to see that a vertex of degree two and
its adjacent edges can be replaced by a single edge with a cost the sum of the two edges
deleted if it is not s nor xy or yy for some j e O. Thus, the number of objects k is ft(n).

Because every vertex of degree one is either s or xy or yj for some j O, every edge
of T must be traversed by a valid transportation at least once. Furthermore, the number
of times an edge is traversed in one direction must be equal to the number of times that
edge is traversed in the other direction, since the vehicle starts and finishes at s.

Given an optimal transportation Q for a problem P, define a directed graph D’(Q)
on the vertex set V such that there is an arc from x to y labeled c if and only if there
is a move (x, y, c) in Q. That is, each arc of D(Q) represents a move of Q. We shall
call an arc that represents a carrying move a carrying arc, and an arc that represents a
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noncarrying move a noncarrying arc. It is easy to see that the graph D’(Q) is Eulerian
since Q is a transportation that starts and finishes at s. On the other hand, given an
instance P, define a directed graph Do with vertex set V such that there is an arc from
zj to yj labeled j if and only if there is an object j E O initially located at z that has to
be moved to y. If this graph is Eulerian, then any Euler tour starting from s can easily
be translated into an optimal transportation for P. Since each arc (z, y) in Do, as well as
in D’(Q), represents a move, we assign a cost d(z, ) to it, equal to the sum of the costs
of the edges from z to in T. In a fashion similar to that in [1], the problem is reduced
to a special type of graph augmentation problem, that of finding a minimum-cost set of
noncarrying moves to add to Do to make it Eulerian.

One type of noncarrying moves added are the balancing moves. They are added so
that every edge is traversed at least once and the number of times an edge is traversed in
one direction is equal to the number oftimes that edge is traversed in the other direction.
In the remainder of this section we shall show how to compute a set of balancing moves.
Suppose that a set ofbalancing moves B is given. For each balancing move (z, , 0) E B,
add a balancing arc (z, y) with label 0 to Do, and let the resulting graph be D. It is easy
to see that the in-degree is equal to the out-degree for every vertex in the graph D, and
each connected component ofD is thus strongly connected. We shall call the graph D the
balanced graph. Note that the augmentation by the balancing arcs may not be sufficient
to get a transportation.

A strongly connected component of D is called a trivial component if it contains
only one vertex and this vertex is not s. Otherwise, it is called nontrivial component.
Note that a nontrivial component that contains z or y for some j O must contain
more than one vertex. Since each nontrivial component is Eulerian, no additional non-
carrying moves between two vertices in the same nontrivial component are needed. All
additional noncarrying moves will be used to connect nontrivial components. We call
these noncarrying moves the linking moves. We shall show how to find a set of linking
moves with minimum cost in the following sections.

There are, in general, many sets of balancing moves of minimum cost that sat-
isfy the above conditions. In [10], we have shown how to construct a set of O(k + n)
balancing moves B with minimum cost, and such that the graph D will have a min-
imum number of nontrivial components. The method is briefly described as follows.
First, compute the number of balancing moves required at each edge so that, after
these moves are added, every edge is traversed at least once and the number of times
an edge is traversed in one direction is equal to the number of times that edge is tra-
versed in the other direction. Second, generate one balancing move on each edge in
each direction. Third, generate the remaining balancing moves by merging moves of the
from (u, Vl, O0), (Vl, V2, O1)""" (Vt, ZO, Or) into one move (u, w, o) so that there are at most
O(k + n) balancing moves.

Figure 2 shows the balanced problem corresponding to the problem shown in Fig. 1.
Although balancing moves are noncarrying moves, we assign for convenience a unique
label for each balancing move generated. The moves added are (3, 1, 5), (1, 3, 6), (3, 7, 7),
(6, 3, 8), (4, 1, 9), (1, 0, 10), (0, 2, 11), (2, 5, 12), (4, 0, 13), and (0, 5, 14). Note that balanc-
ing moves (3, 1, 5) and (1, 3, 6) are added so that the edge (1, 3) is traversed by the vehicle
at least once.

In [10], we prove that for every instance P, there is an optimal transportation Q that
contains all the moves in the balancing moves B generated by our algorithm. We also
show that these balancing moves can be computed in linear time.
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5

FIG. 2. A balanced graph (in bold) for theproblem in Fig. 1.

LEMMA 1 [10]. Given an instance P for the motion planning problem on trees, the
balanced graph Dfor P can be computed in O(k + n) time.

A motion planning problem is balanced if none of the moves in the balanced graph
D are balancing moves. Given an instance P, we first construct a set of balancing moves
B by the algorithm in [10]. For each balancing move from z to in B, add an object
o,u to O with initial vertex z and destination vertex t. Let the resulting set of objects be
0’. The new instance P’ with the objects O’ is called the balanced version of the original
problem P. We show that adding the balancing moves will not increase the cost of the
transportation of the original problem. Part of the proof is similar to that of Lemma
2 in [10], but we must also show that the capability to perform drops does not create a
difficulty.

LEMMA 2. The costs ofoptimal transportations for 19 and its balanced version P’ are
equal

Proof. Given a transportation Q’ for P’, we can obtain a transportation Q for P from
Q’ by replacing each move (z, y, c) such that c O with a noncarrying move (z, , 0).

On the other hand, let Q be an optimal transportation for Pwith a minimum number
of drops. First, construct a graph Dr(Q) with vertex set V such that there is an arc (z, )
labeled c if and only if there is a move (z, /, c) in Q. Since Q is a transportation, graph
D’(Q) is Eulerian. Second, replace every arc (z, /) in D’(Q) with label 0 by a sequence
of arcs (vi, Vi+X) labeled 0, 0 < < r 1, where z v0, vl,.-., vr /are the list of
vertices on the path from z to /in T. The modified D’(Q) will remain Eulerian. Third,
for each balancing move from z to , replace a set of moves (z, z+l, 0), 0 < i < t by
a move (z, /, ox,u), where z z0, zq,..., zt+ /are the list of vertices on the path
from z to in T. These moves must exist by the definition of balancing moves. Note
that D’(Q) will remain Eulerian under this operation. We claim that any Euler tour of
D’(Q) starting from s is a transportation of P’.

The proof of the claim is as follows. It is easy to see that the graph D’(Q) is Eulerian.
Therefore, if no objects are dropped by Q, then any Euler tour of D’(Q) starting from s
is a transportation of P’. Consider any object j that is dropped at a vertex, say v. Then
there must be two arcs with label j, say (z, v) and (v, w), incident at v. We claim that
any directed path from s to v in D’(Q) must contain the arc (z, v/. Otherwise, we can
replace the two arcs (z, v) and (v, w) by one arc (z, w). Since there is a path from s to
v that does not contain the arc (z, v), the graph D’(Q) would still be connected. But
this modification eliminates the drop of object j at vertex v, which is a contradiction of
the assumption that Q is a transportation with minimum number of drops. Thus in any
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Euler tour of D’(Q), arc (u, v) must be traversed before arc (v, w). Therefore, any Euler
tour of D’(Q) starting from s is a transportation of P’.

Since the split and merge of moves will not change the total cost of the transporta-
tion, the cost of Q’ is equal to the cost of Q.

The constructive proof of the above lemma gives a method to translate a transporta-
tion for Pt into a transportation for P. That is, a transportation for the original problem
P can be obtained from the transportation of the balanced problem P’ by replacing each
move (z, y, c) with c O by (z, y, 0). In the following sections, we discuss how to com-
pute a transportation for the balanced version of the problem.

3. Generating canonical transportations. In this section, we introduce the notion
of a canonical transportation and show how it leads to an efficient algorithm for pre-
emptive motion planning problem in a tree. We show how to reduce our problem to the
problem of finding a minimum directed spanning tree in a directed graph [2], [4], [5],
[6], [12], [22]. This then leads to an O(k / qn) time algorithm.

Given an instance P of the motion planning problem in trees, our algorithm first
constructs a balanced graph D as described in 2. Recall that if the balanced graph D
is Eulerian and s is not an isolated vertex in D, then any Euler tour of D starting with
vertex s is an optimal transportation with no objects dropped. We thus concentrate in
this section on how to connect the nontrivial components of D with a minimum cost set
of linking moves in the case that D is not Eulerian. Hence we shall assume in this section
that a problem P is balanced.

3.1. Bridges and canonical transportations. In this subsection we identify a certain
type of transportation, and show that there always exists a transportation of this type that
is optimal. We first identify sets of vertices that are related to each strongly connected
component of D. We then characterize how any given strongly connected component
relates to other strongly connected components. We then define our special type of trans-
portation, which we call canonical. Finally, we show that there is always some canonical
transportation that is an optimal transportation.

Let Di be a nontrivial strongly connected component of D. We first identify sets of
vertices that relate to each strongly connected component Di. Let j E O be an object
with initial vertex zj and destination vertex yj. Note that a: and / must be in the same
nontrivial component of D. Thus, an object j is an object in D if z and / are both
vertices in Di. Define IP(Di) to be the set of vertices in Di, each of which is either the
initial vertex for some object in Di or the start vertex. (We choose the designator 11’ to
stand for "initial position.") Also define V:r(D) to be the set of vertices each of which
will be visited by some object in Di. Note that every vertex v must be in V7 (Di) for some
component D whenever the problem is balanced.

Consider the example shown in Fig. 3. Each straight line represents an edge of T.
The cost of (0, 1) is 9 and all the other edges have cost 1. Each curved arc (zj, y) with
label j, 1 < j < 7, represents a carrying arc of D. The starting vertex is 0. Note that the
example is a balanced problem. The balanced graph D has four nontrivial components:
D {0}, Dg. {1,7}, D3 {5,8}, and D4 {4,6,9}. IP(D)= {O},IP(D)=
{1, 7}, IP(Da) {5, 8}, and IP(D4) {4, 6, 9}. Note that IP(Di) is the same as the
vertex sets in the component D if the problem is balanced. VT(D1) {0}, VT(D2)
{1, 0, 2, 3, 5, 7}, VT.(D) {5, 8} and VT(D4) {4, 2, 3, 6, 9}.

We next studyhow a given strongly connected componentD relates to other strongly
connected components. Let D and D be two nontrivial components of D. Since the
vehicle can drop objects at intermediate vertices, a path from some vertex u VT(D)
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FIG. 3. A second example ofthe motion planningproblem.

to some vertex v E IP(Dj) can be used to link component Dj to component D. We call
such a path a bridge from D to D. The following example explains how a bridge can be
used to connect two components in a transportation.

Assume that the path from u to v is a bridge from D to D. Let Xo and yo be the
initial and final positions of some object o of D such that u is on the path from Zo to

Vo. Starting at any vertex in IP(D), all objects in D and D can be transported with at
most one drop. The vehicle first transports objects in D until it is carrying the object o
at vertex u. It then drops object o at u, goes to vertex v, and transports all objects in D.
After finishing the objects in D, the vehicle must be at vertex v. It can then go back to
vertex u and pick up object o and finish the rest of the moves of the objects in D.

Let each bridge be identified by: (1) the components D and D that it connects,
(2) the origin u and the terminus v of the path, and (3) an object o in D such that u is a
vertex in the path from Xo to to in T. We use b, to denote such a bridge from D to D.
Note that, if u v, then noncarrying moves (u, v, 0) and (v, u, 0) are the linking moves
that are used to connect the components D and D. If u v, then no linking moves
are needed. In either case, if u is not a destination of any object in D, then the object o
that is associated with the bridge b,j is dropped at vertex u.

A component D is reachable from the starting vertex s, with respect to a set of
bridges B, if either D contains the vertex s or there is a component D that is reachable
from s with respect to B and there is a bridge b, in B from D to D. If we can find a
set B of bridges that make all components reachable from the starting vertex s, then we
can compute a transportation by the following procedure.

For each bridge bi,j in B, from Di to D with origin u and terminus v, we add linking
arcs (u, v) and (v, u) to D if the bridge is not a single vertex. Recall that each arc in D
represents a move and has a label and a cost. The label of an arc (u, v) is an object
or 0 and the cost is the distance from u to v in the graph T. The two arcs (u, v) and
(v, u) will have 0 as their labels and distance d(u, v) for their costs. If the vertex u is not
a destination of any object in the component D, then the object o associated with the
bridge will be dropped at vertex u. This is done by splitting the arc (Zo, to) at vertex u. In
general, an object o can be associated with more than one bridge. Thus, the arc (Zo, o)
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may be split at more than one vertex. The splits are handled all together, rather than one
bridge at a time. We shall show how to do this efficiently after we present the algorithm.

If/3 is of minimum cost over all sets of bridges that make all components reachable
from s, then we call the resulting graph DB the augmented balanced graph. Note that
any Euler tour of the augmented balanced graph DB will traverse the arc (z, u) before
the arc (u, y}. This is because u is not a terminus of any arc that can be reached without
the bridge b,j. It is easy to see that the augmented balanced graph Dn defines a trans-
portation for P with cost c(D) + 2c(B), where c(D) is the total cost of the arcs in the
balanced graph D and c(B) is the total cost of the bridges in B.

Consider the example shown in Fig. 3. Recall that the balanced graph D has four
nontrivial components, namely, D1 {0}, D2 { 1, 7}, Da {5, 8}, and D4 {4, 6, 9}.
Let the path from 0 to 4 be the bridge bl,4 that connects D4 from D. Let the path from
3 to 5 be the bridge b4,z that connects Dz from D4. Let the path from 5 to 7 be the
bridge bz,2 that connects D from 93. Note that bridge b3, is needed, despite the fact
that the moves of Dz pass through vertex 5, since reaching D without initially going
through vertex 5 is very expensive. Let 3 be the object that is associated with b4,z. All
the other bridges start from a destination vertex; thus, the objects associated with them
are not used. Since these three bridges make every component reachable from s, we can
find a transportation Q (0, 4, 0)(4, 3, 3)(3, 5, 0)(5, 8, 6)(8, 5, 7)(5, 7, 0)(7,1, 2)(1, 7,1)
(7, 3, 0)(3, 9, 3)(9, 6, 4)(6, 4, 5)(4, 0, 0).

Finally, we consider a special type of transportation. We want to show that for any
balanced problem P in which objects can be dropped at the intermediate vertices, there
is an optimal transportation Q such that each linking move is either the forward or the
backward traversal of a bridge. We shall call such a transportation a canonical trans-
portation. This reduces our problem to the problem of finding a minimum cost set of
bridges that connect the components so that every component can be reached from the
starting point s. This is the problem of finding a minimum directed spanning tree in a
directed graph, which can be solved efficiently [12], [22].

We first study some properties of an optimal transportation of a balanced motion
planning problem on trees that will allow us to prove that there always exists a canonical
transportation that is an optimal transportation.

LEMMA 3. No optimal transportation of a balanced problem can traverse an edge in
the same direction more than once without carrying an object.

Proof. Given a balanced problem P, let Q be an optimal transportation. Without
loss of generality, assume that all noncarrying moves of Q are (x, y, 0), where (x, y) is
an edge of T. Since every vertex in T must be visited by Q, IP(D) VT(D) {v} for
each trivial component D {v}. Consider the set B of the paths that are traversed by
the noncarrying moves in Q. Each path in B is a bridge, since every vertex v IP(Di)
for some component D. Since Q is a transportation, all vertices in T are reachable from
s. Thus B contains a set of nonzero-length bridges for the set of all components. Note
that no bridges can appear more than once in B, since it could not increase the set of
components reachable from s with respect to B. Thus, the lemma follows.

Given a problem P, let Q be an optimal transportation for P. Let Dr(Q) be a di-
rected graph with vertex set V such that there is an arc from z to y labeled c if and only
if (z, , c) is a move in Q. Let e (u, v) be an edge of T such that e is traversed in
Q when the vehicle is not carrying an object. Let De(Q) be a directed graph obtained
from D (Q) by omitting the noncarrying moves on the edge (u, v). That is, replace the
noncarrying move (z, y, 0) that traverses the edge e in the direction from u to v by two
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moves (x, u, 0) and (v, 11, 0). Delete any degenerate moves (u, u, 0) and (v, v, 0) that arise
whenever z u and 11 v, respectively.

LEMMA 4. Let Q be an optimal transportationfor P. LetD andD be the two strongly
connected components ofD(Q). Then the edge (u, v) is traversed in Q when the vehicle is
carrying some object not in the component that contains s.

Proof. Without loss of generality, assume that s is in D. Since every edge of T is
traversed by some object, it is sufficient to show that no objects in D can traverse the
edge (u, v). Assume that therewere an object o inD that is carried along the edge (u, v).
Then v is a bridge from D to D,, in D’ (Q). This would imply that a transportation with
smaller cost than Q could be obtained by omitting the noncarrying moves on the edge
e. Thus, no objects in D can traverse the edge (u, v). Therefore, the lemma follows.

LEMMA 5. Let Q be an optimal transportation ofP and (z, !1, O) be thefirst noncarrying
move in Q. Let x vo, Vl, vt
in T. Let P be an instance obtainedfrom P by adding a set of required moves (z, 11, ox,u)
and (vi, vi_ 1, ov,v_l ), 1 < < t to P. Then optimal transportationsfor P and P have the
same cost.

Proof. Since the optimal transportation Q traverses the path from z to 11 without car-
rying an object, it must also traverse every edge on the path from 11 to z without carrying
an object. For each edge
such that (vi, Vi-1) is in the (u, w)-path in T, and then replace it by (u, vi, 0), (vi, Vi-1, O)
and (vi-1, w, 0). A transportation Q of P can be obtained from Q by replacing each
noncafrying move (vi, vi_, O) by (vi, V-l, o,,,_), 1 <_ <_ t. It is easy to see that
and Q have the same cost.

On the other hand, let
for P can be obtained from Q by replacing each move (u, v, o,,v) such that o,,, is in M,
but not in M by (u, v, 0). It is easy to see that Q" and Q’ have the same cost. Therefore,
the lemma holds.

THEOREM 1. Every balanced problem has an optimal transportation that is
canonical

Proof. Let Pbe a counterexample with a minimum number ofnontrivial components
in the balanced graph. Let Q be an optimal transportation for P and (u, v, 0) be the
first noncarrying move in Q. There must be noncarrying moves in Q since an optimal
transportation without noncarrying moves is, by definition, canonical. Note that the
path from u to v must be a bridge between two nontrivial components of D. Let u
v0, vl,..., vt v be the sequence of vertices in the path from u to v in T. Add a set of
moves (u, v, o,,) and (v, vi_ 1, o,,,_1 ), 1 < < t, to M, and let the resulting instance
be P. By Lemma 5, optimal transportations of P and P have the same cost. Since the
balanced graph of/5 has fewer nontrivial components than the balanced graph of P,
must have a transportation Q that is canonical. A canonical transportation Qt for P with
the same cost as Q can be obtained from Q as follows.

Let D () be a directed graph with vertex set V such that there is an arc from z to

11 labeled o if and only if (z, 11, o) is a move of . Delete the carrying arcs labeled with
objects in P but not in P to give D"(Q). Let u u0, Ul,. , u v be the vertices in the
path from u to v, upon which there are incident arcs. Let D be the component of D"(Q)
that contains the vertex ui, 1 _< i < r. Note that D is the component that contains s.

For each vertex u, 1 < i < r, do the following. If there are carrying arcs incident to
u, that is, u an initial position for some objects in some component in D, then add the
arcs (ui-1, ui) and the (ui, u-l) to D"(Q). Otherwise, there must be two linking arcs



PREEMPTIVE ENSEMBLE MOTION PLANNING ON A TREE 1139

(ui, v) and (v, u) incident on u. (Recall that ui is a vertex on the (u, v)-path at which
there are arcs incident on it.) First, find an object o in D that visits the vertex u. By
Lemma 4, such an object must exist. Second, split the carrying arc (Xo, yo) at u. Finally,
add the arcs (u_, v) and (v, u-x) to D"(Q). It is clear that the transformation does
not increase the cost of the transportation, and an Euler tour of the resulting D"(Q)
starting with s yields the desired canonical transportation Q’ of P.

Define a directed bridging graph A with vertex set the set of nontrivial components
of D. For each ordered pair of distinct vertices D and Dj, the weight of arc (D, Dj/is
equal to the sum of the costs on the edges of the minimum cost bridge b, from D to

D. Let c(D) be the sum of costs of all arcs in D.
THEOREM 2. A balancedproblem P has an optimal transportation with cost c(D +

ifand only ifthe directed bridging graph A has a minimum directed spanning tree ofweight
c, rooted at the component that contains s.

Proof. Without loss of generality, let D1 be the strongly connected component of D
that contains s. We first show that a directed spanning tree S, with root D1 and weight
z of A can be translated into a transportation of P with cost c(D) + 2z. For each arc
(D, D) of S, let b, be the corresponding bridge from D to D, and B be the set of
these bridges. It is clear that every nontrivial component of D can be reached from
with respect to the bridges in B. Therefore, P has a transportation of cost c(D) + 2z.

We next show that there is an optimal transportation of cost y to the motion planning
problem that can be translated into a directed spanning tree with root D1 and weight
(1 c(D))/2 of A. Let Q be an canonical and optimal transportation of P. By Theorem
1 there is such a transportation. Construct a directed spanning tree S for A as follows.
Examine each move of Q, from the first one to the last. Whenever there is an noncarrying
move (u, v, 0) in Q and there is no (Dj, D arc in S, we add an arc (D, Dj) to S, where
D is the component for the object of the preceding move and Dj is the component
for the next move. Note that we also want to add an arc to S for a degenerate bridge.
This can be done by examining two consecutive moves of Q. If an object from D is in
the first move and an object from Dj is in the second move, then there is a degenerate
bridge in Q. Add an arc (D, Dj) to S if the arc (Dj, D) is not already in S. Since
Q must visit all the components of D, S must span all the components. S must be a
tree, otherwise we could delete some bridges that correspond to an arc of a cycle in
S. The resulting set of arcs would still make all components reachable from s and we
could generate a transportation which has less cost then Q, which is a contradiction. By
Lemma 3, an optimal transportation must traverse an edge zero times, or two times,
once in each direction, without carrying any object. Therefore, the weight of S is equal
to (t c(D))/2.

With the above theorem, our problem is reduced to finding a minimum directed
spanning tree with root D1 that contains s in the bridging graph A. In the next subsection,
we shall present an efficient algorithm for the problem.

Consider once again the example in Fig. 3. In Fig. 4 we give the corresponding
bridging graph A. There is a node for each of the strongly connected components,
D2, D3, and Da. Consider the nodes D1 and Da. The minimum-cost bridge from D1 to
Da is the path in T from vertex 0 to vertex 4. Thus the cost of arc (D1, Da) is 2. Note
that the cost function is not symmetric, since the minimum-cost bridge from Da to
is the path in T from vertex 2 to vertex 0, of cost 1. Also note that some arcs have cost
0, as does (Du, D3), since vertex 5 is both in the set VT(Du) and in the set IP(D3). The
other arcs correspond to minimum-cost bridges that are easily identified. The arcs in a
directed minimum spanning tree are shown in bold, and have a total cost of 4.
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FIG. 4. The directed bridging graph for Fig. 3, with a directed minimum spanning tree in bold.

3.2. An efficient algorithm. In this section we present the algorithm with-drops and
show that it can be implemented to run in O(k/ qn) time. We first present the algorithm
in a high-level description, and then discuss how to implement it efficiently. In particular,
we discuss carefully how to compute the directed bridging graph A efficiently. We also
compute efficiently how moves should be interrupted in the case that several drops must
be made on the same move. Finally, we analyze the time required by the algorithm.

We first present our algorithm. Recall that the directed bridging graph was defined
between Theorems 1 and 2 in the preceding subsection.

ALGORITHM with-drops
INPUT: an instance P of motion planning problem on trees.
OUTPUT: an optimal transportation Q for P.
METHOD:

1. Find the balanced graph D for the motion planning problem P.
2. Find the directed bridging graph A for D, rooted at the node representing the

component that contains the start vertex.
3. Find a minimum directed spanning tree B of the graph A.
4. Find the augmented balanced graph DB for D with bridges in B.
5. Output a transportation Q by finding an Euler tour of DB starting from s.

We first show how to construct the bridging graph efficiently. The algorithm pro-
cesses one nontrivial component ofD at a time. Let Di be a nontrivial component. With
each bridge bi, we associate the following information: the components D and D, the
origin and the terminus v of the path, and an object o in D such that o must visit the
vertex z in the transportation. For each vertex z in VT(D), we use a(u) to denote such
an object. We show how to compute the vertex set VT(Di). Note that the value of a(v)
for every vertex v in VT(D) can also be computed as we compute the vertex set V(D).

Let s be the root of T. For each object o in D, let t be the nearest common ancestor
of Zo and go. If t is not Zo or 11o, then replace the carrying arc (Zo, !1o) by two arcs (Zo, t)
and (t, 11o), both labeled with the object o. Reorient each arc so that every arc is directed
from a child toward an ancestor. For each vertex v in T, let into(v) be the list of arcs with
terminus v, and let outof(v) be a list of arcs with origin v. Each entry in into(v) stores
the address of the corresponding entry in outof(u) that represents the arc (z, v). Each
entry in outof(z) stores the name of the arc that the entry represents. The lists into(v)
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and outof(v) for all vertices in T can be constructed in O(k + n) time. Given these lists,
we then call the recursive procedure search with parameter s.

For each vertex v, the procedure search determines if v is in VT(Di) and computes
the value ai(v) by maintaining a list of arcs L(v) such that v is a vertex of the path from
z to /for every arc (z, /) in L(v). Avertex v is in VT(D) if and only if L(v) is not empty.
Given L(v), the value ai(v) can also be computed in constant time, e.g., the label of the
first arc in the list L(v).

The procedure search(v) does the following. If v is a leaf, then let L(v) outof(v).
Otherwise, if v is not a leaf, do the following. First, let L(v) be empty. Second, for each
child w of v, call search(w) and merge L(w) to L(v). Third, if L(v) is not empty, then
add v to VT.(Di), and let a(v) be the original name of the first arc in L(v). Otherwise,
let ai(v) O. Finally, delete each arc in into(v) from the list L(v). This completes the
description of search.

Edge costs in the directed bridging graph A are computed as follows. Note that
the graph induced by the vertex set V(D) must be connected. Initialize d(Di, Dj)

for all i j. For each vertex v in V(D) such that v is also in IP(Dj) for some
j i, add (Di, D) to A with cost 0. These are the degenerate bridges. The bridges of
length greater than zero are computed as follows. For each edge in the graph induced
by VT(D), assign cost zero to that edge. Let v be any vertex in VT(D). Determine the
shortest distances d’ (v, w) from v to every other vertex w, noting the last vertex vo in
V(D) on a shortest path to w. Consider each vertex w, where w q[ VT.(D) and w
1P(D) for some j i. If d(Di, D), the distance from D to D, is greater than d’(v, w),
then update d(Di, Dj) to be d’(v, w), and identify the corresponding path as (vo, w).

LEMMA 6. The directed bridginggraph A can be computed in O(k + qn) time, where q
is the number ofnontrivial components in the balanced graph D.

Proof. The tree can be rooted at s in O(n) time. The processing time for each
component is as follows. With O(n) preprocessing time, the nearest common ancestor
for each pair of vertices can be computed in O(1) time [21], [15]. Thus, arcs in D can
be processed in O(k) time, where ki is the number of objects in D. The set of vertices
VT(Di) can be computed in O(ki + n) time. With the doubly linked list for L(v) and the
address of each arc with terminus v in the list into(v), the deletion of an arc in L(v) can
be done in O(1) time. For each vertex in T, the algorithm uses O(1) time to merge the list
L(w) into its parent’s list, O(linto(v)l) time in deleting arcs from the list L(v) and O(1)
time in generating the value of a(v). Since T is a tree, the single-source shortest path
problem can be solved in O(n) time. The update of the costs on the arcs ofA can be done
in O(n) time. Therefore, the algorithm runs in O(ki + n) time for each component of
D. Since there are q nontrivial components, the total computation can be implemented
in 0(k + qn) steps.

Finally, we show that, given a set ofbridges B, the augmented balanced graph can be
computed in O(n) time. Let ui, 1 < i < r be the internal vertices on the path from Zo to
yo at which the arc (Zo, lo) should split. Let dl (v) be the distance from s to v, in terms of
the number of edges. We compute the position p(ui, Zo, o) ofvertex ui, 1 < < r, on arc
(Xo, yo) as follows. If ui is an ancestor of x, then p(ui, Xo, yo) is dl (x) -dl (u). Otherwise,
p(ui, Xo, yo) is d (x) + dl (ui) 2dl(t), where t is the nearest common ancestor of x and
y. Perform a lexicographic sort on all the triples (Xo, yo, p(u, Xo, yo)). This sorted list
gives, for each arc (Xo, yo), the order for vertices at which the arc (Xo, yo) is to split. Let
ui, 0 < i < r be such a sequence for (Xo, yo). The arc (Xo, Yo) is then replaced by a
set of arcs (u ui+l) 0 < i < r, where U’o Xo and ur+ yo. These split arcs will
have the same label as the original arc, but their costs, which represent distances in T,
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will be changed to the corresponding distances that the arcs represent. Since there are q
nontrivial components in D, there are at most q i bridges. Therefore, the augmented
graph DB can be computed in O(n) time.

THEOREM 3. Given an instance P, let k be the number ofobjects to be moved and n
be the number of vertices in T. The algorithm with-drops can be implemented to compute
an optimal transportation for P in O(k + qn) time.

Proof. The correctness of the algorithm is based on Theorem 2. The balanced graph
D can be computed in O(k + n) time. The directed bridging graph A can be computed
in O(k + qn) time, and has q vertices. The minimum directed spanning tree of A can be
computed in O(q) time [22], [12]. The augmented balanced graph can be constructed in
O(n) time. Since there are only O(k+n) arcs in D, the generation ofthe transportation Q
can be computed in O(k + n) time. Since q < min{k, n}, with-drops can be implemented
to run in O(k + qn) time.

4. A multilevel approach. In this section, we present another algorithm for our
problem. It generates a variation of the bridging graph, called a multilevel bridging
graph. This graph is based on a hierarchical decomposition of the tree that produces in
general more nodes but fewer directed edges. This allows the directed minimum span-
ning tree algorithm to run faster in the case that the number of connected components is
large as a function of the number of vertices. Our algorithm then runs in O(k + n log n)
time. Thus, it is more efficient asymptotically than the algorithm in the preceding section
whenever k is o(qn) and q is w(log n).

We organize this section as follows. First we give a simple transformation for tree T
that allows our hierarchical decomposition to be performed efficiently. Then we define
our hierarchical decomposition and give an efficient algorithm to find the decomposi-
tion. We next specify simple preprocessing of the input that is necessary for generating
the multilevel bridging graph. We then describe our algorithm MULTI_L, which initial-
izes the multilevel bridging graph and calls a recursive procedure construct that adds
additional nodes and arcs to the multilevel bridging graph. We carefully analyze the size
of the graph generated and the time to generate it. We then show how to extract an op-
timal solution from a directed minimum spanning tree of the multilevel bridging graph.
Finally, we prove correctness and claim the time bound for our algorithm.

Assume that our tree is rooted at s. Our algorithm first uses a clustering approach
to transform the tree into a binary tree. Given tree T0 (V0, E0), we shall produce a bi-
nary tree T (V, E). A well-known transformation in graph theory [14, p. 132] is used.
For each vertex v with d > 2 children, wl,..-, wa and parent w0, replace v with new
vertices vl,..., va-. Add edges {(vi, vi+)[i 1,..., d- 2}, each of cost 0, and replace
the edges {(v, wi)li 1,..., d- 1} with edges {(vi, wi)li 1,..., d- 1}, of correspond-
ing costs, and replace the edges {(w0, v), (v, wa)} with edges {(w0, v), (va-, wa)}, of
corresponding costs. The number of vertices and edges will increase by at most n 3.

We consider a multilevel approach that generates a different type of bridging graph,
which we call a multilevel bridginggraph. For t a positive integer, let A (Vt, Et) be the
multilevel bridging graph with t levels. For t > 1, A has more nodes than the original
one, but has fewer arcs whenever q is (log n) and k is o(n log n). Our approach relies
on partitioning the tree into clusters. Arcs in the multilevel bridging graph are induced
by the subtrees within the clusters, and are also induced by a tree describing the effect
of moves across clusters. Our clusters are somewhat similar to, but a variation of, the
clusters generated in [7] for a simply-connected topological partition.

Let z be a positive integer to be specified later. Let T (V, E) be a rooted binary
tree. Let the root and at most two other vertices in T be identified as required boundary
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vertices. Let E, E,..., Et be a partition of E. Let the root si of subgraph (V(Ei), Ei)
be the (unique) vertex in V(Ei) nearest the root s of T. An induced boundary vertex is a
vertex that is in V(Ei) and V(E) for some and some j i. An acceptable clustering
of T of parameter z, z > 2, is a partition E, E, ..., Et of E satisfying the following
properties:

1. The subgraph T (V(E), E) is a tree, for i 1,..., l;
2. The number of boundary vertices in V(Ei) {si} is at most 2, for i 1,..., l;
3. There are at most 2z 2 edges in E, for 1,..., l;
4. There are at most three sets E such that there are both fewer than z edges in E

and fewer than 3 boundary vertices in V(Ei).
Each subgraph Ti is called a cluster.

Clusters can be generated as follows. Recursive procedure d_search is called with
parameters s and z. Procedure d_search(v, z) partitions the edges in the subtree rooted
at v into zero or more clusters, and one set of at most z- 1 edges. The clusters with their
boundary vertices are output, and the set of remaining edges, with its boundary vertices,
are returned to the calling procedure.

When d_search is called with parameters v and z, the following is done. A cluster
C and a set BV of boundary vertices are both initialized to the empty set. If v is both
a leaf and a required boundary vertex, then v is inserted into BV, and C and BV are
returned to the calling procedure. Otherwise, cl_search does the following. First, for
each child w of v, edge (v, w) is inserted into C, d_search(w, z) is called and returns (7’
and BV’, and C’ and BV’ are unioned into C and BV, respectively. Second, if 1(71 > z
or IBVI or is a required boundary vertex, then v is inserted into BV, cluster C
is printed, along with boundary vertices BV and root v, and C is reset to be empty and
BV to be {v}. Third, C and BV are returned to the calling procedure.

Let a procedure FINDCL be the procedure that initially calls d_search with param-
eters s and z, and let (C, BV) be returned to FINDCL. The set C will be empty, since s
is a required boundary vertex.

LEMMA 7. Let T be a rooted binary tree ofm edges. Let z be a positive integer, z > 2.
The number ofclusters in an acceptable clustering ofT ofparameter z is at most 1 + 2m +

+ 2).
Proof. There are at most 3 clusters that contain required boundary vertices, and

these may contain as few as one edge. We count the remaining l’ clusters as follows.
From among these clusters, let n be the number of clusters with boundary vertices
for 1, 2, 3. First note that nl + n2 + n3 . These clusters induce a tree T, where
the nodes correspond to clusters, and there is an edge between two clusters if they share
a vertex in T. Thus nl + 2n2 + 3nz 2(/ 1) follows by noting that total degree in T
is twice the number of edges. From these equations we infer that nl nz / 2.

Each of the n3 clusters will contain at least two edges, and each of the n / n2
clusters will contain at least z edges. Thus 3 + 2nz + Z(nl + ng.) < m, which implies
that 3 + 2na + z(na + 2) _< m. Thus na < ((m 3 2z)/(z + 2)). It also follows that
n +n2 < (m-3-2n3)/z. Thus the total of all clusters is 3+n +n2 +n3, which will be at
most 3/(m-3-2n3)/z/n3, which is at most 3+(m-3)z/(1 2/z)(m-3- 2z)/(z/2),
which equals the claimed bound, as long as z >_ 2. [3

Considering the tree T in Fig. 3, we give an acceptable clustering of T of param-
eter z 2 in Fig. 5. The clusters formed will have edge sets E1 {(0, 1)}, E2
{(0, 2), (2, 4)}, Ea {(2, 3), (3, 5)}, E4 {(5, 7), (5, 8)}, and E {(3, 6), (6, 9)}. Note
that each of the five subgraphs identified is a tree. The roots of Tx, T2, Ta, T4, and T are
0, 0, 2, 5, and 3, respectively. Tree T1 has one boundary vertex, vertex 0; tree T2 has two
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T2

FIG. 5. Clusters ofthe tree in Fig. 3.

boundary vertices, 0 and 2; tree Ta has three boundary vertices, 2, 3 and 5; tree T4 has
one boundary vertex, vertex 5; and tree T5 has one boundary vertex, vertex 3. Each tree
has z 2 2z 2 edges except for tree T1, which has one edge.

We next specify the preprocessing of the input for the routine that creates the mul-
tilevel bridging graph. The preprocessing involves finding a reduced set of moves of size
O(n). The reduced set satisfies the property that for each component D, every vertex
in VT(D) is covered by a move in the reduced set. For each component D do the fol-
lowing. First, choose some vertex v in IP(D). Second, find a depth-first search tree of
D rooted at v. Third, find a spanning tree ofD rooted at v with arcs directed toward v.
This can be done by reversing the direction of all arcs in D, finding a depth-first search
tree rooted at v, and then reversing the direction of the arcs back to what they were.
Fourth, union the arcs of the two trees together. This gives a set of arcs that are strongly
connected, and of size proportional to the cardinality of IP(D), in time proportional to
the number of arcs in D. The union of these sets over all components D is the reduced
set of moves used in generating the multilevel bridging graph. Clearly, the set of reduced
moves is of size O(n), and can be found in O(k) time.

We assume that the input to our algorithms to construct bridging graphs is in the
following form. First there is a weighted rooted binary tree T, of which the root and
at most two other vertices are designated as required boundary vertices. Second is a
reduced set M of moves (z,//) with each having a label indicating which component D
it is a member of, along with the original name for the move. Since we will be using a
multilevel approach, within the recursion these moves may represent portions of moves
in the original problem. Thus in our input two moves with different component labels
maybe incident on the same vertex. We avoid problems by assuming that in the recursion
no moves have their endpoints treated as initial positions.

We next describe our algorithm MULTI_L, which constructs a multilevel bridging
graph A (Vt, Et). Algorithm MULTIL initializes V and E as follows. For each
component D, 1, 2,..., q, a node is inserted into Vt. For each vertex v in T,
v 0, 1,..., n 1, a node v is inserted into Vt. Thus initially there are q + n nodes in
Vt. Initialize label_count to q. For each component D, i 1, 2,-.., q, for each vertex
v in IP(D), insert arcs (v, ) and (, v) into E with cost O, orig_name set to null, and
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drop set to v. For each edge (u, v) in T, with u closer to the start vertex than v, insert
(u, v) into E with cost e(u, ), orig_name set to null, and drop set to u. If the start
vertex s is in a component Oi by itself, insert arc (, s) into E with cost 0, orig_name
set to null, and drop set to s. Thus there are initially at most 3n arcs in Et. Algorithm
MULTIL next sets up the set M of moves as follows. Each move (z, 11) in M has a label
i for component D containing (z, 11), and orig_name set to "(z, 11)." Let the moves in M
be ordered by label value. MULTI_L then calls a recursive procedure construct, which
identifies additional nodes and arcs ofAt. The procedure is invoked with tree T, reduced
set M of moves, and an appropriate number of levels t, which we identify later.

We now discuss our recursive procedure construct, which is called with parameters
T, M, and t, where t is a positive integer. Let m be the number of edges in T. We choose
a suitable constant m0 15 at which to stop the recursion. If t i or rn _< m0, then
construct handles T and M somewhat similarly to the approach in 3. We shall specify
this carefully after seeing how the recursion is handled.

If t > 1 and m > m0, the following is done. Let z [ml-1/t/2J. Note that by the
conditions on t and m, z > 2. An acceptable clustering T1,..., Tt of tree T for parameter
z is found. If 1, then recursively invoke procedure construct with arguments T, M,
and t 1. Otherwise, if > 1, then do the following. Define the compressed tree T as
follows. Initialize T as a copy of T. Next delete all vertices in T not on a path between
two boundary vertices. Then while there is a nonboundary vertex v of degree 2, replace
v and its two adjacent edges (u, v) and (v, w) by the edge (u, w) of cost c(u, v) + c(v, w).
Tree T is the resulting tree. Associated with each edge in T is a path in T, which we call a
basic path. There are at most three basic paths in any one cluster. In the case that there
are three, they all share one nonboundary vertex as an endpoint.

We define a set M of moves for T, and sets Mi of moves for tree Ti in the clustering,
i 1,..., l, as follows. For each move (z, 11) in M, do the following. Suppose that the
label of (z, 11) is i. If there is a cluster Tj such that both z and 11 are in V(Ej), then insert
(z, 11) into M with label i and the same value of orig_name. Otherwise do the following.
Let u and v be boundary vertices on the path from z to 11 in T such that the path from
u to v in T is of maximum length. If u z, then z is in only one cluster T, and move
(z, u) is inserted into Mj with label and with orig_name(z, u) orig_name(z, !1). If
v //, then//is in only one cluster T,, and move (v,//) is inserted into M__, with label i
and with orig_name(v, 11) orig_name(z, 11). If u v, insert (u, v) into M, with label i
and with orig_name(u, v) orig_name(z, 11). This completes the description of how to
handle each move (z, 11). Since M can be examined in order of label value, the moves in
M and in the sets M for 1, 2,..., are generated in order of label value.

Whenever endpoint z or 11 of a move (z, 11) is not a boundary vertex, then the cor-
responding vertex u or v can be identified in constant time as follows. Assume that
preorder and postorder numbers have been computed for T, so that ancestor testing

be the root of T. If scan be done in constant time. Let sj be the root of T, and let s
is an ancestor of s, then choose u as the boundary vertex in T that is an ancestor of y

is anA similar approach applies if sand a proper descendant of sj, and choose v as si.
is an ancestor of the other, choose u as s and v as sancestor of s. If neither sj nor s

The construction of M, j 1,..., is completed as follows. Determine which
edges in T are covered by moves in M. For each such edge e (yl, y2), do the following.
Increment label_count, and insert a node with index , where i label_count, into Vt.
These nodes can be viewed as transfer nodes: a number of different components may
have moves that cover edge e, but in M these will all be represented by one move with
label i. Let T be the cluster containing both yl and y2. Insert move (y, yz) into Mj
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with label and orig_name set to null. Note that moves in Mj are still ordered by label
value.

The processing of is completed by generating additional arcs for E from as
follows. For each label i of moves in M do the following. Determine the set of edges e
in T such that there is a move with label i in M that covers e. For each such edge e, do
the following. Choose some move (x, y) M with label i that covers e (yl, y2), and
let the node for e in V have index i’. Insert arc (, 7) into E with cost 0, label equal to
the label of move (x, y), and drop set to null.

For each cluster Tj, recursively invoke our procedure construct with arguments Tj,
Mj and t 1. This invocation will add some number of arcs and nodes to At. This
completes the description of the recursion step of construct.

We now discuss how construct handles the case when t 1 or m <_ m0. Consider
the set of labels for moves in M. For each label i, do the following. Determine all vertices
covered by moves with this label. For each such vertex u, if there is a move with label i
and nonnull original name that covers u, let a(u) be the original name of such a move.
For every vertex u covered by a move with label i, insert into E an arc (, u) with cost
O, orig_name set to ai(u), and drop set to u. This completes the description of the basis
case of construct, and with it the description of all of procedure construct.

We illustrate algorithm MULTI_L and procedure construct with an example. We
take t 2 and construct a 2-level bridging graph for the tree T and set of moves M
shown in Fig. 3. The resulting 2-level bridging graph is shown in Fig. 6. Algorithm
MULTIL initializes V with nodes 1, 2, 3, 4 representing components D., D2, D3,
and nodes 0, 1,. , 9 representing vertices 0, 1,. , 9 in T. Also, MULTI_L initializes E
with arcs, whichwe shall designate with quadruples ((i, v), c, o_n, d), where (i, v) is an arc
with cost c, original name o_n, and drop vertex d. The arcs from nodes representing com-
ponents to nodes representing initial positions are ((, 1), 0, null, 1), ((1, ), 0, null, 1),
((, 7), 0, null, 7), ((7, ), 0, null, 7), ((, 5), 0, null, 5), ((5, ), 0, null, 5), ((, 8), 0, null,
8), ((8, ), 0, null, 8), ((, 4), 0, null, 4), ((4, ), 0, null, a), ((, 6), o, null, 6), ((6, ), 0,
null, 6), ((, 9), 0, null, 9), and ((9, ), 0, null, 9). The arcs corresponding to edges in
T are ((0,1),9,null, O), ((O, 2),l, null, O), ((2,3),1,nu11,2), ((2,4),1, nu11,2), ((3, 5), 1,
null, 3), ((3, 6), 1, null, 3), ((5, 7), 1, null, 5), ((5, 8), 1, null, 5), and ((6, 9), 1, null, 6). We
shall designate the moves inM by a triple ((u, v), i, o_n), where is the label and o_n is the
original name of some move. Thus M consists of ((1, 7), 2, "(1, 7)"), ((7, 1), 2, "(7, 1)"),
((5, 8), 3, "(5, 8)"), ((8, 5), 3, "(8, 5)"), ((4, 9), 4, "(4, 9)"), ((6, 4), 4, "(6, 4)"), and ((9, 6),
4, "(9,6)").

For the sake of our example, we shall assume that z 2. (Actually, the smallest
value of m for which z 2 would be m 16, but considering a tree of this size would
unnecessarily clutter the example.) We use the clusters as shown in Fig. 5. The boundary
vertices, besides the root (vertex 0), will be 2, 3, 5. Thus the compressed tree T contains
edges (0, 2), (2, 3), and (3, 5).

We generate M and sets M from M as follows. For ((1, 7), 2, "(1, 7)"), we in-
sert ((1, 0), 2, "(1, 7)")into M, ((5, 7), 2, "(1, 7)")into Ma, and ((0, 5), 2, "(1, 7)")into
M. For ((7, 1),2, "(7, 1)"), we insert ((7, 5), 2, "(7, 1)")into Ma, ((0, 1),2, "(7, 1)")into
M, and ((5, 0), 2, "(7, 1)") into M. For ((5, 8), 3, "(5, 8)"), we insert ((5, 8), 3, "(5, 8)")
into Ma. For ((8,.5), 3, "(8, 5)"), we insert ((8, 5), 3, "(8, 5)")into Ma. For ((4, 9), 4,
"(4, 9)"), we insert ((4, 2), 4, "(4, 9)") into M2, ((3, 9), 4, "(4, 9)") into Ms, and ((2, 3),
4, "(4, 9)") into M. For ((6, 4), 4, "(6, 4)"), we insert ((6, 3), 4, "(6, 4)") into Ms, ((2, 4),
4, "(6, 4)")into M2, and ((3, 2), 4, "(6, 4)") into M. For ((9, 6), 4, "(9, 6)"), we insert
((9, 6), 4, "(9, 6)") into Ms.
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0 0

FIG. 6. The multilevel bridging graph for Fig. 3, with a directed minimum spanning tree in bold.

For the compressed tree T, we create nodes and arcs as follows. Create and insert
into V node for edge (0, 2), node g for edge (2, 3), and node 7 for edge (3, 5). Also,
insert into E (-, -) 0,"(1, 7)", null), (, -) O, "(1, 7)", null), (, ) O, "(1, 7)", null),
and ((, ), 0, "(4, 9)", null).

Next, construct is applied to each cluster Tj. Considering M, construct sets a2 (1)
(1, 7), a2(0) (1, 7), and inserts into S ((, 0), 0, "(1, 7)," 0), and ((, 1), 0, "(1, 7)," 1).
Considering M:, construct sets a4(2) (4, 9), aa(4) (4, 9), a(0) null, and a(2)
null, and inserts into Et((, 2), 0, "(4, 9)," 2), ((, 4), 0, "(4,9)," 4), ((5, 0), 0, null, 0),
and ((5,2), 0, null, 2). Considering M3, construct sets a6(2) null, a6(3) null,
a7(3) null, and a7(5) null, and inserts into E ((-, 2), O, "null," 2), ((, 3), 0,
"null," 3), ((, 3), O, "null," 3), and ((, 5), O, "null," 5). Considering M, construct sets
a:(5) (1, 7), a2(7) (1, 7), aa(5) (5, 8), and aa(8) (5, 8), and inserts into E
((,5),0, (1, 7) ,5),((- ((-) 5), and ((3, 8), O, (5, 8)2, 7 0, 1, 7 ", 7 3, 5 0, 5, 8 ", ",
8). Considering M5, construct sets aa(3) (4, 9/, a4(6) (9, 6/, and a4(9) (9, 6),
and inserts into Et((, 3), 0, "(4, 9)", 3), ((, 6), 0, "(9, 6)", 6), and ((, 9), 0, "(9, 6/", 9).

This completes the construction of the multilevel bridging graph A for our exam-
ple. We note that for this particular example A is considerably larger than the regular
bridging graph A. This is due to our example being relatively small, and the number of
components being relatively small.

We next analyze the time requirements of procedure construct, and the number of
nodes and arcs added by it to A

LEMMA 8. Let T be a weighted rooted binary tree with m edges and at most 3 required
boundary vertices. Let M be a set of k moves with q < m + 4 different labels. Let d be the
total number ofendpoints ofmoves in M that are not required boundary vertices. Let t be
a positive integer Procedure construct uses O(t(k + m +/t)) time. The number ofnodes
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and arcs introduced into the multilevel directed bridging graph A by procedure construct
are 0 m and 0 t k + m + / ), respectively.

Proof. Suppose that t 1 or m < m0. Then no nodes are inserted into V by
construct. For each label value i, determining the set of vertices covered by moves with

and generating the arcslabel i, contracting the tree, finding shortest distances from v,
reflecting these shortest distances can be performed in O(k + m) time, where ki is the
number of moves with label i. Since there are q < m + 4 different labels, the time used
is O(k + m). It can easily be seen that at most (m + 4)(m + 3) edges are generated in
this case.

Suppose that t > I and m > m0. By Lemma 7, at most 1 + (2m + 2)/(z + 2) < 1 +
(2m+2)/(m1-1/t/2+3/2)- l+(4m+4)/(ml-1/t+3) < l+(4m+12ml/t)/(ml-1/t+
3) 1 + 4m1/t clusters are created. Since all but at most 4 vertices in any cluster
are deleted when is generated, has fewer than 4 + 16mI/t vertices, and thus fewer
than 3 + 16m1/t edges. Thus construct generates O(m/t) nodes in handling . It also
generates O(q) edges, where is the number of edges in T. Thus construct generates
O(m+l/t) arcs, and uses O(k + ml+l/t) time in handling . The time required to set
up T, M and My, j 1, 2,..., l, and to handle is O(k + ml+l/t).

Let my be the number of edges in cluster Cy. From the clustering method, it follows
that y=x my m. By choice of parameter z, my < m1-/t Let qy be the number of
labels of moves for tree Ty. We bound qy as follows. There are my + 1 vertices in
each ofwhich can be an initial position for a different component. In addition, there can
be one component for each of at most three basic paths in Tj. Thus there can be a total
of at most mj / 4 components in Tj.

We first analyze the number of arcs introduced by construct into Et. Let R(m,
be the number of arcs introduced by construct for a tree with m edges, and with moves
of at most m + 4 different labels, and parameter t. From the above discussion, R(m, t)
is bounded by the recurrence:

R(m,t) < I cm2’ fort=l or re<m0;

fort>l and re>m0,

where c is an appropriate constant.
We claim that R(m, t) < ctm+/t. The proof is by induction on t. The basis, with

t 1, follows immediately, since construct generates O(m) arcs. For the induction
step, with t > 1, assume as the induction hypothesis that the claim is true for t 1. Then
we have

R(m, t) (_ cm1+lIt -- -:=1 R(mj, t- 1)

< cm+/t + =. c(t- 1)m+I/(t-),

by the induction hypothesis. The sum is maximized when the values for my are as large
as possible, i.e., 2z 2. Thus
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R(m, t)

_
cm1+1/t / c(t 1)(2z- 2)1+1/(t-1)m/(2z 2)

( am1+lIt / c(t- 1)(2z)/(t-)m

(__ Clrt1+lIt / c(t- 1)(ml-/t)/(t-)m

ctml+l/t.

We next bound the number of additional nodes introduced into the multilevel bridg-
ing graph by construct for a tree with m edges. We count the number of nodes resulting
from basic paths. If t 1 or m < rn0, then no new nodes are introduced. Otherwise,
the tree is partitioned into clusters. If 1, then no new nodes are created, but the
procedure is called recursively. If > 1, then a node is introduced for each basic path,
of which there at most 3 per cluster. Then the procedure is called recursively on each
cluster. Consider a decomposition tree of the original tree T, where the root represents
tree T, and every other node represents a cluster generated at some point by construct.
Each node representing a cluster T’ has as its children nodes representing the clusters
that T’ is partitioned into. The number of leaves in the decomposition tree is less than or
equal to rn. The total number of children of all nodes with at least 2 children is less than
2m. Thus the total number of nodes added to the multilevel directed bridging graph
because of basic paths will be less than 6m.

We next analyze the time used by construct. Let T(m, k, k’, t) be the number of
arcs introduced by construct for a tree with rn edges, k moves, of which k’ have both
endpoints not being boundary vertices, and with at most m / 4 different labels, and
parameter t. Note that the number of vertices of degree 1 or 2 in T is at least (m /
3)/2. Since these vertices would have been deleted if they were not initial positions or
destinations, we must have k > (rn + 3)/4. For m > m0 15, k > 5, and thus there is
a constant c such that the time to handle is at most c(k 3 + ml+l/t).

Let kj be the number ofmoves in the problem for cluster Tj, and let k be the number
of these moves having both endpoints not being boundary vertices. In generating the
problems for the clusters T, some moves for T may be split. If a move in T already has
at least one endpoint that is a boundary vertex, then there can be a corresponding move
in at most one cluster T. If a move in T already has both endpoints not being boundary
vertices, if the move is split, then it is replaced by two moves in the clusters, each ofwhich
has at least one endpoint that is a boundary vertex. Also, each cluster can receive at most
three new moves, corresponding to basic paths. Thus ]_1 k < k+ (k’
It follows that the function T(m, k, k’, t) is bounded by tle recurrence:

]= k3) + 31.

T(m,k,k’,t)

<- I c(k + m2),

c(k 3 / m1+1/t) / E=I T(mi, kj, k, t 1)

fort=l or m<mo;

fort>l and re>m0,

where c is an appropriate constant.
We claim that T(m, k, k’, t) < ct(k + k’ 3 + rn+/t). The proof is by induction on

t. The basis, with t 1, follows immediately. For the induction step, with t > 1, assume
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as the induction hypothesis that the claim is true for t 1. Then we have

T(m,k,k’,t)

(__ c(k 3 -- m1+l/t) -- 2 T(mj, k, k, t 1)
j=l

<_ c(k 3 + ml+l/t) + E c(t 1)(kj + k 3 + m+l/(t-1)),
j=l

by the induction hypothesis. The sum is maximized when the values for m are as large
as possible, i.e., 2z 2. Thus

T(m,k,k’,t)

< ct(k + k’ 3 + ml+l/t)

This concludes the proof. [:]

Upon the return of construct to algorithm MULTIL, all nodes and a multiset of
arcs of the multilevel bridging graph have been identified. A 2-pass radix sort is then
performed to sort the arcs lexicographically, and eliminate all but the least expensive of
multiple arcs. For each such arc the label and orig_name are brought along. The di-
rected minimum spanning tree algorithm of [12] can then be applied to find a directed
minimum spanning tree rooted at the node corresponding to the component that con-
tains the start vertex.

The directed minimum spanning tree ofA can be translated into a minimum cost set
of bridges as follows. There will be a bridge in the set from component Di to component
Dy if and only if there is a directed path in the directed minimum spanning tree to node
j from either node i or an initial position in Di. that contains no intermediate node
with index in { 1, 2,..., }. The first arc in this directed path carries in its orig_name
field the name of a move that should be interrupted. (If orig_name is null, or if the
drop location is an endpoint of the move, then no move is interrupted, implying that the
bridge starts at an initial position.) The first arc on this path that enters a node with
index in {0, 1,. , n 1} will contain in drop the name of the vertex at which to drop the
object. Once these values are known, the transportation can be constructed as in 3.

We return to our running example. A directed minimum spanning tree is shown in
bold for our multilevel bridging graph in Fig. 6. Since there are paths P1 1, 0, 2, 4, 4,
P 4, 6, 3, 5, , and P 5, 7, in the directed minimum spanning tree, there are
bridges from D to Da, Da to D3, and D3 to D2. The first arcs on each of these paths
that enter a node with index in {0, 1,..., n 1} are (, 0), (, 3), and (5, 7), respectively.
These arcs have drop field equal to 0, 3, and 5, respectively. Thus the first bridge is from
0 to 4, the second from 3 to 5, and the third from 5 to 7. The first arcs on paths Px, P2,
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and P3 are (, 0), (, ), (, 7), respectively. These arcs have original name field equal
to null, (4, 9) and (5, 8), respectively. It follows that no move is interrupted for the first
bridge. Since 3 is not an endpoint of (4, 9), move (4, 9) is interrupted at 3 for the second
bridge. Since one of the endpoints of (5, 8) is the drop value, no move is interrupted for
the third bridge. We note that we could just as well have chosen for
since 0 is an initial position in D1. Since the drop field of arc (0, 2) is 0, and the original
name of (0, 2) is null, no change would result.

THEOREM 4. Let T be a weighted rooted binary tree with n vertices for which there is
a set of k moves. Algorithm MULTI_L finds a minimum-costpreemptive transportation in
0(k + n log n) time.

Proof. We first address correctness. First we claim that the arcs that comprise any
bridge are contained in the multilevel bridging graph A Clearly, for every tree edge an
arc is introduced, so that the only issue is whether the correct direction is chosen for the
arc. But in any traversal of the tree, the first time any given edge is traversed, it will be
traversed in the direction away from the start vertex.

Next we claim that for any initial position u of a component D, and any vertex v
in VT(D), there is a corresponding path in A from u to v of cost O. First note that by
introducing arcs from to each initial position in D, and, vice versa, there is a path of
cost 0 in A between any pair of initial positions in Di. Next consider the move (x, y) in
the reduced set of moves that covers vertex v in VT(Di). It can be shown by induction
on t that there is a path i0, i,"’, iv, v of cost 0. Thus there is a directed minimum
spanning tree of A of cost equal to the cost of a minimum-cost set of bridges.

Finally, we verify that the appropriate information is associated with each arc in A
Whenever a move is split in our construction of At, the original name of the move is
retained. Furthermore, in generating an arc (, u) to indicate that a move with label
covers vertex u, drop(i, u) is set to u. This completes the discussion of correctness.

We next discuss the time used by our algorithm. Let t be a positive integer. By
Lemma 8, the time to generate V and a multiset containing E is O(t(n + n+/t)),
assuming that the reduced set of moves is used, so that k is O(n), and noting that the
number of edges is n 1. Multiple arcs can be deleted in O(tn+/t) time. Since the
algorithm of [12] uses O(m + n log n) time on a graph of n nodes and m arcs, the time
to find a directed minimum spanning tree is O(tnl+/t + n log n). The time to translate
a directed minimum spanning tree of A into a set of bridges with drop points specified
is proportional to the size of the tree. The time to generate the transportation, given
this information is O(k + n). Therefore, the algorithm MULTI_L can be implemented
to run in O(k + tnl+I/t + n log n) time. Choosing t log n yields a running time of
O(k + n log n).
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LOWER BOUNDS ON UNIVERSAL TRAVERSAL SEQUENCES FOR CYCLES AND
OTHERLOW DEGREE GRAPHS*

MARTIN TOMPAt

Abstract. Universal traversal sequences for cycles require length f(nL29), improving the previous bound
of f(n log n). For d > 3, universal traversal sequences for d-regular graphs require length f(d’Ttn2"99).
For constant d, the best previous bound was f(n2 log n).

Key words, graph traversal, cycle, lower bound, universal traversal sequence, circumnavigation, reflecting
sequence
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1. Reflecting and universal traversal sequences. Universal traversal sequenceswere
introduced by Cook (see Aleliunas et al. [2]) as a particularly simple method for travers-
ing graphs. Universal traversal sequences are defined as follows.

For 2 < d < n, let (d, n) be the set of all connected, d-regular, n-vertex, edge-
labeled, undirected graphs G (V, E). For this definition, edges are labeled as follows.
For every edge {u, "o} E E there are two labels l,v and lv,, with the property that, for
every u E V, {l, {u, "o} E} {0, 1,..., d 1}. For such labeled graphs, a string
over {0, 1,..., d 1} can be thought of as a sequence of edge traversal commands. In
particular, any U U1U2... Uk {0, 1,..., d- 1}* and "o0 V determine a unique
sequence (vo, "O1,’’’, "Ok) Vkq-1 such that l,_,,,, Ui for all i E {1, 2,..., k}. Such a
sequence U is said to traverse G starting at v0 if and only if every vertex in G appears at
least once in the sequence v0, vl,. , v. U is a universal traversal sequence for (d, n) if
and only if U traverses each G (d, n) starting at any vertex in G. U(d, n) denotes the
length of a shortest universal traversal sequence for (d, n). To avoid trivialities, define
U(d, n) U(d, n + 1) in case (d, n) is empty, which occurs exactly when both d and n
are odd (see [5, Prop. 1]).

Good bounds on U(d, n) translate into good bounds on the time required by certain
simple undirected graph traversal algorithms running in very limited space. In particu-
lar, determining good lower bounds on U(d, n) is a prerequisite to proving time-space
tradeoffs for traversing undirected graphs. (See Borodin, Ruzzo, and Tompa [5] for a
more detailed discussion.) Proving such lower bounds is the emphasis of this paper.
The current best upper and lower bounds on U(d, n) are summarized in Table 1. (See
Borodin, Ruzzo, and Tornpa [5] for more background.) Prior to the current work, the
best lower bound for d 2 was

U(2, n) f(n log n),

due to Bar-Noy et al. [4]. This bound is improved in Corollary 13 to

V(2, T) -(nlg4 6) -(nl.29).
For 3 < d < n/3 2, the best previous lower bound was

( n )U(d,n) dn210g + d2n2
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TABLE 1
Best known bounds on length ofuniversal traversal sequences.

Bound Relevant Range

U(d, n) O(na) d 2 Aleliunas [1]

U(d, n) O(dn3 log n) 3 < d < n/2 1 Kahn et al. [7]

U(d, n) O(n3 log n) n/2 1 < d Chandra et al. [6]

U(d, n) f(n129) d 2 this paper

U(d, n) ----(d’71n2"29) 3 _< d < nlg 1.5 this paper

U(d, n) )(d2n2) nlog 1.5 <_ d < n/3 2 Borodin et al. [5]

U(d, n) (n2) n/3 2 < d Alon et al. [3]

due to Borodin, Ruzzo, and Tompa [5]. This bound is improved in Corollary 14 to

U(d, n) (d2-1g* 6nl+lg* 6 d- d2n2) )(d’71n2"29 -[- d2n2).
The value of d at which the second term begins to dominate is d nlg6 1.5 , n0.23.

By a clever extension ofthe techniques in this paper, Coppersmith [personal commu-
nication] has improved these bounds to U(2, n) Q(n1"33) and U(d, n) (d’67n2"33)
for d > 3.

The method underlying the new lower bounds depends on analyzing traversals of
"labeled chains." A labeled chain oflength n is an undirected graph G (V, E), where
V {0, 1,..., n} and E {{i, i + 1} 0 _< i < n}, with edge labels as follows. Every
edge {i, i+ 1} has two labels, li,i+l and li+l,i, each a nonempty subset of {0, 1}, restricted
as follows:

1. 10,1 l,,,_1 {0, 1}, and
2. One of l,_ and li,+ is {0}, and the other is {1}, for all 0 < < n.

Let (n) be the set of labeled chains of length n. Thus, IZ:(n)l 2’-. A labeled
chain G will often be identified with the string/3 /332.../3,-1 E {0, 1}’-1, where
l,i+ {/3i} for 0 < i < n. The string/3 is called the label of G.

Given a labeled chain G of length n, a string U 6 {0, 1}* can be considered as a
sequence of edge traversal commands starting at vertex 0. If U Ux Ue... Uiu I, where
Ui 6 {0, 1} for 1 _< < ]U], U determines a unique sequence (v0 0, v, ve,..., Vlui) 6

{0, 1,..., n}lUl+ such that Ui /,,,-1,,,, for all 1 < i < [UI. Such a sequence U is said
to reflect t times on G if and only if there exist 0 < jl < j2 < < jt <_ IUI such that
vj.k_ n for all 1 < k < t/2] and vj.k 0 for all 1 < k < [t/2]. U is a t-reflecting
sequence for/:(n) if and only if U reflects t times on each G .(n). R(t, n) denotes the
length of a shortest t-reflecting sequence for/:(n).

The remainder of this section demonstrates how lower bounds on R(t, n) imply
lower bounds on the lengths of universal traversal sequences. Sections 2 and 3 estab-
lish the lower bound R(t, n) > tnlg, 6 > tnl.29. When combined with the reductions
of Theorem 1 and Corollary 4 below, this yields lower bounds on the length ofuniversal
traversal sequences.

For/3 {0, 1}*, define/3 to be the string that results from reversing/3 and then
complementing its bits. For instance, if/3 00010, then/3 10111.
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The first reduction shows how a lower bound on R(1, n) implies a lower bound on
the length of universal traversal sequences on cycles.

THEOREM 1. For anypositive integer n, U(2, 2n) > R(1, n).
Proof. Let U be a universal traversal sequence for (2, 2n). It will be shown that

U is a 1-reflecting sequence for E(n). Choose any labeled chain G E(n) with label
/3 {0, 1}’-. Construct a 2n-cycle C whose clockwise label from its start vertex is
0/30ft. By induction on IUI, it is straightforward to show that the traversal ofC according
to U terminates at a vertex of distance j from the start vertex if and only if the traversal
ofG according to U terminates at vertex j. Since U is universal for (2, 2n), the vertex
at distance n from the start vertex is reached during the traversal ofC according to U.
Hence, U reflects at least one time on G.

Corollary 4 below demonstrates that a lower bound on the length of general reflect-
ing sequences implies a lower bound on U(d, n) for d > 3 as well. The key to relating
reflecting sequences to universal traversal sequences of degree d >_ 3 lies in the notion of
"circumnavigation sequences," introduced by Borodin, Ruzzo, and Tompa [5]. For any
labeled cycle C (2, n), a string over {0, 1} can be interpreted as a traversal sequence.
In particular, any U E {0, 1)* and start vertex v0 of C determine a unique sequence
(v0, v, , vlUi) of vertices traversed by U. Such a sequence U is said to circumnavigate
C t times starting at v0 if there are at least t times at which the sequence returns to v0
moving in the same direction in which it last left v0. More precisely, U circumnavigates
C t times if and only if there exist 0 < i < i < ia < i4 < < it- < it <_ IU] such
that

1. vo vi vi vi2t
2. vt v0 for all i2_ < < i2 and I < j < t; and
3. v%_+ Vi2j for all 1 < j _< t.

U is a t-circumnavigation sequence for G(2, n) if and only if U circumnavigates each C
G(2, n) t times starting at any vertex in C. C(t, n) denotes the length of a shortest t-
circumnavigation sequence for 6(2, n).

The next theorem, due to Borodin, Ruzzo, and Tompa [5], relates universal traversal
sequences of higher degree graphs to circumnavigations of cycles.

THEOREM 2 [5, 4.1]. Let d >_ 3 be an integer and n be a multiple of 8(d 1). Then

4 +

Using the same reduction as in the proof ofTheorem 1, it is straightforward to relate
reflecting sequences to circumnavigation sequences.

THEOREM 3. For anypositive integers t and n, C(t, 2n) _> R(2t, n).
Combining Theorems 2 and 3 gives the desired reduction.
COROLLARY 4. Let d >_ 3 be an integer and n be a multiple of 16(d 1). Then

2. A lower bound on R(t, n).
THEOREM 5. For anypositive integers t,

R(t, mn) >_ R(R(t, m), n).

Proof. Let U UU2...UIu be a t-reflecting sequence for (mn). It will be shown
that U is an R(t, m)-reflecting sequence for Z:(n). Suppose this is not the case. Then
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there is a chain G (n) with label fl {0, 1}n-1 such that U reflects s times on G,
but not s + 1 times, where s < R(t, m).

Consider a traversal of G# according to U, and let v0 0, Vl,..., vlU be the se-
quence of vertices visited during this traversal. The traversal will be said to be at vertex
v at time i if and only if v v. Let jo 0 < il < j < i2 < j2 < < i < j < IUI
satisfy the following:

1. For all 1 < k < [s/2], i_ is the last time the traversal is at vertex 0 before it
next reaches vertex n, which occurs at time j_, and

2. For all i < k < [s/2J, i2k is the last time the traversal is at vertex n before it next
reaches vertex 0, which occurs at time j.

Let U’ U+U+ U+. Since s < R(t, m), U’ is not a t-reflecting sequence
for (m). That is, there is a chainG
such that U’ does not reflect t times on G.

Now construct G (rrm) with label

where fl =/ if m is odd and/3 -/ if m is even. The contradiction will result because
G is constructed so that U "behaves the same" on G as U’ does on G, yet U reflects t
times on G (since U is a t-reflecting sequence for (mn)), but U’ does not on G.

Example. Before continuing the proof, the construction will be illustrated by show-
ing that

U 111001000100111001000110110001000110111001000100110001000100

is not a 2-reflecting sequence for/2(12). In this example, m 3, n 4, and t 2. For
the first step, U is not a 9-reflecting sequence for (4). For instance, U reflects only 8
times on the chain with label fl 011. For this choice of/3, the subsequence U’ at which
each of the 8 reflections begins is underlined below:

U 11100100010011100100011011.0001000110111001000100110001000100.

That is, U’ 01101100. Now U’ is not a 2-reflecting sequence for/2(3). For instance,
U’ reflects only one time on the chain with label c 01. Hence, U itself reflects only
one time on the chain with label

011 0 001 1 011.

Now that the example is complete, the proof of Theorem 5 will be continued. The
phrase "behaves the same" more precisely means that the traversal of G according to U
is at vertex hn at time jk if and only if the traversal of G according to U’ is at vertex
h at time k for all 0 < k < s. This will be proved by induction on k. Once it has been
established, it implies that the number of reflections of U on G and U’ onG is the same
(since no additional reflections on G can be completed between times j8 and ]UI), which
completes the contradiction.

Basis (k 0). At time j0 0 of the traversal according to U on G, the traversal is
at vertex 0 0. n. At time k 0 of the traversal according to U’ on G, the traversal is
also at vertex 0.

Induction (k > 0). Suppose that the traversal ofG according to U’ is at vertex h at
time k- 1, and the traversal ofG according to U is at vertex hn at time jk_l. Assume that
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h is even, the case when h is odd being dual. Then k is odd, since on G the traversal is
at an even numbered vertex at time k 1. Now between times jk-1 and ik of a traversal
according to U on G, the traversal starts and ends at vertex 0 without reaching vertex n.
Therefore, between times j_l and i of the traversal according to U on G, the traversal
starts and ends at vertex hn without reaching either vertex (h 1)n or vertex (h + 1)n.
This is because the only bit from c that affects the traversal during this time interval is ch,
the label at vertex hn, and the traversal is independent even of ch, except for reflection
about vertex hn.

At this point, consider the next step of U’ on G in conjunction with the next step
of U on G. In both cases the label at the current vertex v is lv,v+ {ch} (unless
h E {0, m}), and the next bit of the reflecting sequence is Ui+. Thus, both traversals
move in the same direction in the next step (even if h {0, m}). Assume without loss
of generality that both move to the next greater vertex v / 1. It suffices to prove, then,
that the traversal of G according to U is at vertex (h + 1)n at time j.

Nowbetween times i and jk of a traversal according to U on G, the traversal starts
at vertex 0 and ends at vertex n, without repeating either. Therefore, between times i
and j of the traversal according to U on G, the traversal starts at vertex hn and ends at
vertex (h + 1)n. This is because, by assumption, its first step is to vertex hn + 1, after
which no bit from c affects it during this time interval.

COROLLARY 6. Let c and r be positive integers such that, for all positive integers t,
It(t, c) > ft. Then if t is anypositive integer and n cm for some nonnegative integer m,

R(t, n) >_ tnlg r.
Proof. It is equivalent to prove that R(t, c") > trm, which will be done by induction

on m.
Basis (m 0). R(t, 1) t.
Induction (m > 0). Assume by the induction hypothesis that It(t, c"-) > tr"-.

By Theorem 5,

R(t, c") > R(R(t, c’-1), c)

>_ rR(t, c"-

> tr".

COROLLARY 7. Let c and r be positive integers such that, for all positive integers t,
R(t, c) > rt. Then U(2, n) )(nlgc r).

Proof. From Theorem 1 and Corollary 6, U(2, 2n) > nlgc r whenever n is an integral
power of c. The f bound follows since U(2, n) is monotone nondecreasing in n. [3

COROLLARY 8. Let c and r be positive integers such that, for all positive integers t,
R(t,c) > rt. Thenforany integer3 < d < n/17 / 1,

U(d, n) 9t(d2-1g rnl+lg r).

Proof. From Corollaries 4 and 6,

1
d(d 2)n’ ( n’

U(d, n’) > - 16(d 1) )
log r

whenever n’ is a multiple of 16(d 1) and n’/16(d 1) is an integral power of c. Let m
be the integer satisfying

16(d- 1)cm < n- (d- 1) < 16(d- 1)cm+.
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Let n’ 16(d 1)cm, so that (n (d 1))/c < n’ < n (d 1). Although U(d, n) is
not known to be monotone in n, it is true that U(d, n) >_ U(d, n’) (Borodin, Ruzzo, and
Tompa [5, 3]). Hence,

U(d, n) > U(d, n’)

l
d(d 2)n, ( n’ )logo r

>
16(d- 1)

1 (d)n-(d-1)(n-(d-1))
lgcr

> -d - c 16cd

ld216n( n )’g"
_o )

3. The basis. Corollary 11 below demonstrates that R(t, 4) _> 6t, yielding the ex-
ponent log4 6 , 1.29. In order to present the techniques needed in a simpler setting,
Theorem 9 demonstrates that R(t, 3) >_ 4t, which yields the slightly weaker exponent
log3 4 1.26. It is easy to demonstrate that R(t, 2) _< 2t + 2, so that no nontrivial lower
bound can be derived using chains of length 2 as the basis.

THEOREM 9. R(2t 1, 3) > 8tfor allpositive integers t.
Proof. Let U be a (2t 1)-reflecting sequence for Z:(3) and G00 /:(3) be the

chain with label 00. For every traversal from vertex 0 to vertex 3 that U causes on G00,
consider the last time at which vertex 1 is left before vertex 3 is reached. U must have
an occurrence of the (contiguous) substring 00 beginning at an even index to account
for this event because the traversal is only at vertex 1 at odd times. There are at least t
traversals from vertex 0 to vertex 3; mark any t of these even indices in U with the label
"00." Using the analogous process, mark t even indices in U with each of"01," "10," and
,11." Since no two of these marks can share the same even index, U must have at least
4t even indices; that is, U] > 8t.

The bound in Theorem 9 is tight: the string 1101(10001101) is a (2t)-reflecting
sequence for (3), as can be verified by applying it to the 4 labeled chains of length 3.

THEOREM 10. R(2t 1, 4) > 12tfor allpositive integers t.

Proof. Let U be a (2t 1)-reflecting sequence for Z:(4), and G000 e (4) be the
chain with label 000. For every traversal from vertex 0 to vertex 4 that U causes on G000,
consider the last time at which vertex 1 is left before vertex 4 is reached. Although U need
not have an occurrence of the (contiguous) substring 000, U must have an occurrence of
the substring 00 beginning at an even index to account for this event. There are at least
t traversals from vertex 0 to vertex 4; mark any t of these even indices in U with the label
"000." Using the analogous process, mark t even indices in U with each of "001," "100,"
and "101." Despite the fact that two of these marks might share a single even index, it
will be shown below that these 4t marks account for at least 3t distinct occurrences of
the substrings 00 and 10 beginning at even indices. By an analogous argument, the other
four marks "010," "011," "110," and "111" account for at least 3t distinct occurrences of
the substrings 01 and 11 beginning at even indices. Since these two sets of indices must
be disjoint, U has at least 6t even indices; that is, IUI >_ 12t.

Let the marks "000" and "101" count for two points each, and the marks "001" and
"100" count for one point each, so that the 4t marks in U account for 6t points overall.
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Either of the substrings 00 or 10 beginning at an even index will be called simply apair.
The remainder of this proof demonstrates that U cannot average more than two points
per pair, so there must be at least 3t pairs. Notice that the substring of U that begins at
an even index marked "000" must be of the form 00(10)*0. Table 2 lists the substrings
corresponding to the other marks.

TABLE 2
Substrings ofU beginning at marks.

Beginning at an even index
with mark:

000

001

100

101

The characters of U must
match:

00(10)’0
00(00)’1
10(10)’0
10(00)’1

Notice the following facts:
1. Any pair with two marks must be followed immediately by another occurrence of

either 00 or 10; this is evident from Table 2;
2. Two pairs consecutive in U, either one marked "000" and the other marked "101,"

must be followed immediatelyby a third occurrence of either 00 or 10, again evident from
Table 2;

3. Two pairs with the same mark must be separated by a distance of at least 8 to
account for two reflections.

The first case to consider is two pairs consecutive in U, each with two marks. By fact
(1), these must be followed immediately by a third occurrence of either 00 or 10. By fact
(3), this third pair must be unmarked. Hence, in this case, 3 pairs accumulate 6 points.

The next case to consider is a pair with two marks, followed immediately by a pair
with either of the single marks "000" or "101." By fact (2), these must be followed imme-
diately by a third occurrence of either 00 or 10. If this third pair is marked at all, it must
be the single mark "001" or "100," respectively, by fact (3). Hence, in this case again, 3
pairs accumulate at most 6 points.

Any other pair with two marks must be followed immediately either by an unmarked
pair or by a pair with either of the single marks "001" or "100." In this case, 2 pairs
accumulate at most 4 points.

This leaves only pairs with single marks, in which case 1 pair accumulates at most 2
points, tO

The bound in Theorem 10 is tight: the string 10010001(101110010001) is a (2t)-
reflecting sequence for (4), as can be verified by applying it to the 8 labeled chains of
length 4.

COROLLARY 11. R(t, 4) > 6tfor allpositive integers t.
Proof.
Case 1. t 2k- I for some integer k. Then

R(t, 4) R(2k 1, 4) _> 12k 6t + 6.

Case 2. t 2k for some integer k. Then

R(t, 4) R(2k, 4) _> R(2k 1, 4) _> 12k 6t. [3
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Combining Corollary 11 with Corollaries 6-8 yields the following lower bounds.
COROLLARY 12. Ifn is any integralpower of4, and t is anypositive integer,

R(t, n) > tnlg" 6 > tr/,1.29.

COROLLARY 13. U(2, n) (nlg, 6) (nl.29).
COROLLARY 14. For any integer 3 < d < n/17 + 1,

Using only the simple ideas in the proof of Theorem 9, it is not difficult to prove
that R(t, 5) > 8t, but log5 8 is slightly less than log4 6. Determining the rate of growth of
R(t, 5) is an open question, and could well lead to improved lower bounds on the lengths
of universal traversal sequences.

Acknowledgments. Once again, I am grateful to Larry Ruzzo for encouragement
and enlightening discussions. Don Coppersmith simplified the proof of Theorem 10.
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Abstract. Ajtai [Proceedings ofthe 29thAnnualIEEE Symposium on the Foundations ofComputer Science,
White Plains, NY, 1988, pp. 346-355; preliminary version] recently proved that if for some fixed d, every for-
mula in a Frege proof of the propositional pigeonhole principle PHPn has depth at most d, then the proof size
is not less than any polynomial in n. By introducing the notion of an "approximate proof" this paper demon-
strates how to eliminate the nonstandard model theory, including the nonconstructive use of the compactness
theorem, from Ajtai’s lower bound. An approximate proof is one in which each inference is sound on a subset
of the possible truth assignmentsDpossibly a different subset for each inference. This paper also shows how
to improve the lower bound, giving a specific superpolynomial function (nc(lg[d+l] n)) bounding the proof
size from below.

Key words, lower bounds, complexity of propositional proof systems, proof theory

1. Introduction. A Frege proof is a sequence of propositional formulas, each of
which is either an axiom instance or follows from previous formulas by one of a fixed set
of inference rules. The pigeonhole principle can be expressed by a class of propositional
formulas, {PHPn n E N}, where PHPn asserts that there is no one-one mapping from
a set Do of size n / 1 to a set D1 of size n.

Ajtai [Ajt] recently proved that if for some fixed d, every formula in a Frege proof
of PHPn has depth at most d, then the proof size is not less than any polynomial in
n. His proof, while combinatorial in part, is proven for a nonstandard model of Peano
arithmetic; the compactness theorem is then applied to obtain the result for standard
values of n.

We demonstrate how to eliminate nonstandard model theory from Ajtai’s lower
bound by introducing the notion of an "approximate proof." An approximate proof
is one in which each inference is sound on a subset of the possible truth assignmentsm
possibly a different subset for each inference.

Our notion of approximation resembles that of Razborov [Raz], where functions
are approximated by introducing small errors at each gate. However, instead of approx-
imating just one formula, we are approximating each formula in a sequence of related
formulas. The approximation made for each individual formula changes how the formu-
las relate to each other: instead of each formula being a sound conclusion from previous
formulas, the inference is only an "approximately sound" inference. The use of approx-
imation gives a more direct lower bound proof than was obtained using nonstandard
model theory.

In this paper we also improve on Ajtai’s result, giving a specific superpolynomial
function that bounds the Frege proof size from below. The bound is ns2(lgtd+ll n), where
log[a+1] n is d + 1 iterations of log. Although the possibility of an exponential bound
remains open, we give a reason why the proof method cannot be improved to yield an
exponential bound.

We also demonstrate that if the Frege proof is of polynomial size, then its depth
must be f(log* n). This improves the statement that can be inferred from Ajtai’s result,
namely, that polynomial size proofs must have nonconstant depth.

Constant-depth lower bounds for PHP, are related to the power of the systems of
bounded arithmetic, IA0(f), and S2(f). In particular, a superpolynomial bound for
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PHPn implies that IA0(f) cannot prove the sentence asserting the pigeonhole principle
for f, while an exponential lower bound imples that S2(f) cannot prove the pigeonhole
principle for f. See Paris, Wilkie, and Woods [PWW]; Paris and Wilkie [PW]; and Ajtai
[Ajt] for discussions of this question.

Lower bounds for propositional proof systems also bear on broader complexity is-
sues. For example, the problem "NP ? co-NP" is equivalent to the following problem:
"Is there a propositional proof system in which the correctness of a derivation can be
checked in polynomial time, and which admits polynomial size proofs of all tautologies?"
[CRI.

Our lower bound is proved using a particular Frege system over the basis {V,--},
but it holds for any Frege system: by a theorem of Cook and Reckhow [CR], all Frege
systems are polynomially equivalent; and by examining their theorem we find that the
small depth of proofs is preserved in the polynomial length simulation.

The base case of our result is a generalization of an argument originally given by
Haken [Ha] (and later abstracted by Urquhart [Urq]) showing that any resolution refu-
tation of PHP must contain a large clause.

As in previous results [FSS], [Ajt2], [HI, [Ajt], [Y], [Si] involving bounded depth
formulas, we proceed by induction on the depth. Applying a random restriction at each
depth, we can simplify the formulas enough to reduce the depth, without simplifying the
problem too much. However, instead of obtaining a depth d- 1 proof of the (restricted)
pigeonhole principle, which is completely sound, we obtain a depth d- 1 "approximate"
proof of the (restricted) pigeonhole principle, which is only approximately sound. This
approximation is introduced using a "pseudocomplement" similar to Ajtai’s.

2. Overview and definitions.

2.1. Overview. We encode PHPn using (n + 1)n propositional variables, {Pj i E
Do & j E D1 }, where Do and D1 are disjoint sets such that ID0[ n / 1 and IDol n.

Intuitively, Pij 1 if and only if i is mapped to j. Since our proof system will be a
refutation system, we are concerned with the statement -PHP,, which can be written as
the conjunction of the followingpigeonhole clauses:

V{Pij j DI}, i Do;

V{Pik,PYk}, j, i,j Do, kD.

In a refutation, one starts with the negated clauses -PHP, as axioms and then derives
V{}, i.e., False. More exact definitions of the formal system are given below.

We obtain the lower bound by induction on the depth, d, of the Frege refutation. Ap-
plying a random restriction to the refutation, we can simplify the bottom levels so that
each occurrence of negation at depth 3 of each formula is replaced by the "pseudocom-
plement." This reduces the depth of each formula to d 1, but the resulting sequence
of formulas may now only be an approximate refutation.

An approximate refutation is a Frege refutation where each inference is sound with
respect to a large subset of all truth assignments. In contrast, an inference in a regular
Frege refutation is soundwith respect to all truth assignments. Note that our notion of an
approximate proof is a local one: each inference can be sound with respect to a different
subset of truth assignments, and there may be no single assignment that validates all the
inferences. A "good" approximation for an inference can be obtained if every OR of
small ANDs at the bottom levels can be "covered" by a small set after the restriction
is applied. This covering set, which was also used by Ajtai, is analogous to the set of
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variables remaining after restriction in [FSS]; it is dissimilar to the minterms of H&stad
[H].

We repeat the restriction argument d 2 times to obtain an approximate depth 2
Frege refutation ofthe pigeonhole principle, i.e., a refutation in which each formula is an
OR of small ANDs. We then apply one more restriction to obtain a refutation in which
each formula in the proof is an OR of small ANDs, covered by a small set. The existence
of such a refutation contradicts the base case, which states that any good approximation
to a Frege proof of the pigeonhole principle must contain a formula that has no small
covering set.

2.2. Definitions.

The system H. The lower bound for the pigeonhole clauses will be proven for the
Frege refutation system H, described in Fig. 1, for unbounded fan-in formulas. This
system is a modification of the inference system in Shoenfield [Sh, p. 21]. The formulas
ofH are unordered rooted trees defined inductively by the following rules: if 7 is a set of
variables, then V{/ 3’} is a formula, if A is a formula then -A is a formula, and if F is a
finite set of formulas, then V F is a formula. Thus the system allows/ only at the bottom
level, and in fact requires A’s there. This syntactic requirement simplifies the exposition.

Excluded Middle Axiom: AV--,A

Weakening Rule:

Cut Rule:

Merging Rule"

Unmerging Rule:

A

(A/B)
0

(AVB), (-AVC)
(B/C)

V({Vr}uzx)
v(ruzx)

v(ru )
V({Vr}uzx)

FIG. 1. Rules ofthe system H.

In the schemas of Fig. 1, A, B, and C represent formulas, and F and A are finite sets
of formulas.

Note. A/B is the formula A V B with the ORs merged together. More formally,
A/B V(DISJUNCTS(A) UDISJUNCTS(B)); where DISJUNCTS(X) is the set of disjuncts
of X if X is a disjunction and DISJUNCTS(X) {X} otherwise.

The size of a formula is one plus the number ofoccurrences ofV and in the formula;
the size of a Frege proof is the sum of the sizes of the formulas occurring as lines in the
proof. Since each formula consists ofORs ofANDs in the bottom 2 levels, and the rest of
the gates are ORs and NOTs, the depth of a formula is 2 plus the number of alternations
of ORs and NOTs. The depth of a Frege proof is the maximum depth of the formulas in
the proof.
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If a is a propositional formula in the ordinary sense of, say, [Sh], then we can trans-
form it into a formula a of the system H as follows: write it using the basis and v;
then replace every propositional variable Pi with V{/{Pi }}; then merge together any
adjacent /’s created at heights 2 and 3. For example, the images of the negated PHP,
clauses are

e Dr},
v

i Do;

ijDo; kED1.

Now, given a set of ordinary propositional formulas, say, {ai}, and given another ordi-
nary formula , we define an H-proofof from a over D to be a sequence of formulas
such that the final formula is/3n, and each formula is either aH for some i or follows
from zero or more preceding formulas using one of the axioms or rules ofH (see Fig. 1).
A refutation ofa over D is an H-proof of V{} from a, in which each formula has map-
size 1. (Requiring the map size to be 1 does not decrease the generality of the system,
using the transformation . described above.)

It is easy to see that the system H is implicationally complete, using, for example,
the fact that the propositional fragment of Shoenfield’s system is implicationally com-
plete. If {a} -/3 in Shoenfield’s system, then we can obtain an H-proof of/3 from a
by replacing every line , of the Shoenfield proof with -n; additionally, we must insert
appropriate combinations of the merging and unmerging rules in H. This translation
preserves polynomial size and constant depth.

The system H is not suited to a direct proof of the lower bound. We will describe a
modified version of H, H’, that allows certain unsound inferences to be made. In spite
of this unsoundness, we can retain control over the complexity by severely restricting the
type of unsound inference that we permit. The new inference system will contain all of
the rules ofH plus additional rules that allow us to replace -Aby the pseudocomplement
of A, when A is of a simple form. In order to describe the pseudocomplement, we need
some definitions.

Maps; t-disjunctions; covering sets; one-one assignments. First recall that the vad-
ables over D Do A D1 are {Pij E Do, j E D1 }. A map over D is defined to be
a conjunction of the form/ F, where F is a set of variables over D such that distinct
variables in F have distinct left subscripts and distinct right subscripts. Maps describe
bijections between subsets of Do and subsets of D1. The size of a map/ F is [FI; if the
size of a map is bounded by t, it is said to be a t-map. An OR of maps is called a map
disjunction; if all the maps are of size at most t, then it is a t-disjunction.

For a map disjunction G, define rain(G) to be the disjunction obtained by deleting
every map from G that implies some other map in G. For example, PI min((P) V
(Pll A Pa4)). In other words, we remove the map C from G if.there is some other map
B C in (7. Of course, G and rain(G) have the same truth value on all assignments.

A formula A is covered by a set V c_ Do AD if every variable in A has either its left
or right subscript in V; A is k-coverable if it is covered by some set V of size k. We write
Cover(X) for the size of the smallest covering set of X.

Amap or formula B isproperly covered by V if it is covered by V, and every element
of V covers some variable of B; that is, if V covers B and every vertex in V is hit by an
edge of B. Although every minimum-size covering is proper, the converse is not true.

A truth assignment over D is any total assignment of {0, 1} to the variables over
D. An assignment 9 is one-one on V if { (i, j) (Pj) 1 and (i V V j V)} is a
bijection (a map) properly covered by V.
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Conflicting maps; pseudocomplements. Two maps/ I and/ A are said to conflict
if there are variables Pj I and P A so that either i k and j l, or j and
i k. Notice that there is no map that conflicts with/{}.

If A is a map disjunction such that rain(A) is covered by V, then thepseudocomple-
ment, c(A, V, D), of A with respect to V on universe D is the following map disjunction:

/{B B is a map over D properly covered by V, and B conflicts with
all maps in A}.

Notice rain(A) doesn’t have to be properly covered by V, just covered.
FACT. Ifmap B is properly covered by V and conflicts with a map D covered by V,

then B and D conflict at somepoint inside V.
Proof. Let D be a point at which B and D conflict; if i V, then consider the

case i Do, and let j k be such thatP B andP D. Since D is covered by V yet
i V, it must be that k V. Since V properly covers B, there is i’ such that Pe B.
Now i # i’ since B is a map.

The complement we have defined is not quite the same as the complement defined
by Ajtai for two reasons. First, we require the conflicting maps to be properly covered
where Ajtai just requires them to be covered; we need this change to make the distribu-
tion lemma hold (see below). Second, we do not require that A be covered by V, only
that min(A) be covered by V. This simplifies the conversion lemma (below), and is a
harmless change: a map conflicts with all the maps of min(A) if and only if it conflicts
with all the maps of A.

Making these changes to Ajtai’s pseudocomplement does not spoil its key property:
c(A, V, D) is equivalent to --A with respect to all truth assignments over D which are
one-one on V. More exactly, we have the following easy lemma.

LEMMA 2.1 (complement property). If is a truth assignment that is one-one on V,
then q(c(A, V, D)) (-,A).

Proof. If V 0, then, since V covers min(A), either A /{} or else/{} is a map
in A; the lemma is easily seen to hold in these cases. Therefore, we assume V # .

If (c(A, V, D)) 1, then let B be a (nonempty) map in c(A, V, D) set to 1 by .
Every map C in A conflicts with B at some point in V; since is one-one on V and assigns
1 to all variables of B, assigns zero to the conflicting variable in C’. Considering all C’
this implies (A) 0, so (-A) 1.

In the other direction, suppose (A) 0. Let B be the (nonempty) map properly
covered by V, induced by the assignment . That is, B /{Pij (Pij) 1 and

Pis covered by V}. Considering any map C’ E A, we have (C) 0; therefore, there
is a variable in C’ that is set to zero by (and covered by V). This variable conflicts
with some variable in B because (B) 1 and q is one-one on V. We conclude B E
c(A, V, D), and, therefore, q(c(A, V, D)) 1. U

The system H’; approximate refutations; t-soundness. The new proof system, H’,
is obtained by adding the following schemes to H for every map disjunction A and set V
covering rain(A):

Approximate Ac(A, V, D),
Excluded Middle Axiom

Approximate (AB), (c(A, V, D)/6’)
Cut Rule (B6’)
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Notice that these inferences depend on the fixed set D in the same sense as the PHP
clauses depend on D. However, V can vary.

It should also be noted that the approximate complements in different parts of an
approximate proof can be defined relative to quite different sets.

Neither the approximate excluded middle axiom nor the approximate cut rule are
logically sound; however, by the complement property they are sound for the class of
assignments that define one-one maps on V.

More formally, an inference in an approximate proof is t-sound if there is a set V c_
Do t3 D1 with IVI < t so that any assignment that defines a one-one map on V and
makes all premises of the inference true also makes the conclusion true. A sound rule
of inference is a 0-sound rule. If IV[ t is large, there are only a small number of
truth assignments that are one-one on V, and hence the inference is not very sound. On
the other hand, the smaller IVI t is, the closer the inference is to a perfectly sound
inference.

LEMMA 2.2 (soundness fact). The approximate rules are IVI-sound.
Proof. This follows immediately from the complement property, r-1

Using this fact, we can slightly strengthen the notion of t-soundness as follows: a
proof in H is strongly t-sound if every inference is either 0-sound or is one of the ap-
proximate rules involving c(A, V, D), where IvI _< t. In other words, we strengthen the
condition so we know that the particular set V used in taking the pseudocomplement is
also the set that witnesses the t-soundness.

We can think of "strongly t-sound" as a syntactic condition that is used to guarantee
that the semantic requirement, "t-sound," holds.

Restrictions; miscellany. In choosing random restrictions, we use the same prob-
ability space as Ajtai. Each random restriction defines a one-one function between a
subset of Do and a subset of D1. Specifically, the probability space f’," is the set of all
pairs/9 (r, s), where s is a subset of D Do t_J D1 such that so s f3 Do is uniformly
chosen with size n" + 1, and, separately, ol s N D1 is uniformly chosen with size
and r is a uniformly chosen bijection from Do \ s to D1 \ s.

Every p (r, s) in fn,, determines a unique restriction, p, of the variables Pij, (i
Do, j D1) as follows.

ifs0andjsl,

p(Pij) 1 if f so and j f s and r(i) j,

0 otherwise.

Notice that variables assigned by p are variables on s.
We think of restrictions as being performed syntactically on a formula: to apply a

restriction, we remove from each map those variables that the restriction sets to one;
and we remove from a map disjunction those maps in which some variable was set to

zero. Thus, for example, the identity (A/B) Ip= AIp /B Ip holds. Of course, by the
definition of a formula, a given map cannot appear twice in a disjunction. When we
want to perform additional simplifications, we explicitly mention the min() operation.

The notation Pr’" [A] denotes the probability that A occurs when/9 is drawn from
fn,. For a Boolean formula F and an element p f,,, F restricted by p will be
denoted by FIo. The notation log[q n indicates applications of the base-2 log function
(not (log
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Throughout thispaper, Do is a set of size n + I and D1 is a set of size n; where it is
convenient, we shall assume that an ordering is given for each of Do and D1. Whenever
we write a real number where an integer is required, we mean the integer part of the real
number (floor). When we assert an inequality involving n, we shall often assume tacitly
that n is sufficiently large.

3. Reducing the depth. In this section we show how a proof of depth d is converted
into one of depth d 1, while preserving approximate soundness.

All formulas in the proofwill be approximated simultaneously in a bottom-up, level-
by-level fashion by repeatedly applying restrictions, replacing each negation at height 3
by an approximating OR, and merging, until we eventually obtain all depth 2 formulas.
Note that while the approximation of each gate is quite good, an original depth d formula
may eventually be transformed into a very different depth 2 formula. The key point is
that our inference rules have the syntactic property that only one gate may be eliminated
per inference, and hence our gate-by-gate approximation leads to a new sequence of
formulas, which are still approximately sound.

At each stage, the depth is reduced by 1, and some of the inferences are converted
from being 0-sound to being t-sound for some t. Inferences that were made t-sound
in some previous stage will remain at worst t-sound; they will automatically be t-sound
since we will have t > t.

In this connection, notice that in the cut rule (and in the approximate cut rule),
replacing say B by an approximating formula B’ in both the hypothesis and conclusion
does not affect the soundness of the inference. The soundness of the inference is only
affected whenwe approximate the negations at the top level ofthe formulas; for example,
when we use the pseudocomplement on the negation that is explicitly mentioned in the
cut rule.

We will need to prove that the conversion process results in a syntactically proper
approximate proof; as a step towards this, we show in the following lemma that the pseu-
docomplement is in an appropriate sense invariant under restrictions.

LEMMA 3.1 (distribution lemma). Let A be a map disjunction over D such that V
covers min(A); and let p (r, s) f’,’. Then c(A, V, D)Ip= c(AIp V cI 8, D f s).

Proof. First we show that any given map B’ in c(A, V, D)Ip is also in c(AIp, Vs, Dfq

s). Let B be a map in c(A, V, D) such that B Io= B’ # 0. We wish to show that B Ip is
in c(AIp, V fq s, D fq s). First of all, because B is properly covered by V and B contains
only variables set to 1 or by p, BIp is properly covered by V f s. Secondly, variables in
B p are all variables over D fq s because other variables are assigned values by p; since
B Ip is a map, it is a map over D f s. Now, if AIp= 0 V{}, then trivially B Ip is in
c(AIp, V fq s, D fq s). Otherwise, let D be any map in AIp, and let D be a map in A such
that D D It,. By definition of c(A, V, D), B conflicts with D; using symmetry, let us
assume that Pij is in B, and Pi in D, where j k. If Pij (or Pik) were set to zero by p,
a contradiction would hold because then BIp (or, respectively, Dip) would be zero and,
therefore, would not be a map in c(A, V, D)Ip (respectively, AIp)- And if either of the
two variables were set to one, the other would be set to zero; hence p(Pij) P(Pik) *.

Therefore, B and D conflict.
In the other direction, let B’ A F be any given map in c(AIp, V fq s, D fq s). Define

Bby
A {Pij Pij is a variable over D, Pij Ip= 1, and Pi covered by V },

B= A(r u zx).
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Notice that (/ F)Ip- 0 because F consists of variables over D fl s, and any variable
set to zero by p is not a variable over D fq s. Therefore, the variables in F and A don’t
conflict.

By construction, B Ip= B’. We wish to show that B is in c(A, V, D), implying B’
c(A, V, D) Ip. Firstly, B is a map over D covered by V, by construction. Secondly, V
covers B properly because vertices of V are either in V \ s and hit by edges of A, or are
in V fq s and hit by edges of B’, using the properness of V s for B’.

Now, if A 0 k/{}, then trivially B conflicts with all maps in A and, therefore, is
in c(A, V, D); else consider any map C in A. We must show that B and C conflict. Notice
that C is a map over D covered by V, and CIp is a map over D f3 s covered by V s.

If BIp conflicts with CIp, then B conflicts with C, as desired. Otherwise, BIp doesn’t
conflict with C Ip; since B Ip c(A Ip, V s, D s), it must be that C Ip is not in AIp.
Yet C is in A, and because c(AIp, V s, D s) - 0, AIp 1. Since the restriction/9 is
applied syntactically, it must be that/9 removes C from A, i.e., CIp= 0. This means some
variable Pu in C is set to zero.

By the properness of V fq s for F, if Pu were covered by V fq s, then it would either
be in F (contradicting B Io 0) or would conflict with F (implying that B conflicts with
C, as desired). Since C is covered by V, the only remaining case is that Pu is a variable
covered by V \ s and set to zero by p.

Let us say, using symmetry, that / V \ s. Now let P,u be a variable set to I by
and which, therefore, conflicts with Pv. Since Pu is in A, B conflicts with C.

DEFINITION 3.2. An approximate refutation of PHP, is (d, t)-good if it has depth at
most d, map size at most t, and is strongly t-sound. Notice that if a refutation is (d, t)-
good, then it is (d, t’)-good for all t’ >_ t.

Below, we will describe a sufficient condition that allows us to convert a (d, t)-good
refutation into a (d- 1, t)-good refutation. First we describe the conversion mechanism.

Let P be a (d, t)-good refutation over D of PHP, (d > 2), and let p be a restriction.
P is converted into a depth d 1 refutation in four steps.

(1) Let Go... G, be the distinct map disjunctions appearing in formulas of P
(We only need consider maximal map disjunctions, which appear in P p as other than
proper subformulas of map disjunctions.) Let W0... W, c_ D fl s be minimum size
covering sets for min(GoIp) min(G, Ip). In case G is just V{/{Pj}} for some j, k,
then we prefer to cover min(GIo) with W {k}.

(2) Apply the restriction p to each formula of P.
(3) Replace each occurrence of -GiIo by c(Gi[o, Wi, D Cq s).
(4) Merge together OR gates appearing at heights 2 and 3 in the new proof.
LEMMA 3.3 (conversion lemma). Let P be a (d, t)-good approximate refutation over

DofPHP (d > 2),andlet p (r,s) n,e. Ift’ >_ tand Cover(min(G[o)) <_ t’ forevery
maximal map disjunction G in P, then P convened by p is a (d 1, t’)-good approximate
refutation over D s ofPHP,,.

Proof. Let Go... Gm and Wo... Wm be as described above.
We must consider each inference of the original proof and see that after the conver-

sion process, it remains a strongly sound inference in the system H’.
Suppose that the inference is AV-,A (excluded middle axiom). If DEPTH(A) > 2,

then the conversion results in another excluded middle axiom. This is strongly 0-sound
and, therefore, strongly t’-sound. If DEPTH(A) 2 (i.e., A G is a map disjunction),
then the conversion results in Gi[o Vc(Gi[o, Wi, D Cl s), an instance of the approximate
excluded middle axiom. Since IWl _< t is given, the instance is strongly t’-sound.
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Suppose the inference is (A/B), (A/C) = (B/C) (cut rule). If DEPTH(A) > 2,
then the conversion results in another instance of the cut rule. If DEPTH(A) 2, then

A Gi for some i, and the conversion results in (Gi/B)
ho) (B/C) Ip; by the definition of this is identically

s)/CIr ho) = (BIp /CI,), a strongly IWl _< t’ sound instance of the approximate cut
rule over D fq s.

If the inference is an instance of the weakening rule, the merging rule, or the un-
merging rule, then the converted inference is an instance of the same rule. (Essentially,
this holds because does not appear in these rules.)

Suppose the inference is AVc(A, V, D) for some map disjunction A and some set V
covering rain(A) (approximate excluded middle axiom over D). The converted formula

is AI, /c(A, V, D)Ip, which by the distribution lemma is AIp c(AIp, V fq s, D q s), an
instance of approximate excluded middle over D fq s. Since A/c(A, V, D) was a strongly
t-sound instance, we have IvI <_ t, and, therefore, IV
/c(AI,, V fq s, D s) is a strongly t’-sound inference.

Suppose the inference is (A/B), (c(A, V, D)/C) (B/C) (approximate cut rule
over D). Using the distribution lemma again, the converted inference is an instance of
the approximate cut rule over D fq s. Using reasoning similar to that for the approximate
excluded middle axiom, the inference is strongly t < t sound.

Finally, we analyze the PHPn clauses as follows.
V{/{Pij} j D1} becomes V{A{}} if s; this is an instance of the
approximate excluded middle over D s, with A V{} and V 0. If s, it
becomes a PHPn, clause over D s.
For (-- /{A{Pi}) V (-- V{A{P}), recall that we preferred to cover both the
disjuncts with {k}. Therefore, both complements will be taken with respect to
{k}, and the result will be V{/{Phk} h E Do fq s}. This is an instance of the
approximate excluded middle over D fq s, with A V{} and V {k}.

The condition that maps in the converted proof be of size at most t is easy because
every map disjunction in the converted proof is t-coverable.

4. The lower bound. In this section the lower bound is stated and proven using the
following lemma (see 5), which says that under suitable conditions, applying a random
restriction to a map disjunction makes it coverable by a small set. (This lemma will be
presented later in sequence.)

LEMMA 5.1 (covering lemma). Let G be a t-disjunction, and let e be a constant such
that 0 < e < 1/16. If t o(loglogn)and 8/x/ < k < 2n then (for sufficiently large
n),

where

Pr 2 [Cover(min(GIp)) > k] < n,t
Ok

It is convenient to introduce some constants and functions. We also indicate some
relationships between the quantities.
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c-- (2log 2) > 2,

td(n) c lg[d+l] n <-- 6d(n)td-l(n6a(n))
6d(n) e2ta(’) (log[d] n) -1/3,
Sd(n) nta(’)/l < Sd-x (n6a(n)).

The inequalities can be calculated as follows. First,

1
(n6a(n) -d(n) log[d] n.td- (n6a(n)) CC lOg[d] ->

Since 6d(n) (log[d] n) -1/3, this gives td_(n(’)) > (log[d] n)2/3. Now since

2(c+l)tu(n) (log[d] n) (c+)/(3c) < (log[a] n) x/2 (using c > 2), we obtain td- (n()) >
2(+)t(’). Taking logs of both sides gives logtd_(n(’)) >_ Ctd(n) + td(n) > Ctd(n) +
log td(n). By the definitions above,, this inequality is equivalent to all of the following,
including the required inequalities:

The lower bound will follow by induction on the depth using the following two lem-
mas, whose proofs will be given later.

LEMMA 4.3 (induction lemma). Fornsufficiently large, ifd > 2andP is any (d, td(n))-
good refutation ofPHP, ofsize less than Sd(n), then there is a restriction p f,e() such
that: P converted by p is a (d 1, td- (n6a(n)))’good refutation ofPHP(n(’)) ofsize less
than Sd- (n6(n)).

LEMMA 4.4 (base lemma). Forsufficiently large n, there is no (2, t2(n))-good refutation
ofPHP, ofsize less than S2(n).

THEOREM 4.1 (lower bound on size). For sufficiently large n, any refutation ofPHP,,
ofdepth d must have size at least Sd(n) n(lglu+ll n).

Proof. Suppose there were such a refutation, P. Since it is a refutation in H it has
map size at most 1, and is strongly 0-sound; therefore, P is a (d, td(n))-good approximate
refutation of PHPn of size less than Sd(n). Without loss of generality we can assume
that P has depth at least 2; now applying the induction and base lemmas below gives a
contradiction.

THEOREM 4.2 (lower bound on depth). For sufficiently large n, any Frege refutation
ofPHPn ofpolynomial size must have depth f(log* n).

Proof. The asymptotics in the lower bound on size hold at least for d up to O(log* n).
Supposing the size to be bounded by n and setting n Sd(n) gives log[d+] n k,

i.e., d f(log* n).
To prove the following results, we let n be sufficiently large so that the required

asymptotic relationships hold for all depths up to d, and then proceed by induction on
the depth, d. Each time we reduce the depth by applying a restriction to a universe of
size n, the size of the resulting universe is n(’).
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LEMMA4.3 (induction lemma). Fornsufficiently large, ifd > 2 andP is any (d, ta(n) )-
good refutation ofPHP, ofsize less than Sa(n), then there is a restriction p E 9tn’6d(’) such
that: P convened by p is a (d- 1, ta-1 (n6d(n)))-good refutation ofPHP(n()) ofsize less
than Sa- (n()).

Proof. For each map disjunction G in P, however, the covering lemma implies that
_n,td(n) 1/Sd-1 (nSd(n)).Cover(min(GIp)) > td- (n(’)) with probability at most ct_l (nd,))

The conditions required by the covering lemma, that td(n) o(log log n) and that
td-1 (n8a(n)) <_ n8a(n), are easily seen to hold for d _> 2.

Since 1/Sd- (n()) _< 1/Sd(n), and there are fewer than Sd(n) map disjunctions
in P, the probability is less than one that some map disjunction has Cover(min(GIt,)) >
td_l(nSa(n)). In particular, there is a restriction p that makes all the map disjunctions
coverable by small sets after taking min(). Since td-1 (nd(’)) _> td(n), we can apply the
conversion lemma to show that P converted by p is (d 1, td-1 (n(’)))-good. The size
of P after conversion is still at most Sd(n), which is at most Sd--l(n6d(n)).

It is interesting to notice that depth 2 proofs never contain any of the second type of
PHPn clause (9 // Pk V [/k Pjk) because these have depth 3. These clauses all get
converted into instances of approximate excluded middle the very first time a restriction
is applied.

LEMMA 4.4 (base lemma). Forsufficiently large n, there is no (2, t2(n))-good refutation
ofPHPn ofsize less than $2 (n).

Proof. Suppose there were such a refutation, P. The same calculations as in the
induction lemma allow us to use the covering lemma to show that there is a restriction
p E 2n,e-() such that Cover(min(GIp)) < t (n62(n)) for all maximal map disjunctions G
in P. These maximal map disjunctions of P are exactly the formulas of P because d 2.

Applying p to P and replacing each map disjunction X with min(X) gives t2(n)-
sound refutation P’ of PHPne.n) such that every formula of P is t (n6(n))-coverable.
Since tl(n6z(n)) n6(n)/8 for sufficiently large n, the existence of P’ contradicts the
criticality lemma below. We have not shown that P is a refutation in H, but that doesn’t
matter to the criticality lemma.

The criticality lemma, which provides the argument for the base case of the theorem,
is a modification of Urquhart’s argument [Urq] generalizing the resolution-system lower
bound of Haken [Ha].

DEFINITION 4.5. An assignment is i-critical if it is one-one on D0\{i} (and, therefore,
is also one-one on D1). For any formula A, the critical set CRIT(A) is defined by

CRIT(A) {i AIp-- 0 for some/-critical p}.

LEMMA 4.6 (criticality lemma). There is no n/12-sound approximate refutation of
PHPn in which allformulas are (n/8 1)-coverable.

Proof. Suppose P were such an approximate refutation. Let A be the first formula
in P such that ICRIT(A)I >_ n/3. There is such a formula because ICRIT(] )[ n + 1.

Let {B,... Bk } be the k preceding formulas from which A is derived, with k < 2
and k _> 0. Since the inference is n/12-sound, there is a set V of size at most n/12
such that any assignment which is one-one on V and makes B Bk true, also makes A
true. Whenever i ; V and is/-critical, is one-one on V, and, therefore, A Io- 0
l, Bt I= 0. Hence

CRIT(A) C_ V t..J (..J/k_ICRIT(B/).
Since [CRIT(B/)[ < n/3 by the minimality of A, this implies ICruT(A)l < n/12 + kn/3 <
n/12 + 2n/3 3n/4 and IDo \ CRIT(A)I _> n/4.
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Now we use the facts that both CruT(A) and Do \ CRIT(A) are large to show that
A is not (n/8 1)-coverable. Specifically, we find n/8 variables in A that have disjoint
subscripts.

For any/-critical assignment and j i, let r(j) be such that (Pj,r(j)) 1.
Now let [j, i] be the assignment that agrees with , except that [j, i](Pj,r(i)) 0 and
[j, i](Pi,(i)) 1. By switching j and i in this way, we get [j, i] to be j-critical; when
j Do \ cruT(A), this implies that AIv[,q 0.

For each i cruT(A), fix an/-critical assignment such that AI= 0. Consider any
j Do \ CRIT(A). Since AI= 0, but AIv[,i] 0, either P,() or P,() occurs in A. Let
VArt(, i) be the variables so discovered, among all j Do \ CruT(A). Since o defines a
one-one function and [Do \ CruT(A)I _> n/4, there are at least n/4 distinct variables in
each VAR(99 i).

Case l. For some i, VAR(qo, i) contains at least n/8 variables of the form Pj,(j),
j c Do \ CRIT(A). These variables have mutually disjoint subscripts because q defines
a one-one function (namely, r).

Case 2. Otherwise, for every CPdT(A), VArt(p, i) contains at least n/8 variables
of the form Pi,(j) for some j Do \ cruw(A). There are at least n/8 values for i, and
by considering each in turn we can select a matching of size n/8 from the variables in
U VAR(, i). E]

5. Covering lemma. In this section we prove the following covering lemma (Lemma
5.1), which states that if you apply a sufficiently strong restriction to a t-disjunction, then
the result is probably k-coverable (for suitable t and k).

LEMMA 5.1 (covering lemma). Let G be a t-disjunction, and let e be a constant such
that O < e < 1/16. If t o(loglogn)and 8/e < k < 2n2 forsufficiently large n, then for
sufficiently large n,

where

Pr’ [Cover(min(GIp)) > k] < x’t,

The proof is a simplification of Ajtai’s T2 [Ajt], in which we extract specific bounds
from the combinatorics. The covering lemma demonstrates that with high probability,
applying a random restriction to a map disjunction results in a formula that can be cov-
ered by a small set. It is proved using a combinatorial lemma (5.2), which we derived
from Ajtai’s lemma C1.1 First we state Lemma 5.2, then go ahead with the proof of the
covering lemma.

LEMMA 5.2. Let 0 < 6 < 1/3, 0 <_ e <_ 62/4 and let g be a function defined on

Do U D, such that 9(x) c_ Do D1, 19(x)l < n-, and x 9(x) for all x Do tO D1.
Thenfor all t > 4/x/ andfor all sufficiently large n we have

>t]_<Z:

1Ajtai’s lemma C1, appearing in [Ajt] and [Ajt3], contains an error in the statement of (**) and a conse-
quent error in the application of (**). He shows the proof of the corrected (**) in a private communication,
which does not comment on the application of (**).
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where

n-t().

ProofofLemma 5.1. Given a fixed but sufficiently large value for n, the proof pro-
ceeds by induction on t.

Base case. For the base case (t 1), write G in the form G VieDo View, Pii for
appropriate sets w c_ D. Let B {i Do IWI > n-’}.

Taking cases on the size of/3, suppose IBI >_ n’, so that for n sufficiently large,
IB \ 1 >- n’/e. A restriction p (r, s) can be chosen as follows: first choose s so
where Isll n"2 and Is01 Isxl + 1; let B8 c_ B \ s be any particular subset of size
next, for each i E /38 in increasing order, choose r(i) uniformly from the remaining
elements of D; then choose the rest of r. Each time r(i) is chosen for i E Bs, the
probability isl(W\s)\{r(k) k e Bsandk < i}[outofl(Di\s)\{r(k) k
B8 & k < i}l that r(i) Wi. Hence, for i E Bs, the probability that (View, Pii) Ip I is

at least (ni-2" n" n5e/2)/(n n") >_ 1/(2n2e). It follows that the probability of this
1happening for at least one of the n5/2 possible i E B8 is at least 1 (1 )’’/. Since

1/2ne/2(1--) --’< this probability is at least 1 () Because t 1 and k _< n", this
n, for n sufficiently large. Finally, wheneverprobability is greater than or equal to 1 ak

this happens (i.e., whenever (\/iew Pii)Ip- 1 for any B \ s), GIp= 1, and therefore
Cover(min(GIp)) 0.

On the other hand, suppose that [B[ < n3" and a random p (r, s) is chosen from
2t

Firstly, we show that with high probability [B oI <_ k/2. Applying Imma 5.3
below, with the parameters A’ {B}, c’ 0, t’ k/2, ’ (1 3e), and e’ 2, we
obtain that the probability of [B f3 s[ > k/2 is at most 2n-(x-z’-’)/a.

Secondly, we show that with high probability all variables {P i B} in GIp are
covered by a subset of s of size at most k/2. We apply Lemma 5.2 to the system

{i--.Wi: ieDo\B}t3{i--O: ieB},

with parameters e’ e2, t’ k/2 > 4/7, and 5’ x/-7. The condition x

_
g(x)

required by the lemma is trivially satisfied. Lemma 5.2 implies that with probability at
most n-e:k/, the subsystem fails to be k/2-coverable after a restriction from f,2 is
chosen and applied.

The variables remaining in G after (r, s) is applied are those in the subsystem just
described, plus some variables that are covered by B fq s. (Variables in {Pii i
B \ s, j E Wi } are all set to either zero or one.) It follows that with probability at most

2n-(-3"-‘)k/a + n-‘k/ < c’, the function min(GIp) is not k-covetable.

Induction step. Let G GVG2 be the t-disjunction that we wish to cover, where
G1 are those maps of size exactly one and G2 are those maps of size at least two. We
will obtain bounds on the probability that min(G Ip) is not k’ k/2 covered and on the
probability that min(G2 Ip) is not k’ k/2 covered; adding these two bounds we will
obtained the desired bound on the probability that min(GIp) is not k covered. Applying
the inductive hypothesis to G for t 1 we get that the probability that min(G Ip) is not

k’-coverable is at most () / )k’.
We now bound the probability that min(G2 Ip) is not k’-coverable. For all pairs (i, j),

i Do, j D, construct the formulas ii /{c c is a map in G2 containing Pi }.
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Then construct the formulas j V{a’ (a’ i Pij) is a map in o}, where
with Pi removed.

We now proceed in three phases: in Phase 0 we use the induction hypothesis on each
to obtain sets C covering the formulas min( Io); in Phase 1 we apply Lemma 5.2

to the systems {j --, C} for each to obtain sets C; and in Phase 2 we apply Lemma
5.2 once more to the system {i C}. The resulting set covers every min(j [o); by an
argument using the fact that every map in G2 has size at least 2, the set also covers every
min( [o) and, therefore, covers min(GIo).

In Phases 0, 1, and 2 we apply successive restrictions p0 f,,o,(-, pl

and p2 E fn., whose composition is the restriction p required for the lemma. Here
ne2t-, ne2t-zwe define no n IN01, n and nz corresponding to the domain

size remaining before each of the three phases. The domains themselves we denote by
(Do, D1) (Do, D), (D, Dll), and (D, DI), reserving (Doa, Da) for the domain at
the end of Phase 2. Among all the formulas , the only ones that will ultimately be
significant are those for which i Doa and j Da, since a cover of these formulas after
applying p is sufficient to cover G after applying p.

Phase O. Each of the no n different formulas is a t 1 disjunction. Apply-
ing the induction hypothesis, we have that a random restriction po from fo,,(,-z has

probability at most n0a’t- of failing to make all the formulas/-coverable for appro-
priately small 1. Let Ci’ be a set of size covering min( Ioo). We can assume that
i, j

_
Ci because every map in i contains Pij, and, therefore, no map in contains

any variable incident on {i, j}.
(.-6)Fixing any 6 such that 0 < 6 < 1/4, and choosing n the required induction

-1)
condition <_ ng( follows trivially. Finally, we can observe that Ci’ c_ D t3D since
the only variables set to by p0 are those in {Pv x D and DI }.

Phase 1. By the choice of l, Lemma 5.2 can be applied to the n different systems
S {j C" j 6 D}, where 6 D. The required condition x 9(z) follows since
j C as noted above. We choose a single random restriction p from f,x,, and obtain
that the covering sets described in Lemma 5.2 fail to exist with probability at most nl/3
for appropriately small A. Thus with high probability we obtain sets C, for E D0, such
that C [.JjeD2 (Ci (D D2)), and [CI <

For each e D, C covers every variable that is both covered by some Cij (j e D)
and set to by p. Since Cj covers min(j [o), this implies that C covers min(i Ipo) Ip

(1--6)for j e D. Hence C covers min(j[ooo for D, j E D1. Choose , n2
Phase 2. By the choice of ), Lemma 5.2 can be applied to the system S {i

C i D0}. After choosing p2 fn2,, the covering set described by Lemma 5.2
fails to exist with probability at most/3k7. Thus we probably obtain a set C’ such that
Ct-- [ieD(C ["l (Do3 U D3)) and IC’l _< k’.

The set C covers every variable that is both covered by some C (i D) and set
to by p. Since C covers min(j [ooo), this implies that C’ covers min( Ioom)Io2.
Hence C’ covers min( Ioomo) for i D0a, j E Doz.

It remains to argue that C’ covers min(ij Io) for E D0a, j Da (recall p poppg.).
Observe that every A-clause of min(i I,) is a clause of min(j Io), possibly with
added.

Proof Consider cases in which po(Pi) 0, 1, or .. If p(Pi) =., then Pi appears
in every clause ofi I,; therefore, clauses eliminated from j I, by the rain operator will
also be eliminated from Io. Therefore, we already have the fact that for all i D0a,
j D1a, the set C’ covers all the variables in i Io except possibly P.
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Since maps in i have size at least 2, there is a variable PkL in i with k and
j. By definition, Pj is a variable in CkL and, therefore, is included in the fact regarding

Analysisfor bounding 2. The total probability that we fail to obtain the covering set
is at most the sum of the probabilities in the three phases. This amount is n02a’t-1 +
nl +/3?. Using the constraint on k(- 2k’) from the statement of the lemma, it can
be seen that/3,2 is the dominant term in this sum. The amount is

(1)

The last inequalities are obtained as follows. The condition t E o(log log n) implies that
n"’ is increasing (i.e., a;(1)); therefore, the conditions k’ < n and (1 6)/ > i imply
that

k,<l( ) (1-)/"n2t 1

and

5 ( )(-)/(,) 2
k’ < n

2t

These two inequalities imply that the third exponent above, _2t k’ ), is smaller than the
other two.

Combining the bounds for G1 and G2. The overall probability is at most the sum of
the probabilities for G and G:

(1) k’ -t-3

1) ,k<
n

The third line follows from the second line because for e < 6 and t > 2, the exponent in
the second term ( 136 e2t k) is smaller than the exponent in the first term (e2k); hence the
second term is larger than the first term. (And twice the second term is easily dominated
by the term in the third line.) [3

The following lemma states that if is a function taking z E Do U D to a small
subset of Do t_J D1 not containing z, then 9, when restricted to a random subset of size
n", will have a small sized range. Recall that n IDol ID01 1.
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LEMMA 5.2. Let 0 < 6 < 1/3, 0 <_ e <_ 62/4, and let 9 be a function defined on
Do tO D1, such that 9(z) c_ Do tO D1, _< n and z q 9(z) for all z E Do tO D1.
Then for all t > 4/andfor all sufficiently large n we have

where

U g(z) n > t]

fl n-t( ).

We will need the following lemmas, based on Ajtai’s (*) and (**), to prove Lemma
5.2.

LEMMA 5.3. Let A be a set ofsubsets ofDo tO DI such that [A <_ n, and IX[ < n1-,
for all X A Thenfor all t > 0 andfor all sufficiently large n,

’’ [::IX A, IX n > t] < 2n-(6-’)+p=<r,s>

Proof. For t > n" the above probability is zero, so we can asume that t < n’.
If there exists an X A such that the event X rq s[ > t holds, then either (1) IX
so[ > t/2 or (2) IX rq sl[ > t/2. To bound (2), consider a fixed subset X of A. The
probability that a random set s contains at least t/2 elements of X is no greater than
[(IXl] ( n--t/2 n
,/2J 1811-t/2J]/[(1811)]" Because there are at most nc subsets X E A, the probability
that a random sz contains at least t/2 elements of some X is at most

(n1-8 n t/2 n

(n- t/2)!t/2!(n n’)!(n" t/2)!n!

nc n(-6)t/2, n(e)t/2
n. 2(n- 1). 3(n- 2)..... (t/2)(n- t/2 + 1)

nc n(l+e-6)t/2
<

nt/2
because k(n k + 1) > n for all k < n

It is not too hard to show that the above inequalities also hold for so. Therefore,
Pr:8) [3X e A, IX n s > tl _< 2n--(-’)+.

LEMMA 5.4. Let 9’ be afunction defined on Do U DI such that 9’(z) c_ D, la’(z)l _< t,
and z

_
9’ (z) for every z Do U D. Then for all t > 0 andfor all sufficiently large n,

Pr’?)[l{y" 3x e s, y e g’(x) fq s}] > t] < 2n-1/4(-a).

Proof. Let elements of s be obtained by choosing the elements of so without re-
placement from Do, and then choosing the elements of s without replacement from
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D1. Letting q 2n" + 1 [sl, label the chosen elements of s by {1,..., q} in the order
in which they were chosen.

Intuitively, we visualize the function 9’(z) on the set s by a directed graph with q
nodes, ordered in a line and labelled by elements of s; the edge (i, j) is present if and
only if j E 9’ (i). If the condition of the lemma holds, then either t/2 edges point to the
left or t/2 edges point to the right. More formally, if ]{y z s, y g’(z) f) s}l > t,
then either (1)}{y: z s, y g’(z)f s and z < Y}I > t/2 or (2)]{y:

> v}l >
We analyze case (1); case (2) is similar. Suppose H is a set of size t/2 that satisfies

(1). By definition, (3) Vy H, y l<x<u (x). We first upper-bound the probability
of (3) for a particular subset H, and then sum the probability over all possibilities for H.

g(x) has at most ty elements,When we pick the yth element of s, the set
and there are at least n y + 1 elements of Do (or D) to choose from. Therefore, the
probability that y is in the set H is at most tu ), which is at most () since y < qn--y+l n

and n/2 _> q 1 for sufficiently large n.
Since the number of possible subsets g is (t2), the probability of (3) is at most

(L)t/ (tz)" Defining T by t n and estimating 2q < n9", we get

Now there are two cases. If T < (1--4e)/2, then the probability is smaller than n-(t/4)(-4‘).
On the other hand, if T > (1 4e)/2, then t is a small polynomial in n; using the Stirling
approximation,

log

( ) log(t/2)>_ n-(/lg n) ( > n-(r-(1-ae)/2)

In this case, the probability is also smaller than n-1/4(1-a,). Combining this estimate for
cases (1) and (2), the overall probability is no greater than 2n-(-a).

Proof of Lemma 5.2. To prove Lemma 5.2, we apply two successive restrictions,
p= (r,s) f,,v and pc= (r2, s2) G fn’/’vq. First applying Lemma 5.3 for a
random pl f,,vq, with A {9(x)[x D} and c 1 we obtain

er,:>[x c s Ig(x)fq > t] _< _< 2n-+1 _< 2n--The second inequality holds because 6 > 2x/; the last inequality holds because for
t>2"t>-, 2

Assuming that the first restriction is successful (i.e., Vz 6 D, [9(z) fq sl < t), we can
define 9’ (z) 9(z) f3 s and apply Lemma 5.4 on the domain Do fq s, D n s, drawing
a random p (r, s) 6 f,vq, to get

prnrzv/-g’sZV/-[l{y x 82y gt(x) 82}1 > 7] __< (TbV/’) -1/4(1-4V/’)
< 2n-t/4.

The last inequality holds because for e <_ 5, x/ 4e >_ e.
Now, a randomly chosen p f’," can be viewed as the composition of the two

random choices for pX and p2. Thus the probability that a random p satisfies the condition
of Lemma 5.2 is at most 2n-4 + 2n- <_ 4n- <_ n- for n sufficiently large. [3
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6. Limitations of the covering lemma. The covering lemma states that with high
probability any given t-disjunction will be covered by a set of size k, after O(t) restric-
tions. Because of the large number of restrictions that must be applied for every appli-
cation of the covering lemma, the map size, t, cannot be too large (otherwise, we quickly
end up with an assignment to all of the variables). Therefore, one way of improving the
bound would be to prove the covering lemma for a single restriction. This stronger form
of the covering lemma could be stated as: For any t, e < 1, and for any t-disjunction, G,
Pr’[Cover(min(GIp)) > k] _< a, for some a < 1, where a depends possibly on n and
t. Setting t k approximately equal to nx/a, this strengthened covering lemma would
yield an exponential lower bound for PHP.

Unfortunately, this strengthened version is false for k > log n. This situation is
similar to the impossibility of obtaining an exponential lower bound for bounded depth
circuits computing the parity function by simply improving the combinatorial lemma in
[FSS]. Herewe briefly describe a function, due to Russell Impagliazzo, which contradicts
this strengthened covering statement for t log n + 1.

The multiplexor function is a function on n + log n bits, {z}, where the first log n
bits are used to index the remaining n bits. The function is "1" if and only if the value
indexed by the first log n bits is "1." This function can be written as the OR ofn minterms,
each of size log n + 1.

The counterexample to the strengthened covering lemma is a t-disjunction, which
encodes the multiplexor function on {z} using the pigeonhole variables Pij. Because
the new function has to be monotone, we will encode negation by using the range ele-
ments, D. The "pigeonhole" multiplexor function is a function on variables {Pij i
Do, j D}, where [Do[ logn + n + 1, and [D[ logn + n. Let T be a fixed
subset ofD of size IDol An assignment p for {Pab} which is one-one on D induces
an assignment to the n + log n variables {x } by x 1 if and only if Bj T such that
p(Py) 1. The value of the pigeonhole multiplexor function is the value of the multi-
plexor function on these induced values. Note that the modified function can be written
as a t-disjunction for t log n + 1.

Let p =< r, s > be a random restriction from f,. Intuitively, if all of the log n index
variables in Do are included in s, then the restricted function will have large covering sets.
The probability of this happening is approximately (-)g n, which is larger than a for
a < 1 and k n1/2.

This counterexample shows that an exponential lower bound for PHPn cannot be
obtained by simply improving the covering lemma. However, we feel that the covering
lemma can be improved to yield a lower bound of ng ’, for a small constant c, inde-
pendent of the depth.

7. Conclusions and open problems. In this paper we have given a proof-theoretic
superpolynomial lower bound for constant depth Frege proofs of the pigeonhole prin-
ciple. Our approach introduces the notion of using approximations for a sequence of
formulas, and shows how to use a proof theoretic approach to eliminate the nonstan-
dard model theory that was used by Ajtai. We also improve the lower bound of Ajtai.
In addition, this proof more directly explains why bounded depth Frege proofs are weak
for proving the pigeonhole principle.

We avoid the nonconstructivity of the compactness theorem; in fact, it appears likely
[P] that our proof can be made feasibly constructive as defined in [CU]. Informally, a
feasibly constructive lower bound proof is one which involves only polynomial-time con-
cepts. In contrast, it was shown in [CU] that a superpolynomial lower bound for extended
Frege systems cannot have a feasibly constructive proof. A formalization of our result
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as a feasibly constructive proof requires describing exactly how to choose the restric-
tions, using Spencer’s "probabilistic method" for transforming probabilistic algorithms
into deterministic ones [Sp, p. 31].

An outstanding open question is to prove a truly exponential lower bound for bound-
ed depth Frege proofs. Such a bound would imply that $2 (a subsystem of Peano arith-
metic containing IA0) augmented by a function symbol f cannot prove the sentence as-
serting PHP for f. (See [PWW], [Bu] for the connection between subsystems ofbounded
arithmetic and bounded depth Frege proofs.) As it is, current results simply imply that
IA0(f) cannot prove PHP(f). It is known [PWW] that IA0(f), together with the ex-
istence of the function rlg n, can prove the weak pigeonhole principle for f, i.e., the
principle that f is not a bijection between [2n] and [hi.

Acknowledgments. We wish to thank Stephen Cook, Russell Impagliazzo, and Alan
Woods for many valuable conversations that led to this proof. We thank Paul Beame
for his help in correcting the covering lemma. We thank Alexander Razborov and Judy
Goldsmith for their comments on earlier drafts of the paper.
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EXTERNAL INTERNAL NODES IN DIGITAL SEARCH TREES VIA MELLIN
TRANSFORMS*

HELMUT PRODINGER

Abstract. Knuth posed it as an open problem to compute the average number of external internal nodes
in a random digital search tree. This was settled by Flajolet and Sedgewick using Rice’s method. This note
offers an alternative approach using Mellin transforms.

Key words, digital search trees, Mellin transform

AMS(MOS) subject classifications. 68Q25, 68P05, 68R10

Knuth [4, Ex. 6.3.29] posed it as an open problem (ranked M46) to compute (asymp-
totically) IN, the average number of external internal nodes in a random digital search
tree built by N data.

This problem was settled by Flajolet and Sedgewick [2] by a very convenient tech-
nique called Rice’s method. This method has some advantages over the Mellin transform
technique that Knuth used heavily in his famous book. (In passing it will be mentioned
that the variance was treated by Kirschenhofer and the author [3].)

In this note we show that Knuth could have given a solution himself because in the
present approach we follow his ideas that he used in a similar (although easier) problem
(cf. [4, p. 497]).

For a complete description of the problem and digital search trees we must refer to
[4] and [2] in order to keep this note short. For the use of the Mellin transform technique
we cite [1].

The problem is to compute

N

k--2

with

N

RN QN
Qk

k=O

and

It follows from [2] and [3] that

fork > 1 and Q0 1.

RN N + 1 oz + R*(N)

with

1
c= - 2k_ 1

k>l

1.606695...
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and

z+j
R* (z) aj 2z+j 1

j_>l

The quantities in the last equation are

Qo lim Qk 2.88788...
k---oo

and

aj (-1)J-12-()/Qj_I.
We mention for later use that

R* (-1)
log2 ]+ 2. aj 2J-1 1

2.2346464...
j_>2

(a very fast converging series!).
Therefore,

1N N(o + 1) 5]

with

O ZaZ (-1) 2-+ 1’
j>_l k=2

and this sum E will be attacked in the style of Knuth. Expanding the geometric series,
we get

N
1 Zaj Z ZQ

1 [Qoo aj Z N2-m(j-1) [(1- 2--m)N-l- 1]
j>_l m>_l

+(J-- 2)2-m(j-2) I(l-2-m)N-l-+--m]]"
The last step was by the binomial theorem. Now let

l(x)=e-x-1 and 2(x)=e-x-l+x.

Then the sum E may be approximated by

This is achieved by the exponential approximation (1 a)N e-aN; see, e.g., [4; p. 131].
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Let us start with

N
E f(N)

with

X
fl(Z)- Eaj E 2-m(j-1"//)1 (’)

j>l m>l

Its Mellin transform is for -1 < s < 0,

E a:i E 2-m(J-)2msF(s)
1

F(s). Eaj 2J-l-s 1"
j>_l

The Mellin inversion formula

1
f(x)

(where the integration is along a vertical line inside the so-calledfundamental strip) al-
lows us to go back to the original function. To evaluate it asymptotically, we have to
consider the negative residues of the integrand right of the fundamental strip (i.e., here
at s 0). We don’t discuss the other residues which lead to smaller order terms, respec-
tively, periodic fluctuations of small amplitude, but this can be done as easily as the main
term.

The term j I must be treated separately, as it contains a second-orderpole. The
residue computation is standard and gives a contribution

Q
log2 N - 2 log 2

to El. For j _> 2, there is only a simple pole, yielding a contribution

[ 1 ]N E aj 2J-1 1Q y>:

Now we turn to E2"

E2 f2(N)
with

X

We transform f2(x)" (for-2 < s < -1)

1
f (s) F(s). E aj(j 2)2_2_ 1

j>_l
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This time the pole of interest is s -1.
Again, j I must be treated separately, yielding a contribution

1 1 7 )N
log2 N + +Qo,:, log 2 log 2

to E. For j _> 2, the contribution to Eg. is

N 1
Q Eaj(j 2) 2j_1 -1

Hence we have

Qoo log 2

NR*(-1).

1
+ Z aj(j 1)2j_x

j_>.

Therefore, we obtain the final result:

1N N(c + 1 R*(-1)) 0.37204.... N,

where, again, the ubiquitous fluctuating term of order N was not mentioned for brevity.
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VERIFICATION AND SENSITIVITY ANALYSIS OF MINIMUM SPANNING TREES
IN LINEAR TIME*

BRANDON DIXONt*, MONIKA RAUCHt, AND ROBERT E. TARJAN

Abstract. Koml6s has devised a way to use a linear number of binary comparisons to test whether a given
spanning tree of a graph with edge costs is a minimum spanning tree. The total computational work required
by his method is much larger than linear, however. This paper describes a linear-time algorithm for verifying
a minimum spanning tree. This algorithm combines the result of Koml6s with a preprocessing and table look-
up method for small subproblems and with a previously known almost-linear-time algorithm. Additionally, an
optimal deterministic algorithm and a linear-time randomized algorithm for sensitivity analysis of minimum
spanning trees are presented.

Key words, network optimization, minimum spanning tree, program checking, sensitivity analysis, divide
and conquer

AMS(MOS) subject classifications. 05, 68

1. Introduction. Suppose we wish to solve some problem for which we know in ad-
vance the size of the input data, using an algorithm from some well-defined class of
algorithms. For example, consider sorting n numbers, when n is fixed in advance, using
a binary comparison tree. Given a sufficient amount of preprocessing time and storage
space, we can in a preprocessing step compute a minimum-depth comparison tree, store
it explicitly, and then solve any instance of the sorting problem by using the precomputed
comparison tree.

This technique is of course generally useless because it is prohibitively expensive in
preprocessing time and Storage space, both being at least exponential in n. There are
situations in which this idea can be used to advantage, however. This is the case in prob-
lems susceptible to very efficient divide-and-conquer. The idea is to split the problem to
be solved into subproblems, which are categorized into classes. If the subproblems are
small enough, they can be solved efficiently as follows: An optimal algorithm for each
class is precomputed and stored in a look-up table, and each instance of a subproblem is
solved by looking up and running the algorithm for its class. For this technique to pay off,
solving all the subproblems must reduce the original problem sufficiently so that it can
be solved quickly with respect to the size of the original problem by using a nonoptimal
algorithm.

This paper presents an application of this general technique to two problems con-
cerning minimum spanning trees. This approachwas first proposed explicitly by Larmore
[15], who used it to solve a convex matrix searching problem. Related techniques were
used by Gabow and Tarjan [8] to solve a disjoint set union problem, by Harel and Tarjan
[12] to find nearest common ancestors in a tree, and by Fredman [5] to solve the all pairs
shortest path problem.
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We present an algorithm that verifies a minimum spanning tree in an n-vertex, m-
edge graph in O(m) time. We also give algorithms performing sensitivity analysis of
minimum spanning trees in worst-case time minimum to within a constant factor and
in linear expected time. Our model of computation allows edge costs to be compared,
added, or subtracted at unit cost, and side computations to be performed on a unit-cost
random-access machine with word size f(log n) bits. The verification algorithm uses the
comparison bound of Koml6s [14] for the subproblems and Tarjan’s O(ma(m, n)) algo-
rithm [17] for the reduced problem. For sensitivity analysis we solve the subproblems us-
ing a result of Goddard, King, and Schulman [9] in the randomized case and enumeration
of all possible algorithms in the deterministic case. In both cases, Tarjan’s O(mc(m, n))-
time sensitivity analysis algorithm [18] processes the reduced problem. We describe the
algorithms in 2 and 3. Section 4 contains concluding remarks.

It is important to note that our computational model allows only very simple opera-
tions on the edge costs, namely, binary comparison, addition, and subtraction. In a more
powerful model in which bit manipulation of the edge costs is possible, better results can
be obtained using table look-up and other ideas. In particular, Harel [11] showed that
if the edge costs are integers polynomially bounded in n, then on a unit-cost random-
access machine the minimum spanning tree verification and sensitivity analysis problems
can be solved deterministically in linear time. More recently, Fredman and Willard [6]
showed that if the edge costs are single-precision integers, then a minimum spanning
tree can be computed deterministically in linear time on a unit-cost random access ma-
chine. These results are incomparable with ours because of the stronger computation
model used.

2. Verification of minimum spanning trees. Let G (V, E) be a connected, undi-
rected graph with vertex set V of size n and edge set E of size m. Suppose every edge
{v, w} E E has a real-valued cost c(v, w). A minimum spanning tree of G is a spanning
tree whose total edge cost is minimum. The minimum spanning tree verification problem
is that of determining whether a specific spanning tree T is a minimum spanning tree.
Since G is connected, m _> n 1. To simplify time bounds, we assume that m >_ n;
otherwise, G itself is a tree.

Several results concerning the minimum spanning tree verification problem are
known. There are many efficient algorithms forfinding a minimum spanning tree, given
only the graph G and the edge costs; see the survey paper by Graham and Hell [10]
or the monograph by Tarjan [19, Chap. 6]. The fastest known algorithm for finding
a minimum spanning tree is that of Gabow et al. [7], which runs in O(m log/(m, n))
time, where/(m, n) min{i log(i) n < m/n}, and log(i) n is defined recursively by
log() n n, log(i+l) n log log(i) n. The verification problem was considered by
Tarjan [17] and subsequently by Koml6s [14]. Tarjan proposed a verification algorithm
running in O(ma(m, n)) time, where c is a functional inverse of Ackermann’s func-
tion. Koml6s showed that a minimum spanning tree can be verified in O(m) binary
comparisons between edge costs. Unfortunately, his method requires nonlinear time to
determine which comparisons to make. Here we describe an algorithm that verifies a
minimum spanning tree in O(m) time.

Let T be a spanning tree whose minimality we wish to test. For any pair of ver-
tices v, w, we denote by T(v, w) the path in T from v to w. T is minimum if and only
if, for every nontree edge {, w}, c(, w) > max{c(z, g)I {z, /} E T(v, w)}. In or-
der to efficiently verify this condition, we replace each nontree edge {v, w} by a set of
up to six replacement edges, each of cost c(v, w). This replacement leaves invariant the



1186 BRANDON DIXON, MONIKA RAUCH, AND ROBERT E. TARJAN

minimality of T. Edge replacement is a two-stage process. To begin the first stage, we
choose an arbitrary vertex r and root T at r. We denote by p(v) the parent ofvertex v in
the rooted version of T. For each nontree edge {v, w}, we compute the nearest common
ancestor of v and w in T, say u. If v and w are unrelated in T (i.e., u 9g {v, w}), we replace
{v, w} by the pair of edges {u, v}, {u, w}, each with cost c(v, w). Such replacement
leaves invariant the minimality of T, at most doubles the number of nontree edges, and
results in a graph such that every nontree edge joins two related vertices in T. The time
to perform this replacement is O(m) using either of the known linear-time algorithms
for computing nearest common ancestors [12], [16].

We can now assume that each nontree edge {u, v} is such that vertex u is an ancestor
of vertex v. In the second stage, we replace each such edge by a set of up to three edges.
In order to determine the edge replacements, we partition T into a collection of edge-
disjoint subtrees. Let g > 1 be an integer parameter, whose value we shall specify later.
The subtrees have two properties:

(i) There are at most (n 1)/t + 1 subtrees; and
(ii) Deletion from any subtree of its root and all edges incident to the root leaves a

collection of smaller subtrees, called microtrees, each containing at most t vertices.
We compute the collection of subtrees in O(n) time, as follows. We process all the

vertices except r in postorder [19]. (This order guarantees that a parent is processed
after all of its children.) When processing a vertex v, we compute an integer value s(v)
for it; and, in addition, we may mark it as a subtree root. The computed value of s(v) is
the number of descendants of v in T (including v itself) that are in the same microtree
as v. Initially all vertices are unmarked. The vertex processing step is as follows:

process(v): Compute h 1 + ]{s(w) w is a child of v}. If h < g, then let s(v) h;

otherwise, mark v as a subtree root, and let s(v) 1.
Once the vertex processing is completed we mark r, the root of T, as a subtree

root. Condition (ii) is immediate from the definition of the vertex processing. Condition
(i) is also immediate: each subtree, except possibly the one rooted at r, contains more
than g vertices and hence contains at least g edges, which means that there are at most
(n 1)/g + 1 subtrees.

Let T be the tree whose vertices are the marked vertices of T, with v the parent of
w in T if v is the deepest marked proper ancestor of w in T (i.e., the first marked vertex
encountered on the path from w to r in T). We call T’ the macrotree. By (i), T’ has
O(n/g) vertices. Tree T can be computed in O(n) time by doing a depth-first traversal
of T and maintaining the set of marked proper ancestors of the currently visited vertex
on a stack; when the search visits a vertex v, the deepest marked proper ancestor of v,
which we denote by p’ (v), is on top of the stack. (We adopt the convention that p(r) is
undefined.)

We use the macrotree to define the replacement edges for each nontree edge. Let
{u, v} be such a nontree edge, with u an ancestor of v. Let rx p(u) if u is unmarked
or u if u is marked. Similarly, let r3 p’(v) if v is unmarked or v if v is marked. If
rl r3, we do not replace {u, v}. If rl # ra, let r2 be the child of rl in T that is an
ancestor of ra replace {u, v} by {u, r2 }, {r2, rz }, {r, v}, deleting any of these edges
that is a loop (an edge ofthe form {x, x} for some x). Each new edge has a cost of c(u, v).
This replacement leaves invariant the minimality of T and at most triples the number of
nontree edges.

We can compute the replacement edges for every nontree edge in a total of O(m)
time, as follows. A depth-first traversal of T as described above allows us to compute
p(v) for each vertex v r. This gives r and ra in the edge replacement construction.
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It remains to compute the r2-vertices in the edge replacement construction. The com-
putation of these vertices requires answering O(m) queries of the following form on T"
given a vertex z and another vertex y that is a proper ancestor of z, determine the child
of y that is an ancestor of z. These queries can be answered in O(m) time by performing
a depth-first traversal of T’, maintaining a stack of the ancestors of the currently vis-
ited vertex, and answering the query for a pair y, z when visiting z during the search, by
reporting as the answer to the query the vertex just above y on the stack.

Having computed all the replacement edges, we must test, for each replacement
edge {w, z}, whether c(w, z) > max{c(y, z)[ {y, z} E T(w, z)}. In the rest of this sec-
tion we describe how to perform this test for all replacement edges.

For each vertex v r, we compute a value high(v) equal to the maximum cost of an
edge on the path T(p’ (v), v). These values can be computed for all vertices by doing a
separate depth-first traversal of each of the subtrees of T that were determined by the
partitioning process described previously. During the traversal of the subtree rooted at
a vertex u, we maintain the path of edges from u to the currently visited vertex as a stack
with heap order [19]; the values that are heap-ordered are the edge costs, and the high-
values are computed usingfind-maz operations. This data structure requires O(1) amor-
tized time per push, pop, or find-maz operation [19]. Hence the total time to compute
all high-values is O(n). The high-values suffice to perform the required test for each
of the {r3, v}-replacement edges, in O(1) time per edge: for such an edge, high(v)
max{c(y, z) {Y, z} e T(r3, v)}.

We deal with the {r2, r3 }-replacement edges by adding all of these edges to T to
form a graph G’, giving each edge {p’ v), v} in T’ a cost c(p’ (v), v) high(v), and veri-
fying that T’ is a minimum spanning tree in G. To verify the minimality of T we use the
algorithm of Tarjan [17], which runs in O(mt(m, n’)) time, where n’ is the number of
vertices in T’. If g gt(log() n) for an), fixed positive integer i, then n’ O(n/log() n),
and c(m, n’) O(1) [19]. Thus verifyin the minimality of T’ takes O(m) time.

The remaining edges that must be tested are the {u, r2}-replacement edges. Each
such edge has u and r2 in the same microtree. Let T1, T,..., Tk be the microtrees. For
1 < < k, we form a graph Gi by adding each {u, r2}-replacement edge to the tree
T such that u and r are in T. Together the graphs G1, G,..., Gk contain n vertices
and O(m) edges. By (ii), each Gi contains at most g vertices. We complete the task of
verifying the minimality of T by verifying that T is a minimum spanning tree of Gi for
each i in the range 1 < < k.

To verify the minimality of the microtrees, we use a preprocessing and table look:up
technique. For each possible connected graph with no more than g vertices and spec-
ified spanning tree, we construct a short integer encoding by numbering the vertices
consecutively from 1, encoding each edge by the pair of numbers of its end vertices, and
concatenating the encodings of the edges, listing the spanning tree edges first. (It does
not matter that this encoding is not unique.) The encoding for a graph-tree pair con-
tains at most [log g]g2/2 bits, since there are fewer than g2/2 edges. The total number
of possible code strings (not all of which are legal encodings of graphs) is not more than
2[og qa/2. We will choose g such that each graph encoding fits into one computer word
and such that there are at most possible code strings. Choosing g _< c2(log n) 1/3 for
a suitably small value of c2 more than suffices for this purpose.

Consider a connected graph with at most g vertices and e < g2/2 edges and having a
specified spanning tree T*. The result ofKoml6s [14] implies that there is a decision tree
D whose nodes represent binary comparisons of edge costs that will verify the minimality
of T* and has a depth of at most ce, for some sufficiently large c. The number of nodes
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in D is at most 2cle+l. Furthermore, an inspection of the construction of Koml6s shows
that D can easily be constructed in O(tfl) time per node, for a total of O(#Z2f/) time.

Choosing _< ca(log n)/ for a suitably small value of c guarantees that the con-
struction time for one decision tree is O(x/), and the total time required to construct
decision trees for all possible graphs with at most # vertices is O(n). Furthermore, the
space needed to store all the decision trees is O(n).

We construct one decision tree for each possible graph with at most 9 vertices and
then build a table that maps code strings for graphs to the corresponding decision trees.
Then we use the table to verify the minimality of the microtrees T in the respective
graphs G, by computing a code string for each G, T pair, accessing the decision tree
corresponding to the code string, and following the path through the decision tree de-
termined by the edge costs of G. The total time to perform all the verifications is O(m).
This completes the verification of T.

The only constraints imposed on the choice of in this construction are
f(log(i) n) for some fixed positive integer i and 7 < ca(log n) 1/a for ca min{c0, c2}.
Thus it suffices to choose g ca(log n) 1/a.

3. Sensitivity analysis of minimum spanning trees. An extension of the minimum
spanning tree verification problem is the sensitivity analysis problem. Let G be an undi-
rected graph with edge costs, and let T be a minimum spanning tree of G. The sensitivity
analysis problem is to compute, for each edge {v, w} of G, by how much c(v, w) can
change without affecting the minimality of G. Tarjan [18] has extended his verification
algorithm to an algorithm that solves the sensitivity analysis problem in O(mc(m, r))
time. For the special case of planar graphs, Booth and Westbrook [2] have given an al-
gorithm running in O(m) time. We shall describe a randomized O(m)-time algorithm
and a deterministic algorithm that runs in time minimum to within a constant factor, al-
though all that we can say for sure about the running time of the latter algorithm is that
it is O(mc(m, n)) and f(m). Our technique is the same as that of 2; namely, we reduce
the original problem in O(m) time to a collection of subproblems, each ofwhich is small
enough to solve by using a decision tree selected from a precomputed set of such trees.

Let {v, w} be a nontree edge. Let a(v, w) max{c(z, /)I {z, /} T(v, w)}. Then
T remains minimum until the edge cost of {v, w} decreases by more than c(v, w)
a(v, w). Similarly, let {v, w} be a tree edge. Let b(v, w) min {c(z, /)I {z, /) is a
nontree edge such that {v, w} T(z, /)}. Then T remains minimum until the edge cost
of {v, w) increases by more than b(v, w) c(v, w). (See [18].)

The value of a(v, to) for every nontree edge {v, w} can be computed in O(m) time by
a simple extension of the verification algorithm in 2: instead of verifying that c(v, w) >_
a(v, w), we compute a(v, w) explicitly. Explicit computation of the a(v, w) values can be
done by computing, for each of the six replacement edges for an original edge {v, to), the
maximum-cost tree edge on the path in T joining the endpoints of the edge. These max-
ima can be computed by slightly modifying the algorithm of 2; the algorithm of Koml6s
actually computes the maxima along tree paths needed to handle the replacement edges
within the microtrees.

Computing b(v, w) for every tree edge {v, w} is harder. We first replace the nontree
edges exactly as in 2: each nontree edge {z, /} is replaced by a set of up to six nontree
edges, each of cost equal to {z, /}, in a way that preserves b(v, w) for every tree edge
{v, w}. In the process otperforming this replacement, we choose a root r of T and
compute subtree roots, subtrees, and microtrees exactly as in 2. After the replacement,
each nontree edge {z, /} is such that z and /are related in T, say, z is an ancestor of /.
In addition, such an edge is of exactly one of three types:
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Type 1: z is a subtree root, is not a subtree root, and z p’(), where p’ is defined
as in 2: p’() is the deepest ancestor of that is a subtree root;

Type 2: z and y are subtree roots;
Type 3: z and y are in the same microtree.
We compute each value b(v, w) using the equation

b(v, w) min(b (v, w), b2(v, w), b3(v, w)}

where bi for i 1, 2, 3 is defined exactly like b(v, w), but with the minimum taken only
over nontree edges of type i.

To compute the bl-values, we begin by computing, for each vertex v r, the value
mini (v) min {c(x, y) {x, y} is a type-1 edge such that x p’ (y) is a proper ancestor
of v and v is an ancestor of y}. The min-values can be computed in O(m) time by
visiting the vertices of T in postorder and applying the recurrence

mini(v) min ({c(x, v)I {x, v} is a type-1 edge}

U {min(w)Ip(w) v})

if v is a subtree root;

if v is not a subtree root.

Then, for every vertex v # r, bl (p(v), v) min (v).
We compute the b2-values in three steps. First, we form the graph G’ as in 2 by

adding to the macrotree T each type-2 edge. Second, we compute, for each tree edge
{v, w} of the macrotree T’, the value b’(v, w) min {c(x, y) {x, y} is a type-2 edge
such that (v, w) T’ (x, y) }. All the b’-values can be computed in O(m(m, n’)) time by
applying the sensitivity analysis algorithm of Tarjan [18] to the graph G’ and the tree T’.
Choosing g (the size parameter for the macrotrees) to be f(log(i) n) for any fixed positive
integer i results in an O(m) time bound for this computation. Third, we compute, for
each vertex v # r in T, the value mine(v) min {b’(p’(y), Y) I{P’(Y), Y} is an edge ofT’
such that y is a descendant of v and if(y) is a proper ancestor of v}. The mine-values
can be computed in O(n) time by visiting the vertices of T in postorder and applying the
recurrence

b’(p’(v), v)
min2(v)

min{min2(w) p(w v}

if v is a subtree root and

if v is not a subtree root.

Then, for every vertex v r, be(p(v), v) min2(v).
All that remains is to compute the ba-values. Since the definition of a type-3 edge

{x, y} implies that x and y are in the same microtree, we can compute the ba-values by
adding the type-3 edges to the appropriate microtrees to form graphs G1, G2,..., Gk
as in 2 and then process each Gi, ri pair separately. We again use preprocessing to
construct a fast decision-tree algorithm for each possible graph-tree pair and then use
table look-up to select the correct algorithm for each actual pair G, Ti.

It is only in the construction of the decision trees that the randomized and deter-
ministic algorithms differ. We first consider the deterministic case. A decision tree for
the sensitivity analysis problem consists of a binary tree, each internal node of which
specifies a comparison between the costs of two edges, and each leaf x of which pro-
vides a mapping fx from the tree edges of the problem graph to the nontree edges, such
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that the ba-value of any edge e is c(f(e)), assuming that the edge costs are consistent
with the outcome of the comparisons leading to leaf z. The algorithm of Tarjan [18] im-
plies the existence of an O(ma(m, n))-depth decision tree for the sensitivity analysis of
an n-vertex, m-edge graph, and given spanning tree. Since a(g2, g) O(1) [19], these
decision trees have depth O(t2).

For each possible connected graph with no more than t vertices and specified span-
ning tree, we construct a minimum-depth decision tree for sensitivity analysis by brute-
force enumeration. We restrict our attention to complete binary trees, enumerating all
possible decision trees of each possible depth in increasing order by depth until finding a
correct one. A complete binary decision tree of depth d has 2a 1 internal nodes and 2a

leaves. Each internal node corresponds to one ofthe less than t/a possible binary compar-
isons ofedge costs; each leafcan correspond to one ofthe less than fg possible mappings
of the tree edges to the nontree edges. Thus there are less than (.qa)Za-l(fg)
possible decision trees of depth d, assuming > 2. The total number of trees that must

be considered before encountering a correct one is O(a2c3 for some suitably large
constant ca. This is O(2293). The space needed to store a decision tree of depth d is
O(2ag log) O(2), if d O(). To determine whether a particular decision tree
correctly solves the sensitivity analysis problem, it suffices to test that the correct an-
swer is obtained for each of the at most (t)! O(2ga) possible permutations of edge
costs. Testing one permutation requires O(72) time. The time to test a particular de-
cision tree is thus O(tz2ga) O(29’), and the time to find a minimum-depth decision

tree is o(2g’2:) O(2’). If we choose g c4(loglogn) 1/a for some sufficiently
small constant ca, then the time to find minimum-depth decision trees for all possible
graph-tree pairs is O(n), as is the space needed to store them in a table.

We compute the ba-values for all tree edges in a microtree T by indexing the look-
up table with the code string of the pair G, T to get a decision tree and evaluating the
decision tree with the given edge costs.

The total time needed for sensitivity analysis is O(m) plus time proportional to the
sum of the minimum numbers of comparisons needed to perform sensitivity analysis for
all of the Gi, Ti pairs. Performing sensitivity analysis for all of the G, T pairs is at
most a constant factor more time-consuming than performing sensitivity analysis for a
worst-case n-vertex, m-edge graph. Thus the sensitivity analysis algorithm runs in time
minimum to within a constant factor, assuming that only binary comparisons between
edge costs are used as tests.

In the randomized case, we replace the deterministic decision trees used for sensi-
tivity analysis of the microtrees by randomized decision trees. In a randomized decision
tree, each internal node corresponds either to a comparison of two edge costs or to a
test of a distinct random bit. As in the deterministic case, we require every path of the
decision tree to give the correct answer, but as a measure of the complexity of the tree
we use the weighted average depth of a leaf, rather than the worst-case depth, taking the
weight of a leaf to be 1/2, where is the number of tests of random bits along the path
from the root to the leaf.

Goddard, King, and Shulman [9] have found a randomized algorithm to compute
the maxima of n subsets of an ordered universe of size n in O(n) comparisons on the av-
erage. Their result, together with the observation of King [13] that their algorithm needs
only O(n) random bits on the average, implies the existence of a randomized decision
tree of average depth O(m) for the sensitivity analysis problem. Such a decision tree
can be converted into a decision tree of O(m) average depth and O(m log m) worst-case
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depth by trimming the decision tree at depth m logm and replacing each subtree that
was cut out by a decision tree that merely sorts by cost the edges of the problem graph.
A brute-force enumeration can be used to find minimum-average-depth randomized
decision trees for all possible microtree problems. The details mimic the deterministic
case, so we omit them. The Goddard-King-Shulman result then implies that the result-
ing randomized sensitivity analysis algorithm runs in O(m) expected time for a suitable
choice of the microtree size bound g.

4. Concluding remarks. We have illustrated by means of two related examples a
general technique of speeding up divide-and-conquer algorithms by a preprocessing and
table look-up technique. A curious phenomenon is that the technique can give algo-
rithms running in time minimum to within a constant factor, but for which we cannot
presently offer a tight asymptotic time analysis. This is the case for our deterministic
minimum spanning tree sensitivity analysis algorithm and for Larmore’s convex matrix
searching algorithm [15]; both have running times somewhere between linear and an
inverse Ackerman function times linear. Providing tight analysis of these algorithms
amounts to bounding the number of comparisons needed to solve the corresponding
problems. Obtaining tight bounds remains open. A related question is whether the ran-
domized maxima-finding algorithm of Goddard, King, and Shulman can be made deter-
ministic. Another question is whether our model for computations not involving edge
costs can be weakened from a random-access machine to a pointer machine. The only
feature of a random-access machine we have actually used is the ability to make multi-
way branches to look up the.special-purpose algorithms for processing the microtrees. It
may well be the case that binary branching suffices for this purpose, and hence that our
results hold for pointer machines with binary comparison of edge costs (and edge cost
subtraction for sensitivity analysis).

The technique we have illustrated is not limited to comparison-based problems. We
can allow arithmetic operations in the decision trees to be used to solve the subprob-
lems. Testing the correctness of such a decision tree amounts to testing the validity of
a first-order sentence about the real numbers. Such sentences can be tested in double-
exponential time [1], which suffices for the use of the method: we merely reduce the size
of the subproblems to double-logarithmic, triple-logarithmic, or further, as needed. As
an example, the technique can be applied to the O(n log* n)-time algorithm of Chazelle
[3] for triangulating a simple n-sided polygon, to produce an algorithm running in time
minimum to within a constant factor. The bound for this algorithm is in fact O(n) be-
cause of the even more recent result of Chazelle [4], giving an explicitly linear-time al-
gorithm. Further applications remain to be discovered.
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Abstract. Using the results given in [D..V. Chudnovsky and G. V. Chudnovsky, Proc. Nat. Acad. Sci. USA,
84 (1987), pp. 1739-1743] and [W. C. Waterhouse, Ann. Sci. ;cole Norm. Sup., 4 (1969), pp. 521-560], it is
proven that the rank (=bilinear complexity of multiplication) of the finite field q, viewed as an q-algebra
is 2n if n satisfies 1/2q + 1 < n < (q + 1 + e(q)). Here e(q) is the greatest integer < 2x/, which is prime to
q if q is not a perfect square and ,(q) 2x/ if q is a perfect square.
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1. Introduction. Let K be a field and L a simple finite extension field of K. The
rank R(L/K) of L over K is defined to be the bilinear complexity of multiplication in
L/K, where K is regarded as the field of scalars [7]. Denoting by L* the dual of L as a
vector space over K we thus have

R(L/K) min{r N l3ui, vi L*,, L Va, b L

ab -u,(a)vi(b)wi }.
i:1

Let n denote the degree (L K). It is known that R(L/K) > 2n 1 with equal-
ity holding if and only if IKI _> 2n 2 [6]. The optimal multiplication algorithms re-
alizing the lower bound 2n 1 all belong to the class of interpolation algorithms [12].
These algorithms are based on the principle of reconstruction of polynomial products
by Lagrange-interpolation [3]. In other words, these algorithms can be viewed as inter-
polation algorithms on the projective line over

Noticing that a switch to arbitrary algebraic curves results in the existence of more
rational points than in the case of a projective line, D. V. Chudnovsky and G. V. Chud-
novsky generalized the existing algorithms to projective curves having additional arith-
metic properties [3]. Using special, well-studied algebraic curves, they were the first
to show that for an infinite set of prime powers q, the rank of Fq,/q is asymptotically
bounded from above by a linear function of n.

Our paper is concerned with the application of the algorithm invented by Chud-
novsky and Chudnovsky to the first nontrivial class of algebraic curves, the so-called
elliptic curves. Elliptic curves play an important role in different areas of mathematics
and computer science and have been studied very well during the last decades.

Besides classical results about elliptic curves, we are interested in the question of
the existence of elliptic curves over the finite field ]Fq with as many rational points as
possible. This question has been answered by Waterhouse [11]. Combining the results
of Waterhouse with the mentioned interpolation algorithm on algebraic curves we are
able to compute the exact rank of certain field extensions of the finite field Fq (Theorem
5).

The question of generating the optimal algorithms, the existence ofwhich is proved
in this paper, calls for other types of methods. We will discuss this problem in detail in
[9].
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The paper is organized as follows. In 2 we summarize some well-known results
about elliptic function fields (which are the function fields of the elliptic curves). Section
3 is devoted to the application of a slight modification of the algorithm presented in [3]
to elliptic function fields. Section 4 discusses the question of the existence of elliptic
function fields, having those additional arithmetic properties required by the algorithm
of 3. Section 5 is devoted to the formulation and proof of the main theorem.

2. Basic facts about elliptic function fields. In this section we are going to introduce
some basic notations and summarize well-known results about elliptic function fields
over finite fields. All these facts can be found in standard textbooks such as [1], [2], [5],
[10].

Let K/q be an elliptic function field with constant field Fq, i.e., Fq is assumed to
be algebraically closed in K. By I(K/]q) we denote the set of prime divisors of I/]q.
ID(I(/q) denotes the group of divisors of K/]q defined to be the free abelian group
over I(K/]q). The relation < defined by

app

_
bpp .=:k ’v’ pap

_
bp

p p

is a partial order on D(K/Fq).
For p ]?(K/Fq) we define Kp to be the residue class field of p. It is well known

that Kp is a finite extension of Fq. The index (Kp Fq) is denoted by deg(p) and is called
the degree of p. The map p deg(p) can be uniquely extended to ]I)(K/Iq) by

To every nonvanishing function f in K we can associate the divisor

(f) "= ordp(f)p,

called the principal divisor of f. Here ord, (f) denotes the p-order of f. The principal
divisors form a subgroup ]I-]I(K/]q) of ]I)(K/]q), isomorphic to K/’. All principal
divisors are of degree zero. For a divisor 9.1 D(K/Fq), the set 92 + H(K/]q) is called
the class of Since principal divisors are of degree zero, the degree map is constant on
classes of divisors.

For 92 D(K/q) we denote by (9.1) the linear space attached to 9A, which besides
zero contains all nonvanishing functions f of K with (f) _> -9.1. /2(92) is even a vector
space of finite dimension dim(Pa) over q. The number dim(ga) is called the dimension
of the divisor 9.1. Like the degree, the dimension is also a class function.

The theorem of Riemann-Roch [10, Thm. 5.4] relates the dimension and the degree
of an arbitrary divisor of

THEOREM 1 (Theorem of Riemann-Roch). Let K/I?q be an ellipticfunctionfield and
9a D(K/]Fq) be an arbitrary divisor Then we have

0 ifdeg(P./) < O,

dim(P2) 1 if9.1 e ]HI(K/]Fq),

deg(9.1) otherwise.
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The set of prime divisors of degree one of K/Fq is denoted by P1 (K/]q). Since
K/Fq is elliptic, this set is not empty. Hasse [8] proved the inequality

(1) q + 1 2x/ _< [P1 (K/Fq) <_ q 4- 1 4- 2x/.

We shall be interested in elliptic function fields with as many prime divisors of degree
one as possible. For example, if q is a perfect square, we ask if there are elliptic function
fields having q + 1 + 2x/- prime divisors of degree one.

An answer to this question can be given using a more general theorem of Water-
house 11], which gives necessary and sufficient conditions for the existence of an elliptic
function field having t 4- q 4- 1 prime divisors of degree one if t is a given natural number
satisfying It[ _< 2x/ in view of (1). Before stating the result, let us introduce the function
e defined by

e(q) / greatest integer _< 2x/ prime to q if q is not a perfect square,

( 2x/’ if q is a perfect square.

THEOREM 2 (Waterhouse [11]). Let q be a prime power. Then there exists an elliptic
function field over ]q having q / 1 / e(q) prime divisors ofdegree one.

3. Interpolation in elliptic function fields. In this sectionwe shall discuss a modified
version of a bilinear algorithm due to Chudnovsky and Chudnovsky [3] for multiplication
in a finite extension of Fq. We shall first state the result.

THEOREM 3. Let q be a prime power and n be a natural number Suppose that there
exists an elliptic function field K/Fq satisfying thefollowing conditions:

(1) K contains a prime divisor p ofdegree n;
(2) K contains a divisor ofdegree n, the class ofwhich is differentfrom that of p and

for which ord() Ofor allprime divisors 3 ofdegree one ofK/]q;
(3) IPI(K/Iq)I > 2n.
Then we have

Proof. The proof uses the same method as in [3]. Let p and be as in the assump-
tions of the theorem. Since p is of degree n, the residue class field Kp of p is isomorphic
to Fq. Further, since and p belong to different classes and p is assumed to be prime,
we have ordp()) 0 showing that/()) is contained in the valuation ring of p. Let
n Z() Kp denote the restriction of the residue class mapping on Z(). Thus n de-
fines a vector space homomorphism. The kernel of n is E( p). Since and p belong
to different classes, 3-p is not principal. Theorem i implies now that E()-p) is trivial,
which shows that n is injective. By Theorem I dim() n; hence n is an isomorphism.
So there exists a basis fl," , f, of E(), which is mapped by n onto a basis of Kp over

Let {gl,..., g2,,} be a basis of E(2). Then there exist elements Bi) E Fq such that

2n

r--1

Furthermore, Z(2) is also contained in the valuation ring of p. By abuse of notation,
let us denote the extension of n to (2) again by n. Then there exist c E Fq such that
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we have

() (f,), ,... ,2.
m--1

nLet n=x Xe;(f) and =1 YJa(fJ) be o arbitra elements of Kp Fq.. en we
get

(2) (iK(fi))i=l (JK(fJ))=j=l m=l ,v=l((i,j=l iJBJ)c)K(fm).
t the bilinear forms Z1,..., Z2= be defined by

Zr x,yjBj, r- 1,...,2n.
i,j=l

By (2) eveu bilinear algorithm of length for computing Z1, , Z2= produces an algo-
rithm of length for multiplication in Fq= over Fq. Hence we have

n(q/a) n({z,..., z,}),

where R({Z,..., Z2n}) denotes the bilinear comple of the set of bilinear forms
{Zl,’’’, Z2n } (certificate [6, Chap. I]).

For the computation of Z1, , Z2n we are going to use the inteolation algorithm
presented in [3].
t {,...,Y} be the set of prime divisors of degree one of K/Fq. Further, let

the matr F be defined by

gl (1) g2n(Vl)

9(V) an(V)

This matr is defined since by the assumptions of the theorem ordv() 0 for all
(K/Fq). The rank of F equals 2n: Consider the homomowhism

(a(Vl),...,9(V)).

F is the representation matr of 7 with respect to the basis {gl,..., g2} in E(2) and
the canonical basis in F. The kernel of 7 is (2 ( +.-. + g)), which is trivial
by Theorem 1 since N is assumed to be larger than 2n. So 7 is injective, meaning that F
has rank 2n. Without loss of generali, suppose that the first 2n rows of F are linearly
independent. Denote by F0 the matr formed by these rows of F. We define further

n

x x,y,(), y := uf(w), 1,...,2n.
i=1

Now we compute (XiY1,..., X2=Y2n). This step of the algorithm requires 2n essential
multiplications.
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Since by (2) we have

ro(Z,..., z,)v (xr,...,x,r,)-,
we get the desired bilinear forms Z,..., Z2, without further essential multiplications.
This proves the theorem.

Note that in the algorithm presented above does not need to be integral, a condi-
tion assumed in [3].

4. Technical tools. This section is rather technical and is primarily concerned with
the question of which elliptic function fields satisfy the conditions of Theorem 3.

The first problem we are concerned with is that of the existence of prime divisors of
given degree in an elliptic function field. The next lemma answers this question.

LEMMA 1. Let q be a primepower, q > 4. Further, let n be a natural number satisfying
n > -q + 1. Then every elliptic function field over Fq contains a prime divisor ofdegree

Proof. In [3] it is proved that the number N, of prime divisors of degree n of an
algebraic function field of genus 9 over Fq satisfies the inequality

N >_ 1 (q q/2(4g + q))
/

Since the genus of an elliptic function field is one, it suffices to prove the inequality

qn/2 > 4 + q.

Because q _> 4 is assumed, the stronger inequality q/ > 2q also yields the result. But
this inequality is satisfied for all n with n > 2 log 2/log q + 2. Now the assertion follows
since for q _> 4 we have q + 1 _> 2 log 2/log q + 2.

For proving the existence of the divisor we first have to show that there exist two
different divisor classes of degree n. This is the content of the next lemma.

LEMMA 2. Let K/q be an elliptic function field that has at least two different prime
divisors of degree one. Then K contains two different divisor classes of degree n for every
natural number n.

Proof. Let 0 be a divisor of degree one of K/Fq. Further, let p and p2 be two
different prime divisors of degree one of K/Fq and 9.1 be a divisor of degree n of K/Fq.
Then 9.1 +p 0 and 9/+p 0 clearly belong to two different classes of degree n.

With the foregoing two lemmas at hand we can prove the existence of the divisor
of Theorem 3.

THEOREM 4. Let q be a prime power, q _> 4, and n be an integer with n > l
q9 /1.

Further, let K/Fq be an elliptic function field with at least two prime divisors ofdegree one.
Then K contains a prime divisor p ofdegree n and a divisor ofdegree n not belonging to
the class ofp such thatfor all q3 I? (K/Fq) we have ord() 0.

Proof. The existence of p follows from Lemma 1. Let C denote the class of p. By
Lemma 2 K contains a class C: of divisors of degree n with C C. By [5, Lem. 1, p.
71] C: contains a divisor such that ord()) 0 for all /?I(K/Fq). This proves
the theorem.

5. The main result. This section is devoted to the formulation and proofof the main
theorem of this paper.

THEOREM 5. Let q be a primepower and n an integer satisfying 1/2q + 1 < n < (q +
1 / e(q)). Then we have

R(Fq, /Fq) 2n.



1198 MOHAMMAD AMIN SHOKROLLAHI

Proof. Since for q E {2, 3} the assertion of the theorem is empty, let us suppose
that q > 4. Let K/q be an elliptic function field with q + 1 + e(q) prime divisors of
degree one. (The existence of K follows from Theorem 2.) Since q > 4, the function
field K/I?q contains more than two prime divisors of degree one. Applying Lemmas 1
and 2, we get the existence of a prime divisor p of degree n as well as the existence of the
divisor with the conditions stated in Theorem 3. Further, the assumption on n implies
2n < q + 1 + e(q). Hence, Theorem 3 yields the assertion R(I?q/]q) < 2n.

Now by [6, Thm. 1.4], if q < 2n 2 we have R(I?q,/Fq) > 2n 1. So the assertion
of the theorem follows. [3

As.a corollary to the above theorem we get the following.
COROLLARY 1. Let q be a prime power that is a perfect square. Further, let n be an

integer satisfying 1/2q + 1 < n < 1/2 (q + 1 + 2x/). Then we have

R(]q, /]q) 2n.
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